Search Results

Search found 23827 results on 954 pages for 'software architecture'.

Page 2/954 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Why is software quality so problematic?

    - by Yuval A
    Even when viewing the subject in the most objective way possible, it is clear that software, as a product, generally suffers from low quality. Take for example a house built from scratch. Usually, the house will function as it is supposed to. It will stand for many years to come, the roof will support heavy weather conditions, the doors and the windows will do their job, the foundations will not collapse even when the house is fully populated. Sure, minor problemsdo occur, like a leaking faucet or a bad paint job, but these are not critical. Software, on the other hand is much more susceptible to suffer from bad quality: unexpected crashes, erroneous behavior, miscellaneous bugs, etc. Sure, there are many software projects and products which show high quality and are very reliable. But lots of software products do not fall in this category. Take into consideration paradigms like TDD which its popularity is on the rise in the past few years. Why is this? Why do people have to fear that their software will not work or crash? (Do you walk into a house fearing its foundations will collapse?) Why is software - subjectively - so full of bugs? Possible reasons: Modern software engineering exists for only a few decades, a small time period compared to other forms of engineering/production. Software is very complicated with layers upon layers of complexity, integrating them all is not trivial. Software development is relatively easy to start with, anyone can write a simple program on his PC, which leads to amateur software leaking into the market. Tight budgets and timeframes do not allow complete and high quality development and extensive testing. How do you explain this issue, and do you see software quality advancing in the near future?

    Read the article

  • Can't install any update or software from Software Center

    - by geoh
    I tried to install updates and it's saying to get partial upgrade When trying Partial Upgrade doesn't working again. And when trying to install any software it doesn't installing. Can someone help me? EDIT the sudo apt-get update output is E: Could not get lock /var/lib/apt/lists/lock - open (11: Resource temporarily unavailable) E: Unable to lock directory /var/lib/apt/lists/ E: Could not get lock /var/lib/dpkg/lock - open (11: Resource temporarily unavailable) E: Unable to lock the administration directory (/var/lib/dpkg/), is another process using it?

    Read the article

  • Who should ‘own’ the Enterprise Architecture?

    - by Michael Glas
    I recently had a discussion around who should own an organization’s Enterprise Architecture. It was spawned by an article titled “Busting CIO Myths” in CIO magazine1 where the author interviewed Jeanne Ross, director of MIT's Center for Information Systems Research and co-author of books on enterprise architecture, governance and IT value.In the article Jeanne states that companies need to acknowledge that "architecture says everything about how the company is going to function, operate, and grow; the only person who can own that is the CEO". "If the CEO doesn't accept that role, there really can be no architecture."The first question that came up when talking about ownership was whether you are talking about a person, role, or organization (there are pros and cons to each, but in general, I like to assign accountability to as few people as possible). After much thought and discussion, I came to the conclusion that we were answering the wrong question. Instead of talking about ownership we were talking about responsibility and accountability, and the answer varies depending on the particular role of the organization’s Enterprise Architecture and the activities of the enterprise architect(s).Instead of looking at just who owns the architecture, think about what the person/role/organization should do. This is one possible scenario (thanks to Bob Covington): The CEO should own the Enterprise Strategy which guides the business architecture. The Business units should own the business processes and information which guide the business, application and information architectures. The CIO should own the technology, IT Governance and the management of the application and information architectures/implementations. The EA Governance Team owns the EA process.  If EA is done well, the governance team consists of both IT and the business. While there are many more roles and responsibilities than listed here, it starts to provide a clearer understanding of ‘ownership’. Now back to Jeanne’s statement that the CEO should own the architecture. If you agree with the statement about what the architecture is (and I do agree), then ultimately the CEO does need to own it. However, what we ended up with was not really ownership, but more statements around roles and responsibilities tied to aspects of the enterprise architecture. You can debate the semantics of ownership vs. responsibility and accountability, but in the end the important thing is to come to a clearer understanding that is easily communicated (and hopefully measured) around the question “Who owns the Enterprise Architecture”.The next logical step . . . create a RACI matrix that details the findings . . . but that is a step that each organization needs to do on their own as it will vary based on current EA maturity, company culture, and a variety of other factors. Who ‘owns’ the Enterprise Architecture in your organization? 1 CIO Magazine Article (Busting CIO Myths): http://www.cio.com/article/704943/Busting_CIO_Myths Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Ubuntu Software Center 12.04 Does not install Software

    - by Lester Miller
    I have just loaded Ubuntu 12.04 on a computer. I am new to Ubuntu. I am using an automatic proxy server. When I pick a software package to install the program I input my password. The progress icon displays for a few seconds and then it stops. I tried to load different programs and always the same problem. I can go out on the network through firefox so I know I have a network connection. I do not see any errors or anything. Not sure what to do. I am thinking about switching over to SUSE

    Read the article

  • Difference between programs in Software Centre and Launchpad PPA

    - by Lionthinker
    On several Ubuntu sites such as OMG Ubuntu there are summaries of new ppa's. These are useful programs, but they don't appear in the Software Center. However, in the center there are programs that specifically say are "community supported" and not Canonical supported. So what is the difference between Software Center programs and PPA's? It would be a lot more useful if more PPAs were in the center.

    Read the article

  • Ubuntu Software Center starts, then crashes before fully loaded [closed]

    - by Nathan Weisser
    Possible Duplicate: Software center not opening I am brand new to Linux and Ubuntu, and I couldn't install GIMP without the software center. I looked up earlier how to fix it, and it said to fix my sources list, and I did, but now i get a new error in the terminal. 2012-08-14 15:29:08,941 - softwarecenter.ui.gtk3.app - INFO - setting up proxy 'None' 2012-08-14 15:29:08,954 - softwarecenter.db.database - INFO - open() database: path=None use_axi=True use_agent=True 2012-08-14 15:29:09,407 - softwarecenter.ui.gtk3.app - INFO - building local database 2012-08-14 15:29:09,408 - softwarecenter.db.pkginfo_impl.aptcache - INFO - aptcache.open() 2012-08-14 15:29:17,308 - softwarecenter.db.update - WARNING - Problem creating rebuild path '/var/cache/software-center/xapian_rb'. 2012-08-14 15:29:17,309 - softwarecenter.db.update - WARNING - Please check you have the relevant permissions. 2012-08-14 15:29:17,309 - softwarecenter.db.database - INFO - open() database: path=None use_axi=True use_agent=True 2012-08-14 15:29:18,039 - softwarecenter.backend.reviews - WARNING - Could not get usefulness from server, no username in config file 2012-08-14 15:29:18,431 - softwarecenter.ui.gtk3.app - INFO - show_available_packages: search_text is '', app is None. 2012-08-14 15:29:19,153 - softwarecenter.db.pkginfo_impl.aptcache - INFO - aptcache.open() Traceback (most recent call last): File "/usr/bin/software-center", line 176, in <module> app.run(args) File "/usr/share/software-center/softwarecenter/ui/gtk3/app.py", line 1422, in run self.show_available_packages(args) File "/usr/share/software-center/softwarecenter/ui/gtk3/app.py", line 1352, in show_available_packages self.view_manager.set_active_view(ViewPages.AVAILABLE) File "/usr/share/software-center/softwarecenter/ui/gtk3/session/viewmanager.py", line 154, in set_active_view view_widget.init_view() File "/usr/share/software-center/softwarecenter/ui/gtk3/panes/availablepane.py", line 136, in init_view SoftwarePane.init_view(self) File "/usr/share/software-center/softwarecenter/ui/gtk3/panes/softwarepane.py", line 215, in init_view self.icons, self.show_ratings) File "/usr/share/software-center/softwarecenter/ui/gtk3/views/appview.py", line 69, in __init__ self.helper = AppPropertiesHelper(db, cache, icons) File "/usr/share/software-center/softwarecenter/ui/gtk3/models/appstore2.py", line 109, in __init__ softwarecenter.paths.APP_INSTALL_PATH) File "/usr/share/software-center/softwarecenter/db/categories.py", line 255, in parse_applications_menu category = self._parse_menu_tag(child) File "/usr/share/software-center/softwarecenter/db/categories.py", line 444, in _parse_menu_tag query = self._parse_include_tag(element) File "/usr/share/software-center/softwarecenter/db/categories.py", line 402, in _parse_include_tag xapian.Query.OP_AND) File "/usr/share/software-center/softwarecenter/db/categories.py", line 341, in _parse_and_or_not_tag operator_elem, xapian.Query(), xapian.Query.OP_OR) File "/usr/share/software-center/softwarecenter/db/categories.py", line 385, in _parse_and_or_not_tag q = self.db.xapian_parser.parse_query(s, File "/usr/share/software-center/softwarecenter/db/database.py", line 174, in xapian_parser xapian_parser = self._get_new_xapian_parser() File "/usr/share/software-center/softwarecenter/db/database.py", line 200, in _get_new_xapian_parser xapian_parser.set_database(self.xapiandb) File "/usr/share/software-center/softwarecenter/db/database.py", line 166, in xapiandb self._db_per_thread[thread_name] = self._get_new_xapiandb() File "/usr/share/software-center/softwarecenter/db/database.py", line 179, in _get_new_xapiandb xapiandb = xapian.Database(self._db_pathname) File "/usr/lib/python2.7/dist-packages/xapian/__init__.py", line 3666, in __init__ _xapian.Database_swiginit(self,_xapian.new_Database(*args)) xapian.DatabaseOpeningError: Couldn't detect type of database I'm not sure how to fix the errors, and I couldn't find a topic on them anywhere. Be nice, because I am a two-day old Linux user :/ Tell me if you need my Sources list

    Read the article

  • Unable to run Ubuntu Software center in 12.04

    - by Noye
    I think I've tried everything found. It is on just for a second. I can't even send an error report. What should I do? thanks in advance. so this is what I get after typing software-center in terminal (sorry, not as a code): 2012-06-16 22:54:17,610 - softwarecenter.ui.gtk3.app - INFO - setting up proxy 'None' 2012-06-16 22:54:17,617 - softwarecenter.db.database - INFO - open() database: path=None use_axi=True use_agent=True 2012-06-16 22:54:18,142 - softwarecenter.backend.reviews - WARNING - Could not get usefulness from server, no username in config file 2012-06-16 22:54:18,697 - softwarecenter.db.pkginfo_impl.aptcache - INFO - aptcache.open() Traceback (most recent call last): File "/usr/share/software-center/softwarecenter/db/pkginfo_impl/aptcache.py", line 243, in open self._cache = apt.Cache(GtkMainIterationProgress()) File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 102, in __init__ self.open(progress) File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 149, in open self._list.read_main_list() SystemError: E:Typ „ain“ je neznámy na riadku 2 v zozname zdrojov /etc/apt/sources.list.d/yannubuntu-boot-repair-precise.list 2012-06-16 22:54:21,916 - softwarecenter.db.enquire - ERROR - _get_estimate_nr_apps_and_nr_pkgs failed Traceback (most recent call last): File "/usr/share/software-center/softwarecenter/db/enquire.py", line 115, in _get_estimate_nr_apps_and_nr_pkgs tmp_matches = enquire.get_mset(0, len(self.db), None, xfilter) File "/usr/share/software-center/softwarecenter/db/appfilter.py", line 89, in __call__ if (not pkgname in self.cache and File "/usr/share/software-center/softwarecenter/db/pkginfo_impl/aptcache.py", line 263, in __contains__ return self._cache.__contains__(k) AttributeError: 'NoneType' object has no attribute '__contains__' Traceback (most recent call last): File "/usr/bin/software-center", line 176, in app.run(args) File "/usr/share/software-center/softwarecenter/ui/gtk3/app.py", line 1358, in run self.show_available_packages(args) File "/usr/share/software-center/softwarecenter/ui/gtk3/app.py", line 1288, in show_available_packages self.view_manager.set_active_view(ViewPages.AVAILABLE) File "/usr/share/software-center/softwarecenter/ui/gtk3/session/viewmanager.py", line 149, in set_active_view view_widget.init_view() File "/usr/share/software-center/softwarecenter/ui/gtk3/panes/availablepane.py", line 168, in init_view self.apps_filter) File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 240, in __init__ self.build(desktopdir) File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 491, in build self._build_homepage_view() File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 266, in _build_homepage_view self._append_whats_new() File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 430, in _append_whats_new whats_new_cat = self._update_whats_new_content() File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 419, in _update_whats_new_content docs = whats_new_cat.get_documents(self.db) File "/usr/share/software-center/softwarecenter/db/categories.py", line 124, in get_documents nonblocking_load=False) File "/usr/share/software-center/softwarecenter/db/enquire.py", line 317, in set_query self._blocking_perform_search() File "/usr/share/software-center/softwarecenter/db/enquire.py", line 212, in _blocking_perform_search matches = enquire.get_mset(0, self.limit, None, xfilter) File "/usr/share/software-center/softwarecenter/db/appfilter.py", line 89, in __call__ if (not pkgname in self.cache and File "/usr/share/software-center/softwarecenter/db/pkginfo_impl/aptcache.py", line 263, in __contains__ return self._cache.__contains__(k) AttributeError: 'NoneType' object has no attribute '__contains__'

    Read the article

  • I changed the repository and now my ubuntu software center crashes

    - by Paul Menz
    paul@ubuntu:~$ software-center 2012-10-24 18:11:04,665 - softwarecenter.ui.gtk3.app - INFO - setting up proxy 'None' 2012-10-24 18:11:04,671 - softwarecenter.db.database - INFO - open() database: path=None use_axi=True use_agent=True 2012-10-24 18:11:05,191 - softwarecenter.backend.reviews - WARNING - Could not get usefulness from server, no username in config file 2012-10-24 18:11:05,403 - softwarecenter.ui.gtk3.app - INFO - show_available_packages: search_text is '', app is None. 2012-10-24 18:11:05,920 - softwarecenter.db.pkginfo_impl.aptcache - INFO - aptcache.open() Traceback (most recent call last): File "/usr/share/software-center/softwarecenter/db/pkginfo_impl/aptcache.py", line 243, in open self._cache = apt.Cache(GtkMainIterationProgress()) File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 102, in __init__ self.open(progress) File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 149, in open self._list.read_main_list() SystemError: E:Malformed line 63 in source list /etc/apt/sources.list (dist parse) 2012-10-24 18:11:07,255 - softwarecenter.db.enquire - ERROR - _get_estimate_nr_apps_and_nr_pkgs failed Traceback (most recent call last): File "/usr/share/software-center/softwarecenter/db/enquire.py", line 115, in _get_estimate_nr_apps_and_nr_pkgs tmp_matches = enquire.get_mset(0, len(self.db), None, xfilter) File "/usr/share/software-center/softwarecenter/db/appfilter.py", line 89, in __call__ if (not pkgname in self.cache and File "/usr/share/software-center/softwarecenter/db/pkginfo_impl/aptcache.py", line 263, in __contains__ return self._cache.__contains__(k) AttributeError: 'NoneType' object has no attribute '__contains__' Traceback (most recent call last): File "/usr/bin/software-center", line 176, in <module> app.run(args) File "/usr/share/software-center/softwarecenter/ui/gtk3/app.py", line 1422, in run self.show_available_packages(args) File "/usr/share/software-center/softwarecenter/ui/gtk3/app.py", line 1352, in show_available_packages self.view_manager.set_active_view(ViewPages.AVAILABLE) File "/usr/share/software-center/softwarecenter/ui/gtk3/session/viewmanager.py", line 154, in set_active_view view_widget.init_view() File "/usr/share/software-center/softwarecenter/ui/gtk3/panes/availablepane.py", line 171, in init_view self.apps_filter) File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 238, in __init__ self.build(desktopdir) File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 511, in build self._build_homepage_view() File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 271, in _build_homepage_view self._append_whats_new() File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 450, in _append_whats_new whats_new_cat = self._update_whats_new_content() File "/usr/share/software-center/softwarecenter/ui/gtk3/views/catview_gtk.py", line 439, in _update_whats_new_content docs = whats_new_cat.get_documents(self.db) File "/usr/share/software-center/softwarecenter/db/categories.py", line 124, in get_documents nonblocking_load=False) File "/usr/share/software-center/softwarecenter/db/enquire.py", line 317, in set_query self._blocking_perform_search() File "/usr/share/software-center/softwarecenter/db/enquire.py", line 212, in _blocking_perform_search matches = enquire.get_mset(0, self.limit, None, xfilter) File "/usr/share/software-center/softwarecenter/db/appfilter.py", line 89, in __call__ if (not pkgname in self.cache and File "/usr/share/software-center/softwarecenter/db/pkginfo_impl/aptcache.py", line 263, in __contains__ return self._cache.__contains__(k) AttributeError: 'NoneType' object has no attribute '__contains__'

    Read the article

  • Open Source but not Free Software (or vice versa)

    - by TRiG
    The definition of "Free Software" from the Free Software Foundation: “Free software” is a matter of liberty, not price. To understand the concept, you should think of “free” as in “free speech,” not as in “free beer.” Free software is a matter of the users' freedom to run, copy, distribute, study, change and improve the software. More precisely, it means that the program's users have the four essential freedoms: The freedom to run the program, for any purpose (freedom 0). The freedom to study how the program works, and change it to make it do what you wish (freedom 1). Access to the source code is a precondition for this. The freedom to redistribute copies so you can help your neighbor (freedom 2). The freedom to distribute copies of your modified versions to others (freedom 3). By doing this you can give the whole community a chance to benefit from your changes. Access to the source code is a precondition for this. A program is free software if users have all of these freedoms. Thus, you should be free to redistribute copies, either with or without modifications, either gratis or charging a fee for distribution, to anyone anywhere. Being free to do these things means (among other things) that you do not have to ask or pay for permission to do so. The definition of "Open Source Software" from the Open Source Initiative: Open source doesn't just mean access to the source code. The distribution terms of open-source software must comply with the following criteria: Free Redistribution The license shall not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources. The license shall not require a royalty or other fee for such sale. Source Code The program must include source code, and must allow distribution in source code as well as compiled form. Where some form of a product is not distributed with source code, there must be a well-publicized means of obtaining the source code for no more than a reasonable reproduction cost preferably, downloading via the Internet without charge. The source code must be the preferred form in which a programmer would modify the program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a preprocessor or translator are not allowed. Derived Works The license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software. Integrity of The Author's Source Code The license may restrict source-code from being distributed in modified form only if the license allows the distribution of "patch files" with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of software built from modified source code. The license may require derived works to carry a different name or version number from the original software. No Discrimination Against Persons or Groups The license must not discriminate against any person or group of persons. No Discrimination Against Fields of Endeavor The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research. Distribution of License The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an additional license by those parties. License Must Not Be Specific to a Product The rights attached to the program must not depend on the program's being part of a particular software distribution. If the program is extracted from that distribution and used or distributed within the terms of the program's license, all parties to whom the program is redistributed should have the same rights as those that are granted in conjunction with the original software distribution. License Must Not Restrict Other Software The license must not place restrictions on other software that is distributed along with the licensed software. For example, the license must not insist that all other programs distributed on the same medium must be open-source software. License Must Be Technology-Neutral No provision of the license may be predicated on any individual technology or style of interface. These definitions, although they derive from very different ideologies, are broadly compatible, and most Free Software is also Open Source Software and vice versa. I believe, however, that it is possible for this not to be the case: It is possible for software to be Open Source without being Free, or to be Free without being Open Source. Questions Is my belief correct? Is it possible for software to fall into one camp and not the other? Does any such software actually exist? Please give examples. Clarification I've already accepted an answer now, but I seem to have confused a lot of people, so perhaps a clarification is in order. I was not asking about the difference between copyleft (or "viral", though I don't like that term) and non-copyleft ("permissive") licenses. Nor was I asking about your personal idiosyncratic definitions of "Free" and "Open". I was asking about "Free Software as defined by the FSF" and "Open Source Software as defined by the OSI". Are the two always the same? Is it possible to be one without being the other? And the answer, it seems, is that it's impossible to be Free without being Open, but possible to be Open without being Free. Thank you everyone who actually answered the question.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Why do you use not free software and what not free software do you use?

    - by 0101
    I prefer to use free software, because I believe its more universal(I can use it anywhere, I can tell people about it and they will have no problem with using it) - i like to say "learn once, use anywhere". I was wondering why people use not free software when free alternatives exists?(for example JIRA, Clover for code coverage, not free marge tools, etc.). P.S. I only use TotalCmd that is not free, but I was not able to find any good alternative(I even wrote one myself, but It was not as great). P.S. I dont want to start any flamewar, Im just curious what is your take on it.

    Read the article

  • 'Xojo' is the only application that I can't install

    - by Gichan
    I can't install xojo. When I click install in the software center it's not progressing. In the terminal it's stuck in : gichan02@gichan02-Latitude-D520:~$ sudo apt-get install xojo [sudo] password for gichan02: Reading package lists... Done Building dependency tree Reading state information... Done The following extra packages will be installed: xojo-bin The following NEW packages will be installed: xojo xojo-bin 0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded. Need to get 209 MB/209 MB of archives. After this operation, 596 MB of additional disk space will be used. Do you want to continue? [Y/n] Y 0% [Working] then after waiting for an hour for progress it says: Failed to fetch https://private-ppa.launchpad.net/commercial-ppa-uploaders/xojo/ubuntu/pool/main/x/xojo/xojo-bin_2013.41-0ubuntu1_i386.deb Could not resolve host: private-ppa.launchpad.net So I added apt repository for 'private-ppa': deb https://ging-giana:[email protected]/commercial-ppa-uploaders/xojo/ubuntu trusty main Then when I try 'apt-get update': GPG error: https://private-ppa.launchpad.net trusty Release: The following signatures were invalid: NODATA 2 Then I noticed something the Software Sources:Other software TAB: Added by software-center; credentials stored in /etc/apt/auth.conf https://private-ppa.launchpad.net/commercial-ppa-uploaders/xojo/ubuntu So i go to the '/etc/apt/auth.conf' ,but It cannot be opened and it is not a keyserver. So i uncheck: Added by software-center; credentials stored in /etc/apt/auth.conf https://private-ppa.launchpad.net/commercial-ppa-uploaders/xojo/ubuntu GPG error was gone. But then again I found myself at the beginning of the problem.STUCK at '0% [Working]'. 'Xojo' is the only application that I can't install.Any explanation why is it like that?

    Read the article

  • The Enterprise Architect (EA) diary - day 22 (from business processes to implemented applications)

    - by nattYGUR
    After spending time on keeping our repository up to date (add new ETRM application and related data flows as well as changing databases to DB clusters), collecting more data for the root cause analysis and spending time for writing proposal to creating new software infrastructure team ( that will help us to clean the table from a pile of problems that just keep on growing due to BAU control over IT dev team resources). I spend time to adapt our EA tool to support a diagram flow from high level business processes to implementation of new applications that will better support the business process. http://www.theeagroup.net/ea/Default.aspx?tabid=1&newsType=ArticleView&articleId=195

    Read the article

  • Which pattern is best for large project

    - by shamim
    I have several years of software development experience, but I am not a keen and adroit programmer, to perform better I need helping hands. Recently I engaged in an ERP project. For this project want a very effective structure, which will be easily maintainable and have no compromise about performance issue. Below structures are now present in my old projects. Entity Layer BusinessLogic Layer. DataLogic Layer UI Layer. Bellow picture describe how they are internally connected. For my new project want to change my project structure, I want to follow below steps: Core Layer(common) BLL DAL Model UI Bellow picture describe how they are internally connected. Though goggling some initial type question’s are obscure to me, they are : For new project want to use Entity framework, is it a good idea? Will it increase my project performance? Will it more maintainable than previous structure? Entity Framework core disadvantages/benefits are? For my project need help to select best structure. Will my new structure be better than the old one?

    Read the article

  • help me to choose between two software architecture

    - by alex
    // stupid title, but I could not think anything smarter I have a code (see below, sorry for long code but it's very-very simple): namespace Option1 { class AuxClass1 { string _field1; public string Field1 { get { return _field1; } set { _field1 = value; } } // another fields. maybe many fields maybe several properties public void Method1() { // some action } public void Method2() { // some action 2 } } class MainClass { AuxClass1 _auxClass; public AuxClass1 AuxClass { get { return _auxClass; } set { _auxClass = value; } } public MainClass() { _auxClass = new AuxClass1(); } } } namespace Option2 { class AuxClass1 { string _field1; public string Field1 { get { return _field1; } set { _field1 = value; } } // another fields. maybe many fields maybe several properties public void Method1() { // some action } public void Method2() { // some action 2 } } class MainClass { AuxClass1 _auxClass; public string Field1 { get { return _auxClass.Field1; } set { _auxClass.Field1 = value; } } public void Method1() { _auxClass.Method1(); } public void Method2() { _auxClass.Method2(); } public MainClass() { _auxClass = new AuxClass1(); } } } class Program { static void Main(string[] args) { // Option1 Option1.MainClass mainClass1 = new Option1.MainClass(); mainClass1.AuxClass.Field1 = "string1"; mainClass1.AuxClass.Method1(); mainClass1.AuxClass.Method2(); // Option2 Option2.MainClass mainClass2 = new Option2.MainClass(); mainClass2.Field1 = "string2"; mainClass2.Method1(); mainClass2.Method2(); Console.ReadKey(); } } What option (option1 or option2) do you prefer ? In which cases should I use option1 or option2 ? Is there any special name for option1 or option2 (composition, aggregation) ?

    Read the article

  • Automated testing tool development challenges (for embedded software)

    - by Karthi prime
    My boss want to come up with the proposal for the following tool: An IDE: Able to build, compile, debug, via JTAG programming for the micro-controller. A Test Suite, reads the code in the IDE, auto generates the test cases, and it gives the in-target unit testing results(which is done by controlling code execution in the micro-controller via IDE). A no-overhead code coverage tool which interacts with the test suite and IDE. My work is to obtain the high level architecture of this tool, so as to proceed further. My current knowledge: There are tool-chains available from the chip manufacturer for the micro-controllers which can be utilized along with an open-source IDE like Eclipse, and along with an open-source burner, a complete IDE for a micro-controller can be done. Test cases can be auto-generated by reading the source file through the process of parsing, scripting, based on keywords. Test suite must be able to command the IDE to control, through breakpoints, and read the register contents from the microcontroller - This enables the in-target unit testing. An no-overhead code coverage should be done by no-overhead code instrumentation so as to execute those in the resource constraint environment of the micro-controller. I have the following questions: Any advice on the validity of my understanding? What are the challenges I will have during the development? What are the helpful open-source tools regarding this? What is the development time for this software? Thanks

    Read the article

  • Apps missing in Software Centre

    - by Hahn Do
    I'm using Elementary OS Luna beta 1, based on Ubuntu 12.04 Precise. I used to used Quantal, as I remember there were roughly 68000 apps. Massive commercial apps, and the banner on top shows new hot apps all the time. Now I switch to Elementary because Compiz sucks with Nvidia. However, Software Centre now only has 41000 apps. No commercial apps, no 3rd party apps. I'm pretty sure I have all the sources enabled: My sources.list: http://paste.ubuntu.com/1396213/

    Read the article

  • How to discover architectures\techologies used by a non open source software

    - by systempuntoout
    Sometimes i would like to know how a cool software is made or the brilliant architecture behind an hot web service; but the software is not open-source and the web service have no public documentation. Do you have any techniques to discover some hints on how a software is made? Is it possible to do it? Do you know some site that publish architectures\technologies used by softwares\web service?

    Read the article

  • Tracking downloads of your software + software CDN?

    - by jason l baptiste
    I'm primarily a web app developer/entrepreneur, so there's a lot I don't know about the desktop software distribution process. I've been thinking about making a Mac OS X app for fun, that I would distribute for free or a really small donation, but started thinking about distribution+download analytics: a) How do you host your software? Just on your web server/amazon s3 as the CDN? b) How do you track download analytics? On the flip side, I've thought about developing a simple service that does just this: Offers CDN hosting for software downloads, analytics by version, lets users share the app upon download, and makes the whole process a lot easier for ISVs. Curious to get feedback. Thanks! -jlb

    Read the article

  • Software architectures, changes over time?

    - by Vimvq1987
    I want to list software architectures from which were used in history to which are using now. As far as I know, they're client-server, cloud-computing,...But I cannot get a full list of them. Can you please give me this: Software architecture, years active, architecture that replaced it and the reason of replacement. A little detailed explanation will be much appreciated. Thank you so much.

    Read the article

  • References about Game Engine Architecture in AAA Games

    - by sharethis
    Last weeks I focused on game engine architecture and learned a lot about different approaches like component based, data driven, and so on. I used them in test applications and understand their intention but none of them looks like the holy grail. So I wonder how major games in the industry ("AAA Games") solve different architecture problems. But I noticed that there are barely references about game engine architecture out there. Do you know any resources of game engine architecture of major game titles like Battlefield, Call of Duty, Crysis, Skyrim, and so on? Doesn't matter if it is an article of a game developer or a wiki page or an entire book. I read this related popular question: Good resources for learning about game architecture? But it is focused on learning books rather than approaches in the industry. Hopefully the breadth of our community can carry together certain useful informations! Thanks a lot! Edit: This question is focused but not restricted to first person games.

    Read the article

  • Scalable Architecture for modern Web Development [on hold]

    - by Jhilke Dai
    I am doing research about Scalable architecture for Web Development, the research is solely to support Modern Web Development with flexible architecture which can scale up/down according to the needs without losing any core functionality. By Modern Web I mean to support all the Devices used to access websites, but the loading mechanism for all devices would be different. My quest of architecture is: For PC: Accessing web in PC is faster but it also depends on the Geo-location, so, the application would check by default the capacity of Internet/Browser and load the page according to it. For Mobile: Most of the mobile design these days either hide information or use different version of same application. eg: facebook uses m.facebook.com which is completely different than PC version. Hiding the things from Mobile using JavaScript or CSS is not a solution as it'll consume the bandwidth and make the application slow. So, my architecture research is about Serving one Application, which has different stack. When the application receives the request it'd send the Packaged Stack to the received request. This way the load time for end users would be faster and maintenance of application for developers would be easier. I am researching about for 4-tier(layered) architecture like: Presentation Layer Application Logic Layer -- The main Logic layer which stores the Presentation Stack Business Logic Layer Data Layer Main Question: Have you come across of similar architecture? If so, then can you list the links here, I'm very much interested to learn about those implementations specially in real world scenario. Have you thought about similar architectures and tried your own ideas, or if you have any ideas regarding this, then I urge to share. I am open to any discussions regarding this, so, please feel free to comment/answer.

    Read the article

  • What characteristic of a software determines its operational scope?

    - by Dark Star1
    How can I classify whether a software is a medium with the ability to grow into an enterprise level software or whether it is already there? And how should I use the information to choose the appropriate language/tool to create the software? At first I was asking whether Java or PHP is the best tool to design enterprise level software, however I've suddenly realized that I am unable to put the software I'm tasked with redesigning into the proper scope so I'm lost. Edit: I guess I'm looking for tell tale signs in software that may tip the favour towards enterprise level type software in the sense of functional and operational characteristics; functional: what it does (multi-functional), Architectural characteristics such as highly modular. operational: multi-sourced and multi-homed, databases, e.t.c. To be honest the reason I ask is because I'm skeptical about the use of PhP to design a piece of employee and partial accounting software. I'm more tipping towards the use of JSP and an hmvc framework such as JSF, wickets, e.t.c. where as the other guy wants to go the PhP way although I'm not experienced with PhP, as far as I know it's not an OO oriented language hence my skepticsm towards it.

    Read the article

  • Software Architecture: Quality Attributes

    Quality is what all software engineers should strive for when building a new system or adding new functionality. Dictonary.com ambiguously defines quality as a grade of excellence. Unfortunately, quality must be defined within the context of a situation in that each engineer must extract quality attributes from a project’s requirements. Because quality is defined by project requirements the meaning of quality is constantly changing base on the project. Software architecture factors that indicate the relevance and effectiveness The relevance and effectiveness of architecture can vary based on the context in which it was conceived and the quality attributes that are required to meet. Typically when evaluating architecture for a specific system regarding relevance and effectiveness the following questions should be asked.   Architectural relevance and effectiveness questions: Does the architectural concept meet the needs of the system for which it was designed? Out of the competing architectures for a system, which one is the most suitable? If we look at the first question regarding meeting the needs of a system for which it was designed. A system that answers yes to this question must meet all of its quality goals. This means that it consistently meets or exceeds performance goals for the system. In addition, the system meets all the other required system attributers based on the systems requirements. The suitability of a system is based on several factors. In order for a project to be suitable the necessary resources must be available to complete the task. Standard Project Resources: Money Trained Staff Time Life cycle factors that affect the system and design The development life cycle used on a project can drastically affect how a system’s architecture is created as well as influence its design. In the case of using the software development life cycle (SDLC) each phase must be completed before the next can begin.  This waterfall approach does not allow for changes in a system’s architecture after that phase is completed. This can lead to major system issues when the architecture for the system is not as optimal because of missed quality attributes. This can occur when a project has poor requirements and makes misguided architectural decisions to name a few examples. Once the architectural phase is complete the concepts established in this phase must move on to the design phase that is bound to use the concepts and guidelines defined in the previous phase regardless of any missing quality attributes needed for the project. If any issues arise during this phase regarding the selected architectural concepts they cannot be corrected during the current project. This directly has an effect on the design of a system because the proper qualities required for the project where not used when the architectural concepts were approved. When this is identified nothing can be done to fix the architectural issues and system design must use the existing architectural concepts regardless of its missing quality properties because the architectural concepts for the project cannot be altered. The decisions made in the design phase then preceded to fall down to the implementation phase where the actual system is coded based on the approved architectural concepts established in the architecture phase regardless of its architectural quality. Conversely projects using more of an iterative or agile methodology to implement a system has more flexibility to correct architectural decisions based on missing quality attributes. This is due to each phase of the SDLC is executed more than once so any issues identified in architecture of a system can be corrected in the next architectural phase. Subsequently the corresponding changes will then be adjusted in the following design phase so that when the project is completed the optimal architectural and design decision are applied to the solution. Architecture factors that indicate functional suitability Systems that have function shortcomings do not have the proper functionality based on the project’s driving quality attributes. What this means in English is that the system does not live up to what is required of it by the stakeholders as identified by the missing quality attributes and requirements. One way to prevent functional shortcomings is to test the project’s architecture, design, and implementation against the project’s driving quality attributes to ensure that none of the attributes were missed in any of the phases. Another way to ensure a system has functional suitability is to certify that all its requirements are fully articulated so that there is no chance for misconceptions or misinterpretations by all stakeholders. This will help prevent any issues regarding interpreting the system requirements during the initial architectural concept phase, design phase and implementation phase. Consider the applicability of other architectural models When considering an architectural model for a project is also important to consider other alternative architectural models to ensure that the model that is selected will meet the systems required functionality and high quality attributes. Recently I can remember talking about a project that I was working on and a coworker suggested a different architectural approach that I had never considered. This new model will allow for the same functionally that is offered by the existing model but will allow for a higher quality project because it fulfills more quality attributes. It is always important to seek alternatives prior to committing to an architectural model. Factors used to identify high-risk components A high risk component can be defined as a component that fulfills 2 or more quality attributes for a system. An example of this can be seen in a web application that utilizes a remote database. One high-risk component in this system is the TCIP component because it allows for HTTP connections to handle by a web server and as well as allows for the server to also connect to a remote database server so that it can import data into the system. This component allows for the assurance of data quality attribute and the accessibility quality attribute because the system is available on the network. If for some reason the TCIP component was to fail the web application would fail on two quality attributes accessibility and data assurance in that the web site is not accessible and data cannot be update as needed. Summary As stated previously, quality is what all software engineers should strive for when building a new system or adding new functionality. The quality of a system can be directly determined by how closely it is implemented when compared to its desired quality attributes. One way to insure a higher quality system is to enforce that all project requirements are fully articulated so that no assumptions or misunderstandings can be made by any of the stakeholders. By doing this a system has a better chance of becoming a high quality system based on its quality attributes

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >