Search Results

Search found 11840 results on 474 pages for 'assembly context'.

Page 20/474 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • The maven assembly plugin is not using the finalName for installing with attach=true?

    - by Roland Wiesemann
    I have configured following assembly: <build> <plugins> <plugin> <artifactId>maven-assembly-plugin</artifactId> <version>2.2-beta-5</version> <executions> <execution> <id>${project.name}-test-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> <configuration> <appendAssemblyId>false</appendAssemblyId> <finalName>${project.name}-test</finalName> <filters> <filter>src/assemble/test/distribution.properties</filter> </filters> <descriptors> <descriptor>src/assemble/distribution.xml</descriptor> </descriptors> <attach>true</attach> </configuration> </execution> <execution> <id>${project.name}-prod-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> <configuration> <appendAssemblyId>false</appendAssemblyId> <finalName>${project.name}-prod</finalName> <filters> <filter>src/assemble/prod/distribution.properties</filter> </filters> <descriptors> <descriptor>src/assemble/distribution.xml</descriptor> </descriptors> <attach>true</attach> </configuration> </execution> </executions> </plugin> </plugins> </build> This produced two zip-files: distribution-prod.zip distribution-test.zip My expectation for the property attach=true is, that the two zip-files are installed with the name as given in property finalName. But the result is, only one file is installed (attached) to the artifact. The maven protocol is: distrib-0.1-SNAPSHOT.zip distrib-0.1-SNAPSHOT.zip The plugin is using the artifact-id instead of property finalName! Is this a bug? The last installation is overwriting the first one. What can i do to install this two files with different names? Thanks for your investigation. Roland

    Read the article

  • Are their any suggestions for this new assembly language?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller exit End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Are there any suggestions for these new assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Assembly.CodeBase: when is it no file-URI?

    - by Marc Wittke
    Assembly.Location gives a plain path to the assembly. Unfortunately this is empty when running in a shadowed environment, such as unit test or ASP.NET. Hovever, the Codebase property is available and provides a URI that can be used instead. In which cases it returns no URI starting with file:///? Or in other words: what are the cases in which this won't work or will return unusable results? Assembly assembly = GetType().Assembly; Uri codeBaseUri = new Uri(assembly.CodeBase); string path = codeBaseUri.LocalPath;

    Read the article

  • Hiding an internal interface in a "friend" assembly

    - by dmo
    I have two assemblies: A and B. A has InternalsVisibleTo set for B. I would like to make calls from A to get information that can only be known by a type defined in B in a way that keeps things internal. I can do this using an internal interface defined in A and implemented explicitly in B. Assembly A internal interface IHasData { Data GetData(); } class ClassA { DoSomething(IHasData); } Assembly B public abstract class ClassB : IHasData { Data IHasData.GetData() { /** do something internal **/ } } The trouble comes when someone references assembly B and derives from ClassB - they get the error: "The type 'AssemblyA.IHasData' is defined in an assembly that is not referenced" even though that type should be invisible to them. If I look at the public type definition I see what I expect - ClassB with no interfaces implemented. Why do I get this error? All of the implementation is in assembly B. I could use IHasData internally in ClassB and that wouldn't require assembly A to be referenced. Can someone help me understand what is going on?

    Read the article

  • Android: how to obtain AssetManager without reference to Context?

    - by ab11
    I have a Class that needs to obtain a reference to it's application's AssetManager. This class does not extend any sort of android UI class, so it doesn't have a getContext() method, or anything similar. Is there some sort of static Context.getCurrentApplicationContext() type of method? To clarify: my class is intended to be used like a library, for other applications. It has no associated AndroidManifest.xml or control over the context which is calling it.

    Read the article

  • Assembly Level Language? Unlock iPhone 3GS with latest Baseband. Need Opinion

    - by getkenny
    Hi Guys, So its more like advice i need. I got 2 iPhone 3GS (Bootloader 06.02 and BB 05.11) which are lying around useless cause it was bought it from US and now i am in Dubai. Cannot use the phone because there is no unlock. Now rather than waiting and relying on other people to provide a unlock for the baseband , i was thinking of learning what it takes to unlock a iPhone. I currently don't even know what i got to learn to do this. I understand from soem reading around that i will need to learn ARM to understand the baseband and try to find a exploit: is it correct? I really want to help people out in getting their iPhones working. Also the iPhones cost was $645 each (16GB) so its not like Apple is going to loose any money of it, the person who bought it for me thought that if your not buying with an AT&T contract it means that it is unlocked but it is not true. I need help, i am willing to learn and you guys are the best bunch around to give me advice. Regards.

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • Globalization, Localization And Why My Application Stopped Launching

    - by Paulo Morgado
    When I was localizing a Windows Phone application I was developing, I set the argument on the constructor of the AssemblyCultureAttribute for the neutral culture (en-US in this particular case) for my application. As it was late at night (or early in the dawn ) I went to sleep and, on the next day, the application wasn’t launching although it compiled just fine. I’ll have to confess that it took me a couple of nights to figure out what I had done to my application. Have you figured out what I did wrong? The documentation for the AssemblyCultureAttribute states that: The attribute is used by compilers to distinguish between a main assembly and a satellite assembly. A main assembly contains code and the neutral culture's resources. A satellite assembly contains only resources for a particular culture, as in [assembly:AssemblyCultureAttribute("de")]. Putting this attribute on an assembly and using something other than the empty string ("") for the culture name will make this assembly look like a satellite assembly, rather than a main assembly that contains executable code. Labeling a traditional code library with this attribute will break it, because no other code will be able to find the library's entry points at runtime. So, what I did was marking the once main assembly as a satellite assembly for the en-US culture which made it impossible to find its entry point. To set the the neutral culture for the assembly resources I should haveused (and eventually did) the NeutralResourcesLanguageAttribute. According to its documentation: The NeutralResourcesLanguageAttribute attribute informs the ResourceManager of the application's default culture, and also informs the ResourceManager that the default culture's resources are found in the main application assembly. When looking up resources in the same culture as the default culture, the ResourceManager automatically uses the resources located in the main assembly instead of searching for a satellite assembly. This improves lookup performance for the first resource you load, and can reduce your working set.

    Read the article

  • Problem with initializing a type with WinsdorContainer

    - by the_drow
    public ApplicationView(string[] args) { InitializeComponent(); string configFilePath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "log4net.config"); FileInfo configFileInfo = new FileInfo(configFilePath); XmlConfigurator.ConfigureAndWatch(configFileInfo); IConfigurationSource configSource = ConfigurationManager.GetSection("ActiveRecord") as IConfigurationSource; Assembly assembly = Assembly.Load("Danel.Nursing.Model"); ActiveRecordStarter.Initialize(assembly, configSource); WindsorContainer windsorContainer = ApplicationUtils.GetWindsorContainer(); windsorContainer.Kernel.AddComponentInstance<ApplicationView>(this); windsorContainer.Kernel.AddComponent(typeof(ApplicationController).Name, typeof(ApplicationController)); controller = windsorContainer.Resolve<ApplicationController>(); // exception is thrown here OnApplicationLoad(args); } The stack trace is this: Castle.MicroKernel.ComponentActivator.ComponentActivatorException was unhandled Message="ComponentActivator: could not instantiate Danel.Nursing.Scheduling.Actions.DataServices.NurseAbsenceDataService" Source="Castle.MicroKernel" StackTrace: at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateInstance(CreationContext context, Object[] arguments, Type[] signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.ResolveServiceDependency(CreationContext context, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.Resolve(CreationContext context, ISubDependencyResolver parentResolver, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateConstructorArguments(ConstructorCandidate constructor, CreationContext context, Type[]& signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.ResolveServiceDependency(CreationContext context, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.Resolve(CreationContext context, ISubDependencyResolver parentResolver, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateConstructorArguments(ConstructorCandidate constructor, CreationContext context, Type[]& signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.ResolveServiceDependency(CreationContext context, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.Resolve(CreationContext context, ISubDependencyResolver parentResolver, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateConstructorArguments(ConstructorCandidate constructor, CreationContext context, Type[]& signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.DefaultKernel.ResolveComponent(IHandler handler, Type service, IDictionary additionalArguments) at Castle.MicroKernel.DefaultKernel.ResolveComponent(IHandler handler, Type service) at Castle.MicroKernel.DefaultKernel.get_Item(Type service) at Castle.Windsor.WindsorContainer.Resolve(Type service) at Castle.Windsor.WindsorContainer.ResolveT at Danel.Nursing.Scheduling.ApplicationView..ctor(String[] args) in E:\Agile\Scheduling\Danel.Nursing.Scheduling\ApplicationView.cs:line 65 at Danel.Nursing.Scheduling.Program.Main(String[] args) in E:\Agile\Scheduling\Danel.Nursing.Scheduling\Program.cs:line 24 at System.AppDomain._nExecuteAssembly(Assembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException: System.ArgumentNullException Message="Value cannot be null.\r\nParameter name: types" Source="mscorlib" ParamName="types" StackTrace: at System.Type.GetConstructor(BindingFlags bindingAttr, Binder binder, Type[] types, ParameterModifier[] modifiers) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.FastCreateInstance(Type implType, Object[] arguments, Type[] signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateInstance(CreationContext context, Object[] arguments, Type[] signature) InnerException: It actually says that the type that I'm trying to initialize does not exist, I think. This is the concreate type that it complains about: namespace Danel.Nursing.Scheduling.Actions.DataServices { using System; using Helpers; using Rhino.Commons; using Danel.Nursing.Model; using NHibernate.Expressions; using System.Collections.Generic; using DateUtil = Danel.Nursing.Scheduling.Actions.Helpers.DateUtil; using Danel.Nursing.Scheduling.Actions.DataServices.Interfaces; public class NurseAbsenceDataService : AbstractDataService<NurseAbsence>, INurseAbsenceDataService { NurseAbsenceDataService(IRepository<NurseAbsence> repository) : base(repository) { } //... } } The AbstractDataService only holds the IRepository for now. Anyone got an idea why the exception is thrown?

    Read the article

  • Core Data passing context between methods on secondary threads

    - by JK
    My app spawns a secondary thread for some core data store maintenance. In the secondary thread, I set up a context which I then pass to other methods e.g. [self editEntriesInContext:context]. However, this causes objects fetched from the context to become invalidated in editEntries... Why does this occur? I thought the only requirements were for the secondary thread to have its own context and managed objects, which I adhere to. (Note: The context is properly retained)

    Read the article

  • Maven: How to create assembly with snapshot artifacts without timestamps file name?

    - by marabol
    I've a repository containing snapshot artifacts with timestamps. I want to create an assembly, that contains the dependencies. This works fine. But the artifact names contains the timestamp. So i wonder how to remove the timestamp from filename for the assembly only. I've used this dependencySet: <outputFileNameMapping>${artifact.artifactId}-${artifact.version}.${artifact.extension}</outputFileNameMapping> But version seams to contain already the timestamp. So is there any chance to get a 1.1.1-SNAPSHOT instead of 1.1.1-20100323.071348-182?

    Read the article

  • How can I programmatically obtain the company info used to digitally sign an assembly in .NET?

    - by chaiguy
    As a means of simple security, I was previously checking the digital signature of a downloaded update package for my program against its public key to ensure that it originated from me. However, as I'm using cheap code signing certs (Tucows), I am unable to renew an existing cert and therefore the keys change every time I need to renew. Therefore, a more reliable means would be to verify the organization information embedded in the signed assembly (which is displayed in the UAC dialog) against my well-known organization string, as this will continue to be the same. Does anyone know how to obtain this information from a digitally-signed assembly?

    Read the article

  • How do I combine an unmanaged dll and a managed assembly into one file?

    - by Lasse V. Karlsen
    SQLite from PHX Software has combined a managed assembly (System.Data.SQLite) with an unmanaged dll (the SQLite 32- or 64-bit dll) into one file, and managed to link them together. How do I do this? Do I need to embed the managed assembly into the unmanaged dll, or vice versa? ie. my questions are: In which order do I need to do this? What tools or knowledge do I need in order to do this? How (if different) do I link to the exported functions from the unmanaged dll in my managed code? The reason I ask this is that I want to build a managed zLib wrapper. I know there is managed classes in .NET but from experience they're a bit limited (and a bit boneheaded in that they don't do proper buffering), so I'd like to create my own copy, also because I want to learn how to do this. So does anyone know what I need to do and how?

    Read the article

  • Is there an easy way to sign a C++ CLI assembly in VS 2010?

    - by jyoung
    Right now I am setting the Linker/Advanced/KeyFile option. I am getting the "mt.exe : general warning 810100b3: is a strong-name signed assembly and embedding a manifest invalidates the signature. You will need to re-sign this file to make it a valid assembly.". Reading from the web, it sounds like I have to set the delay signing option, download the SDK, and run sn.exe as a post build event. Surely there must be an easier way to do this common operation in VS2010?

    Read the article

  • CoreGraphics taking a while to show on a large view - can i get it to repeat pixels?

    - by Andrew
    This is my coregraphics code: void drawTopPaperBackground(CGContextRef context, CGRect rect) { CGRect paper3 = CGRectMake(10, 14, 300, rect.size.height - 14); CGRect paper2 = CGRectMake(13, 12, 294, rect.size.height - 12); CGRect paper1 = CGRectMake(16, 10, 288, rect.size.height - 10); //Shadow CGContextSetShadowWithColor(context, CGSizeMake(0,0), 10, [[UIColor colorWithWhite:0 alpha:0.5]CGColor]); CGPathRef path = createRoundedRectForRect(paper3, 0); CGContextSetFillColorWithColor(context, [[UIColor blackColor] CGColor]); CGContextAddPath(context, path); CGContextFillPath(context); //Layers of paper //CGContextSaveGState(context); drawPaper(context, paper3); drawPaper(context, paper2); drawPaper(context, paper1); //CGContextRestoreGState(context); } void drawPaper(CGContextRef context, CGRect rect) { //Shadow CGContextSaveGState(context); CGContextSetShadowWithColor(context, CGSizeMake(0,0), 1, [[UIColor colorWithWhite:0 alpha:0.5]CGColor]); CGPathRef path = createRoundedRectForRect(rect, 0); CGContextSetFillColorWithColor(context, [[UIColor blackColor] CGColor]); CGContextAddPath(context, path); CGContextFillPath(context); //CGContextRestoreGState(context); //Gradient //CGContextSaveGState(context); CGColorRef startColor = [UIColor colorWithWhite:0.92 alpha:1.0].CGColor; CGColorRef endColor = [UIColor colorWithWhite:0.94 alpha:1.0].CGColor; CGRect firstHalf = CGRectMake(rect.origin.x, rect.origin.y, rect.size.width / 2, rect.size.height); CGRect secondHalf = CGRectMake(rect.origin.x + (rect.size.width / 2), rect.origin.y, rect.size.width / 2, rect.size.height); drawVerticalGradient(context, firstHalf, startColor, endColor); drawVerticalGradient(context, secondHalf, endColor, startColor); //CGContextRestoreGState(context); //CGContextSaveGState(context); CGRect redRect = rectForRectWithInset(rect, -1); CGMutablePathRef redPath = createRoundedRectForRect(redRect, 0); //CGContextSaveGState(context); CGContextSetStrokeColorWithColor(context, [[UIColor blackColor] CGColor]); CGContextAddPath(context, path); CGContextClip(context); CGContextAddPath(context, redPath); CGContextSetShadowWithColor(context, CGSizeMake(0, 0), 15.0, [[UIColor colorWithWhite:0 alpha:0.1] CGColor]); CGContextStrokePath(context); CGContextRestoreGState(context); } The view is a UIScrollView, which contains a textview. Every time the user types something and goes onto a new line, I call [self setNeedsDisplay]; and it redraws the code. But when the view starts to get long - around 1000 height, it has very noticeable lag. How can i make this code more efficient? Can i take a line of pixels and make it just repeat that, or stretch it, all the way down?

    Read the article

  • Sort an array via x86 Assembly (embedded in C++)?? Possible??

    - by Mark V.
    I am playing around with x86 assembly for the first time and I can't figure out how to sort an array (via insertion sort).. I understand the algorithm, but assembly is confusing me as I primarily use Java & C++. Heres all I have so far int ascending_sort( char arrayOfLetters[], int arraySize ) { char temp; __asm{ push eax push ebx push ecx push edx push esi push edi //// ??? pop edi pop esi pop edx pop ecx pop ebx pop eax } } Basically nothing :( Any ideas?? Thanks in advance.

    Read the article

  • Keep context-configuration when redeploying via Cargo

    - by Björn Pollex
    I am using Tomcat 7 to host a web-application that requires a JNDI datasource to be set up. Because this resource is specific to this application, I would like to configure it inside the application-specific context-descriptor in $CATALINA_BASE/conf/[enginename]/[hostname]/. I am also using Cargo from Maven to deploy the web-application to Tomcat. The problem is that when I do a redeploy with Cargo, it first undeploys the application, before deploying it again. When undeploying it, Tomcat deletes the context-descriptor of the application, so it won't work after redeploying. I could of course package the context-descriptor with the application, but I would like to keep any such container-specifics out of the .war. Another alternative is to configure the datasource in the global context-descriptor, but that too seems wrong, because the datasource is supposed to be exclusive to my application. Is my approach fundamentally wrong? What is the best practice here? Is there any way to prevent Tomcat from deleting the descriptor when undeploying?

    Read the article

  • The ugly evolution of running a background operation in the context of an ASP.NET app

    - by Jeff
    If you’re one of the two people who has followed my blog for many years, you know that I’ve been going at POP Forums now for over almost 15 years. Publishing it as an open source app has been a big help because it helps me understand how people want to use it, and having it translated to six languages is pretty sweet. Despite this warm and fuzzy group hug, there has been an ugly hack hiding in there for years. One of the things we find ourselves wanting to do is hide some kind of regular process inside of an ASP.NET application that runs periodically. The motivation for this has always been that a lot of people simply don’t have a choice, because they’re running the app on shared hosting, or don’t otherwise have access to a box that can run some kind of regular background service. In POP Forums, I “solved” this problem years ago by hiding some static timers in an HttpModule. Truthfully, this works well as long as you don’t run multiple instances of the app, which in the cloud world, is always a possibility. With the arrival of WebJobs in Azure, I’m going to solve this problem. This post isn’t about that. The other little hacky problem that I “solved” was spawning a background thread to queue emails to subscribed users of the forum. This evolved quite a bit over the years, starting with a long running page to mail users in real-time, when I had only a few hundred. By the time it got into the thousands, or tens of thousands, I needed a better way. What I did is launched a new thread that read all of the user data in, then wrote a queued email to the database (as in, the entire body of the email, every time), with the properly formatted opt-out link. It was super inefficient, but it worked. Then I moved my biggest site using it, CoasterBuzz, to an Azure Website, and it stopped working. So let’s start with the first stupid thing I was doing. The new thread was simply created with delegate code inline. As best I can tell, Azure Websites are more aggressive about garbage collection, because that thread didn’t queue even one message. When the calling server response went out of scope, so went the magic background thread. Duh, all I had to do was move the thread to a private static variable in the class. That’s the way I was able to keep stuff running from the HttpModule. (And yes, I know this is still prone to failure, particularly if the app recycles. For as infrequently as it’s used, I have not, however, experienced this.) It was still failing, but this time I wasn’t sure why. It would queue a few dozen messages, then die. Running in Azure, I had to turn on the application logging and FTP in to see what was going on. That led me to a helper method I was using as delegate to build the unsubscribe links. The idea here is that I didn’t want yet another config entry to describe the base URL, appended with the right path that would match the routing table. No, I wanted the app to figure it out for you, so I came up with this little thing: public static string FullUrlHelper(this Controller controller, string actionName, string controllerName, object routeValues = null) { var helper = new UrlHelper(controller.Request.RequestContext); var requestUrl = controller.Request.Url; if (requestUrl == null) return String.Empty; var url = requestUrl.Scheme + "://"; url += requestUrl.Host; url += (requestUrl.Port != 80 ? ":" + requestUrl.Port : ""); url += helper.Action(actionName, controllerName, routeValues); return url; } And yes, that should have been done with a string builder. This is useful for sending out the email verification messages, too. As clever as I thought I was with this, I was using a delegate in the admin controller to format these unsubscribe links for tens of thousands of users. I passed that delegate into a service class that did the email work: Func<User, string> unsubscribeLinkGenerator = user => this.FullUrlHelper("Unsubscribe", AccountController.Name, new { id = user.UserID, key = _profileService.GetUnsubscribeHash(user) }); _mailingListService.MailUsers(subject, body, htmlBody, unsubscribeLinkGenerator); Cool, right? Actually, not so much. If you look back at the helper, this delegate then will depend on the controller context to learn the routing and format for the URL. As you might have guessed, those things were turning null after a few dozen formatted links, when the original request to the admin controller went away. That this wasn’t already happening on my dedicated server is surprising, but again, I understand why the Azure environment might be eager to reclaim a thread after servicing the request. It’s already inefficient that I’m building the entire email for every user, but going back to check the routing table for the right link every time isn’t a win either. I put together a little hack to look up one generic URL, and use that as the basis for a string format. If you’re wondering why I didn’t just use the curly braces up front, it’s because they get URL formatted: var baseString = this.FullUrlHelper("Unsubscribe", AccountController.Name, new { id = "--id--", key = "--key--" }); baseString = baseString.Replace("--id--", "{0}").Replace("--key--", "{1}"); Func unsubscribeLinkGenerator = user => String.Format(baseString, user.UserID, _profileService.GetUnsubscribeHash(user)); _mailingListService.MailUsers(subject, body, htmlBody, unsubscribeLinkGenerator); And wouldn’t you know it, the new solution works just fine. It’s still kind of hacky and inefficient, but it will work until this somehow breaks too.

    Read the article

  • Were the first assemblers written in machine code?

    - by The111
    I am reading the book The Elements of Computing Systems: Building a Modern Computer from First Principles, which contains projects encompassing the build of a computer from boolean gates all the way to high level applications (in that order). The current project I'm working on is writing an assembler using a high level language of my choice, to translate from Hack assembly code to Hack machine code (Hack is the name of the hardware platform built in the previous chapters). Although the hardware has all been built in a simulator, I have tried to pretend that I am really constructing each level using only the tools available to me at that point in the real process. That said, it got me thinking. Using a high level language to write my assembler is certainly convenient, but for the very first assembler ever written (i.e. in history), wouldn't it need to be written in machine code, since that's all that existed at the time? And a correlated question... how about today? If a brand new CPU architecture comes out, with a brand new instruction set, and a brand new assembly syntax, how would the assembler be constructed? I'm assuming you could still use an existing high level language to generate binaries for the assembler program, since if you know the syntax of both the assembly and machine languages for your new platform, then the task of writing the assembler is really just a text analysis task and is not inherently related to that platform (i.e. needing to be written in that platform's machine language)... which is the very reason I am able to "cheat" while writing my Hack assembler in 2012, and use some preexisting high level language to help me out.

    Read the article

  • What does the ".align" x86 Assembler directive do exactly? [migrated]

    - by Sinister Clock
    I will list exactly what I do not understand, and show you the parts I can not understand as well. First off, The .Align Directive .align integer, pad. The .align directive causes the next data generated to be aligned modulo integer bytes 1.~ ? : What is implied with "causes the next data generated to be aligned modulo integer bytes?" I can surmise that the next data generated is a memory-to-register transfer, no? Modulo would imply the remainder of a division. I do not understand "to be aligned modulo integer bytes"....... What would be a remainder of a simple data declaration, and how would the next data generated being aligned by a remainder be useful? If the next data is aligned modulo, that is saying the next generated data, whatever that means exactly, is the remainder of an integer? That makes absolutely no sense. What specifically would the .align, say, .align 8 directive issued in x86 for a data byte compiled from a C char, i.e., char CHARACTER = 0; be for? Or specifically coded directly with that directive, not preliminary Assembly code after compiling C? I have debugged in Assembly and noticed that any C/C++ data declarations, like chars, ints, floats, etc. will insert the directive .align 8 to each of them, and add other directives like .bss, .zero, .globl, .text, .Letext0, .Ltext0. What are all of these directives for, or at least my main asking? I have learned a lot of the main x86 Assembly instructions, but never was introduced or pointed at all of these strange directives. How do they affect the opcodes, and are all of them necessary?

    Read the article

  • How can I make a custom layout / change header background color … with Tex, Latex, ConTeXt ?

    - by harobed
    Hi, currently I produce dynamically this document http://download.stephane-klein.info/exemple_document.png with Python Report Labs… to produce pdf documents. Now, I would like try to produce this document with Tex / Latex / ConTeXt… I've some questions : how can I make the layout ? how can I make header background color ? how can I define my custom title (with blue box) ? what is the better choice for my project : Latex or ConTeXt ? What package I need to use ? geometry ? fancyhdr ? Have you some example ? some resource ? Yesterday, I've read many many documentation… and I don't found a solution / example for my questions. Thanks for your help, Stephane

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >