Search Results

Search found 9032 results on 362 pages for 'fast math'.

Page 2/362 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Math-font from the ubuntu font family?

    - by Wauzl
    Does anyone know if there will be (or already are) any possibilities to use the ubuntu font family for mathematical typesetting in LaTeX? It says “Dalton Maag, a London-based studio, has laid the foundations for the Ubuntu font project with a beautiful design that aims to produce every character to support every language and interest in the world.” on the project web site of ubuntu. So I would expect something like this because maths is an interest.

    Read the article

  • PCF shadow shader math causing artifacts

    - by user2971069
    For a while now I used PCSS for my shadow technique of choice until I discovered a type of percentage closer filtering. This method creates really smooth shadows and with hopes of improving performance, with only a fraction of texture samples, I tried to implement PCF into my shader. This is the relevant code: float c0, c1, c2, c3; float f = blurFactor; float2 coord = ProjectedTexCoords; if (receiverDistance - tex2D(lightSampler, coord + float2(0, 0)).x > 0.0007) c0 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, 0)).x > 0.0007) c1 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(0, f)).x > 0.0007) c2 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, f)).x > 0.0007) c3 = 1; coord = (coord % f) / f; return 1 - (c0 * (1 - coord.x) * (1 - coord.y) + c1 * coord.x * (1 - coord.y) + c2 * (1 - coord.x) * coord.y + c3 * coord.x * coord.y); This is a very basic implementation. blurFactor is initialized with 1 / LightTextureSize. So the if statements fetch the occlusion values for the four adjacent texels. I now want to weight each value based on the actual position of the texture coordinate. If it's near the bottom-right pixel, that occlusion value should be preferred. The weighting itself is done with a simple bilinear interpolation function, however this function takes a 2d vector in the range [0..1] so I have to convert my texture coordinate to get the distance from my first pixel to the second one in range [0..1]. For that I used the mod operator to get it into [0..f] range and then divided by f. This code makes sense to me, and for specific blurFactors it works, producing really smooth one pixel wide shadows, but not for all blurFactors. Initially blurFactor is (1 / LightTextureSize) to sample the 4 adjacent texels. I now want to increase the blurFactor by factor x to get a smooth interpolation across maybe 4 or so pixels. But that is when weird artifacts show up. Here is an image: Using a 1x on blurFactor produces a good result, 0.5 is as expected not so smooth. 2x however doesn't work at all. I found that only a factor of 1/2^n produces an good result, every other factor produces artifacts. I'm pretty sure the error lies here: coord = (coord % f) / f; Maybe the modulo is not calculated correctly? I have no idea how to fix that. Is it even possible for pixel that are further than 1 pixel away?

    Read the article

  • Math > Logic for a Logarithmic Score Meter

    - by oodavid
    I'm trying to implement a score meter whereby I specify a maximum value (say 15,000) and I can render values on it in a logarithmic manner ie: +------+---+--+-++ +------+---+--+-++ |== | |====== | +------+---+--+-++ +------+---+--+-++ 200 pts 1,000 pts +------+---+--+-++ +------+---+--+-++ |============= | |================| +------+---+--+-++ +------+---+--+-++ 5,000 pts 15,000 pts + The upper bound needs to be variable, and need to be able to convert a score to a percentage, using the above mockup as an example: score2pct(15000, 200) = 0.2 score2pct(15000, 1000) = 0.4 score2pct(15000, 5000) = 0.8 score2pct(15000, 15000) = 1 Does anyone have any pointers for me?

    Read the article

  • Why is math taught "backwards"? [closed]

    - by Yorirou
    A friend of mine showed me a pretty practical Java example. It was a riddle. I got excited and quickly solved the problem. After it, he showed me the mathematical explanation of my solution (he proved why is it good), and it was completely clear for me. This seems like natural approach for me: solve problems, and generalize. This is very familiar to me, I do it all the time when I am programming: I write a function. When I have to write a similar function, I generalize the problem, grab the generic parts, and refactor them to a function, and solve the original problems as a specialization of the general function. At the university (or at least where I study), things work backwards. The professors shows just the highest possible level of the solutions ("cryptic" mathematical formulas). My problem is that this is too abstract for me. There is no connection of my previous knowledge (== reality in my sense), so even if I can understand it, I can't really learn it properly. Others are learning these formulas word-by-word, and get good grades, since they can write exactly the same to the test, but this is not an option for me. I am a curious person, I can learn interesting things, but I can't learn just text. My brain is for storing toughts, not strings. There are proofs for the theories, but they are also really hard to understand because of this, and in most of the cases they are omitted. What is the reason for this? I don't understand why is it a good idea to show the really high level of abstraction and then leave the practical connections (or some important ideas / practical motivations) out?

    Read the article

  • Sunrise / set calculations

    - by dassouki
    I'm trying to calculate the sunset / rise times using python based on the link provided below. My results done through excel and python do not match the real values. Any ideas on what I could be doing wrong? My Excel sheet can be found under .. http://transpotools.com/sun_time.xls # Created on 2010-03-28 # @author: dassouki # @source: [http://williams.best.vwh.net/sunrise_sunset_algorithm.htm][2] # @summary: this is based on the Nautical Almanac Office, United States Naval # Observatory. import math, sys class TimeOfDay(object): def calculate_time(self, in_day, in_month, in_year, lat, long, is_rise, utc_time_zone): # is_rise is a bool when it's true it indicates rise, # and if it's false it indicates setting time #set Zenith zenith = 96 # offical = 90 degrees 50' # civil = 96 degrees # nautical = 102 degrees # astronomical = 108 degrees #1- calculate the day of year n1 = math.floor( 275 * in_month / 9 ) n2 = math.floor( ( in_month + 9 ) / 12 ) n3 = ( 1 + math.floor( in_year - 4 * math.floor( in_year / 4 ) + 2 ) / 3 ) new_day = n1 - ( n2 * n3 ) + in_day - 30 print "new_day ", new_day #2- calculate rising / setting time if is_rise: rise_or_set_time = new_day + ( ( 6 - ( long / 15 ) ) / 24 ) else: rise_or_set_time = new_day + ( ( 18 - ( long/ 15 ) ) / 24 ) print "rise / set", rise_or_set_time #3- calculate sun mean anamoly sun_mean_anomaly = ( 0.9856 * rise_or_set_time ) - 3.289 print "sun mean anomaly", sun_mean_anomaly #4 calculate true longitude true_long = ( sun_mean_anomaly + ( 1.916 * math.sin( math.radians( sun_mean_anomaly ) ) ) + ( 0.020 * math.sin( 2 * math.radians( sun_mean_anomaly ) ) ) + 282.634 ) print "true long ", true_long # make sure true_long is within 0, 360 if true_long < 0: true_long = true_long + 360 elif true_long > 360: true_long = true_long - 360 else: true_long print "true long (360 if) ", true_long #5 calculate s_r_a (sun_right_ascenstion) s_r_a = math.degrees( math.atan( 0.91764 * math.tan( math.radians( true_long ) ) ) ) print "s_r_a is ", s_r_a #make sure it's between 0 and 360 if s_r_a < 0: s_r_a = s_r_a + 360 elif true_long > 360: s_r_a = s_r_a - 360 else: s_r_a print "s_r_a (modified) is ", s_r_a # s_r_a has to be in the same Quadrant as true_long true_long_quad = ( math.floor( true_long / 90 ) ) * 90 s_r_a_quad = ( math.floor( s_r_a / 90 ) ) * 90 s_r_a = s_r_a + ( true_long_quad - s_r_a_quad ) print "s_r_a (quadrant) is ", s_r_a # convert s_r_a to hours s_r_a = s_r_a / 15 print "s_r_a (to hours) is ", s_r_a #6- calculate sun diclanation in terms of cos and sin sin_declanation = 0.39782 * math.sin( math.radians ( true_long ) ) cos_declanation = math.cos( math.asin( sin_declanation ) ) print " sin/cos declanations ", sin_declanation, ", ", cos_declanation # sun local hour cos_hour = ( math.cos( math.radians( zenith ) ) - ( sin_declanation * math.sin( math.radians ( lat ) ) ) / ( cos_declanation * math.cos( math.radians ( lat ) ) ) ) print "cos_hour ", cos_hour # extreme north / south if cos_hour > 1: print "Sun Never Rises at this location on this date, exiting" # sys.exit() elif cos_hour < -1: print "Sun Never Sets at this location on this date, exiting" # sys.exit() print "cos_hour (2)", cos_hour #7- sun/set local time calculations if is_rise: sun_local_hour = ( 360 - math.degrees(math.acos( cos_hour ) ) ) / 15 else: sun_local_hour = math.degrees( math.acos( cos_hour ) ) / 15 print "sun local hour ", sun_local_hour sun_event_time = sun_local_hour + s_r_a - ( 0.06571 * rise_or_set_time ) - 6.622 print "sun event time ", sun_event_time #final result time_in_utc = sun_event_time - ( long / 15 ) + utc_time_zone return time_in_utc #test through main def main(): print "Time of day App " # test: fredericton, NB # answer: 7:34 am long = 66.6 lat = -45.9 utc_time = -4 d = 3 m = 3 y = 2010 is_rise = True tod = TimeOfDay() print "TOD is ", tod.calculate_time(d, m, y, lat, long, is_rise, utc_time) if __name__ == "__main__": main()

    Read the article

  • Do you have to be good at math to be a good programmer?

    - by Charles Roper
    It seems that conventional wisdom suggests that good programmers are also good at math. Or that the two are somehow intrinsically linked. Many programming books I have read provide many examples that are solutions to math problems, or are somehow related to math as if these examples are what make sense to most people. So the question I would like to float is: do you have to be good at math to be a good programmer?

    Read the article

  • Should certain math classes be required for a Computer Science degree?

    - by sunpech
    For a Computer Science (CS) degree at many colleges and universities, certain math courses are required: Calculus, Linear Algebra, and Discrete Mathematics are few examples. However, since I've started working in the real world as a software developer, I have yet to truly use some the knowledge I had at once acquired from taking those classes. Discrete Math might be the only exception. My questions: Should these math classes be required to obtain a computer science degree? Or would they be better served as electives? I'm challenging even that the certain math classes even help with required CS classes. For example, I never used linear algebra outside of the math class itself. I hear it's used in Computer Graphics, but I never took those classes-- yet linear algebra was required for a CS degree. I personally think it could be better served as an elective rather than requirement because it's more specific to a branch of CS rather than general CS. From a Slashdot post CS Profs Debate Role of Math In CS Education: 'For too long, we have taught computer science as an academic discipline (as though all of our students will go on to get PhDs and then become CS faculty members) even though for most of us, our students are overwhelmingly seeking careers in which they apply computer science.'

    Read the article

  • Will BIOS boot mode Ubuntu install be able to boot when firmware "Fast Boot" is "Ultra Fast"?

    - by Pro Backup
    I have an AsRock mainboard with UEFI BIOS P1.50 02/14/2014. The firmware "Fast Boot" option is set to "Fast", Boot Option #1 is set to "AHCI P4: OCZ-VERT...": this is BIOS not UEFI boot. This boot disk has an MBR partitioning scheme (# parted -l | grep Partition\ Table:). Therefore Ubuntu 14.04 is installed in BIOS/CMS (Grub-PC) mode. The Ubuntu boot process ends in a text console (no GUI). There is no external graphics card in use. The stock Ubuntu kernel is replaced with Ubuntu supplied mainline 3.16.0-031600rc6-generic. dmesg outputs lines containing BIOS, like: SMBIOS 2.7 present Calgary: detecting Calgary via BIOS EBDA area Calgary: Unable to locate Rio Grande table in EBDA - bailing! [Firmware Bug]: ACPI: BIOS _OSI(Linux) query ignored BIOS EDD facility v0.16 2004-Jun-25, 0 devices found The ASRock BIOS it selves display this help text for "Ultra Fast - Fast Boot": Ultra Fast mode is only supported by Windows 8 and the VBIOS must support UEFI GOP if you are using an external graphics card. Please notice that Ultra Fast mode will boot so fast that the only way to enter this UEFI Setup Utility is to Clear CMOS or run the Restart to UEFI utility in Windows. Assumptions: I suspect after changing UEFI setting "Fast Boot" to "Ultra Fast" that the machine will no longer boot into Ubuntu's console. I expect when first exchanging "Grub-pc" with "Grub-efi", that the machine will still be able to boot to a grub menu (thus allowing to change the "Fast Boot" setting back to "Fast" without clearing CMOS). Are these two "Fast Boot" assumptions correct, and/or, may I expect Ubuntu 14.04 running mainline kernel 3.16rc6 and Grub-efi to still boot to console after enabling UEFI Ultra Fast Boot?

    Read the article

  • 3D rotation matrices deform object while rotating

    - by Kevin
    I'm writing a small 3D renderer (using an orthographic projection right now). I've run into some trouble with my 3D rotation matrices. They seem to squeeze my 3D object (a box primitive) at certain angles. Here's a live demo (only tested in Google Chrome): http://dl.dropbox.com/u/109400107/3D/index.html The box is viewed from the top along the Y axis and is rotating around the X and Z axis. These are my 3 rotation matrices (Only rX and rZ are being used): var rX = new Matrix([ [1, 0, 0], [0, Math.cos(radiants), -Math.sin(radiants)], [0, Math.sin(radiants), Math.cos(radiants)] ]); var rY = new Matrix([ [Math.cos(radiants), 0, Math.sin(radiants)], [0, 1, 0], [-Math.sin(radiants), 0, Math.cos(radiants)] ]); var rZ = new Matrix([ [Math.cos(radiants), -Math.sin(radiants), 0], [Math.sin(radiants), Math.cos(radiants), 0], [0, 0, 1] ]); Before projecting the verticies I multiply them by rZ and rX like so: vert1.multiply(rZ); vert1.multiply(rX); vert2.multiply(rZ); vert2.multiply(rX); vert3.multiply(rZ); vert3.multiply(rX); The projection itself looks like this: bX = (pos.x + (vert1.x*scale)); bY = (pos.y + (vert1.z*scale)); Where "pos.x" and "pos.y" is an offset for centering the box on the screen. I just can't seem to find a solution to this and I'm still relativly new to working with Matricies. You can view the source-code of the demo page if you want to see the whole thing.

    Read the article

  • Fast User Switching still disabled after disabling Cisco AnyConnect VPN's "Start Before Login" feature

    - by mindless.panda
    I am running Windows 7 64 bit Ultimate and using Cisco AnyConnect VPN 2.5.3041. As expected, Fast User Switching got disabled as soon as I installed the VPN software. This FAQ from Cisco references how to enable Fast User Switching when their VPN product is installed: A. Microsoft automatically disables Fast User Switching in Windows XP when a GINA.dll is specified in the registry. The Cisco VPN Client installs the CSgina.dll to implement the "Start Before Login" feature. If you need Fast User Switching, then disable the "Start Before Login" feature. Registered users can get more information in Cisco Bug ID CSCdu24073 (registered customers only) in Bug Toolkit. My problem is that I have disabled this on the client, but fast user switching is still greyed out. This article mentions a registry edit, however they key they mention, GinaDLL, does not exist at the WinLogon registry point. Update: This article from Cisco covering AnyConnect specifically gives a one liner: AnyConnect is not compatible with fast user switching. The only problem is I now I had found a workaround before the last reformat/reinstall, but I can't remember what exactly I did previously.

    Read the article

  • Do game studios hire people based on their math knowledge alone?

    - by Brent Horvath
    I have very little programming skills outside of very basic levels of Java, but I have excellent math and science knowledge. I was wondering what I could offer any potential team if I were to go into video game development? Do people hire people based on their math knowledge alone? I like to do other things such as writing or drawing, but math and science are the only skills in which I really excel in.

    Read the article

  • Should certain math classes be required for a Computer Science degree?

    - by sunpech
    For a Computer Science degree at many colleges and universities, certain math courses are required: Calculus, Linear Algebra, and Discrete Mathematics are few examples. However, since I've started working in the real world as a software developer, I have yet to truly use the knowledge I had at once acquired from taking those classes. My question is: Should these math classes be required to obtain a computer science degree? Or would they better served as electives? A Slashdot post: CS Profs Debate Role of Math In CS Education

    Read the article

  • Complete Math Library for use in OpenGL ES 2.0 Game?

    - by Bunkai.Satori
    Are you aware of a complete (or almost complete) cross platform math library for use in OpenGL ES 2.0 games? The library should contain: Matrix2x2, Matrix 3x3, Matrix4x4 classes Quaternions Vector2, Vector3, Vector4 Classes Euler Angle Class Operations amongh the above mentioned classes, conversions, etc.. Standardly used math operations in 3D graphics (Dot Product, Cross Product, SLERP, etc...) Is there such Math API available either standalone or as a part of any package? Programming Language: Visual C++ but planned to be ported to OS X and Android OS.

    Read the article

  • What kind of math should I be expecting in advanced programming?

    - by I_Question_Things_Deeply
    And I don't mean just space shooters and such, because in non-3D environments it's obvious that not much beyond elementary math is needed to implement. Most of the programming in 2D games is mostly going to involve basic arithmetic, algorithms for enemy AI and dimensional worlds, rotation, and maybe some Algebra as well depending on how you want to design. But I ask because I'm not really gifted with math at all. I get frustrated and worn out just by doing Pre-Algebra, so Algebra 2 and Calculus would likely be futile for me. I guess I'm not so "right-brained" when it comes down to pure numbers and math formulas, but the bad part is that I'm no art-expert either. What do you people here suppose I should do? Go along avoiding as much of the extremely difficult maths I can't fathom, or try to ease into more complex math as I excel at programming?

    Read the article

  • Braces (syntax) highlighting in OpenOffice Math formula text editor

    - by Oleksandr Bolotov
    When you use OpenOffice Math, in upper part you see formula and formula text editor in lower part. Almost like this: %sigma = 2 %mu %epsilon + %lambda Tr(%epsilon)I So my questions are: How to replace OpenOffice Math's formula text editor with own text editor? ... or how to enable braces (syntax) highlighting in embedded editor? ... are there any extensions for anything like this? I need this because sometimes it's too much braces and stuff and it's hard to distinguish which braces match each other. Please do not suggest me to use MathType Mathematica (or anything) instead of OpenOffice Math (because I'm almost happy with it:)

    Read the article

  • How do I pause and resume apt-fast package download?

    - by jasoncruz98
    I know that in order to speed up apt-get downloads, I can use apt-fast (which uses the aria2c or axel engine - it depends on which one I install during the configuration). But even though it says it can pause and resume downloads, I don't know how to do it, and I can't find any answer online that tells me how to do it. I have no intention of pausing apt-fast update function, I just want the ability to pause the sudo apt-fast install package_name function and resume the downloading of a package in Ubuntu at will using apt-fast (with axel or aria2c) I have seen in some forums that sudo apt-fast update cannot be paused because it requires starting the entire process. Please correct me if I'm wrong. Any help would be much appreciated.

    Read the article

  • How to prevent overlapping of gunshot sounds when using fast-firing weapons

    - by G3tinmybelly
    So I am now trying to find sounds for my guns but when I grab a gun sound effect and play it in my game a lot of the sounds are either terrible sounding or have this horrible echoing effect because as a gun shoots sometimes the previous sound is playing still. public void shoot(float x, float y, float direction){ if(empty){ PlayHUD.message = "No more bullets!"; return; } if(reloading){ return; } if(System.currentTimeMillis() - lastShot < fireRate){ //AssetsLoader.lmgSound.stop(); return; } float dx = (float) (-13 * Math.cos(direction) + 75 * Math.sin(direction)); float dy = (float) (-14 * -Math.sin(direction) + 75 * Math.cos(direction)); float dx1 = (float) (-13 * Math.cos(direction) + 75 * Math.sin(direction)); float dy1 = (float) (-14 * -Math.sin(direction) + 75 * Math.cos(direction)); PlayState.effects.add(new MuzzleFlashEffect(x + dx1, y + dy1, (float) Math.toDegrees(-direction))); PlayState.projectiles.add(new Bullet(this, x + dx, y + dy, (float) (direction + (Math.toRadians(MathUtils.random(-accuracy, accuracy)))))); if(OptionState.soundOn){ AssetsLoader.lmgSound.play(OptionState.volume); } bulletsInClip--; lastShot = System.currentTimeMillis(); } Here is the code for where the sound plays. Every time this method is called the sound is called but it happens so often in this case that there is this terrible echoing. Any idea on how to fix this?

    Read the article

  • Fixed point math in c#?

    - by x4000
    Hi there, I was wondering if anyone here knows of any good resources for fixed point math in c#? I've seen things like this (http://2ddev.72dpiarmy.com/viewtopic.php?id=156) and this (http://stackoverflow.com/questions/79677/whats-the-best-way-to-do-fixed-point-math), and a number of discussions about whether decimal is really fixed point or actually floating point (update: responders have confirmed that it's definitely floating point), but I haven't seen a solid C# library for things like calculating cosine and sine. My needs are simple -- I need the basic operators, plus cosine, sine, arctan2, PI... I think that's about it. Maybe sqrt. I'm programming a 2D RTS game, which I have largely working, but the unit movement when using floating-point math (doubles) has very small inaccuracies over time (10-30 minutes) across multiple machines, leading to desyncs. This is presently only between a 32 bit OS and a 64 bit OS, all the 32 bit machines seem to stay in sync without issue, which is what makes me think this is a floating point issue. I was aware from this as a possible issue from the outset, and so have limited my use of non-integer position math as much as possible, but for smooth diagonal movement at varying speeds I'm calculating the angle between points in radians, then getting the x and y components of movement with sin and cos. That's the main issue. I'm also doing some calculations for line segment intersections, line-circle intersections, circle-rect intersections, etc, that also probably need to move from floating-point to fixed-point to avoid cross-machine issues. If there's something open source in Java or VB or another comparable language, I could probably convert the code for my uses. The main priority for me is accuracy, although I'd like as little speed loss over present performance as possible. This whole fixed point math thing is very new to me, and I'm surprised by how little practical information on it there is on google -- most stuff seems to be either theory or dense C++ header files. Anything you could do to point me in the right direction is much appreciated; if I can get this working, I plan to open-source the math functions I put together so that there will be a resource for other C# programmers out there. UPDATE: I could definitely make a cosine/sine lookup table work for my purposes, but I don't think that would work for arctan2, since I'd need to generate a table with about 64,000x64,000 entries (yikes). If you know any programmatic explanations of efficient ways to calculate things like arctan2, that would be awesome. My math background is all right, but the advanced formulas and traditional math notation are very difficult for me to translate into code.

    Read the article

  • Recommended Math textbooks for programmers

    - by Tony
    I learned math in a non-English environment, I recently read some books about algorithm analysis, I found some math concepts were confusing, and seemed not the same as what I've learned. What math textbooks would you recommend that covers math concepts from the scratch and suitable for self-learning ?

    Read the article

  • Best software for taking math notes at lectures

    - by data_jepp
    Let me first just say that I know about La-Tex, and that doesn't fast enough. I use it for papers, but for "real-time" note taking it's just to heavy. I'm talking two math classes this semester. Linear algebra and discrete math, I just got a laptop with 10 hour battery life which makes me want to take notes on it!!! Openoffice with formula thingy is what I use now. Now I have to pay attention lol. Thanks.

    Read the article

  • Performance of Java matrix math libraries?

    - by dfrankow
    We are computing something whose runtime is bound by matrix operations. (Some details below if interested.) This experience prompted the following question: Do folk have experience with the performance of Java libraries for matrix math (e.g., multiply, inverse, etc.)? For example: JAMA: http://math.nist.gov/javanumerics/jama/ COLT: http://acs.lbl.gov/~hoschek/colt/ Apache commons math: http://commons.apache.org/math/ I searched and found nothing. Details of our speed comparison: We are using Intel FORTRAN (ifort (IFORT) 10.1 20070913). We have reimplemented it in Java (1.6) using Apache commons math 1.2 matrix ops, and it agrees to all of its digits of accuracy. (We have reasons for wanting it in Java.) (Java doubles, Fortran real*8). Fortran: 6 minutes, Java 33 minutes, same machine. jvisualm profiling shows much time spent in RealMatrixImpl.{getEntry,isValidCoordinate} (which appear to be gone in unreleased Apache commons math 2.0, but 2.0 is no faster). Fortran is using Atlas BLAS routines (dpotrf, etc.). Obviously this could depend on our code in each language, but we believe most of the time is in equivalent matrix operations. In several other computations that do not involve libraries, Java has not been much slower, and sometimes much faster.

    Read the article

  • Entry Level Programming Jobs with Applied Math Degree

    - by Mark
    I am about to finish my B.Sc. in Applied Math. I started out in CS a few years back had a bit of a change of heart and decided to go the math route. Now that I am looking for career options finishing up and I'm just wonder how my Applied Math degree will look when applying for programming jobs. I have taken CS courses in C++/Java/C and done 2 semester of Scientific Computing with MATLAB/Mathematica and the like, so I feel like i at least know how to program. Of course I am lacking some of the theoretical courses on the CS. I'd very much like to know how I stack up for a programming job as a math major. Thanks.

    Read the article

  • Parsing basic math equations for children's educational software?

    - by Simucal
    Inspired by a recent TED talk, I want to write a small piece of educational software. The researcher created little miniature computers in the shape of blocks called "Siftables". [David Merril, inventor - with Siftables in the background.] There were many applications he used the blocks in but my favorite was when each block was a number or basic operation symbol. You could then re-arrange the blocks of numbers or operation symbols in a line, and it would display an answer on another siftable block. So, I've decided I wanted to implemented a software version of "Math Siftables" on a limited scale as my final project for a CS course I'm taking. What is the generally accepted way for parsing and interpreting a string of math expressions, and if they are valid, perform the operation? Is this a case where I should implement a full parser/lexer? I would imagine interpreting basic math expressions would be a semi-common problem in computer science so I'm looking for the right way to approach this. For example, if my Math Siftable blocks where arranged like: [1] [+] [2] This would be a valid sequence and I would perform the necessary operation to arrive at "3". However, if the child were to drag several operation blocks together such as: [2] [\] [\] [5] It would obviously be invalid. Ultimately, I want to be able to parse and interpret any number of chains of operations with the blocks that the user can drag together. Can anyone explain to me or point me to resources for parsing basic math expressions? I'd prefer as much of a language agnostic answer as possible.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >