Search Results

Search found 42 results on 2 pages for 'greyscale'.

Page 2/2 | < Previous Page | 1 2 

  • Silverlight Line Graph with Gradient

    - by gav
    I have a series of points which I will turn into a line on a graph. What I want is to give the area under the graph a gradient fill. It would look somewhat similar to a Bloomberg graph like this; My question really has three parts; First, how should I fill only the area under the graph? Second, how do I fill that with a gradient? Finally, if I have multiple lines on the same graph any area under more than one line should have a greyscale gradient fill, how would you set this up? My biggest problem is deciding on the data structures to use, I could use many multiple sided shapes (One for each line/ data series) and then tell the brush to draw; Transparent if it's not in any shape The colour of one series if it's in one shape (Alpha relative to height to give grad) Black if it's in multiple shapes (Alpha relative to height to give grad) Then I'd draw the shapes' boundaries in white afterwards. Thanks, Gav

    Read the article

  • Creating a mask from a graphics context

    - by Magic Bullet Dave
    I want to be able to create a greyscale image with no alpha from a png in the app bundle. This works, and I get an image created: // Create graphics context the size of the overlapping rectangle UIGraphicsBeginImageContext(rectangleOfOverlap.size); CGContextRef ctx = UIGraphicsGetCurrentContext(); // More stuff CGContextDrawImage(ctx, drawRect2, [UIImage imageNamed:@"Image 01.png"].CGImage); // Create the new UIImage from the context UIImage *newImage = UIGraphicsGetImageFromCurrentImageContext(); However the resulting image is 32 bits per pixel and has an alpha channel, so when I use CGCreateImageWithMask it doesn't work. I've tried creating a bitmap context thus: CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceGray(); CGContextRef ctx =CGBitmapContextCreate(nil, rectangleOfOverlap.size.width, rectangleOfOverlap.size.height, 8, rectangleOfOverlap.size.width , colorSpace, kCGImageAlphaNone); UIGraphicsGetImageFromCurrentImageContext returns zero and the resulting image is not created. Am I doing something dumb here? Any help would be greatly appreciated. Regards Dave

    Read the article

  • Python Imaging: YCbCr problems

    - by daver
    Hi, I'm doing some image processing in Python using PIL, I need to extract the luminance layer from a series of images, and do some processing on that using numpy, then put the edited luminance layer back into the image and save it. The problem is, I can't seem to get any meaningful representation of my Image in a YCbCr format, or at least I don't understand what PIL is giving me in YCbCr. PIL documentation claims YCbCr format gives three channels, but when I grab the data out of the image using np.asarray, I get 4 channels. Ok, so I figure one must be alpha. Here is some code I'm using to test this process: import Image as im import numpy as np pengIm = im.open("Data\\Test\\Penguins.bmp") yIm = pengIm.convert("YCbCr") testIm = np.asarray(yIm) grey = testIm[:,:,0] grey = grey.astype('uint8') greyIm = im.fromarray(grey, "L") greyIm.save("Data\\Test\\grey.bmp") I'm expecting a greyscale version of my image, but what I get is this jumbled up mess: http://i.imgur.com/zlhIh.png Can anybody explain to me where I'm going wrong? The same code in matlab works exactly as I expect.

    Read the article

  • Photoshop CS4. How do I make sure my color stays the same in my different .psd files? (could be RGB

    - by Kris
    I asked 2 photoshop experts I know but they haven't got a clue because all my settings are exactly the same, in both files. (except the RGB type !! I'm not sure. Please read on) I use RGB color, 72DPI, 8 bits / channel. No adjustments (filters, like greyscale, etc ...) are selected / used. The layers are both normal, and opacity and fill are 100% (yes, in both files). I took two screenshots, and you can see the difference: http://www.flickr.com/photos/30465871@N05/4623864297/ http://www.flickr.com/photos/30465871@N05/4624469754/ Both colors are ff795d, but that doesn't matter, any color I use gives me the same problem: they both look different. Now, I know the CMYK settings (see screenshots) are different, but when the settings are the same the color changes. Why is this happening and how do I solve this problem? My guess is I'm working with different a type of RGB. It's sRGB IE61966 - 2.1 in the file I created (file info raw data) but I can't find that in the file that started with a screenshot. If that's the problem, how do I change / convert the RGB, once the file is already open? Thank you.

    Read the article

  • Speeding up procedural texture generation

    - by FalconNL
    Recently I've begun working on a game that takes place in a procedurally generated solar system. After a bit of a learning curve (having neither worked with Scala, OpenGL 2 ES or Libgdx before), I have a basic tech demo going where you spin around a single procedurally textured planet: The problem I'm running into is the performance of the texture generation. A quick overview of what I'm doing: a planet is a cube that has been deformed to a sphere. To each side, a n x n (e.g. 256 x 256) texture is applied, which are bundled in one 8n x n texture that is sent to the fragment shader. The last two spaces are not used, they're only there to make sure the width is a power of 2. The texture is currently generated on the CPU, using the updated 2012 version of the simplex noise algorithm linked to in the paper 'Simplex noise demystified'. The scene I'm using to test the algorithm contains two spheres: the planet and the background. Both use a greyscale texture consisting of six octaves of 3D simplex noise, so for example if we choose 128x128 as the texture size there are 128 x 128 x 6 x 2 x 6 = about 1.2 million calls to the noise function. The closest you will get to the planet is about what's shown in the screenshot and since the game's target resolution is 1280x720 that means I'd prefer to use 512x512 textures. Combine that with the fact the actual textures will of course be more complicated than basic noise (There will be a day and night texture, blended in the fragment shader based on sunlight, and a specular mask. I need noise for continents, terrain color variation, clouds, city lights, etc.) and we're looking at something like 512 x 512 x 6 x 3 x 15 = 70 million noise calls for the planet alone. In the final game, there will be activities when traveling between planets, so a wait of 5 or 10 seconds, possibly 20, would be acceptable since I can calculate the texture in the background while traveling, though obviously the faster the better. Getting back to our test scene, performance on my PC isn't too terrible, though still too slow considering the final result is going to be about 60 times worse: 128x128 : 0.1s 256x256 : 0.4s 512x512 : 1.7s This is after I moved all performance-critical code to Java, since trying to do so in Scala was a lot worse. Running this on my phone (a Samsung Galaxy S3), however, produces a more problematic result: 128x128 : 2s 256x256 : 7s 512x512 : 29s Already far too long, and that's not even factoring in the fact that it'll be minutes instead of seconds in the final version. Clearly something needs to be done. Personally, I see a few potential avenues, though I'm not particularly keen on any of them yet: Don't precalculate the textures, but let the fragment shader calculate everything. Probably not feasible, because at one point I had the background as a fullscreen quad with a pixel shader and I got about 1 fps on my phone. Use the GPU to render the texture once, store it and use the stored texture from then on. Upside: might be faster than doing it on the CPU since the GPU is supposed to be faster at floating point calculations. Downside: effects that cannot (easily) be expressed as functions of simplex noise (e.g. gas planet vortices, moon craters, etc.) are a lot more difficult to code in GLSL than in Scala/Java. Calculate a large amount of noise textures and ship them with the application. I'd like to avoid this if at all possible. Lower the resolution. Buys me a 4x performance gain, which isn't really enough plus I lose a lot of quality. Find a faster noise algorithm. If anyone has one I'm all ears, but simplex is already supposed to be faster than perlin. Adopt a pixel art style, allowing for lower resolution textures and fewer noise octaves. While I originally envisioned the game in this style, I've come to prefer the realistic approach. I'm doing something wrong and the performance should already be one or two orders of magnitude better. If this is the case, please let me know. If anyone has any suggestions, tips, workarounds, or other comments regarding this problem I'd love to hear them.

    Read the article

  • Getting the number of fragments which passed the depth test

    - by Etan
    In "modern" environments, the "NV Occlusion Query" extension provides a method to get the number of fragments which passed the depth test. However, on the iPad / iPhone using OpenGL ES, the extension is not available. What is the most performant approach to implement a similar behaviour in the fragment shader? Some of my ideas: Render the object completely in white, then count all the colors together using a two-pass shader where first a vertical line is rendered and for each fragment the shader computes the sum over the whole row. Then, a single vertex is rendered whose fragment sums all the partial sums of the first pass. Doesn't seem to be very efficient. Render the object completely in white over a black background. Downsample recursively, abusing the hardware linear interpolation between textures until being at a reasonably small resolution. This leads to fragments which have a greyscale level depending on the number of white pixels where in their corresponding region. Is this even accurate enough? Use mipmaps and simply read the pixel on the 1x1 level. Again the question of accuracy and if it is even possible using non-power-of-two textures. The problem wit these approaches is, that the pipeline gets stalled which results in major performance issues. Therefore, I'm looking for a more performant way to accomplish my goal. Using the EXT_OCCLUSION_QUERY_BOOLEAN extension Apple introduced EXT_OCCLUSION_QUERY_BOOLEAN in iOS 5.0 for iPad 2. "4.1.6 Occlusion Queries Occlusion queries use query objects to track the number of fragments or samples that pass the depth test. An occlusion query can be started and finished by calling BeginQueryEXT and EndQueryEXT, respectively, with a target of ANY_SAMPLES_PASSED_EXT or ANY_SAMPLES_PASSED_CONSERVATIVE_EXT. When an occlusion query is started with the target ANY_SAMPLES_PASSED_EXT, the samples-boolean state maintained by the GL is set to FALSE. While that occlusion query is active, the samples-boolean state is set to TRUE if any fragment or sample passes the depth test. When the occlusion query finishes, the samples-boolean state of FALSE or TRUE is written to the corresponding query object as the query result value, and the query result for that object is marked as available. If the target of the query is ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, an implementation may choose to use a less precise version of the test which can additionally set the samples-boolean state to TRUE in some other implementation dependent cases." The first sentence hints on a behavior which is exactly what I'm looking for: getting the number of pixels which passed the depth test in an asynchronous manner without much performance loss. However, the rest of the document describes only how to get boolean results. Is it possible to exploit this extension to get the pixel count? Does the hardware support it so that there may be hidden API to get access to the pixel count? Other extensions which could be exploitable would be debugging features like the number of times the fragment shader was invoked (PSInvocations in DirectX - not sure if something simila is available in OpenGL ES). However, this would also result in a pipeline stall.

    Read the article

  • Optimizing code using PIL

    - by freakazo
    Firstly sorry for the long piece of code pasted below. This is my first time actually having to worry about performance of an application so I haven't really ever worried about performance. This piece of code pretty much searches for an image inside another image, it takes 30 seconds to run on my computer, converting the images to greyscale and other changes shaved of 15 seconds, I need another 15 shaved off. I did read a bunch of pages and looked at examples but I couldn't find the same problems in my code. So any help would be greatly appreciated. From the looks of it (cProfile) 25 seconds is spent within the Image module, and only 5 seconds in my code. from PIL import Image import os, ImageGrab, pdb, time, win32api, win32con import cProfile def GetImage(name): name = name + '.bmp' try: print(os.path.join(os.getcwd(),"Images",name)) image = Image.open(os.path.join(os.getcwd(),"Images",name)) except: print('error opening image;', name) return image def Find(name): image = GetImage(name) imagebbox = image.getbbox() screen = ImageGrab.grab() #screen = Image.open(os.path.join(os.getcwd(),"Images","Untitled.bmp")) YLimit = screen.getbbox()[3] - imagebbox[3] XLimit = screen.getbbox()[2] - imagebbox[2] image = image.convert("L") Screen = screen.convert("L") Screen.load() image.load() #print(XLimit, YLimit) Found = False image = image.getdata() for y in range(0,YLimit): for x in range(0,XLimit): BoxCoordinates = x, y, x+imagebbox[2], y+imagebbox[3] ScreenGrab = screen.crop(BoxCoordinates) ScreenGrab = ScreenGrab.getdata() if image == ScreenGrab: Found = True #print("woop") return x,y if Found == False: return "Not Found" cProfile.run('print(Find("Login"))')

    Read the article

  • Fast Lightweight Image Comparisson Metric Algorithm

    - by gav
    Hi All, I am developing an application for the Android platform which contains 1000+ image filters that have been 'evolved'. When a user selects a photo I want to present the most relevant filters first. This 'relevance' should be dependent on previous use cases. I have already developed tools that register when a filtered image is saved; this combination of filter and image can be seen as the training data for my system. The issue is that the comparison must occur between selecting an image and the next screen coming up. From a UI point of view I need the whole process to take less that 4 seconds; select an image- obtain a metric to use for similarity - check against use cases - return 6 closest matches. I figure with 4 seconds I can use animations and progress dialogs to keep the user happy. Due to platform contraints I am fairly limited in the computational expense of the algorithm. I have implemented a technique adapted from various online tutorials for running C code on the G1 and hence this language is available Specific Constraints; Qualcomm® MSM7201A™, 528 MHz Processor 320 x 480 Pixel bitmap in 32 bit ARGB ~ 2 seconds computational time for the native method to get the metric ~ 2 seconds to compare the metric of the current image with training data This is an academic project so all ideas are welcome, anything you can think of or have heard about would be of interest to me. My ideas; I want to keep the complexity down (O(n*m)?) by using pixel data only rather than a neighbourhood function I was looking at using the Colour historgram/Greyscale histogram/Texture/Entropy of the image, combining them to make the measure. There will be an obvious loss of information but I need the resultant metric to be substantially smaller than the memory footprint of the image (~0.512 MB) As I said, any ideas to direct my research would be fantastic. Kind regards, Gavin

    Read the article

  • Error Converting PIL B&W images to Numpy Arrays

    - by Elliot
    I am getting weird errors when I try to convert a black and white PIL image to a numpy array. An example of the code I am working with is below. if image.mode != '1': image = image.convert('1') #convert to B&W data = np.array(image) #convert data to a numpy array n_lines = data.shape[0] #number of raster passes line_range = range(data.shape[1]) for l in range(n_lines): # process one horizontal line of the image line = data[l] for n in line_range: if line[n] == 1: write_line_to(xl, z+scale*n, speed) #conversion to other program code elif line[n] == 0: run_to(xl, z+scale*n) #conversion to other program code I have tried this using both array and asarray for the conversion, and gotten different errors. If I use array, then the data I get out is nothing like what I put in. It looks like several very shrunken partial images side by side, with the remainder of the image space filled in in black. If I use asarray, then the entirety of python crashes during the raster step (on a random line). If I work with a greyscale image ('L'), then neither of these errors occurs for either array or asarray. Does anyone know what I am doing wrong? Is there something odd about the way PIL encodes B&W images, or something special I need to pass numpy to make it convert properly?

    Read the article

  • Resize an image and maintain quality?

    - by JasonS
    Hi, I have a problem with resizing images. What happens is that if you upload a file larger than the stated parameters, the image is cropped, then saved at 100% quality. So if I upload a large jpeg which is 272Kb. The image is cropped by 100 odd pixels. The file size then goes up to 1.2Mb. We are saving images at a 100% quality. I assume that this is what is causing the problem. The image is exported from Photoshop at 30% quality which reduces the file size. Resaving the image at 100% quality creates the same image but I assume with a lot of redundant file data. Has anyone encountered this before? Does anyone have a solution? This is what we are using. $source_im = imagecreatefromjpeg ($file); $dest_im = imagecreatetruecolor ($newsize_x, $newsize_y); imagecopyresampled ( $dest_im, $source_im, 0, 0, $offset_x, $offset_y, $newsize_x, $newsize_y, $sourceWidth, $sourceHeight ); imagedestroy ($source_im); if ($greyscale) { $dest_im = $this->imageconvertgreyscale ($dest_im); } imagejpeg($dest_im, $save_to_file, $quality); break;

    Read the article

  • Photoshop CS4. How do I make sure my color stays the same in my different .psd files? (could be RGB

    - by Kris
    I asked 2 photoshop experts I know but they haven't got a clue because all my settings are exactly the same, in both files. (except the RGB type !! I'm not sure. Please read on) I use RGB color, 72DPI, 8 bits / channel. No adjustments (filters, like greyscale, etc ...) are selected / used. The layers are both normal, and opacity and fill are 100% (yes, in both files). I took two screenshots, and you can see the difference: http://www.flickr.com/photos/30465871@N05/4623864297/ http://www.flickr.com/photos/30465871@N05/4624469754/ Both colors are ff795d, but that doesn't matter, any color I use gives me the same problem: they both look different. Now, I know the CMYK settings (see screenshots) are different, but when the settings are the same the color changes. Why is this happening and how do I solve this problem? My guess is I'm working with different a type of RGB. It's sRGB IE61966 - 2.1 in the file I created (file info raw data) but I can't find that in the file that started with a screenshot. If that's the problem, how do I change / convert the RGB, once the file is already open? Thank you.

    Read the article

  • HLSL tex2d sampler seemingly returning incorrect values; why?

    - by BlueNovember
    Hello all, I have code that needs to render regions of my object differently depending on their location. I am trying to use a colour map to define these regions, then get a value (0-14) representing this region by sampling the texture. The problem is when I sample from my colour map, I get collisions. Ie, two regions with different colours in the colourmap get the same value returned from the sampler. I've tried various formats of my colour map. I set the colours for each region to be "5" apart in each case; Indexed colour RGB, RGBA: region 1 will have RGB 5,5,5. region 2 will have RGB 10,10,10 and so on. HSV Greyscale: region 1 will have HSV 0,0,5. region 2 will have HSV 0,0,10 and so on. The tex2D sampler returns a value [0..1]. To get the "region number" I multiply this by 100 and divide by 5, expecting a number [0..20]. (But currently only using 0-14) I am using Shader Model 2 and FX Composer. //Colour map texture gColourmapTexture < string ResourceName = "Globe_Colourmap_Regions_Greyscale.png"; string ResourceType = "2D"; >; sampler2D gColourmapSampler : register(s1) = sampler_state { Texture = <gColourmapTexture>; #if DIRECT3D_VERSION >= 0xa00 Filter = MIN_MAG_MIP_LINEAR; #else /* DIRECT3D_VERSION < 0xa00 */ MinFilter = Linear; MipFilter = Linear; MagFilter = Linear; #endif /* DIRECT3D_VERSION */ AddressU = Clamp; AddressV = Clamp; }; ... //Then later, in a method float region = tex2D(gColourmapSampler,In.UV).x; //at this point I do not think it matters which of xyz components I pick; even in HSV they're all the same for my image. region *= 100; //Now in range [0..100] region /= 5; //Now in range [0..20] float3 levels[21]; //*Code populating "levels" array with what is essentially colour information * levels[1] = ... levels[2] = ... //Chose which level this region has, by looking up its region number float3 Level = levels[region];

    Read the article

  • HLSL tex2d sampler seemingly using inconsistent rounding; why?

    - by RJFalconer
    Hello all, I have code that needs to render regions of my object differently depending on their location. I am trying to use a colour map to define these regions. The problem is when I sample from my colour map, I get collisions. Ie, two regions with different colours in the colourmap get the same value returned from the sampler. I've tried various formats of my colour map. I set the colours for each region to be "5" apart in each case; Indexed colour RGB, RGBA: region 1 will have RGB 5%,5%,5%. region 2 will have RGB 10%,10%,10% and so on. HSV Greyscale: region 1 will have HSV 0,0,5%. region 2 will have HSV 0,0,10% and so on. (Values selected in The Gimp) The tex2D sampler returns a value [0..1]. [ I then intend to derive an int array index from region. Code to do with that is unrelated, so has been removed from the question ] float region = tex2D(gColourmapSampler,In.UV).x; Sampling the "5%" colour gave a "region" of 0.05098 in hlsl. From this I assume the 5% represents 5/100*255, or 12.75, which is rounded to 13 when stored in the texture OR when sampled by the sampler; can't tell which. (Reasoning: 0.05098 * 255 ~= 13) By this logic, the 50% should be stored as 127.5. Sampled, I get 0.50196 which implies it was stored as 128. the 70% should be stored as 178.5. Sampled, I get 0.698039, which implies it was stored as 178. What rounding is going on here? (127.5 becomes 128, 178.5 becomes 178 ?!) Edit: OK, http://en.wikipedia.org/wiki/Bankers_rounding#Round_half_to_even Apparently this is "banker's rounding". Is this really what HLSL samplers use? I am using Shader Model 2 and FX Composer. This is my sampler declaration; //Colour map texture gColourmapTexture < string ResourceName = "Globe_Colourmap_Regions_Greyscale.png"; string ResourceType = "2D"; >; sampler2D gColourmapSampler : register(s1) = sampler_state { Texture = <gColourmapTexture>; #if DIRECT3D_VERSION >= 0xa00 Filter = MIN_MAG_MIP_LINEAR; #else /* DIRECT3D_VERSION < 0xa00 */ MinFilter = Linear; MipFilter = Linear; MagFilter = Linear; #endif /* DIRECT3D_VERSION */ AddressU = Clamp; AddressV = Clamp; };

    Read the article

  • Using fft2 with reshaping for an RGB filter

    - by Mahmoud Aladdin
    I want to apply a filter on an image, for example, blurring filter [[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]]. Also, I'd like to use the approach that convolution in Spatial domain is equivalent to multiplication in Frequency domain. So, my algorithm will be like. Load Image. Create Filter. convert both Filter & Image to Frequency domains. multiply both. reconvert the output to Spatial Domain and that should be the required output. The following is the basic code I use, the image is loaded and displayed as cv.cvmat object. Image is a class of my creation, it has a member image which is an object of scipy.matrix and toFrequencyDomain(size = None) uses spf.fftshift(spf.fft2(self.image, size)) where spf is scipy.fftpack and dotMultiply(img) uses scipy.multiply(self.image, image) f = Image.fromMatrix([[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]]) lena = Image.fromFile("Test/images/lena.jpg") print lena.image.shape lenaf = lena.toFrequencyDomain(lena.image.shape) ff = f.toFrequencyDomain(lena.image.shape) lenafm = lenaf.dotMultiplyImage(ff) lenaff = lenafm.toTimeDomain() lena.display() lenaff.display() So, the previous code works pretty well, if I told OpenCV to load the image via GRAY_SCALE. However, if I let the image to be loaded in color ... lena.image.shape will be (512, 512, 3) .. so, it gives me an error when using scipy.fttpack.ftt2 saying "When given, Shape and Axes should be of same length". What I tried next was converted my filter to 3-D .. as [[[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]], [[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]], [[1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0], [1/9.0, 1/9.0, 1/9.0]]] And, not knowing what the axes argument do, I added it with random numbers as (-2, -1, -1), (-1, -1, -2), .. etc. until it gave me the correct filter output shape for the dotMultiply to work. But, of course it wasn't the correct value. Things were totally worse. My final trial, was using fft2 function on each of the components 2-D matrices, and then re-making the 3-D one, using the following code. # Spiltting the 3-D matrix to three 2-D matrices. for i, row in enumerate(self.image): r.append(list()) g.append(list()) b.append(list()) for pixel in row: r[i].append(pixel[0]) g[i].append(pixel[1]) b[i].append(pixel[2]) rfft = spf.fftshift(spf.fft2(r, size)) gfft = spf.fftshift(spf.fft2(g, size)) bfft = spf.fftshift(spf.fft2(b, size)) newImage.image = sp.asarray([[[rfft[i][j], gfft[i][j], bfft[i][j]] for j in xrange(len(rfft[i]))] for i in xrange(len(rfft))] ) return newImage Any help on what I made wrong, or how can I achieve that for both GreyScale and Coloured pictures.

    Read the article

  • How should I smooth the transition between these two states in flex/flashbuilder

    - by Joshua
    I have an item in which has two states, best described as open and closed, and they look like this: and And what I'd like to do is is smooth the transition between one state and the other, effectively by interpolating between the two points in a smooth manner (sine) to move the footer/button-block and then fade in the pie chart. However this is apparently beyond me and after wrestling with my inability to do so for an hour+ I'm posting it here :D So my transition block looks as follows <s:transitions> <s:Transition id="TrayTrans" fromState="*" toState="*"> <s:Sequence> <s:Move duration="400" target="{footer}" interpolator="{Sine}"/> <s:Fade duration="300" targets="{body}"/> </s:Sequence> </s:Transition> <s:Transition> <s:Rotate duration="3000" /> </s:Transition> </s:transitions> where {body} refers to the pie chart and {footer} refers to the footer/button-block. However this doesn't work so I don't really know what to do... Additional information which may be beneficial: The body block is always of fixed height (perhaps of use for the Xby variables in some effects?). It needs to work in both directions. Oh and the Sine block is defined above in declarations just as <s:Sine id="Sine">. Additionally! How would I go about setting the pie chart to rotate continually using these transition blocks? (this would occur without the labels on) Or is that the wrong way to go about it as it's not a transition as such? The effect I'm after is one where the pie chart rotates slowly without labels prior to a selection of a button below, but on selection the rotation stops and labels appear... Thanks a lot in advance! And apologies on greyscale, but I can't really decide on a colour scheme. Any suggestions welcome.

    Read the article

  • Disable antialiasing for a specific GDI device context

    - by Jacob Stanley
    I'm using a third party library to render an image to a GDI DC and I need to ensure that any text is rendered without any smoothing/antialiasing so that I can convert the image to a predefined palette with indexed colors. The third party library i'm using for rendering doesn't support this and just renders text as per the current windows settings for font rendering. They've also said that it's unlikely they'll add the ability to switch anti-aliasing off any time soon. The best work around I've found so far is to call the third party library in this way (error handling and prior settings checks ommitted for brevity): private static void SetFontSmoothing(bool enabled) { int pv = 0; SystemParametersInfo(Spi.SetFontSmoothing, enabled ? 1 : 0, ref pv, Spif.None); } // snip Graphics graphics = Graphics.FromImage(bitmap) IntPtr deviceContext = graphics.GetHdc(); SetFontSmoothing(false); thirdPartyComponent.Render(deviceContext); SetFontSmoothing(true); This obviously has a horrible effect on the operating system, other applications flicker from cleartype enabled to disabled and back every time I render the image. So the question is, does anyone know how I can alter the font rendering settings for a specific DC? Even if I could just make the changes process or thread specific instead of affecting the whole operating system, that would be a big step forward! (That would give me the option of farming this rendering out to a separate process- the results are written to disk after rendering anyway) EDIT: I'd like to add that I don't mind if the solution is more complex than just a few API calls. I'd even be happy with a solution that involved hooking system dlls if it was only about a days work. EDIT: Background Information The third-party library renders using a palette of about 70 colors. After the image (which is actually a map tile) is rendered to the DC, I convert each pixel from it's 32-bit color back to it's palette index and store the result as an 8bpp greyscale image. This is uploaded to the video card as a texture. During rendering, I re-apply the palette (also stored as a texture) with a pixel shader executing on the video card. This allows me to switch and fade between different palettes instantaneously instead of needing to regenerate all the required tiles. It takes between 10-60 seconds to generate and upload all the tiles for a typical view of the world. EDIT: Renamed GraphicsDevice to Graphics The class GraphicsDevice in the previous version of this question is actually System.Drawing.Graphics. I had renamed it (using GraphicsDevice = ...) because the code in question is in the namespace MyCompany.Graphics and the compiler wasn't able resolve it properly. EDIT: Success! I even managed to port the PatchIat function below to C# with the help of Marshal.GetFunctionPointerForDelegate. The .NET interop team really did a fantastic job! I'm now using the following syntax, where Patch is an extension method on System.Diagnostics.ProcessModule: module.Patch( "Gdi32.dll", "CreateFontIndirectA", (CreateFontIndirectA original) => font => { font->lfQuality = NONANTIALIASED_QUALITY; return original(font); }); private unsafe delegate IntPtr CreateFontIndirectA(LOGFONTA* lplf); private const int NONANTIALIASED_QUALITY = 3; [StructLayout(LayoutKind.Sequential)] private struct LOGFONTA { public int lfHeight; public int lfWidth; public int lfEscapement; public int lfOrientation; public int lfWeight; public byte lfItalic; public byte lfUnderline; public byte lfStrikeOut; public byte lfCharSet; public byte lfOutPrecision; public byte lfClipPrecision; public byte lfQuality; public byte lfPitchAndFamily; public unsafe fixed sbyte lfFaceName [32]; }

    Read the article

  • Toon shader with Texture. Can this be optimized?

    - by Alex
    I am quite new to OpenGL, I have managed after long trial and error to integrate Nehe's Cel-Shading rendering with my Model loaders, and have them drawn using the Toon shade and outline AND their original texture at the same time. The result is actually a very nice Cel Shading effect of the model texture, but it is havling the speed of the program, it's quite very slow even with just 3 models on screen... Since the result was kind of hacked together, I am thinking that maybe I am performing some extra steps or extra rendering tasks that maybe are not needed, and are slowing down the game? Something unnecessary that maybe you guys could spot? Both MD2 and 3DS loader have an InitToon() function called upon creation to load the shader initToon(){ int i; // Looping Variable ( NEW ) char Line[255]; // Storage For 255 Characters ( NEW ) float shaderData[32][3]; // Storate For The 96 Shader Values ( NEW ) FILE *In = fopen ("Shader.txt", "r"); // Open The Shader File ( NEW ) if (In) // Check To See If The File Opened ( NEW ) { for (i = 0; i < 32; i++) // Loop Though The 32 Greyscale Values ( NEW ) { if (feof (In)) // Check For The End Of The File ( NEW ) break; fgets (Line, 255, In); // Get The Current Line ( NEW ) shaderData[i][0] = shaderData[i][1] = shaderData[i][2] = float(atof (Line)); // Copy Over The Value ( NEW ) } fclose (In); // Close The File ( NEW ) } else return false; // It Went Horribly Horribly Wrong ( NEW ) glGenTextures (1, &shaderTexture[0]); // Get A Free Texture ID ( NEW ) glBindTexture (GL_TEXTURE_1D, shaderTexture[0]); // Bind This Texture. From Now On It Will Be 1D ( NEW ) // For Crying Out Loud Don't Let OpenGL Use Bi/Trilinear Filtering! ( NEW ) glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage1D (GL_TEXTURE_1D, 0, GL_RGB, 32, 0, GL_RGB , GL_FLOAT, shaderData); // Upload ( NEW ) } This is the drawing for the animated MD2 model: void MD2Model::drawToon() { float outlineWidth = 3.0f; // Width Of The Lines ( NEW ) float outlineColor[3] = { 0.0f, 0.0f, 0.0f }; // Color Of The Lines ( NEW ) // ORIGINAL PART OF THE FUNCTION //Figure out the two frames between which we are interpolating int frameIndex1 = (int)(time * (endFrame - startFrame + 1)) + startFrame; if (frameIndex1 > endFrame) { frameIndex1 = startFrame; } int frameIndex2; if (frameIndex1 < endFrame) { frameIndex2 = frameIndex1 + 1; } else { frameIndex2 = startFrame; } MD2Frame* frame1 = frames + frameIndex1; MD2Frame* frame2 = frames + frameIndex2; //Figure out the fraction that we are between the two frames float frac = (time - (float)(frameIndex1 - startFrame) / (float)(endFrame - startFrame + 1)) * (endFrame - startFrame + 1); // I ADDED THESE FROM NEHE'S TUTORIAL FOR FIRST PASS (TOON SHADE) glHint (GL_LINE_SMOOTH_HINT, GL_NICEST); // Use The Good Calculations ( NEW ) glEnable (GL_LINE_SMOOTH); // Cel-Shading Code // glEnable (GL_TEXTURE_1D); // Enable 1D Texturing ( NEW ) glBindTexture (GL_TEXTURE_1D, shaderTexture[0]); // Bind Our Texture ( NEW ) glColor3f (1.0f, 1.0f, 1.0f); // Set The Color Of The Model ( NEW ) // ORIGINAL DRAWING CODE //Draw the model as an interpolation between the two frames glBegin(GL_TRIANGLES); for(int i = 0; i < numTriangles; i++) { MD2Triangle* triangle = triangles + i; for(int j = 0; j < 3; j++) { MD2Vertex* v1 = frame1->vertices + triangle->vertices[j]; MD2Vertex* v2 = frame2->vertices + triangle->vertices[j]; Vec3f pos = v1->pos * (1 - frac) + v2->pos * frac; Vec3f normal = v1->normal * (1 - frac) + v2->normal * frac; if (normal[0] == 0 && normal[1] == 0 && normal[2] == 0) { normal = Vec3f(0, 0, 1); } glNormal3f(normal[0], normal[1], normal[2]); MD2TexCoord* texCoord = texCoords + triangle->texCoords[j]; glTexCoord2f(texCoord->texCoordX, texCoord->texCoordY); glVertex3f(pos[0], pos[1], pos[2]); } } glEnd(); // ADDED THESE FROM NEHE'S FOR SECOND PASS (OUTLINE) glDisable (GL_TEXTURE_1D); // Disable 1D Textures ( NEW ) glEnable (GL_BLEND); // Enable Blending ( NEW ) glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); // Set The Blend Mode ( NEW ) glPolygonMode (GL_BACK, GL_LINE); // Draw Backfacing Polygons As Wireframes ( NEW ) glLineWidth (outlineWidth); // Set The Line Width ( NEW ) glCullFace (GL_FRONT); // Don't Draw Any Front-Facing Polygons ( NEW ) glDepthFunc (GL_LEQUAL); // Change The Depth Mode ( NEW ) glColor3fv (&outlineColor[0]); // Set The Outline Color ( NEW ) // HERE I AM PARSING THE VERTICES AGAIN (NOT IN THE ORIGINAL FUNCTION) FOR THE OUTLINE AS PER NEHE'S TUT glBegin (GL_TRIANGLES); // Tell OpenGL What We Want To Draw for(int i = 0; i < numTriangles; i++) { MD2Triangle* triangle = triangles + i; for(int j = 0; j < 3; j++) { MD2Vertex* v1 = frame1->vertices + triangle->vertices[j]; MD2Vertex* v2 = frame2->vertices + triangle->vertices[j]; Vec3f pos = v1->pos * (1 - frac) + v2->pos * frac; Vec3f normal = v1->normal * (1 - frac) + v2->normal * frac; if (normal[0] == 0 && normal[1] == 0 && normal[2] == 0) { normal = Vec3f(0, 0, 1); } glNormal3f(normal[0], normal[1], normal[2]); MD2TexCoord* texCoord = texCoords + triangle->texCoords[j]; glTexCoord2f(texCoord->texCoordX, texCoord->texCoordY); glVertex3f(pos[0], pos[1], pos[2]); } } glEnd (); // Tell OpenGL We've Finished glDepthFunc (GL_LESS); // Reset The Depth-Testing Mode ( NEW ) glCullFace (GL_BACK); // Reset The Face To Be Culled ( NEW ) glPolygonMode (GL_BACK, GL_FILL); // Reset Back-Facing Polygon Drawing Mode ( NEW ) glDisable (GL_BLEND); } Whereas this is the drawToon function in the 3DS loader void Model_3DS::drawToon() { float outlineWidth = 3.0f; // Width Of The Lines ( NEW ) float outlineColor[3] = { 0.0f, 0.0f, 0.0f }; // Color Of The Lines ( NEW ) //ORIGINAL CODE if (visible) { glPushMatrix(); // Move the model glTranslatef(pos.x, pos.y, pos.z); // Rotate the model glRotatef(rot.x, 1.0f, 0.0f, 0.0f); glRotatef(rot.y, 0.0f, 1.0f, 0.0f); glRotatef(rot.z, 0.0f, 0.0f, 1.0f); glScalef(scale, scale, scale); // Loop through the objects for (int i = 0; i < numObjects; i++) { // Enable texture coordiantes, normals, and vertices arrays if (Objects[i].textured) glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (lit) glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); // Point them to the objects arrays if (Objects[i].textured) glTexCoordPointer(2, GL_FLOAT, 0, Objects[i].TexCoords); if (lit) glNormalPointer(GL_FLOAT, 0, Objects[i].Normals); glVertexPointer(3, GL_FLOAT, 0, Objects[i].Vertexes); // Loop through the faces as sorted by material and draw them for (int j = 0; j < Objects[i].numMatFaces; j ++) { // Use the material's texture Materials[Objects[i].MatFaces[j].MatIndex].tex.Use(); // AFTER THE TEXTURE IS APPLIED I INSERT THE TOON FUNCTIONS HERE (FIRST PASS) glHint (GL_LINE_SMOOTH_HINT, GL_NICEST); // Use The Good Calculations ( NEW ) glEnable (GL_LINE_SMOOTH); // Cel-Shading Code // glEnable (GL_TEXTURE_1D); // Enable 1D Texturing ( NEW ) glBindTexture (GL_TEXTURE_1D, shaderTexture[0]); // Bind Our Texture ( NEW ) glColor3f (1.0f, 1.0f, 1.0f); // Set The Color Of The Model ( NEW ) glPushMatrix(); // Move the model glTranslatef(Objects[i].pos.x, Objects[i].pos.y, Objects[i].pos.z); // Rotate the model glRotatef(Objects[i].rot.z, 0.0f, 0.0f, 1.0f); glRotatef(Objects[i].rot.y, 0.0f, 1.0f, 0.0f); glRotatef(Objects[i].rot.x, 1.0f, 0.0f, 0.0f); // Draw the faces using an index to the vertex array glDrawElements(GL_TRIANGLES, Objects[i].MatFaces[j].numSubFaces, GL_UNSIGNED_SHORT, Objects[i].MatFaces[j].subFaces); glPopMatrix(); } glDisable (GL_TEXTURE_1D); // Disable 1D Textures ( NEW ) // THIS IS AN ADDED SECOND PASS AT THE VERTICES FOR THE OUTLINE glEnable (GL_BLEND); // Enable Blending ( NEW ) glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); // Set The Blend Mode ( NEW ) glPolygonMode (GL_BACK, GL_LINE); // Draw Backfacing Polygons As Wireframes ( NEW ) glLineWidth (outlineWidth); // Set The Line Width ( NEW ) glCullFace (GL_FRONT); // Don't Draw Any Front-Facing Polygons ( NEW ) glDepthFunc (GL_LEQUAL); // Change The Depth Mode ( NEW ) glColor3fv (&outlineColor[0]); // Set The Outline Color ( NEW ) for (int j = 0; j < Objects[i].numMatFaces; j ++) { glPushMatrix(); // Move the model glTranslatef(Objects[i].pos.x, Objects[i].pos.y, Objects[i].pos.z); // Rotate the model glRotatef(Objects[i].rot.z, 0.0f, 0.0f, 1.0f); glRotatef(Objects[i].rot.y, 0.0f, 1.0f, 0.0f); glRotatef(Objects[i].rot.x, 1.0f, 0.0f, 0.0f); // Draw the faces using an index to the vertex array glDrawElements(GL_TRIANGLES, Objects[i].MatFaces[j].numSubFaces, GL_UNSIGNED_SHORT, Objects[i].MatFaces[j].subFaces); glPopMatrix(); } glDepthFunc (GL_LESS); // Reset The Depth-Testing Mode ( NEW ) glCullFace (GL_BACK); // Reset The Face To Be Culled ( NEW ) glPolygonMode (GL_BACK, GL_FILL); // Reset Back-Facing Polygon Drawing Mode ( NEW ) glDisable (GL_BLEND); glPopMatrix(); } Finally this is the tex.Use() function that loads a BMP texture and somehow gets blended perfectly with the Toon shading void GLTexture::Use() { glEnable(GL_TEXTURE_2D); // Enable texture mapping glBindTexture(GL_TEXTURE_2D, texture[0]); // Bind the texture as the current one }

    Read the article

< Previous Page | 1 2