Search Results

Search found 5259 results on 211 pages for 'interrupt handling'.

Page 2/211 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Error Handling Examples(C#)

    “The purpose of reviewing the Error Handling code is to assure that the application fails safely under all possible error conditions, expected and unexpected. No sensitive information is presented to the user when an error occurs.” (OWASP, 2011) No Error Handling The absence of error handling is still a form of error handling. Based on the code in Figure 1, if an error occurred and was not handled within either the ReadXml or BuildRequest methods the error would bubble up to the Search method. Since this method does not handle any acceptations the error will then bubble up the stack trace. If this continues and the error is not handled within the application then the environment in which the application is running will notify the user running the application that an error occurred based on what type of application. Figure 1: No Error Handling public DataSet Search(string searchTerm, int resultCount) { DataSet dt = new DataSet(); dt.ReadXml(BuildRequest(searchTerm, resultCount)); return dt; } Generic Error Handling One simple way to add error handling is to catch all errors by default. If you examine the code in Figure 2, you will see a try-catch block. On April 6th 2010 Louis Lazaris clearly describes a Try Catch statement by defining both the Try and Catch aspects of the statement. “The try portion is where you would put any code that might throw an error. In other words, all significant code should go in the try section. The catch section will also hold code, but that section is not vital to the running of the application. So, if you removed the try-catch statement altogether, the section of code inside the try part would still be the same, but all the code inside the catch would be removed.” (Lazaris, 2010) He also states that all errors that occur in the try section cause it to stops the execution of the try section and redirects all execution to the catch section. The catch section receives an object containing information about the error that occurred so that they system can gracefully handle the error properly. When errors occur they commonly log them in some form. This form could be an email, database entry, web service call, log file, or just an error massage displayed to the user.  Depending on the error sometimes applications can recover, while others force an application to close. Figure 2: Generic Error Handling public DataSet Search(string searchTerm, int resultCount) { DataSet dt = new DataSet(); try { dt.ReadXml(BuildRequest(searchTerm, resultCount)); } catch (Exception ex) { // Handle all Exceptions } return dt; } Error Specific Error Handling Like the Generic Error Handling, Error Specific error handling allows for the catching of specific known errors that may occur. For example wrapping a try catch statement around a soap web service call would allow the application to handle any error that was generated by the soap web service. Now, if the systems wanted to send a message to the web service provider every time a soap error occurred but did not want to notify them if any other type of error occurred like a network time out issue. This would be varying tedious to accomplish using the General Error Handling methodology. This brings us to the use case for using the Error Specific error handling methodology.  The Error Specific Error handling methodology allows for the TryCatch statement to catch various types of errors depending on the type of error that occurred. In Figure 3, the code attempts to handle DataException differently compared to how it potentially handles all other errors. This allows for specific error handling for each type of known error, and still allows for error handling of any unknown error that my occur during the execution of the TryCatch statement. Figure 5: Error Specific Error Handling public DataSet Search(string searchTerm, int resultCount) { DataSet dt = new DataSet(); try { dt.ReadXml(BuildRequest(searchTerm, resultCount)); } catch (TimeoutException ex) { // Handle Timeout TimeoutException Only } catch (Exception) { // Handle all Exceptions } return dt; }

    Read the article

  • Interrupt ?13 (ah=48) - not working

    - by GLeBaTi
    I want fetch the parameters of my hard disk. Using the technique described here. This is code showing normal parameters of floppy disk: mov dl,00h mov ah,08h int 13h This is code, showing not valid parameters of hard disk (may be, my hard disk space is big (LBA)): mov dl,80h mov ah,08h int 13h And I've written this code: mov dl,80h mov ah,48h int 13h The code is giving cf = 1(error). How do I fix it?

    Read the article

  • Isn't it better to use a single try catch instead of tons of TryParsing and other error handling sometimes?

    - by Ryan Peschel
    I know people say it's bad to use exceptions for flow control and to only use exceptions for exceptional situations, but sometimes isn't it just cleaner and more elegant to wrap the entire block in a try-catch? For example, let's say I have a dialog window with a TextBox where the user can type input in to be parsed in a key-value sort of manner. This situation is not as contrived as you might think because I've inherited code that has to handle this exact situation (albeit not with farm animals). Consider this wall of code: class Animals { public int catA, catB; public float dogA, dogB; public int mouseA, mouseB, mouseC; public double cow; } class Program { static void Main(string[] args) { string input = "Sets all the farm animals CAT 3 5 DOG 21.3 5.23 MOUSE 1 0 1 COW 12.25"; string[] splitInput = input.Split(' '); string[] animals = { "CAT", "DOG", "MOUSE", "COW", "CHICKEN", "GOOSE", "HEN", "BUNNY" }; Animals animal = new Animals(); for (int i = 0; i < splitInput.Length; i++) { string token = splitInput[i]; if (animals.Contains(token)) { switch (token) { case "CAT": animal.catA = int.Parse(splitInput[i + 1]); animal.catB = int.Parse(splitInput[i + 2]); break; case "DOG": animal.dogA = float.Parse(splitInput[i + 1]); animal.dogB = float.Parse(splitInput[i + 2]); break; case "MOUSE": animal.mouseA = int.Parse(splitInput[i + 1]); animal.mouseB = int.Parse(splitInput[i + 2]); animal.mouseC = int.Parse(splitInput[i + 3]); break; case "COW": animal.cow = double.Parse(splitInput[i + 1]); break; } } } } } In actuality there are a lot more farm animals and more handling than that. A lot of things can go wrong though. The user could enter in the wrong number of parameters. The user can enter the input in an incorrect format. The user could specify numbers too large or too small for the data type to handle. All these different errors could be handled without exceptions through the use of TryParse, checking how many parameters the user tried to use for a specific animal, checking if the parameter is too large or too small for the data type (because TryParse just returns 0), but every one should result in the same thing: A MessageBox appearing telling the user that the inputted data is invalid and to fix it. My boss doesn't want different message boxes for different errors. So instead of doing all that, why not just wrap the block in a try-catch and in the catch statement just display that error message box and let the user try again? Maybe this isn't the best example but think of any other scenario where there would otherwise be tons of error handling that could be substituted for a single try-catch. Is that not the better solution?

    Read the article

  • How to add global exception handling to a add-in dll?

    - by redjackwong
    Here's my context: I am writing a WPF add-in for an application. This Application's main thread is unmanaged. I want to add a global exception handling system for this add-in to handle any unhandled exceptions. Here's what I've tried but not working: I cannot add a try-catch block to my Application.Run() code line. Because I am an add-in, that code fragment is in the application. System.Windows.Forms.Application.ThreadException is not working too. There might not be an WinForm Application exists. (WPF hosting in unmanaged code.) AppDomain.CurrentDomain.UnhandledException is not working too. Because maybe it's handled by the Application itself. It just doesn't enter my code. So, any ideas for this situation?

    Read the article

  • error about ACPI _OSC request failed (AE_NOT_FOUND)

    - by Yavuz Maslak
    I have ubuntu server 11.10 64 bit I see an error in kernel.log. This error comes out when the server reboot. some port of grep APCI in kernel.log; Dec 5 09:08:51 www kernel: [ 0.588605] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 5 09:08:51 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 5 09:08:51 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Which hardware may be cause this error ? root@www:# grep -r ACPI /var/log/kern.log Dec 5 09:08:51 www kernel: [ 0.000000] BIOS-e820: 00000000bf780000 - 00000000bf798000 (ACPI data) Dec 5 09:08:51 www kernel: [ 0.000000] BIOS-e820: 00000000bf798000 - 00000000bf7dc000 (ACPI NVS) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: RSDP 00000000000fb1a0 00014 (v00 ACPIAM) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: RSDT 00000000bf780000 00040 (v01 022410 RSDT1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: FACP 00000000bf780200 00084 (v01 022410 FACP1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: DSDT 00000000bf7804b0 0C359 (v01 A1279 A1279001 00000001 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: FACS 00000000bf798000 00040 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: APIC 00000000bf780390 000D8 (v01 022410 APIC1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: MCFG 00000000bf780470 0003C (v01 022410 OEMMCFG 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: OEMB 00000000bf798040 00072 (v01 022410 OEMB1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: HPET 00000000bf78f4b0 00038 (v01 022410 OEMHPET 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: OSFR 00000000bf78f4f0 000B0 (v01 022410 OEMOSFR 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: SSDT 00000000bf798fe0 00363 (v01 DpgPmm CpuPm 00000012 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: PM-Timer IO Port: 0x808 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x02] lapic_id[0x02] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x03] lapic_id[0x04] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x04] lapic_id[0x06] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x05] lapic_id[0x84] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x06] lapic_id[0x85] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x07] lapic_id[0x86] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x08] lapic_id[0x87] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x09] lapic_id[0x88] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0a] lapic_id[0x89] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0b] lapic_id[0x8a] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0c] lapic_id[0x8b] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0d] lapic_id[0x8c] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0e] lapic_id[0x8d] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0f] lapic_id[0x8e] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x10] lapic_id[0x8f] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x01] address[0xfec00000] gsi_base[0]) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x03] address[0xfec8a000] gsi_base[24]) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ0 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ2 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ9 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] Using ACPI (MADT) for SMP configuration information Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: HPET id: 0x8086a301 base: 0xfed00000 Dec 5 09:08:51 www kernel: [ 0.009507] ACPI: Core revision 20110413 Dec 5 09:08:51 www kernel: [ 0.499129] PM: Registering ACPI NVS region at bf798000 (278528 bytes) Dec 5 09:08:51 www kernel: [ 0.500749] ACPI: bus type pci registered Dec 5 09:08:51 www kernel: [ 0.502747] ACPI: EC: Look up EC in DSDT Dec 5 09:08:51 www kernel: [ 0.503788] ACPI: Executed 1 blocks of module-level executable AML code Dec 5 09:08:51 www kernel: [ 0.520435] ACPI: SSDT 00000000bf7980c0 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.520863] ACPI: Dynamic OEM Table Load: Dec 5 09:08:51 www kernel: [ 0.520990] ACPI: SSDT (null) 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.521308] ACPI: Interpreter enabled Dec 5 09:08:51 www kernel: [ 0.521366] ACPI: (supports S0 S1 S3 S4 S5) Dec 5 09:08:51 www kernel: [ 0.521611] ACPI: Using IOAPIC for interrupt routing Dec 5 09:08:51 www kernel: [ 0.522622] PCI: MMCONFIG at [mem 0xe0000000-0xefffffff] reserved in ACPI motherboard resources Dec 5 09:08:51 www kernel: [ 0.554150] ACPI: No dock devices found. Dec 5 09:08:51 www kernel: [ 0.554267] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug Dec 5 09:08:51 www kernel: [ 0.555231] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff]) Dec 5 09:08:51 www kernel: [ 0.588224] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT] Dec 5 09:08:51 www kernel: [ 0.588398] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P1._PRT] Dec 5 09:08:51 www kernel: [ 0.588451] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P4._PRT] Dec 5 09:08:51 www kernel: [ 0.588473] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P6._PRT] Dec 5 09:08:51 www kernel: [ 0.588492] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P7._PRT] Dec 5 09:08:51 www kernel: [ 0.588512] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P8._PRT] Dec 5 09:08:51 www kernel: [ 0.588540] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE1._PRT] Dec 5 09:08:51 www kernel: [ 0.588559] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE3._PRT] Dec 5 09:08:51 www kernel: [ 0.588579] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE7._PRT] Dec 5 09:08:51 www kernel: [ 0.588605] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 5 09:08:51 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 5 09:08:51 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Dec 5 09:08:51 www kernel: [ 0.597666] ACPI: PCI Interrupt Link [LNKA] (IRQs 3 4 6 7 10 11 12 14 *15) Dec 5 09:08:51 www kernel: [ 0.598142] ACPI: PCI Interrupt Link [LNKB] (IRQs *5) Dec 5 09:08:51 www kernel: [ 0.598336] ACPI: PCI Interrupt Link [LNKC] (IRQs 3 4 6 7 10 *11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.598810] ACPI: PCI Interrupt Link [LNKD] (IRQs 3 4 6 7 *10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.599284] ACPI: PCI Interrupt Link [LNKE] (IRQs 3 4 6 7 10 11 12 *14 15) Dec 5 09:08:51 www kernel: [ 0.599762] ACPI: PCI Interrupt Link [LNKF] (IRQs *3 4 6 7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.600236] ACPI: PCI Interrupt Link [LNKG] (IRQs 3 4 6 *7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.600709] ACPI: PCI Interrupt Link [LNKH] (IRQs 3 *4 6 7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.601931] PCI: Using ACPI for IRQ routing Dec 5 09:08:51 www kernel: [ 0.628146] pnp: PnP ACPI init Dec 5 09:08:51 www kernel: [ 0.628211] ACPI: bus type pnp registered Dec 5 09:08:51 www kernel: [ 0.628417] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) Dec 5 09:08:51 www kernel: [ 0.628859] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 5 09:08:51 www kernel: [ 0.628915] pnp 00:02: Plug and Play ACPI device, IDs PNP0200 (active) Dec 5 09:08:51 www kernel: [ 0.628951] pnp 00:03: Plug and Play ACPI device, IDs PNP0b00 (active) Dec 5 09:08:51 www kernel: [ 0.628975] pnp 00:04: Plug and Play ACPI device, IDs PNP0800 (active) Dec 5 09:08:51 www kernel: [ 0.629004] pnp 00:05: Plug and Play ACPI device, IDs PNP0c04 (active) Dec 5 09:08:51 www kernel: [ 0.629229] system 00:06: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.629779] system 00:07: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.629849] pnp 00:08: Plug and Play ACPI device, IDs PNP0103 (active) Dec 5 09:08:51 www kernel: [ 0.629901] pnp 00:09: Plug and Play ACPI device, IDs INT0800 (active) Dec 5 09:08:51 www kernel: [ 0.630030] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630254] system 00:0b: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630304] pnp 00:0c: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) Dec 5 09:08:51 www kernel: [ 0.630359] pnp 00:0d: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) Dec 5 09:08:51 www kernel: [ 0.630492] system 00:0e: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630986] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 5 09:08:51 www kernel: [ 0.631078] pnp: PnP ACPI: found 16 devices Dec 5 09:08:51 www kernel: [ 0.631135] ACPI: ACPI bus type pnp unregistered Dec 5 09:08:51 www kernel: [ 0.726291] ACPI: Power Button [PWRB] Dec 5 09:08:51 www kernel: [ 0.726452] ACPI: Power Button [PWRF] Dec 5 09:08:51 www kernel: [ 0.726527] ACPI: acpi_idle yielding to intel_idle Dec 7 21:45:22 www kernel: [ 0.000000] BIOS-e820: 00000000bf780000 - 00000000bf798000 (ACPI data) Dec 7 21:45:22 www kernel: [ 0.000000] BIOS-e820: 00000000bf798000 - 00000000bf7dc000 (ACPI NVS) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: RSDP 00000000000fb1a0 00014 (v00 ACPIAM) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: RSDT 00000000bf780000 00040 (v01 022410 RSDT1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: FACP 00000000bf780200 00084 (v01 022410 FACP1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: DSDT 00000000bf7804b0 0C359 (v01 A1279 A1279001 00000001 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: FACS 00000000bf798000 00040 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: APIC 00000000bf780390 000D8 (v01 022410 APIC1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: MCFG 00000000bf780470 0003C (v01 022410 OEMMCFG 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: OEMB 00000000bf798040 00072 (v01 022410 OEMB1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: HPET 00000000bf78f4b0 00038 (v01 022410 OEMHPET 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: OSFR 00000000bf78f4f0 000B0 (v01 022410 OEMOSFR 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: SSDT 00000000bf798fe0 00363 (v01 DpgPmm CpuPm 00000012 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: PM-Timer IO Port: 0x808 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x02] lapic_id[0x02] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x03] lapic_id[0x04] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x04] lapic_id[0x06] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x05] lapic_id[0x84] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x06] lapic_id[0x85] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x07] lapic_id[0x86] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x08] lapic_id[0x87] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x09] lapic_id[0x88] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0a] lapic_id[0x89] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0b] lapic_id[0x8a] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0c] lapic_id[0x8b] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0d] lapic_id[0x8c] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0e] lapic_id[0x8d] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0f] lapic_id[0x8e] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x10] lapic_id[0x8f] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x01] address[0xfec00000] gsi_base[0]) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x03] address[0xfec8a000] gsi_base[24]) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ0 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ2 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ9 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] Using ACPI (MADT) for SMP configuration information Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: HPET id: 0x8086a301 base: 0xfed00000 Dec 7 21:45:22 www kernel: [ 0.009505] ACPI: Core revision 20110413 Dec 7 21:45:22 www kernel: [ 0.499203] PM: Registering ACPI NVS region at bf798000 (278528 bytes) Dec 7 21:45:22 www kernel: [ 0.500819] ACPI: bus type pci registered Dec 7 21:45:22 www kernel: [ 0.503121] ACPI: EC: Look up EC in DSDT Dec 7 21:45:22 www kernel: [ 0.504162] ACPI: Executed 1 blocks of module-level executable AML code Dec 7 21:45:22 www kernel: [ 0.520821] ACPI: SSDT 00000000bf7980c0 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.521247] ACPI: Dynamic OEM Table Load: Dec 7 21:45:22 www kernel: [ 0.521374] ACPI: SSDT (null) 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.521691] ACPI: Interpreter enabled Dec 7 21:45:22 www kernel: [ 0.521748] ACPI: (supports S0 S1 S3 S4 S5) Dec 7 21:45:22 www kernel: [ 0.521993] ACPI: Using IOAPIC for interrupt routing Dec 7 21:45:22 www kernel: [ 0.523002] PCI: MMCONFIG at [mem 0xe0000000-0xefffffff] reserved in ACPI motherboard resources Dec 7 21:45:22 www kernel: [ 0.554533] ACPI: No dock devices found. Dec 7 21:45:22 www kernel: [ 0.554649] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug Dec 7 21:45:22 www kernel: [ 0.555620] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff]) Dec 7 21:45:22 www kernel: [ 0.588224] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT] Dec 7 21:45:22 www kernel: [ 0.588398] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P1._PRT] Dec 7 21:45:22 www kernel: [ 0.588451] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P4._PRT] Dec 7 21:45:22 www kernel: [ 0.588473] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P6._PRT] Dec 7 21:45:22 www kernel: [ 0.588492] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P7._PRT] Dec 7 21:45:22 www kernel: [ 0.588512] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P8._PRT] Dec 7 21:45:22 www kernel: [ 0.588540] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE1._PRT] Dec 7 21:45:22 www kernel: [ 0.588559] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE3._PRT] Dec 7 21:45:22 www kernel: [ 0.588579] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE7._PRT] Dec 7 21:45:22 www kernel: [ 0.588606] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 7 21:45:22 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 7 21:45:22 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Dec 7 21:45:22 www kernel: [ 0.597661] ACPI: PCI Interrupt Link [LNKA] (IRQs 3 4 6 7 10 11 12 14 *15) Dec 7 21:45:22 www kernel: [ 0.598137] ACPI: PCI Interrupt Link [LNKB] (IRQs *5) Dec 7 21:45:22 www kernel: [ 0.598331] ACPI: PCI Interrupt Link [LNKC] (IRQs 3 4 6 7 10 *11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.598804] ACPI: PCI Interrupt Link [LNKD] (IRQs 3 4 6 7 *10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.599278] ACPI: PCI Interrupt Link [LNKE] (IRQs 3 4 6 7 10 11 12 *14 15) Dec 7 21:45:22 www kernel: [ 0.599756] ACPI: PCI Interrupt Link [LNKF] (IRQs *3 4 6 7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.600230] ACPI: PCI Interrupt Link [LNKG] (IRQs 3 4 6 *7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.600704] ACPI: PCI Interrupt Link [LNKH] (IRQs 3 *4 6 7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.601926] PCI: Using ACPI for IRQ routing Dec 7 21:45:22 www kernel: [ 0.624115] pnp: PnP ACPI init Dec 7 21:45:22 www kernel: [ 0.624179] ACPI: bus type pnp registered Dec 7 21:45:22 www kernel: [ 0.624382] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) Dec 7 21:45:22 www kernel: [ 0.624821] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 7 21:45:22 www kernel: [ 0.624875] pnp 00:02: Plug and Play ACPI device, IDs PNP0200 (active) Dec 7 21:45:22 www kernel: [ 0.624911] pnp 00:03: Plug and Play ACPI device, IDs PNP0b00 (active) Dec 7 21:45:22 www kernel: [ 0.624933] pnp 00:04: Plug and Play ACPI device, IDs PNP0800 (active) Dec 7 21:45:22 www kernel: [ 0.624962] pnp 00:05: Plug and Play ACPI device, IDs PNP0c04 (active) Dec 7 21:45:22 www kernel: [ 0.625186] system 00:06: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.625733] system 00:07: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.625803] pnp 00:08: Plug and Play ACPI device, IDs PNP0103 (active) Dec 7 21:45:22 www kernel: [ 0.625856] pnp 00:09: Plug and Play ACPI device, IDs INT0800 (active) Dec 7 21:45:22 www kernel: [ 0.625984] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626206] system 00:0b: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626256] pnp 00:0c: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) Dec 7 21:45:22 www kernel: [ 0.626312] pnp 00:0d: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) Dec 7 21:45:22 www kernel: [ 0.626445] system 00:0e: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626936] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 7 21:45:22 www kernel: [ 0.627027] pnp: PnP ACPI: found 16 devices Dec 7 21:45:22 www kernel: [ 0.627084] ACPI: ACPI bus type pnp unregistered Dec 7 21:45:22 www kernel: [ 0.722086] ACPI: Power Button [PWRB] Dec 7 21:45:22 www kernel: [ 0.722246] ACPI: Power Button [PWRF] Dec 7 21:45:22 www kernel: [ 0.722320] ACPI: acpi_idle yielding to intel_idle

    Read the article

  • What are the definitive guidelines for custom Error Handling in ASP.NET MVC 3?

    - by RyanW
    The process of doing custom error handling in ASP.NET MVC (3 in this case) seems to be incredibly neglected. I've read through the various questions and answers here, on the web, help pages for various tools (like Elmah), but I feel like I've gone in a complete circle and still don't have the best solution. With your help, perhaps we can set a new standard approach for error handling. I'd like to keep things simple and not over-engineer this. Here are my goals: For Server errors/exceptions: Display debugging information in dev Display friendly error page in production Log errors and email them to administrator in production Return 500 HTTP Status Code For 404 Not Found errors: Display friendly error page Log errors and email them to administrator in production Return 404 HTTP Status Code Is there a way to meet these goals with ASP.NET MVC?

    Read the article

  • Common programming mistakes in .Net when handling exceptions?

    - by Jared Coleson
    What are some of the most common mistakes you've seen made when handling exceptions? It seems like exception handling can be one of the hardest things to learn how to do "right" in .Net. Especially considering the currently #1 ranked answer to Common programming mistakes for .NET developers to avoid? is related to exception handling. Hopefully by listing some of the most common mistakes we can all learn to handle exceptions better.

    Read the article

  • C# Is it possible to interrupt a specific thread inside a ThreadPool?

    - by Lirik
    Suppose that I've queued a work item in a ThreadPool, but the work item blocks if there is no data to process (reading from a BlockingQueue). If the queue is empty and there will be no more work going into the queue, then I must call the Thread.Interrupt method if I want to interrupt the blocking task, but how does one do the same thing with a ThreadPool? The code might look like this: void Run() { try { while(true) { blockingQueue.Dequeue(); doSomething(); } } finally { countDownLatch.Signal(); } } I'm aware that the best thing to do in this situation is use a regular Thread, but I'm wondering if there is a ThreadPool equivalent way to interrupt a work item.

    Read the article

  • Should a Perl constructor return an undef or a "invalid" object?

    - by DVK
    Question: What is considered to be "Best practice" - and why - of handling errors in a constructor?. "Best Practice" can be a quote from Schwartz, or 50% of CPAN modules use it, etc...; but I'm happy with well reasoned opinion from anyone even if it explains why the common best practice is not really the best approach. As far as my own view of the topic (informed by software development in Perl for many years), I have seen three main approaches to error handling in a perl module (listed from best to worst in my opinion): Construct an object, set an invalid flag (usually "is_valid" method). Often coupled with setting error message via your class's error handling. Pros: Allows for standard (compared to other method calls) error handling as it allows to use $obj->errors() type calls after a bad constructor just like after any other method call. Allows for additional info to be passed (e.g. 1 error, warnings, etc...) Allows for lightweight "redo"/"fixme" functionality, In other words, if the object that is constructed is very heavy, with many complex attributes that are 100% always OK, and the only reason it is not valid is because someone entered an incorrect date, you can simply do "$obj->setDate()" instead of the overhead of re-executing entire constructor again. This pattern is not always needed, but can be enormously useful in the right design. Cons: None that I'm aware of. Return "undef". Cons: Can not achieve any of the Pros of the first solution (per-object error messages outside of global variables and lightweight "fixme" capability for heavy objects). Die inside the constructor. Outside of some very narrow edge cases, I personally consider this an awful choice for too many reasons to list on the margins of this question. UPDATE: Just to be clear, I consider the (otherwise very worthy and a great design) solution of having very simple constructor that can't fail at all and a heavy initializer method where all the error checking occurs to be merely a subset of either case #1 (if initializer sets error flags) or case #3 (if initializer dies) for the purposes of this question. Obviously, choosing such a design, you automatically reject option #2.

    Read the article

  • Exception handling policy in libraries

    - by Asaf R
    When building a .NET library, what's your exception handling policy? In specific, what's your policy about handling exceptions inside library calls and exposing them to calling code? Would you treat a library function as any other, thus letting all exceptions it can't handle flow out of it as-is? Would you create a custom exception for that library? Would you catch all exceptions and throw the library's exception instead? Would you set the original exception as the library's exception internal exception? How would the library dependence on a DB affect your exception-handling policy? What other guidelines and rules would you suggest?

    Read the article

  • Bounce Email handling with PHP??

    - by mcfadder_09
    I am really new to this (not new to php). Here is my scenario: I have 2 emails accounts. [email protected] and [email protected]. I want to send email to all my users with [email protected] but then "reply to" [email protected] (until here, my php script can handle it). When, the email cant be sent, it sent to [email protected], the error message could be 553 (non existent email ...) etc. My question is: How do I direct all those bounce emails (couldn't sent emails) to [email protected] through a handling script to check for the bounce error codes? What programming language should I be for the "handling script"? What would the "handling script" looks like? Can give a sample? OR:(Big Question) What are the procedures I should follow to handle the bounce email ??

    Read the article

  • Windows Handling Piped Comands Error Redirection

    - by jpmartins
    Warning: I am no expert on building scripts, and sorry for lousy English. In an case of generating a CSV from a database query I'm using the following commands. ... CALL java.exe -classpath ... com.xigole.util.sql.Jisql -user dmfodbc -pf pwd.file -driver com.sybase.jdbc3.jdbc.SybDriver -cstring %constr% -c ; -input 42.sql -formatter csv -delimiter ; 2%LOGFILE% | CALL grep -v -e "SELECT right" -e "executing: " -e " rows affect" %FicheiroR% 2%LOGFILE% ... I'm using windows implementation of grep. The 2%LOGFILE% in both java and grep command is causing an error message indicating the file is being use by another process. The Ugly workaround i have came up with is to put grep error redirect to a temporary %LOGFILE%.aux java ... | grep ... 2%LOGFILE%.aux type %LOGFILE%.aux % %LOGFILE% del %LOGFILE%.aux What is a better solution?

    Read the article

  • Exception handling in c#

    - by Lalit
    Hi all, I know how to use try...catch block in c#. Also know why it is using. but what is exact meaning of Exception handling ? see once i write the try {}.. Catch{} i handled null exception then what should happen? what are the standard for exception handling. means what should happen is normally expected if exception occur ?

    Read the article

  • Qt/C++ Error handling

    - by ShiGon
    I've been doing a lot of research about handling errors with Qt/C++ and I'm still as lost as when I started. Maybe I'm looking for an easy way out (like other languages provide). One, in particular, provides for an unhandled exception which I use religiously. When the program encounters a problem, it throws the unhandled exception so that I can create my own error report. That report gets sent from my customers machine to a server online which I then read later. The problem that I'm having with C++ is that any error handling that's done has to be thought of BEFORE hand (think try/catch or massive conditionals). In my experience, problems in code are not thought of before hand else there wouldn't be a problem to begin with. Writing a cross-platform application without a cross-platform error handling/reporting/trace mechanism is a little scary to me. My question is: Is there any kind of Qt or C++ Specific "catch-all" error trapping mechanism that I can use in my application so that, if something does go wrong I can, at least, write a report before it crashes?

    Read the article

  • Error logging/handling on application basis?

    - by Industrial
    Hi everybody, We have a web server that we're about to launch a number of applications on. On the server-level we have managed to work out the error handling with the help of Hyperic to notify the person who is in charge in the event of a database/memcached server is going down. However, we are still in the need of handling those eventual error and log events that happen on application level to improve the applications for our customers, before the customers notices. So, what's then a good solution to do this? Utilizing PHP:s own error log would quickly become cloggered if we would run a big number of applications at the same time. It's probably isn't the best option if you like structure. One idea is to build a off-site lightweight error-handling application that has a REST/JSON API that receives encrypted and serialized arrays of error messages and stores them into a database. Maybe it could, depending on the severity of the error also be directly inputted into our bug tracker. Could be a few well spent hours, but it seems like a quite fragile solution and I am sure that there's better more-reliable alternatives out there already. Thanks,

    Read the article

  • Delphi and prevent event handling

    - by pKarelian
    How do you prevent a new event handling to start when an event handling is already running? I press a button1 and event handler start e.g. slow printing job. There are several controls in form buttons, edits, combos and I want that a new event allowed only after running handler is finnished. I have used fRunning variable to lock handler in shared event handler. Is there more clever way to handle this? procedure TFormFoo.Button_Click(Sender: TObject); begin if not fRunning then try fRunning := true; if (Sender = Button1) then // Call something slow ... if (Sender = Button2) then // Call something ... if (Sender = Button3) then // Call something ... finally fRunning := false; end; end;

    Read the article

  • Very simple Error handling with NServiceBus

    - by andy
    hey guys, here's a simple scenario NServiceBus Client/Server setup. The "Message" is a custom Class I wrote. The Client sends a request message. The Server receives the message, and the server does this: Bus.Reply(new UserDataResponseMessage { ID = Guid.NewGuid(), Response = users }); Then nothing. The Client never receives a response. Exception: By trawling through the log4net NServiceBus logs I find an exception, and it turns out that my customs class "users" is not marked as Serializable. Ok, how does one got about "throwing" or "handling" that kind of error? NServiceBus seems to promote the idea of not handling errors, but in this scenario its obvious to see some kind of "throw" would have saved a lot of time. How do I handle such exceptions, where do they occur, where do they go?

    Read the article

  • How to interrupt a thread performing a blocking socket connect?

    - by Jason R
    I have some code that spawns a pthread that attempts to maintain a socket connection to a remote host. If the connection is ever lost, it attempts to reconnect using a blocking connect() call on its socket. Since the code runs in a separate thread, I don't really care about the fact that it uses the synchronous socket API. That is, until it comes time for my application to exit. I would like to perform some semblance of an orderly shutdown, so I use thread synchronization primitives to wake up the thread and signal for it to exit, then perform a pthread_join() on the thread to wait for it to complete. This works great, unless the thread is in the middle of a connect() call when I command the shutdown. In that case, I have to wait for the connect to time out, which could be a long time. This makes the application appear to take a long time to shut down. What I would like to do is to interrupt the call to connect() in some way. After the call returns, the thread will notice my exit signal and shut down cleanly. Since connect() is a system call, I thought that I might be able to intentionally interrupt it using a signal (thus making the call return EINTR), but I'm not sure if this is a robust method in a POSIX threads environment. Does anyone have any recommendations on how to do this, either using signals or via some other method? As a note, the connect() call is down in some library code that I cannot modify, so changing to a non-blocking socket is not an option.

    Read the article

  • Error handling and polymorphism

    - by Neeraj
    I have an application with some bunch of code like this: errCode = callMainSystem(); switch (errCode){ case FailErr: error("Err corresponding to val1\n"); case IgnoreErr: error("Err corresponding to val2\n"); ... ... default: error("Unknown error\n"); } The values are enum constants. Will it make some sense to have something like: // Error* callMainSystem() ... Some code return FaileErr(); // or some other error // handling code Error* err = callMainSystem(); err->toString(); The Error class may be made singleton as it only has to print error messages. What are the pros and cons of above methods,size is an important criteria as the application needs to be supported on embedded devices as well. P.S: I don't want to use exception handling because of portability issues and associated overheads.

    Read the article

  • Best method in PHP for the Error Handling ? Convert all PHP errors (warnings notices etc) to exceptions?

    - by user1179459
    What is the best method in PHP for the Error Handling ? is there a way in PHP to Convert all PHP errors (warnings notices etc) to exceptions ? what the best way/practise to error handling ? again: if we overuse exceptions (i.e. try/catch) in many situations, i think application will be halted unnecessary. for a simple error checking we can use return false; but it may be cluttering the coding with many if else conditions. what do you guys suggest ?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >