Search Results

Search found 12471 results on 499 pages for 'variable naming'.

Page 196/499 | < Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >

  • Customized Database Listener Names Now Supported for EBS

    - by sreelatha.mahendra(at)oracle.com
    The database listener name can now be configured using AutoConfig with newly introduced context variable s_db_listener. Prior to this certification it was not possible to use AutoConfig generated listener.ora files for managing listeners from SRVCTL when there were multiple RAC instances on the same server.To use this feature E-Business Suite customers need to apply the following patch:11.5.10CU2 - Roll Up Patch 9535311 (RUP-U) or higher12.0.x - R12.TXK.A.delta.7 or higher 12.1.x - R12.TXK.B.delta 3 or higher

    Read the article

  • Getting Dynamic in SSIS Queries

    - by ejohnson2010
    When you start working with SQL Server and SSIS, it isn’t long before you find yourself wishing you could change bits of SQL queries dynamically. Most commonly, I see people that want to change the date portion of a query so that you can limit your query to the last 30 days, for example. This can be done using a combination of expressions and variables. I will do this in two parts, first I will build a variable that will always contain the 1 st day of the previous month and then I will dynamically...(read more)

    Read the article

  • S#arp Architecture 1.5.1 released

    - by AlecWhittington
    So far we have had some great success with the 1.5 release of S#arp Architecture, but there were a few issues that made it into the release that needed to be corrected. These issues were: Unnecessary assemblies in the root /bin and SolutionItemsContainer folders Nant folder removed from root /bin - this was causing issues with the build scripts that come with the project if the user did not have Nant installed and available via a path variable VS 2010 template - the CrudScaffoldingForEnterpriseApp...(read more)

    Read the article

  • Use of Business Parameters in BPM12c

    - by Abhishek Mittal-Oracle
    With the release of BPM12c, a new feature to use Business Parameters is introduced through which we can define a business parameter which will behave as a global variable which can be used within BPM project. Business Administrator can be the one responsible to modify the business parameters value dynamically at run-time which may bring change in BPM process flow where it is used.This feature was a part of BPM10g product and was extensively used. In BPM11g, this feature is not present currently.Business Parameters can be defined in 2 ways:1. Using Jdev to define business parameters, and 2. Using BPM workspace to define business parameters.It is important to note that business parameters need to be mapped with a valid organisation unit defined in a BPM project. If the same is not handled, exceptions like 'BPM-70702' will be thrown by BPM Engine. This is because business parameters work along with organisation defined in a BPM project.At the same time, we can use same business parameter across different organisation units with different values. Business Parameters in BPM12c has this capability to handle multiple values with different organisation units defined in a single BPM project. This enables business to re-use same business parameters defined in a BPM project across different organisations.Business parameters can be defined using the below data types:1. int2. string 3. boolean4. double While defining an business parameter, it is mandatory to provide a default value. Below are the steps to define a business parameter in Jdev: Step 1:  Open 'Organization' and click on 'Business Parameters' tab.Step 2:  Click on '+' button.Step 3: Add business parameter name, type and provide default value(mandatory).Step 4: Click on 'OK' button.Step 5: Business parameter is defined. Below are the steps to define a business parameter in BPM workspace: Step 1: Login to BPM workspace using admin-username and password.Step 2: Click on 'Administration' on the right top side of workspace.Step 3: Click on 'Business Parameters' in the left navigation panel under 'Organization'. Step 4:  Click on '+' button.Step 5: Add business parameter name, type and provide default value(mandatory).Step 6: Click on 'OK' button.Step 7: Business parameter is defined. Note: As told earlier in the blog, it is necessary to define and map a valid organization ID with predefined variable 'organizationalUnit' under data associations in an BPM process before the business parameter is used. I have created one sample PoC demonstrating the use of Business Parameters in BPM12c and it can be found here.

    Read the article

  • Finding the XPath with the node name

    - by julien.schneider(at)oracle.com
    A function that i find missing is to get the Xpath expression of a node. For example, suppose i only know the node name <theNode>, i'd like to get its complete path /Where/is/theNode.   Using this rather simple Xquery you can easily get the path to your node. declare namespace orcl = "http://www.oracle.com/weblogic_soa_and_more"; declare function orcl:findXpath($path as element()*) as xs:string { if(local-name($path/..)='') then local-name($path) else concat(orcl:findXpath($path/..),'/',local-name($path)) }; declare function orcl:PathFinder($inputRecord as element(), $path as element()) as element(*) { { for $index in $inputRecord//*[local-name()=$path/text()] return orcl:findXpath($index) } }; declare variable $inputRecord as element() external; declare variable $path as element() external; orcl:PathFinder($inputRecord, $path)   With a path         <myNode>nodeName</myNode>  and a message         <node1><node2><nodeName>test</nodeName></node2></node1>  the result will be         node1/node2/nodeName   This is particularly useful when you use the Validate action of OSB because Validate only returns the xml node which is in error and not the full location itself. The following OSB project reuses this Xquery to reformat the result of the Validate Action. Just send an invalid xml like <myElem http://blogs.oracle.com/weblogic_soa_and_more"http://blogs.oracle.com/weblogic_soa_and_more">      <mySubElem>      </mySubElem></myElem>   you'll get as nice <MessageIsNotValid> <ErrorDetail  nbr="1"> <dataElementhPath>Body/myElem/mySubElem</dataElementhPath> <message> Expected element 'Subelem1@http://blogs.oracle.com/weblogic_soa_and_more' before the end of the content in element mySubElem@http://blogs.oracle.com/weblogic_soa_and_more </message> </ErrorDetail> </MessageIsNotValid>   Download the OSB project : sbconfig_xpath.jar   Enjoy.            

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Determining distribution of NULL values

    - by AaronBertrand
    Today on the twitter hash tag #sqlhelp, @leenux_tux asked: How can I figure out the percentage of fields that don't have data ? After further clarification, it turns out he is after what proportion of columns are NULL. Some folks suggested using a data profiling task in SSIS . There may be some validity to that, but I'm still a fan of sticking to T-SQL when I can, so here is how I would approach it: Create a #temp table or @table variable to store the results. Create a cursor that loops through all...(read more)

    Read the article

  • Beware of const members

    - by nmarun
    I happened to learn a new thing about const today and how one needs to be careful with its usage. Let’s say I have a third-party assembly ‘ConstVsReadonlyLib’ with a class named ConstSideEffect.cs: 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 10; 4: public const int EndValue = 20; 5: } In my project, I reference the above assembly as follows: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < ConstSideEffect.EndValue; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } You’ll see values 10 through 19 as expected. Now, let’s say I receive a new version of the ConstVsReadonlyLib. 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 5; 4: public const int EndValue = 30; 5: } If I just drop this new assembly in the bin folder and run the application, without rebuilding my console application, my thinking was that the output would be from 5 to 29. Of course I was wrong… if not you’d not be reading this blog. The actual output is from 5 through 19. The reason is due to the behavior of const and readonly members. To begin with, const is the compile-time constant and readonly is a runtime constant. Next, when you compile the code, a compile-time constant member is replaced with the value of the constant in the code. But, the IL generated when you reference a read-only constant, references the readonly variable, not its value. So, the IL version of the Main method, after compilation actually looks something like: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < 20; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } I’m no expert with this IL thingi, but when I look at the disassembled code of the exe file (using IL Disassembler), I see the following: I see our readonly member still being referenced by the variable name (ConstVsReadonlyLib.ConstSideEffect::StartValue) in line 0001. Then there’s the Console.WriteLine in line 000b and finally, see the value of 20 in line 0017. This, I’m pretty sure is our const member being replaced by its value which marks the upper bound of the ‘for’ loop. Now you know why the output was from 5 through 19. This definitely is a side-effect of having const members and one needs to be aware of it. While we’re here, I’d like to add a few other points about const and readonly members: const is slightly faster, but is less flexible readonly cannot be declared within a method scope const can be used only on primitive types (numbers and strings) Just wanted to share this before going to bed!

    Read the article

  • What guidelines do you suggest for using Objective-C Properties?

    - by adarsha
    Objective-C 2.0 introduced properties. While I personally think properties are nice addition to the language, I have seen a trend of making every instance variable as a property. Apple sample codes are no exceptions to this. I believe this is against the spirit of OOP, and since it exposes a lot more implementation details of a class to the client than they need to know. What guidelines do you suggest for the proper usage properties in Objective C?

    Read the article

  • Calling methods on Objects

    - by Mashael
    Let's say we have a class called 'Automobile' and we have an instance of that class called 'myCar'. I would like to ask why do we need to put the values that our methods return in a variable for the object? Why just don't we call the method? For example: Why should we write: string message = myCar.SpeedMessage(); Console.WriteLine(message); instead of: Console.WriteLine(myCar.SpeedMessage());

    Read the article

  • Stairway to XML: Level 2 - The XML Data Type

    Robert Sheldon describes SQL Server's XML Data Type, and shows that it is as easy to configure a variable, column, or parameter with the XML data type as configuring one of these objects with any other datatype Keep your database and application development in syncSQL Connect is a Visual Studio add-in that brings your databases into your solution. It then makes it easy to keep your database in sync, and commit to your existing source control system. Find out more.

    Read the article

  • Package Installation Failure

    - by mahima
    Whenever I try to install any new package or upgrade a package, it fails with below mentioned error: Setting up install-info (4.13a.dfsg.1-5ubuntu1) ... /etc/environment: line 1: PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games: No such file or directory dpkg: error processing install-info (--configure): subprocess installed post-installation script returned error exit status 1 No apport report written because MaxReports is reached already Errors were encountered while processing: install-info E: Sub-process /usr/bin/dpkg returned an error code (1) I checked all the directories mentioned in PATH variable exists.

    Read the article

  • Low coupling and tight cohesion

    - by hidayat
    Of course it depends on the situation. But when a lower lever object or system communicate with an higher level system, should callbacks or events be preferred to keeping a pointer to higher level object? For example, we have a world class that has a member variable vector<monster> monsters. When the monster class is going to communicate with the world class, should I prefer using a callback function then or should I have a pointer to the world class inside the monster class?

    Read the article

  • Oracle Tutor: *** CAUTION to Word .docx Users ***

    - by [email protected]
    Microsoft released a security update KB969604 for Office 2007 (around June 2009) This update causes document variables within Word docx files to be scrambled. This update might still be pushed out via Office 2007 updates DO NOT save files as docx using MS OFFICE 2007 until you apply the MS hotfix # 970942 available here If you are using Windows XP with Office 2003 or Office 2000 and have installed an older Office 2007 compatibility pack, documents saved as docx may also cause the scrambled document variables. Installing the 2007 compatibility pack published on 1/6/2010 (version 4) will prevent the document variables from becoming corrupt. Those on Windows 2000 may not be able to install the latest compatibility pack, or the compatibility pack may not function properly. This situation will hopefully be rectified in the coming months. What is a document variable? Document variables store data inside the document, invisible to the user. The Tutor software uses them when converting the document to HTML and when creating the flowchart, just to name a couple of uses. How will you know if a document's variables are scrambled? The difficulty in diagnosing the issue is that the symptoms can take myriad forms. There isn't a single error message or a single feature that one can point to and say, "test for the problem by doing this." The best clue about the error is seeing any kind of string in an error message that has garbage characters, question marks, xml code snippets, or just nonsense. Such as "Language ?????????????xlr;lwlerkjl could not be found." It is also possible to see the corrupted data in the footers of the Word docs. And, just because the footers look correct does not mean that the document variables are not corrupted. The corruption problem does not occur in every document variable in the document, just some of them. Often it is less than a quarter of them. What is the difference between docx files and doc files? Office 2007 uses Office Open XML formats with .docx and .docm filename extensions. - Docx is an Office Open XML word document. - Docm is a macro enabled Office Open XML document. This means the file structure behind the scenes is quite different from the binary file formats used prior to Office 2007 such as .doc, .dot, .xls, and .ppt. Solution Summary: For Windows XP and Word 2007: Install the hotfix, or save files as *.doc For Windows XP and Word 2000 and 2003: Install the latest compatibility pack or save files as *.doc For Windows 2000 with Word 2000 or 2003, do not use any compatibility pack, save files as *.doc Emily Chorba Principle Product Manager for Oracle Tutor

    Read the article

  • Is there an appropriate coding style for implementing an algorithm during an interview?

    - by GlenPeterson
    I failed an interview question in C years ago about converting hex to decimal by not exploiting the ASCII table if (inputDigitByte > 9) hex = inputDigitByte - 'a'. The rise of Unicode has made this question pretty silly, but the point was that the interviewer valued raw execution speed above readability and error handling. They tell you to review algorithms textbooks to prepare for these interviews, yet these same textbooks tend to favor the implementation with the fewest lines of code, even if it has to rely on magic numbers (like "infinity") and a slower, more memory-intensive implementation (like a linked list instead of an array) to do that. I don't know what is right. Coding an algorithm within the space of an interview has at least 3 constraints: time to code, elegance/readability, and efficiency of execution. What trade-offs are appropriate for interview code? How much do you follow the textbook definition of an algorithm? Is it better to eliminate recursion, unroll loops, and use arrays for efficiency? Or is it better to use recursion and special values like "infinity" or Integer.MAX_VALUE to reduce the number of lines of code needed to write the algorithm? Interface: Make a very self-contained, bullet-proof interface, or sloppy and fast? On the one extreme, the array to be sorted might be a public static variable. On the other extreme, it might need to be passed to each method, allowing methods to be called individually from different threads for different purposes. Is it appropriate to use a linked-list data structure for items that are traversed in one direction vs. using arrays and doubling the size when the array is full? Implementing a singly-linked list during the interview is often much faster to code and easier remember for recursive algorithms like MergeSort. Thread safety - just document that it's unsafe, or say so verbally? How much should the interviewee be looking for opportunities for parallel processing? Is bit shifting appropriate? x / 2 or x >> 1 Polymorphism, type safety, and generics? Comments? Variable and method names: qs(a, p, q, r) vs: quickSort(theArray, minIdx, partIdx, maxIdx) How much should you use existing APIs? Obviously you can't use a java.util.HashMap to implement a hash-table, but what about using a java.util.List to accumulate your sorted results? Are there any guiding principals that would answer these and other questions, or is the guiding principal to ask the interviewer? Or maybe this should be the basis of a discussion while writing the code? If an interviewer can't or won't answer one of these questions, are there any tips for coaxing the information out of them?

    Read the article

  • Modify game using external file

    - by Veehmot
    In Flash, for example, I can place an xml file along with the binary, then if I modify some variable the game will change for everyone. How to achieve something like that in Android? I know that for every change I make to the game, the player would need to download a new update. But the main goal I'm looking for, is modifying a game stats without the need for recompile the entire APK. I'm working with Haxe+OpenFL.

    Read the article

  • Explanation of the definition of interface inheritance as described in GoF book

    - by Geek
    I am reading the first chapter of the Gof book. Section 1.6 discusses about class vs interface inheritance: Class versus Interface Inheritance It's important to understand the difference between an object's class and its type. An object's class defines how the object is implemented.The class defines the object's internal state and the implementation of its operations.In contrast,an object's type only refers to its interface--the set of requests on which it can respond. An object can have many types, and objects of different classes can have the same type. Of course, there's a close relationship between class and type. Because a class defines the operations an object can perform, it also defines the object's type . When we say that an object is an instance of a class, we imply that the object supports the interface defined by the class. Languages like c++ and Eiffel use classes to specify both an object's type and its implementation. Smalltalk programs do not declare the types of variables; consequently,the compiler does not check that the types of objects assigned to a variable are subtypes of the variable's type. Sending a message requires checking that the class of the receiver implements the message, but it doesn't require checking that the receiver is an instance of a particular class. It's also important to understand the difference between class inheritance and interface inheritance (or subtyping). Class inheritance defines an object's implementation in terms of another object's implementation. In short, it's a mechanism for code and representation sharing. In contrast,interface inheritance(or subtyping) describes when an object can be used in place of another. I am familiar with the Java and JavaScript programming language and not really familiar with either C++ or Smalltalk or Eiffel as mentioned here. So I am trying to map the concepts discussed here to Java's way of doing classes, inheritance and interfaces. This is how I think of of these concepts in Java: In Java a class is always a blueprint for the objects it produces and what interface(as in "set of all possible requests that the object can respond to") an object of that class possess is defined during compilation stage only because the class of the object would have implemented those interfaces. The requests that an object of that class can respond to is the set of all the methods that are in the class(including those implemented for the interfaces that this class implements). My specific questions are: Am I right in saying that Java's way is more similar to C++ as described in the third paragraph. I do not understand what is meant by interface inheritance in the last paragraph. In Java interface inheritance is one interface extending from another interface. But I think the word interface has some other overloaded meaning here. Can some one provide an example in Java of what is meant by interface inheritance here so that I understand it better?

    Read the article

  • Installed Sun Java 6 - configuration problem when running as sudo

    - by HorusKol
    I have install Sun Java 6 on an Ubuntu server and set an environment variable in the default profile as per the instructions at http://www.edugate.ie/workshop-guides/shibboleth-2-identity-provider-installation-linux-debian-or-ubuntu I then try to run an installer for a Java servlet - but when I run it as myself, it cannot create the required directory in /opt. When I run it as sudo, I am told that JAVA_HOME is not correct and it doesn't even start the installer - shouldn't this be coming from /etc/profile like it is for my normal user?

    Read the article

  • 0xC0017011 and other error messages - what is the error message text?

    Recently there was a bug raised against BIDS Helper which originated in my Expression Editor control. Thankfully the person that raised it kindly included a screenshot, so I had the error code (HRESULT 0xC0017011) and a stack trace that pointed the finger firmly at my control, but no error message text. The code itself looked fine so I searched on the error code but got no results. I’d expected to get a hit from Books Online with the Integration Services Error and Message Reference topic at the very least, but no joy. There is however a more accurate and definitive reference, namely the header file that defines all these codes dtsmsg.h which you can find at- C:\Program Files (x86)\Microsoft SQL Server\110\SDK\Include\dtsmsg.h Looking the code up in the header file gave me a much more useful error message. //////////////////////////////////////////////////////////////////////////// // The parameter is sensitive // // MessageId: DTS_E_SENSITIVEPARAMVALUENOTALLOWED // // MessageText: // // Accessing value of the parameter variable for the sensitive parameter "%1!s!" is not allowed. Verify that the variable is used properly and that it protects the sensitive information. // #define DTS_E_SENSITIVEPARAMVALUENOTALLOWED ((HRESULT)0xC0017011L) Unfortunately I’d forgotten all about this. By the time I had remembered about it, the person who raised the issue had managed to narrow it down to something to do with having  sensitive parameter. Putting that together with the error message I’d finally found, a quick poke around in the code and I found the new GetSensitiveValue method which seemed to do the trick. The HResult fields are also listed online but it only shows the short error message, and it doesn’t include that all so important HRESULT value itself. So let this be a lesson to you (and me!), if you need to check  SSIS error go straight to the horses mouth - dtsmsg.h. This is particularly true when working with early builds, or CTP releases when we expect the documentation to be a bit behind. There is also a programmatic approach to getting better SSIS error messages. I should to take another look at the error handling in the control, or the way it is hosted in BIDS Helper. I suspect that if I use an implementation of Microsoft.SqlServer.Dts.Runtime.Wrapper.IDTSInfoEvents100 I could catch the error itself and get the full error message text which I could then report back. This would obviously be a better user experience and also make it easier to diagnose any issues like this in the future. See ExprssionEvaluator.cs for an example of this in use in the Expression Editor control.

    Read the article

  • SharpDX/D3D: How to implement and draw fonts/text

    - by Dmitrij A
    I am playing with SharpDX (Direct3D for .NET) without using "Toolkit", already finished with basic rendering 3D models. But now i am wondering how to program/create fonts for game (2D), or how to simple draw variable text to output with Direct3D? (it is not as SharpDX question as common Direct3D question, how to start with game GUIs? And what should i do to program simple GUI's like menu for a game (generally i understand that it's shaders).

    Read the article

  • We've completed the first iteration

    - by CliveT
    There are a lot of features in C# that are implemented by the compiler and not by the underlying platform. One such feature is a lambda expression. Since local variables cannot be accessed once the current method activation finishes, the compiler has to go out of its way to generate a new class which acts as a home for any variable whose lifetime needs to be extended past the activation of the procedure. Take the following example:     Random generator = new Random();     Func func = () = generator.Next(10); In this case, the compiler generates a new class called c_DisplayClass1 which is marked with the CompilerGenerated attribute. [CompilerGenerated] private sealed class c__DisplayClass1 {     // Fields     public Random generator;     // Methods     public int b__0()     {         return this.generator.Next(10);     } } Two quick comments on this: (i)    A display was the means that compilers for languages like Algol recorded the various lexical contours of the nested procedure activations on the stack. I imagine that this is what has led to the name. (ii)    It is a shame that the same attribute is used to mark all compiler generated classes as it makes it hard to figure out what they are being used for. Indeed, you could imagine optimisations that the runtime could perform if it knew that classes corresponded to certain high level concepts. We can see that the local variable generator has been turned into a field in the class, and the body of the lambda expression has been turned into a method of the new class. The code that builds the Func object simply constructs an instance of this class and initialises the fields to their initial values.     c__DisplayClass1 class2 = new c__DisplayClass1();     class2.generator = new Random();     Func func = new Func(class2.b__0); Reflector already contains code to spot this pattern of code and reproduce the form containing the lambda expression, so this is example is correctly decompiled. The use of compiler generated code is even more spectacular in the case of iterators. C# introduced the idea of a method that could automatically store its state between calls, so that it can pick up where it left off. The code can express the logical flow with yield return and yield break denoting places where the method should return a particular value and be prepared to resume.         {             yield return 1;             yield return 2;             yield return 3;         } Of course, there was already a .NET pattern for expressing the idea of returning a sequence of values with the computation proceeding lazily (in the sense that the work for the next value is executed on demand). This is expressed by the IEnumerable interface with its Current property for fetching the current value and the MoveNext method for forcing the computation of the next value. The sequence is terminated when this method returns false. The C# compiler links these two ideas together so that an IEnumerator returning method using the yield keyword causes the compiler to produce the implementation of an Iterator. Take the following piece of code.         IEnumerable GetItems()         {             yield return 1;             yield return 2;             yield return 3;         } The compiler implements this by defining a new class that implements a state machine. This has an integer state that records which yield point we should go to if we are resumed. It also has a field that records the Current value of the enumerator and a field for recording the thread. This latter value is used for optimising the creation of iterator instances. [CompilerGenerated] private sealed class d__0 : IEnumerable, IEnumerable, IEnumerator, IEnumerator, IDisposable {     // Fields     private int 1__state;     private int 2__current;     public Program 4__this;     private int l__initialThreadId; The body gets converted into the code to construct and initialize this new class. private IEnumerable GetItems() {     d__0 d__ = new d__0(-2);     d__.4__this = this;     return d__; } When the class is constructed we set the state, which was passed through as -2 and the current thread. public d__0(int 1__state) {     this.1__state = 1__state;     this.l__initialThreadId = Thread.CurrentThread.ManagedThreadId; } The state needs to be set to 0 to represent a valid enumerator and this is done in the GetEnumerator method which optimises for the usual case where the returned enumerator is only used once. IEnumerator IEnumerable.GetEnumerator() {     if ((Thread.CurrentThread.ManagedThreadId == this.l__initialThreadId)               && (this.1__state == -2))     {         this.1__state = 0;         return this;     } The state machine itself is implemented inside the MoveNext method. private bool MoveNext() {     switch (this.1__state)     {         case 0:             this.1__state = -1;             this.2__current = 1;             this.1__state = 1;             return true;         case 1:             this.1__state = -1;             this.2__current = 2;             this.1__state = 2;             return true;         case 2:             this.1__state = -1;             this.2__current = 3;             this.1__state = 3;             return true;         case 3:             this.1__state = -1;             break;     }     return false; } At each stage, the current value of the state is used to determine how far we got, and then we generate the next value which we return after recording the next state. Finally we return false from the MoveNext to signify the end of the sequence. Of course, that example was really simple. The original method body didn't have any local variables. Any local variables need to live between the calls to MoveNext and so they need to be transformed into fields in much the same way that we did in the case of the lambda expression. More complicated MoveNext methods are required to deal with resources that need to be disposed when the iterator finishes, and sometimes the compiler uses a temporary variable to hold the return value. Why all of this explanation? We've implemented the de-compilation of iterators in the current EAP version of Reflector (7). This contrasts with previous version where all you could do was look at the MoveNext method and try to figure out the control flow. There's a fair amount of things we have to do. We have to spot the use of a CompilerGenerated class which implements the Enumerator pattern. We need to go to the class and figure out the fields corresponding to the local variables. We then need to go to the MoveNext method and try to break it into the various possible states and spot the state transitions. We can then take these pieces and put them back together into an object model that uses yield return to show the transition points. After that Reflector can carry on optimising using its usual optimisations. The pattern matching is currently a little too sensitive to changes in the code generation, and we only do a limited analysis of the MoveNext method to determine use of the compiler generated fields. In some ways, it is a pity that iterators are compiled away and there is no metadata that reflects the original intent. Without it, we are always going to dependent on our knowledge of the compiler's implementation. For example, we have noticed that the Async CTP changes the way that iterators are code generated, so we'll have to do some more work to support that. However, with that warning in place, we seem to do a reasonable job of decompiling the iterators that are built into the framework. Hopefully, the EAP will give us a chance to find examples where we don't spot the pattern correctly or regenerate the wrong code, and we can improve things. Please give it a go, and report any problems.

    Read the article

  • Looping in Python and keeping current line after sub routine [migrated]

    - by Brendan
    I've been trying to nut out an issue when looping in python 3. When returning from sub routine the "line" variable has not incremented. How do I get the script to return the latest readline from the subsroutine? Code below def getData(line): #print(line) #while line in sTSDP_data: while "/service/content/test" not in line: line = sTSDP_data.readline() import os, sys sFileTSDP = "d:/ess/redo/Test.log" sTSDP_data = open(sFileTSDP, "r") for line in sTSDP_data: if "MOBITV" in line: getData(line) #call sub routine print(line)

    Read the article

  • bashrc script not accepting space in directory name

    - by faizal
    I have added a variable at the end of my ~/.basrc file : export xyz = /home/faizal/DEV/ADT workspace/xyz But if i open a new terminal, i get the error : bash: export: 'workspace/xyz': not a valid identifier So i try a variety of alternatives : export xyz=/home/faizal/DEV/ADT\ workspace/xyz export xyz="/home/faizal/DEV/ADT workspace/xyz" export xyz="/home/faizal/DEV/ADT\ workspace/xyz" export xyz='/home/faizal/DEV/ADT workspace/xyz' export xyz='/home/faizal/DEV/ADT\ workspace/xyz' They all give me the error when i try cd $xyz: bash: cd: /home/faizal/DEV/ADT: No such file or directory What am i doing wrong?

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

< Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >