Search Results

Search found 18985 results on 760 pages for 'reference types'.

Page 2/760 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Types issue in F#

    - by Andry
    Hello! In my ongoing adventure deep diving into f# I am understanding a lot of this powerful language but there are things that I still do not understand so clearly. One of the most important issues I need to master is types. Well the book I am reading is very straight forward and introduces entities and main functionalities with a direct approach. The first thing I could get start with is types. It introduces the main types as list, option, tuples, and so on... It is clearly underlined that all these types are IMMUTABLE for many reasons regarding functional programming and data consistance in functional programing. Well, no problems until now... But now I am getting started with Concrete Types... Well... I have problems in managing with types like list, option, tuples, types created through new operator and concrete types created using type keyword (for abbreviations, concrete types...). So my question is: how can I efficently catalogue/distinguish all types of data in f#???? I can create a perfect separation among types in C#, VB.NET... FOr example in VB.NET there are value and reference types while in C# there are only references and also int, double are treated as objects (they are objects while in VB.NET a value type is not a object and there is a split in types for this reason). Well in F# I cannot create such differences among types in the language. Can you help me? I hope I was clear.

    Read the article

  • computing hash values, integral types versus struct/class

    - by aaa
    hello I would like to know if there is a difference in speed between computing hash value (for example std::map key) of primitive integral type, such as int64_t and pod type, for example struct { int16_t v[4]; };. I know this is going to implementation specific, so my question ultimately pertains to gnu standard library. Thanks

    Read the article

  • Python: How do I pass a variable by reference?

    - by David Sykes
    The Python documentation seems unclear about whether parameters are passed by reference or value, and the following code produces the unchanged value 'Original' class PassByReference: def __init__(self): self.variable = 'Original' self.Change(self.variable) print self.variable def Change(self, var): var = 'Changed' Is there something I can do to pass the variable by actual reference? Update: I am coming to the conclusion that while Andrea answered my actual question (Can you... No but you can...), on the subject of pass by reference Blair Conrad is more technically correct. As I understand it the crux is that a copy of a reference is being passed. If you assign that copy, as in my example, then you lose the reference to the original and it remains unchanged. If, however, you 'use' that reference, for example append on a passed list, then the original is changed. I will see how the comments and votes go before choosing the answer people think is the best

    Read the article

  • Weak reference and Strong reference

    - by theband
    package uk.co.bigroom.utils { import flash.utils.Dictionary; /** * Class to create a weak reference to an object. A weak reference * is a reference that does not prevent the object from being * garbage collected. If the object has been garbage collected * then the get method will return null. */ public class WeakRef { private var dic:Dictionary; /** * The constructor - creates a weak reference. * * @param obj the object to create a weak reference to */ public function WeakRef( obj:* ) { dic = new Dictionary( true ); dic[obj] = 1; } /** * To get a strong reference to the object. * * @return a strong reference to the object or null if the * object has been garbage collected */ public function get():* { for ( var item:* in dic ) { return item; } return null; } } } In this Class, how they denote one as Weak Reference and one as Strong reference.

    Read the article

  • List of Commonly Used Value Types in XNA Games

    - by Michael B. McLaughlin
    Most XNA programmers are concerned about generating garbage. More specifically about allocating GC-managed memory (GC stands for “garbage collector” and is both the name of the class that provides access to the garbage collector and an acronym for the garbage collector (as a concept) itself). Two of the major target platforms for XNA (Windows Phone 7 and Xbox 360) use variants of the .NET Compact Framework. On both variants, the GC runs under various circumstances (Windows Phone 7 and Xbox 360). Of concern to XNA programmers is the fact that it runs automatically after a fixed amount of GC-managed memory has been allocated (currently 1MB on both systems). Many beginning XNA programmers are unaware of what constitutes GC-managed memory, though. So here’s a quick overview. In .NET, there are two different “types” of types: value types and reference types. Only reference types are managed by the garbage collector. Value types are not managed by the garbage collector and are instead managed in other ways that are implementation dependent. For purposes of XNA programming, the important point is that they are not managed by the GC and thus do not, by themselves, increment that internal 1 MB allocation counter. (n.b. Structs are value types. If you have a struct that has a reference type as a member, then that reference type, when instantiated, will still be allocated in the GC-managed memory and will thus count against the 1 MB allocation counter. Putting it in a struct doesn’t change the fact that it gets allocated on the GC heap, but the struct itself is created outside of the GC’s purview). Both value types and reference types use the keyword ‘new’ to allocate a new instance of them. Sometimes this keyword is hidden by a method which creates new instances for you, e.g. XmlReader.Create. But the important thing to determine is whether or not you are dealing with a value types or a reference type. If it’s a value type, you can use the ‘new’ keyword to allocate new instances of that type without incrementing the GC allocation counter (except as above where it’s a struct with a reference type in it that is allocated by the constructor, but there are no .NET Framework or XNA Framework value types that do this so it would have to be a struct you created or that was in some third-party library you were using for that to even become an issue). The following is a list of most all of value types you are likely to use in a generic XNA game: AudioCategory (used with XACT; not available on WP7) AvatarExpression (Xbox 360 only, but exposed on Windows to ease Xbox development) bool BoundingBox BoundingSphere byte char Color DateTime decimal double any enum (System.Enum itself is a class, but all enums are value types such that there are no GC allocations for enums) float GamePadButtons GamePadCapabilities GamePadDPad GamePadState GamePadThumbSticks GamePadTriggers GestureSample int IntPtr (rarely but occasionally used in XNA) KeyboardState long Matrix MouseState nullable structs (anytime you see, e.g. int? something, that ‘?’ denotes a nullable struct, also called a nullable type) Plane Point Quaternion Ray Rectangle RenderTargetBinding sbyte (though I’ve never seen it used since most people would just use a short) short TimeSpan TouchCollection TouchLocation TouchPanelCapabilities uint ulong ushort Vector2 Vector3 Vector4 VertexBufferBinding VertexElement VertexPositionColor VertexPositionColorTexture VertexPositionNormalTexture VertexPositionTexture Viewport So there you have it. That’s not quite a complete list, mind you. For example: There are various structs in the .NET framework you might make use of. I left out everything from the Microsoft.Xna.Framework.Graphics.PackedVector namespace, since everything in there ventures into the realm of advanced XNA programming anyway (n.b. every single instantiable thing in that namespace is a struct and thus a value type; there are also two interfaces but interfaces cannot be instantiated at all and thus don’t figure in to this discussion). There are so many enums you’re likely to use (PlayerIndex, SpriteSortMode, SpriteEffects, SurfaceFormat, etc.) that including them would’ve flooded the list and reduced its utility. So I went with “any enum” and trust that you can figure out what the enums are (and it’s rare to use ‘new’ with an enum anyway). That list also doesn’t include any of the pre-defined static instances of some of the classes (e.g. BlendState.AlphaBlend, BlendState.Opaque, etc.) which are already allocated such that using them doesn’t cause any new allocations and therefore doesn’t increase that 1 MB counter. That list also has a few misleading things. VertexElement, VertexPositionColor, and all the other vertex types are structs. But you’re only likely to ever use them as an array (for use with VertexBuffer or DynamicVertexBuffer), and all arrays are reference types (even arrays of value types such as VertexPositionColor[ ] or int[ ]). * So that’s it for now. The note below may be a bit confusing (it deals with how the GC works and how arrays are managed in .NET). If so, you can probably safely ignore it for now but feel free to ask any questions regardless. * Arrays of value types (where the value type doesn’t contain any reference type members) are much faster for the GC to examine than arrays of reference types, so there is a definite benefit to using arrays of value types where it makes sense. But creating arrays of value types does cause the GC’s allocation counter to increase. Indeed, allocating a large array of a value type is one of the quickest ways to increment the allocation counter since a .NET array is a sequential block of memory. An array of reference types is just a sequential block of references (typically 4 bytes each) while an array of value types is a sequential block of instances of that type. So for an array of Vector3s it would be 12 bytes each since each float is 4 bytes and there are 3 in a Vector3; for an array of VertexPositionNormalTexture structs it would typically be 32 bytes each since it has two Vector3s and a Vector2. (Note that there are a few additional bytes taken up in the creation of an array, typically 12 but sometimes 16 or possibly even more, which depend on the implementation details of the array type on the particular platform the code is running on).

    Read the article

  • Python: How do I create a reference to a reference?

    - by KCArpe
    Hi, I am traditionally a Perl and C++ programmer, so apologies in advance if I am misunderstanding something trivial about Python! I would like to create a reference to a reference. Huh? Ok. All objects in Python are actually references to the real object. So, how do I create a reference to this reference? Why do I need/want this? I am overriding sys.stdout and sys.stderr to create a logging library. I would like a (second-level) reference to sys.stdout. If I could create a reference to a reference, then I could create a generic logger class where the init function receives a reference to a file handle reference that will be overrided, e.g., sys.stdout or sys.stderr. Currently, I must hard-code both values. Cheers, Kevin

    Read the article

  • Can you pass by reference in Java?

    - by dbones
    Hi. Sorry if this sounds like a newbie question, but the other day a Java developer mentioned about passing a paramter by reference (by which it was ment just pass a Reference object) From a C# perspective I can pass a reference type by value or by reference, this is also true to value types I have written a noddie console application to show what i mean.. can i do this in Java? namespace ByRefByVal { class Program { static void Main(string[] args) { //Creating of the object Person p1 = new Person(); p1.Name = "Dave"; PrintIfObjectIsNull(p1); //should not be null //A copy of the Reference is made and sent to the method PrintUserNameByValue(p1); PrintIfObjectIsNull(p1); //the actual reference is passed to the method PrintUserNameByRef(ref p1); //<-- I know im passing the Reference PrintIfObjectIsNull(p1); Console.ReadLine(); } private static void PrintIfObjectIsNull(Object o) { if (o == null) { Console.WriteLine("object is null"); } else { Console.WriteLine("object still references something"); } } /// <summary> /// this takes in a Reference type of Person, by value /// </summary> /// <param name="person"></param> private static void PrintUserNameByValue(Person person) { Console.WriteLine(person.Name); person = null; //<- this cannot affect the orginal reference, as it was passed in by value. } /// <summary> /// this takes in a Reference type of Person, by reference /// </summary> /// <param name="person"></param> private static void PrintUserNameByRef(ref Person person) { Console.WriteLine(person.Name); person = null; //this has access to the orginonal reference, allowing us to alter it, either make it point to a different object or to nothing. } } class Person { public string Name { get; set; } } } If it java cannot do this, then its just passing a reference type by value? (is that fair to say) Many thanks Bones

    Read the article

  • Installing CUDA on Ubuntu 12.04 with nvidia driver 295.59

    - by johnmcd
    I have been trying to get cuda to run on a nvidia gt 650m based laptop. I am running Ubuntu 12.04 with the nvidia 295.59 driver. Also, my laptop uses Optimus so I have install the driver via bumblebee. Bumblebee is not working correctly yet -- however I believe it is possible to install CUDA independently. To install CUDA I have followed the instructions detailed here: How can I get nVidia CUDA or OpenCL working on a laptop with nVidia discrete card/Intel Integrated Graphics? However I am still running into problem building the sdk. I made the changes specified at the above link in common.mk, but I got the following (snippet) from the build process: make[2]: Entering directory `/home/john/NVIDIA_GPU_Computing_SDK/C/src/fluidsGL' /usr/bin/ld: warning: libnvidia-tls.so.302.17, needed by /usr/lib/nvidia-current/libGL.so, not found (try using -rpath or -rpath-link) /usr/bin/ld: warning: libnvidia-glcore.so.302.17, needed by /usr/lib/nvidia-current/libGL.so, not found (try using -rpath or -rpath-link) /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv018tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv012glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv017glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv012tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv015tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv019tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv000glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv017tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv013tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv013glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv018glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv022tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv007tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv009tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv020tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv014glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv015glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv016tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv001glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv006tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv021tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv011tls' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv020glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv019glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv002glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv021glcore' /usr/lib/nvidia-current/libGL.so: undefined reference to `_nv014tls' collect2: ld returned 1 exit status make[2]: *** [../../bin/linux/release/fluidsGL] Error 1 make[2]: Leaving directory `/home/john/NVIDIA_GPU_Computing_SDK/C/src/fluidsGL' make[1]: *** [src/fluidsGL/Makefile.ph_build] Error 2 make[1]: Leaving directory `/home/john/NVIDIA_GPU_Computing_SDK/C' make: *** [all] Error 2 The libraries that ld warns about are on my system and are installed on the system: $ locate libnvidia-tls.so.302.17 libnvidia-glcore.so.302.17 /usr/lib/nvidia-current/libnvidia-glcore.so.302.17 /usr/lib/nvidia-current/libnvidia-tls.so.302.17 /usr/lib/nvidia-current/tls/libnvidia-tls.so.302.17 /usr/lib32/nvidia-current/libnvidia-glcore.so.302.17 /usr/lib32/nvidia-current/libnvidia-tls.so.302.17 /usr/lib32/nvidia-current/tls/libnvidia-tls.so.302.17 however /usr/lib/nvidia-current and /usr/lib32/nvidia-current are not being picked up by ldconfig. I have tried adding them by adding a file to /etc/ld.so.conf.d/ which gets past this error, however now I am getting the following error: make[2]: Entering directory `/home/john/NVIDIA_GPU_Computing_SDK/C/src/deviceQueryDrv' cc1plus: warning: command line option ‘-Wimplicit’ is valid for C/ObjC but not for C++ [enabled by default] obj/x86_64/release/deviceQueryDrv.cpp.o: In function `main': deviceQueryDrv.cpp:(.text.startup+0x5f): undefined reference to `cuInit' deviceQueryDrv.cpp:(.text.startup+0x99): undefined reference to `cuDeviceGetCount' deviceQueryDrv.cpp:(.text.startup+0x10b): undefined reference to `cuDeviceComputeCapability' deviceQueryDrv.cpp:(.text.startup+0x127): undefined reference to `cuDeviceGetName' deviceQueryDrv.cpp:(.text.startup+0x16a): undefined reference to `cuDriverGetVersion' deviceQueryDrv.cpp:(.text.startup+0x1f0): undefined reference to `cuDeviceTotalMem_v2' deviceQueryDrv.cpp:(.text.startup+0x262): undefined reference to `cuDeviceGetAttribute' deviceQueryDrv.cpp:(.text.startup+0x457): undefined reference to `cuDeviceGetAttribute' deviceQueryDrv.cpp:(.text.startup+0x4bc): undefined reference to `cuDeviceGetAttribute' deviceQueryDrv.cpp:(.text.startup+0x502): undefined reference to `cuDeviceGetAttribute' deviceQueryDrv.cpp:(.text.startup+0x533): undefined reference to `cuDeviceGetAttribute' obj/x86_64/release/deviceQueryDrv.cpp.o:deviceQueryDrv.cpp:(.text.startup+0x55e): more undefined references to `cuDeviceGetAttribute' follow collect2: ld returned 1 exit status make[2]: *** [../../bin/linux/release/deviceQueryDrv] Error 1 make[2]: Leaving directory `/home/john/NVIDIA_GPU_Computing_SDK/C/src/deviceQueryDrv' make[1]: *** [src/deviceQueryDrv/Makefile.ph_build] Error 2 make[1]: Leaving directory `/home/john/NVIDIA_GPU_Computing_SDK/C' make: *** [all] Error 2 I would appreciate any help that anyone can provide me with. If I can provide any further information please let me know. Thanks.

    Read the article

  • .net web service: Can't add service reference, only web reference

    - by ScottE
    I have an existing project that consumes web services. One was added as a service reference, and the other as a web reference. I don't recall why one was added as a web reference, but perhaps it's because I couldn't get it to work! The existing service reference for the one web service works fine, so it's not a .net version issue. I can successfully create a service reference for the second web service, but none of the methods are available. The .wsdl shows the schema, but the Reference.vb shows only the Namespace, and none of the methods. To clarify, these are two different 3rd party web service providers. We'd like to move to the service reference so we have more control over the configuration as we're having various issues with timeouts. Anyone come across this before? Edit Does it matter that there are two services at the address?

    Read the article

  • Visual Studio compiles WPF application twice during build

    - by Brian Ensink
    I have a WPF app in VS2008 that compiles twice during the build. The two CSC command lines are similar but with some differences. The first CSC command line does not have an /resource options, the second has two /resource options on the command line. The second CSC command line has these additional arguments: /resource:"obj\Debug AutoCAD\VisualApp.g.resources" /resource:"obj\Debug AutoCAD\CAP.Visual.Properties.Resources.resources" I hate to post such a huge ugly compiler output but here are both command lines. 2>c:\WINDOWS\Microsoft.NET\Framework\v3.5\Csc.exe /noconfig /nowarn:1701,1702 /platform:x86 /errorreport:prompt /warn:4 /define:DEBUG;TRACE /reference:..\BIN\RELEASE\FOO.Base.dll /reference:..\BIN\RELEASE\FOO.CAPArchiveHandler.dll /reference:..\BIN\RELEASE\FOO.CAPDOM.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationCore.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationFramework.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Core.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Data.DataSetExtensions.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Data.dll /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\System.Runtime.Serialization.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Xml.dll /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Xml.Linq.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Docking.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Navigation.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\UIAutomationProvider.dll" /reference:c:\project\FooStudio\BIN\DEBUGCAD\VS-3DEngine-Wrapper.dll /reference:c:\project\FooStudio\BIN\DEBUGCAD\VisualServiceClient.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\WindowsBase.dll" /debug+ /debug:full /filealign:512 /out:"obj\Debug AutoCAD\VisualApp.exe" /target:winexe App.xaml.cs MainWindow.xaml.cs CameraAndLightingControl.xaml.cs CameraAndLightingViewModel.cs MainWindowViewModel.cs Properties\AssemblyInfo.cs Properties\Resources.Designer.cs Properties\Settings.Designer.cs ScenarioToolsWindow.xaml.cs SceneGraph.cs ScenePart.cs ToolWindow.xaml.cs "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\CameraAndLightingControl.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\MainWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ScenarioToolsWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ToolWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\App.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\GeneratedInternalTypeHelper.g.cs" 2>Done building project "0ye0i4wb.tmp_proj". 2>c:\WINDOWS\Microsoft.NET\Framework\v3.5\Csc.exe /noconfig /nowarn:1701,1702 /platform:x86 /errorreport:prompt /warn:4 /define:DEBUG;TRACE /reference:..\BIN\RELEASE\FOO.Base.dll /reference:..\BIN\RELEASE\FOO.CAPArchiveHandler.dll /reference:..\BIN\RELEASE\FOO.CAPDOM.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationCore.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationFramework.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Core.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Data.DataSetExtensions.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Data.dll /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\System.Runtime.Serialization.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Xml.dll /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Xml.Linq.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Docking.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Navigation.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\UIAutomationProvider.dll" /reference:c:\project\FooStudio\BIN\DEBUGCAD\VS-3DEngine-Wrapper.dll /reference:c:\project\FooStudio\BIN\DEBUGCAD\VisualServiceClient.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\WindowsBase.dll" /debug+ /debug:full /filealign:512 /out:"obj\Debug AutoCAD\VisualApp.exe" /resource:"obj\Debug AutoCAD\VisualApp.g.resources" /resource:"obj\Debug AutoCAD\FOO.Visual.Properties.Resources.resources" /target:winexe App.xaml.cs MainWindow.xaml.cs CameraAndLightingControl.xaml.cs CameraAndLightingViewModel.cs MainWindowViewModel.cs Properties\AssemblyInfo.cs Properties\Resources.Designer.cs Properties\Settings.Designer.cs ScenarioToolsWindow.xaml.cs SceneGraph.cs ScenePart.cs ToolWindow.xaml.cs "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\CameraAndLightingControl.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\MainWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ScenarioToolsWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ToolWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\App.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\GeneratedInternalTypeHelper.g.cs" Any idea what could possibly cause this? I think this is causing a problem I posted about earlier today.

    Read the article

  • Writing cross-platforms Types, Interfaces and Classes/Methods in C++

    - by user827992
    I'm looking for the best solution to write cross-platform software, aka code that I write and that I have to interface with different libraries and platforms each time. What I consider the easiest part, correct me if I'm wrong, is the definition of new types, all I have to do is to write an hpp file with a list of typedefs, I can keep the same names for each new type across the different platforms so my codebase can be shared without any problem. typedefs also helps me to redefine a better scope for my types in my code. I will probably end up having something like this: include |-windows | |-types.hpp |-linux | |-types.hpp |-mac |-types.hpp For the interfaces I'm thinking about the same solution used for the types, a series of hpp files, probably I will write all the interfaces only once since they rely on the types and all "cross-platform portability" is ensured by the work done on the types. include | |-interfaces.hpp | |-windows | |-types.hpp |-linux | |-types.hpp |-mac | |-types.hpp For classes and methods I do not have a real answer, I would like to avoid 2 things: the explicit use of pointers the use of templates I want to avoid the use of the pointers because they can make the code less readable for someone and I want to avoid templates just because if I write them, I can't separate the interface from the definition. What is the best option to hide the use of the pointers? I would also like some words about macros and how to implement some OS-specifics calls and definitions.

    Read the article

  • MooseX::Types declaration issue, tight test case :)

    - by TJ Thompson
    So after an embarrassing amount of time debugging, I've finally stripped this issue ([http://stackoverflow.com/questions/4621589/perl-moose-typedecorator-error-how-do-i-debug][1]) down to a simple test case. I would humbly request some help understanding why it's failing :) Here is the error message I'm getting: plxc16479 $h2/tmp/tmp18.pl This method [new] requires a single argument. at /nfs/pdx/disks/nehalem.pde.077/perl/5.12.2/lib64/site_perl/MooseX/Types/TypeDecorator.pm line 91 MooseX::Types::TypeDecorator::new('MooseX::Types::TypeDecorator=HASH(0x655b90)') called at /nfs/pdx/disks/nehalem.pde.077/projects/lib/Program-Plist-Pl/lib/Program/Plist/Pl.pm line 10 Program::Plist::Pl::BUILD('Program::Plist::Pl=HASH(0x63d478)', 'HASH(0x63d220)') called at generated method (unknown origin) line 29 Program::Plist::Pl::new('Program::Plist::Pl') called at /nfs/pdx/disks/nehalem.pde.077/tmp/tmp18.pl line 10 Wrapper test script: use strict; use warnings; BEGIN {push(@INC, split(':', $ENV{PERL_TEST_LIBS}))}; use Program::Plist::Pl; my $obj = Program::Plist::Pl->new(); Program::Plist::Pl file: package Program::Plist::Pl; use Moose; use namespace::autoclean; use Program::Types qw(Pattern); # <-- Removing this fixes error use Program::Plist::Pl::Pattern; sub BUILD { my $pattern_obj = Program::Plist::Pl::Pattern->new(); } __PACKAGE__->meta->make_immutable; 1; Program::Types file: package Program::Types; use MooseX::Types -declare => [qw(Pattern)]; class_type Pattern, {class => 'Program::Plist::Pl::Pattern'}; 1; And the Program::Plist::Pl::Pattern file: package Program::Plist::Pl::Pattern; use Moose; use namespace::autoclean; __PACKAGE__->meta->make_immutable; 1; Notes: While I don't need the Pattern type from Program::Types in the above code, I do in other code that is stripped out. The PERL_TEST_LIBS env var I'm pulling INC paths from only contains paths to the project modules. There are no other modules loaded from these paths. It appears the MooseX::Types definition for Pattern is causing problems, but I'm not sure why. Documentation shows the syntax I am using, but it's possible I'm misusing class_type as there isn't much said about it. Intent is to be able to use Pattern for type checking via MooseX::Params::Validate to verify the argument is a 'Program::Plist::Pl::Program' object. I've found that removing the intervening class Program::Plist::Pl from the equation by directly calling Pattern-new from the tmp18.pl wrapper results in no error, even when the Program::Types Pattern type is imported.

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • Reference Data Management and Master Data: Are Relation ?

    - by Mala Narasimharajan
    Submitted By:  Rahul Kamath  Oracle Data Relationship Management (DRM) has always been extremely powerful as an Enterprise Master Data Management (MDM) solution that can help manage changes to master data in a way that influences enterprise structure, whether it be mastering chart of accounts to enable financial transformation, or revamping organization structures to drive business transformation and operational efficiencies, or restructuring sales territories to enable equitable distribution of leads to sales teams following the acquisition of new products, or adding additional cost centers to enable fine grain control over expenses. Increasingly, DRM is also being utilized by Oracle customers for reference data management, an emerging solution space that deserves some explanation. What is reference data? How does it relate to Master Data? Reference data is a close cousin of master data. While master data is challenged with problems of unique identification, may be more rapidly changing, requires consensus building across stakeholders and lends structure to business transactions, reference data is simpler, more slowly changing, but has semantic content that is used to categorize or group other information assets – including master data – and gives them contextual value. In fact, the creation of a new master data element may require new reference data to be created. For example, when a European company acquires a US business, chances are that they will now need to adapt their product line taxonomy to include a new category to describe the newly acquired US product line. Further, the cross-border transaction will also result in a revised geo hierarchy. The addition of new products represents changes to master data while changes to product categories and geo hierarchy are examples of reference data changes.1 The following table contains an illustrative list of examples of reference data by type. Reference data types may include types and codes, business taxonomies, complex relationships & cross-domain mappings or standards. Types & Codes Taxonomies Relationships / Mappings Standards Transaction Codes Industry Classification Categories and Codes, e.g., North America Industry Classification System (NAICS) Product / Segment; Product / Geo Calendars (e.g., Gregorian, Fiscal, Manufacturing, Retail, ISO8601) Lookup Tables (e.g., Gender, Marital Status, etc.) Product Categories City à State à Postal Codes Currency Codes (e.g., ISO) Status Codes Sales Territories (e.g., Geo, Industry Verticals, Named Accounts, Federal/State/Local/Defense) Customer / Market Segment; Business Unit / Channel Country Codes (e.g., ISO 3166, UN) Role Codes Market Segments Country Codes / Currency Codes / Financial Accounts Date/Time, Time Zones (e.g., ISO 8601) Domain Values Universal Standard Products and Services Classification (UNSPSC), eCl@ss International Classification of Diseases (ICD) e.g., ICD9 à IC10 mappings Tax Rates Why manage reference data? Reference data carries contextual value and meaning and therefore its use can drive business logic that helps execute a business process, create a desired application behavior or provide meaningful segmentation to analyze transaction data. Further, mapping reference data often requires human judgment. Sample Use Cases of Reference Data Management Healthcare: Diagnostic Codes The reference data challenges in the healthcare industry offer a case in point. Part of being HIPAA compliant requires medical practitioners to transition diagnosis codes from ICD-9 to ICD-10, a medical coding scheme used to classify diseases, signs and symptoms, causes, etc. The transition to ICD-10 has a significant impact on business processes, procedures, contracts, and IT systems. Since both code sets ICD-9 and ICD-10 offer diagnosis codes of very different levels of granularity, human judgment is required to map ICD-9 codes to ICD-10. The process requires collaboration and consensus building among stakeholders much in the same way as does master data management. Moreover, to build reports to understand utilization, frequency and quality of diagnoses, medical practitioners may need to “cross-walk” mappings -- either forward to ICD-10 or backwards to ICD-9 depending upon the reporting time horizon. Spend Management: Product, Service & Supplier Codes Similarly, as an enterprise looks to rationalize suppliers and leverage their spend, conforming supplier codes, as well as product and service codes requires supporting multiple classification schemes that may include industry standards (e.g., UNSPSC, eCl@ss) or enterprise taxonomies. Aberdeen Group estimates that 90% of companies rely on spreadsheets and manual reviews to aggregate, classify and analyze spend data, and that data management activities account for 12-15% of the sourcing cycle and consume 30-50% of a commodity manager’s time. Creating a common map across the extended enterprise to rationalize codes across procurement, accounts payable, general ledger, credit card, procurement card (P-card) as well as ACH and bank systems can cut sourcing costs, improve compliance, lower inventory stock, and free up talent to focus on value added tasks. Change Management: Point of Sales Transaction Codes and Product Codes In the specialty finance industry, enterprises are confronted with usury laws – governed at the state and local level – that regulate financial product innovation as it relates to consumer loans, check cashing and pawn lending. To comply, it is important to demonstrate that transactions booked at the point of sale are posted against valid product codes that were on offer at the time of booking the sale. Since new products are being released at a steady stream, it is important to ensure timely and accurate mapping of point-of-sale transaction codes with the appropriate product and GL codes to comply with the changing regulations. Multi-National Companies: Industry Classification Schemes As companies grow and expand across geographies, a typical challenge they encounter with reference data represents reconciling various versions of industry classification schemes in use across nations. While the United States, Mexico and Canada conform to the North American Industry Classification System (NAICS) standard, European Union countries choose different variants of the NACE industry classification scheme. Multi-national companies must manage the individual national NACE schemes and reconcile the differences across countries. Enterprises must invest in a reference data change management application to address the challenge of distributing reference data changes to downstream applications and assess which applications were impacted by a given change. References 1 Master Data versus Reference Data, Malcolm Chisholm, April 1, 2006.

    Read the article

  • VS2010: Warning on add project reference to Silverlight project from .NET project

    - by nlawalker
    In VS2010, Silverlight 4, .NET 4, I've got a WCF service and a Silverlight app, and Silverlight is accessing the class not with Add Service Reference but by sharing the contract. Naturally, this means I have the contract in a Silverlight class library, and the service has a project reference to that library. Strangely, this results in a /!\ icon on the reference, and a warning: The project 'SilverlightClassLibrary1' cannot be referenced. The referenced project is targeted to a different framework family (Silverlight) However, the reference works fine (I can use the interface in my Silverlight app) and builds fine. Is this a bug? My guess is yes, since the warning is lying and also goes away if you add an assembly reference instead of a project reference. I filed a bug and there's more info here as well.

    Read the article

  • Getting Types in Win32 Dll

    - by Usman
    Hello, I want to know the types and details in a plain Win32DLL just like we can get in case of COM.In COM every thing embed inside idl and results in TLB, here we get every thing , MSFT exposes APIS by which we can extract types. In case of Win32 I strongly needed types defined in it and all details of that type(e.g what are members in it and their types as well). Parsing PE file and looking up export table only gives the exported functions. I want all custom types(Win32 interfaces,classes and members details with types) defined in it. How? Regards Usman

    Read the article

  • NDepend query methods/types in framework assembly being used by other assemblies/types

    - by icelava
    I am trying to determine which types or methods in a base framework assembly are being used by other assemblies in the application system. I cannot seem to find a straight-cut query to do that. What i have to do is first determine which assemblies are directly using the framework assembly, then manually list them in a second query SELECT TYPES FROM ASSEMBLIES "IBM.Data.DB2" WHERE IsDirectlyUsedBy "ASSEMBLY:FirstDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:SecondDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:ThirdDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:FourthDirectUsedByAssebmly" Is there a better/faster way to query for this? Additionally, the query results are focused on the matched types only. The Dependency graph or matrix exported only shows details of those. I do not know how to render a graph that shows those types or methods plus show the dependent types/methods from other assemblies that are consuming them?

    Read the article

  • Why does Sharepoint 2010 Web Reference work, but Service Reference does not

    - by Darien Ford
    Sharepoint is setup to use NTLM authentication. When I reference http://myserver/Sites/Ops/_vti_bin/Lists.asmx?WSDL as a Web Reference, I can call the methods and get valid responses. When I reference the same url as a Service Reference, the server throws an exception when calling methods. My account is admin on the Sharepoint Farm. This is the app.config for the service reference (mostly auto generated): <?xml version="1.0" encoding="utf-8" ?> <configuration> <configSections> </configSections> <system.serviceModel> <bindings> <basicHttpBinding> <binding name="ListsSoap" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard" maxBufferSize="65536" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered" useDefaultWebProxy="true"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <security mode="TransportCredentialOnly"> <transport clientCredentialType="Ntlm" /> </security> </binding> </basicHttpBinding> </bindings> <client> <endpoint address="http://myserver/Sites/Ops/_vti_bin/Lists.asmx" binding="basicHttpBinding" bindingConfiguration="ListsSoap" contract="SharepointLists.ListsSoap" name="ListsSoap" /> </client> </system.serviceModel> </configuration> Saddly, the only information the exception provides is this: "Exception of type 'Microsoft.SharePoint.SoapServer.SoapServerException' was thrown." No other details. The code that I'm using is: public ListClass() { _Client = new SharepointLists.ListsSoapClient(); } public System.Xml.Linq.XElement GetTaskList() { return _Client.GetList("Tasks"); } Any thoughts? I would like to use the Service Reference rather than the Web Reference. UPDATE: I tried Rob's suggestion and got this error: HTTP GET Error URI: http://myserver/Sites/Ops/_vti_bin/Lists.asmx The document at the url http://myserver/Sites/Ops/_vti_bin/Lists.asmx was not recognized as a known document type. The error message from each known type may help you fix the problem: - Report from 'http://myserver/Sites/Ops/_vti_bin/Lists.asmx' is 'The document format is not recognized (the content type is 'text/html; charset=utf-8').'. - Report from 'DISCO Document' is 'There was an error downloading 'http://myserver/_vti_bin/Lists.asmx?disco'.'. - The request failed with HTTP status 404: Not Found. - Report from 'WSDL Document' is 'The document format is not recognized (the con tent type is 'text/html; charset=utf-8').'. - Report from 'XML Schema' is 'The document format is not recognized (the conten t type is 'text/html; charset=utf-8').'.

    Read the article

  • What tasks should be explicitly mentioned in a job reference? [closed]

    - by Martin
    Glossary A job reference (see also the german version) is a letter from the (former) employer that states what the employee did, and how well he did it. There are oh so weird rules here on how to phrase stuff therein, but this is not what this question is about. Question I hope this can even be generally answered, but even if country/region specific, I think there is enough international know-how on this site to get useful answers for different regions. I was wondering how detailed the tasks a programmer / developer did should be spelled out in a job reference. (After all, they can be spelled out in all detail in a CV when applying for a new job.) So how much detail is usual for a job reference? Example Developed Windows applications in C++ or Developed Windows Desktop Applications using C++ with MS Visual Studio 2005 and MFC, utilising Boost 1.47 and specif library xyz, focusing on subsystem abc for numerical calculations of ... etc. What makes more sense?

    Read the article

  • Resource reference passing in puppet

    - by paweloque
    Is it possible to pass puppet resource references to other resources? My use-case is to build a jenkins build pipeline with puppet. To chain jenkins jobs into a pipeline I need to pass the successor job to a job. A subset of the definition is: jobs::build { "Build ${release_name}": release => $release_name, jenkins_jobs_path => $jenkins_jobs_path, successors => 'Deploy', } jobs::deploy { "Deploy ${release_name}": release => $release_name, jenkins_jobs_path => $jenkins_jobs_path, successors => 'Smoke Test', } In the def you see that I define the successors by name, i.e. 'Deploy' and in case of the second job 'Smoke Test'. What I'd like to do is to pass a reference to a resource and extract the name from it: jobs::build { "Build ${release_name}": release => $release_name, jenkins_jobs_path => $jenkins_jobs_path, successors => Jobs::Deploy["Deploy ${release_name}"], } jobs::deploy { "Deploy ${release_name}": release => $release_name, jenkins_jobs_path => $jenkins_jobs_path, successors => Jobs::Smoke_test["Smoke Test ${release_name}"], } And then within the jobs::deploy and jobs::build definition I'd access the resource by reference and query for it's type, etc.. Is it possible to achieve this in puppet?

    Read the article

  • Why don't purely functional languages use reference counting?

    - by Zifre
    In purely functional languages, data is immutable. With reference counting, creating a reference cycle requires changing already created data. It seems like purely functional languages could use reference counting without worrying about the possibility of cycles. Am is right? If so, why don't they? I understand that reference counting is slower than GC in many cases, but at least it reduces pause times. It would be nice to have the option to use reference counting in cases where pause times are bad.

    Read the article

  • Associating File Types with AutoVue Desktop Deployment

    - by [email protected]
    Windows users take for granted that when they double click on a document or design, that it will open up in its application automatically. One of the questions I'm commonly asked is "How can I get the same behavior with AutoVue Desktop Deployment?". It's pretty easy, but there are a few tricks to doing it. Step 1: Download new jvue_direct.bat and icon The first thing you'll need to do is download a slightly modified version of jvue_direct.bat. You can find it here (Document 1075784.1) on Oracle's Support Portal. You also want to download the AV.ico file. This is the icon that will be used for all file types associated with AutoVue. Place both of these files in your <AutoVueInstallDirectory>\bin directory. Step 2: Associate File Types With AutoVue There are two ways to do this. You can do this through the Windows user interface, or you can set up a batch file to do this. Associating File Types Through Windows The way most people associate file types to an application is using the Windows user interface. You've probably tried to open a file type that Windows doesn't recognize and seen this window pop up: Although you can use this dialog to associate that file type with AutoVue, I don't recommend it. I much prefer using a batch file to associate file types with AutoVue. Associating File Types Using A Batch File There are a few good reasons to associate file types using a batch file instead of using the pop-up dialog method: If you have several file types to associate with AutoVue, it's much easier to use a batch file to do them all at once. Doing it through the Windows user interface requires having files of each type available. Using a batch file doesn't require having the files you're associating. Associating file types through the dialog may work well for one person, but what if you're an administrator doing an enterprise wide deployment of AutoVue Desktop Deployment for several hundred users? You don't want to do this manually for each user. You can have one simple batch file that's run on each user's PC to set up all the file types. You can easily associate an icon with the file types you're opening with AutoVue. To use the batch file method follow these steps: Create a file called filetype.bat using a text editor and copy and paste the following into it: @assoc .dwg=AVFile @assoc .jpg=AVFile @assoc .doc=AVFile @ftype AVFile="%~dp0jvue_direct.bat" "%%1" @reg add HKEY_CLASSES_ROOT\AVFile\DefaultIcon /v "" /f /d "%~dp0AV.ico" Change the lines starting with @assoc. Each of these lines associates a file extension with AutoVue. You can have as many @assoc lines as you want. Save this file in your <AutoVueInstallDirectory>\bin directory. Double click this file, or run it from a command prompt. Restart Windows to get the icons to show up. How Does This Work? The first three lines are creating a file type called AVFile. We are associating the extensions .dwg, .jpg, and .doc with this file type. You will want to change these lines when creating your own batch file. For example, to associate Microstation designs, which have extension .dgn, you should delete the @assoc lines above and add the line: @assoc .dgn=AVfile The line beginning with @ftype tells Windows that all AVFile type files should be opened using AutoVue Desktop Deployment. The final line associates the AutoVue icon with these file types. You may need to restart Windows to see the new icons. Warning: One Size Doesn't Fit All When deciding which file types should be associated with AutoVue, remember that there are different types of users using it. Your engineers may be pretty surprised to find that after installing AutoVue, double clicking their .dwg file opens up AutoVue instead of AutoCAD. If you have more than one type of AutoVue user, make sure you've considered what file types each user group will and will not want to be associated with AutoVue. If necessary, create a separate file association batch file for each user type. So that's it. In two simple steps you can double click your favorite designs and have them open automatically in AutoVue Desktop Deployment. I'd love to hear how are you using AutoVue Desktop Deployment. What other deployment tips would you be interested in learning about?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >