Search Results

Search found 17157 results on 687 pages for 'cloud services'.

Page 20/687 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • Using AutoMySQLBackup on Rackspace Cloud

    - by xref
    Since Rackspace Cloud only allows FTP access it makes using AutoMySQLBackup a little trickier, and while it is at least creating DB dumps I get errors in the backup log: ###### WARNING ###### Errors reported during AutoMySQLBackup execution.. Backup failed Error log below.. .../backups/automysqlbackup: line 1791: /usr/bin/find: Permission denied .../backups/automysqlbackup: line 1855: /usr/bin/find: Permission denied .../backups/automysqlbackup: line 803: /usr/bin/find: Permission denied .../backups/automysqlbackup: line 1972: /usr/bin/du: Permission denied Since files are being created I'm assuming the find command failing has to do with actually rotating out and deleting the old backups? Line 803: find "${CONFIG_backup_dir}/${subfolder}${subsubfolder}" -mtime +"${rotation}" -type f -exec rm {} \; Any ideas for alternatives?

    Read the article

  • Setting up scripts in Amazon EC2 Cloud

    - by racket99
    Hello, I am currently running a few perl and python scripts on a windows pc and would like to port over to the Amazon EC2 servers running 64-bit LINUX. The scripts are basic web scrapers that go to a variety of websites, get data and then save daily as csv files. I would like to install these in the cloud and get them running in an automated way so that they will run without my intervention. Also given that I don't want to lose all the data if the instance crashes, I should also upload the csv files to Amazon S3. Any idea how I can do this? I am not terribly versed in LINUX nor do I know Perl/Python well. What is the best way for me to tackle thi

    Read the article

  • Setup local EC2 style cloud?

    - by John Kramlich
    I was recently given 3 dual opteron 2400 servers with 4GB of RAM and 120GB hard drives. I am interested in setting up something similar to Amazon's EC2 for my own personal web development use. Basically, I would like to spin up instances from an ISO or other disk images and have them available to test and develop software. Are there open source solutions I can use to accomplish this? I am assuming one of the machines will need to act as a controller of some sort for the other two. I use Sun's VirtualBox on my local development machine to virtualize various versions of Microsoft Windows. However, I'm not sure if that's the best tool for what I am trying to achieve. I apologize in advance if this question is to vague to get meaningful responses. I am new to cloud computing and fairly new at server administration.

    Read the article

  • How frequent are network partitions on cloud services?

    - by roja
    Much is made of the CAP trade-off for data storage where conflicts can be introduced if there is a network partition. My question is there any evidence that this is a problem that arises with any significant frequency in modern cloud IAAS services e.g.; EC2, Azure, Rackspace. Is it a problem which, despite being a theoretical roadblock in constructing idealised distributed systems is, in fact, a non-issue for all practical concerns? Has anyone experienced a network partition within one of these systems (within a single data-centre?) If so would you be willing to share any details?

    Read the article

  • The king is dead, long live the king&ndash;Cloud Evening 15th Feb in London

    - by Eric Nelson
    Advert alert :-) The UK's only Cloud user group The Cloud is the hot topic. You can’t escape hearing about it everywhere you go. Cloud Evening is the UK’s only cloud-focussed user group. Cloud Evening replaces UKAzureNet, with a new objective to cover all aspects of Cloud Computing, across all platforms, technologies and providers. We want to create a community for developers and architects to come together, learn, share stories and share experiences. Each event we’ll bring you two speakers talking about what’s hot in the world of Cloud. Our first event was a great success and we're now having the second exciting instalment. We're covering running third party applications on Azure and federated identity management. We will, of course, keep you fed and watered with beer and pizza. Spaces are limited so please sign-up now! Agenda 6.00pm – Registration 6.30pm – Windows Azure and running third-party software - using Elevated Privileges, Full IIS or VM Roles  (by @MarkRendle): We all know how simple it is to run your own applications on Azure, but how about existing software? Using the RavenDB document database software as an example, Mark will look at three ways to get 3rd-party software running on Azure, including the use of Start-up Tasks, Full IIS support and VM Roles, with a discussion of the pros and cons of each approach. 7.30pm – Beer and Pizza. 8.00pm – Federated identity – integrating Active Directory with Azure-based apps and Office 365  (by Steve Plank): Steve will cover off how to write great applications which leverage your existing on-premises Active Directory, along with providing seamless access to Office 365. We hope you can join us for what looks set to be a great evening. Register now

    Read the article

  • New Book: Oracle Exalogic Elastic Cloud Handbook

    - by user12608550
    Oracle Exalogic Elastic Cloud Handbook, by Tom Plunkett, TJ Palazzolo, and Tejas Joshi, Oracle Press. The well-known characteristics and tiers of cloud computing have spawned myriad implementations by a host of vendors and system integrators. One of these, Oracle's Exalogic Elastic Cloud, part of Oracle's family of Engineered Systems, is a key component of Oracle's public and private cloud computing solutions, providing critical PaaS (Platform as a Service) features for cloud developers. These developers need guidance to take advantage of Exalogic's extensive capabilities, and the Oracle Exalogic Elastic Cloud Handbook, written by three highly experienced Oracle technologists, provides that guidance. Part One of the book covers Exalogic's hardware and software components, and includes a very useful chapter on deployment examples, describing best practices for scalabiity, availability, backup and recovery, and multi-tenant security, including integration with other Oracle Engineered Systems and products such as Exadata and storage subsystems. Part Two is a thorough guide to Exalogic installation features, configuration and monitoring, packaged application software management, and scalable application development. The book also provides an extensive list of online resources, including pointers to Web sites, whitepapers, instructional videos, and other Oracle documentation. So, if you're planning to implement Exalogic as part of your cloud infrastructure, or are considering such, you'll find lots of sage advice and best practices in this handbook.

    Read the article

  • Is There a Cloud Over OpenWorld?

    - by Tony Berk
    If you have been to OpenWorld in the past, you know it can be overwhelming or at least a bit "large." If this is your first time at OpenWorld, get ready! You are in for a big (or I should say HUGE) treat. The first thing you'll notice when you get to San Francisco is there are a lot of people, buses with "Oracle" posters, large exhibit halls filled with demos, games and tchotchkes from vendors with hot new solutions, and then there are the sessions. Yes, in fact there are over 2000 sessions. How can you possibly sort through 2000 sessions to find the best 20 or so for you? Which are the 1% for you? We will try to help with some insight over the next few weeks.  I'm going start at the highest level. Up in the Clouds! Since I know many people are looking for an update on The Oracle Cloud. We will drill down into the cloud and other topics for CRM and Customer Experience sessions in the next set of posts. Below is a list of some of the Oracle executive keynotes during OpenWorld highlighting The Oracle Cloud and applications related topics (the full list is here). In these sessions you will get details on Oracle's strategy and how Oracle is changing the industry to help our customers be more efficient, effective and innovative. Sunday, September 30 6:00pm - 7:00pm Larry Ellison: Hardware and Software, Engineered to Work Together: Why it's a Different Approach Tuesday, October 2 8:45am - 9:45am Thomas Kurian: The Oracle Cloud: Oracle's Cloud Platform and Application's Strategy Tuesday, October 2 3:30pm - 4:30pm Larry Ellison: The Oracle Cloud: Where Social is Built in Thursday, October 4 9:45am - 10:45am Mark Hurd: See More, Act Faster: Oracle Business Analytics We encourage you to also join the keynotes on the Oracle Database and Cloud Infrastructure and the fascinating partner keynotes, as well. Check the full list on the OpenWorld site. Oh, if you haven't registered yet, what are you waiting for? OpenWorld Registration Details.

    Read the article

  • ADO.NET Data Services Entity Framework request error when property setter is internal

    - by Jim Straatman
    I receive an error message when exposing an ADO.NET Data Service using an Entity Framework data model that contains an entity (called "Case") with an internal setter on a property. If I modify the setter to be public (using the entity designer), the data services works fine. I don’t need the entity "Case" exposed in the data service, so I tried to limit which entities are exposed using SetEntitySetAccessRule. This didn’t work, and service end point fails with the same error. public static void InitializeService(IDataServiceConfiguration config) { config.SetEntitySetAccessRule("User", EntitySetRights.AllRead); } The error message is reported in a browser when the .svc endpoint is called. It is very generic, and reads “Request Error. The server encountered an error processing the request. See server logs for more details.” Unfortunately, there are no entries in the System and Application event logs. I found this stackoverflow question that shows how to configure tracing on the service. After doing so, the following NullReferenceExceptoin error was reported in the trace log. Does anyone know how to avoid this exception when including an entity with an internal setter? Blockquote 131076 3 0 2 MOTOJIM http://msdn.microsoft.com/en-US/library/System.ServiceModel.Diagnostics.TraceHandledException.aspx Handling an exception. 685a2910-19-128703978432492675 System.NullReferenceException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.PopulateMetadata() at System.Data.Services.DataService1.CreateProvider(Type dataServiceType, Object dataSourceInstance, DataServiceConfiguration&amp; configuration) at System.Data.Services.DataService1.EnsureProviderAndConfigForRequest() at System.Data.Services.DataService1.ProcessRequestForMessage(Stream messageBody) at SyncInvokeProcessRequestForMessage(Object , Object[] , Object[] ) at System.ServiceModel.Dispatcher.SyncMethodInvoker.Invoke(Object instance, Object[] inputs, Object[]&amp; outputs) at System.ServiceModel.Dispatcher.DispatchOperationRuntime.InvokeBegin(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage5(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage4(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage3(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage2(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage1(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.MessageRpc.Process(Boolean isOperationContextSet) </StackTrace> <ExceptionString>System.NullReferenceException: Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.P

    Read the article

  • Remote Debug Windows Azure Cloud Service

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/11/02/remote-debug-windows-azure-cloud-service.aspxOn the 22nd of October Microsoft Announced the new Windows Azure SDK 2.2. It introduced a lot of cool features but one of it shocked most, which is the remote debug support for Windows Azure Cloud Service (a.k.a. WACS).   Live Debug is Nightmare for Cloud Application When we are developing against public cloud, debug might be the most difficult task, especially after the application had been deployed. In order to minimize the debug effort, Microsoft provided local emulator for cloud service and storage once the Windows Azure platform was announced. By using local emulator developers could be able run their application on local machine with almost the same behavior as running on Windows Azure, and that could be debug easily and quickly. But when we deployed our application to Azure, we have to use log, diagnostic monitor to debug, which is very low efficient. Visual Studio 2012 introduced a new feature named "anonymous remote debug" which allows any workstation under any user could be able to attach the remote process. This is less secure comparing the authenticated remote debug but much easier and simpler to use. Now in Windows Azure SDK 2.2, we could be able to attach our application from our local machine to Windows Azure, and it's very easy.   How to Use Remote Debugger First, let's create a new Windows Azure Cloud Project in Visual Studio and selected ASP.NET Web Role. Then create an ASP.NET WebForm application. Then right click on the cloud project and select "publish". In the publish dialog we need to make sure the application will be built in debug mode, since .NET assembly cannot be debugged in release mode. I enabled Remote Desktop as I will log into the virtual machine later in this post. It's NOT necessary for remote debug. And selected "advanced settings" tab, make sure we checked "Enable Remote Debugger for all roles". In WACS, a cloud service could be able to have one or more roles and each role could be able to have one or more instances. The remote debugger will be enabled for all roles and all instances if we checked. Currently there's no way for us to specify which role(s) and which instance(s) to enable. Finally click "publish" button. In the windows azure activity window in Visual Studio we can find some information about remote debugger. To attache remote process would be easy. Open the "server explorer" window in Visual Studio and expand "cloud services" node, find the cloud service, role and instance we had just published and wanted to debug, right click on the instance and select "attach debugger". Then after a while (it's based on how fast our Internet connect to Windows Azure Data Center) the Visual Studio will be switched to debug mode. Let's add a breakpoint in the default web page's form load function and refresh the page in browser to see what's happen. We can see that the our application was stopped at the breakpoint. The call stack, watch features are all available to use. Now let's hit F5 to continue the step, then back to the browser we will find the page was rendered successfully.   What Under the Hood Remote debugger is a WACS plugin. When we checked the "enable remote debugger" in the publish dialog, Visual Studio will add two cloud configuration settings in the CSCFG file. Since they were appended when deployment, we cannot find in our project's CSCFG file. But if we opened the publish package we could find as below. At the same time, Visual Studio will generate a certificate and included into the package for remote debugger. If we went to the azure management portal we will find there will a certificate under our application which was created, uploaded by remote debugger plugin. Since I enabled Remote Desktop there will be two certificates in the screenshot below. The other one is for remote debugger. When our application was deployed, windows azure system will open related ports for remote debugger. As below you can see there are two new ports opened on my application. Finally, in our WACS virtual machine, windows azure system will copy the remote debug component based on which version of Visual Studio we are using and start. Our application then can be debugged remotely through the visual studio remote debugger. Below is the task manager on the virtual machine of my WACS application.   Summary In this post I demonstrated one of the feature introduced in Windows Azure SDK 2.2, which is Remote Debugger. It allows us to attach our application from local machine to windows azure virtual machine once it had been deployed. Remote debugger is powerful and easy to use, but it brings more security risk. And since it's only available for debug build this means the performance will be worse than release build. Hence we should only use this feature for staging test and bug fix (publish our beta version to azure staging slot), rather than for production.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Financial Management: Why Move to the Cloud?

    - by Kathryn Perry
    A guest post by Terrance Wampler, Vice President, Financials Product Strategy, Oracle I’ve spent my career designing and developing financial management systems, most of it at Oracle. Every single day I either meet with our customers or talk to them on the phone. The time is usually spent discussing various business challenges facing CFOs and Controllers, who are running Oracle’s Financials. Lately, we’ve been talking a lot about cloud computing and whether it makes sense for finance to go to the cloud. Here are some pros and cons that might help you make that decision. Let’s start with the benefits of cloud solutions. The first is savings. With cloud services, you pay only for those commodities that you use. That makes you feel like you're getting better value for your money. Plus, you can preserve your cash for your core business and you can get a better matching of expenses and revenues. So, at the top of the list is lower total cost of ownership. The second point has to do with optimization. With cloud services, you’ll need less IT infrastructure so you can optimize your IT resources for better-value, higher-end projects. This also leads to greater financial visibility, where there's a clear cost for the set of services or features replaced by cloud services. And, the last benefit is what I call acceleration. You can save money by speeding up the initialization and deployment of the project. You don't have to deal with IT infrastructure and you can start implementing right away. We did a quick survey of about 70 CFOs at the CFO Summit last month in New York City. We asked them why they were looking at cloud services, and not necessarily just for financials. The No. 1 response was perceived lower cost of ownership. But of course there are risks to consider. The first thing most people think about in the cloud is security and ownership of data. So, will your data really be safe? Can you meet your own privacy policy requirements? Do you really want your private financial data exposed? Do you trust the provider? Is what you see really your data? Do you own it or is it managed by someone else? Security is a big concern that comes with an emotional component. The next thing in the risk category is reliability. Is the provider proven? You’re taking what you have control over – for example, standards and policies and internal service level agreements – away from your IT department and giving it to someone else. Will you still be able to adapt to shifts in your business? Will the provider be able to grow with your business effectively? Reliability means having a provider that can give you the service infrastructure that you need. And then there’s performance, which has two components in terms of risk. Going forward, will the provider be able to scale the infrastructure or service level if you have new employees or new businesses? And second, will the price you negotiate and the rate you lock in cover additional costs and rising service fees? Another piece is cost. What happens if you don't get the service level you want? What if you end the service? What happens, if after a few years, you send the service out for bid and change service? Can you move your data? Can you move the applications? Do the integrations work? These are cost components people don’t always take into account. And, the final piece is the business case. The perception is that you can get started really quickly with cloud. It has a perceived lower cost of total ownership and it feels cool because it's cloud. But do you have a good business case for moving to the cloud? Your total cost of ownership is over three years; then you’ll renew it, so your TCO is six years. Have you compared that to other internal services that you’re offering? You might already have product that you can run this new business or division on. In that same survey at the CFO Summit, the execs thought the biggest perceived risks were security of data, ability to move data back, and the ability to create a business case to actually justify the risks. So that’s the list of pros and cons. Not to leave you hanging, I will do another post on how to balance these pros and cons and make the right decision for your business.

    Read the article

  • Part 1 - Load Testing In The Cloud

    - by Tarun Arora
    Azure is fascinating, but even more fascinating is the marriage of Azure and TFS! Introduction Recently a client I worked for had 2 major business critical applications being delivered, with very little time budgeted for Performance testing, we immediately hit a bottleneck when the performance testing phase started, the in house infrastructure team could not support the hardware requirements in the short notice. It was suggested that the performance testing be performed on one of the QA environments which was a fraction of the production environment. This didn’t seem right, the team decided to turn to the cloud. The team took advantage of the elasticity offered by Azure, starting with a single test agent which was provisioned and ready for use with in 30 minutes the team scaled up to 17 test agents to perform a very comprehensive performance testing cycle. Issues were identified and resolved but the highlight was that the cost of running the ‘test rig’ proved to be less than if hosted on premise by the infrastructure team. Thank you for taking the time out to read this blog post, in the series of posts, I’ll try and cover the start to end of everything you need to know to use Azure to build your Test Rig in the cloud. But Why Azure? I have my own Data Centre… If the environment is provisioned in your own datacentre, - No matter what level of service agreement you may have with your infrastructure team there will be down time when the environment is patched - How fast can you scale up or down the environments (keeping the enterprise processes in mind) Administration, Cost, Flexibility and Scalability are the areas you would want to think around when taking the decision between your own Data Centre and Azure! How is Microsoft's Public Cloud Offering different from Amazon’s Public Cloud Offering? Microsoft's offering of the Cloud is a hybrid of Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) which distinguishes Microsoft's offering from other providers such as Amazon (Amazon only offers IaaS). PaaS – Platform as a Service IaaS – Infrastructure as a Service Fills the needs of those who want to build and run custom applications as services. Similar to traditional hosting, where a business will use the hosted environment as a logical extension of the on-premises datacentre. A service provider offers a pre-configured, virtualized application server environment to which applications can be deployed by the development staff. Since the service providers manage the hardware (patching, upgrades and so forth), as well as application server uptime, the involvement of IT pros is minimized. On-demand scalability combined with hardware and application server management relieves developers from infrastructure concerns and allows them to focus on building applications. The servers (physical and virtual) are rented on an as-needed basis, and the IT professionals who manage the infrastructure have full control of the software configuration. This kind of flexibility increases the complexity of the IT environment, as customer IT professionals need to maintain the servers as though they are on-premises. The maintenance activities may include patching and upgrades of the OS and the application server, load balancing, failover clustering of database servers, backup and restoration, and any other activities that mitigate the risks of hardware and software failures.   The biggest advantage with PaaS is that you do not have to worry about maintaining the environment, you can focus all your time in solving the business problems with your solution rather than worrying about maintaining the environment. If you decide to use a VM Role on Azure, you are asking for IaaS, more on this later. A nice blog post here on the difference between Saas, PaaS and IaaS. Now that we are convinced why we should be turning to the cloud and why in specific Azure, let’s discuss about the Test Rig. The Load Test Rig – Topology Now the moment of truth, Of course a big part of getting value from cloud computing is identifying the most adequate workloads to take to the cloud, so I’ve decided to try to make a Load Testing rig where the Agents are running on Windows Azure.   I’ll talk you through the above Topology, - User: User kick starts the load test run from the developer workstation on premise. This passes the request to the Test Controller. - Test Controller: The Test Controller is on premise connected to the same domain as the developer workstation. As soon as the Test Controller receives the request it makes use of the Windows Azure Connect service to orchestrate the test responsibilities to all the Test Agents. The Windows Azure Connect endpoint software must be active on all Azure instances and on the Controller machine as well. This allows IP connectivity between them and, given that the firewall is properly configured, allows the Controller to send work loads to the agents. In parallel, the Controller will collect the performance data from the agents, using the traditional WMI mechanisms. - Test Agents: The Test Agents are on the Windows Azure Public Cloud, as soon as the test controller issues instructions to the test agents, the test agents start executing the load tests. The HTTP requests are issued against the web server on premise, the results are captured by the test agents. And finally the results are passed over to the controller. - Servers: The Web Server and DB Server are hosted on premise in the datacentre, this is usually the case with business critical applications, you probably want to manage them your self. Recap and What’s next? So, in the introduction in the series of blog posts on Load Testing in the cloud I highlighted why creating a test rig in the cloud is a good idea, what advantages does Windows Azure offer and the Test Rig topology that I will be using. I would also like to mention that i stumbled upon this [Video] on Azure in a nutshell, great watch if you are new to Windows Azure. In the next post I intend to start setting up the Load Test Environment and discuss pricing with respect to test agent machine types that will be used in the test rig. Hope you enjoyed this post, If you have any recommendations on things that I should consider or any questions or feedback, feel free to add to this blog post. Remember to subscribe to http://feeds.feedburner.com/TarunArora.  See you in Part II.   Share this post : CodeProject

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

  • Time drift in Cloud Server - need to mainpulate GRUB config

    - by Aditya Advani
    We are hosting a VPS on a popular host and are experiencing a regular time drift of several minutes a day forward (approx 7). Linux Kernel: 2.6.18-164.11.1.el5 GNU/Linux Distro: CentOS release 5.4 (Final) We reached out to our hosting provider and their support advised us " This is a known issue with Cloud Servers. To fix this you will need to add one line to your grub config located at: /boot/grub/menu.lst The line you need to add is: noapic nolapic divider=10 nolapic_timer This should correct this issue. You will need to restart after this is added in. " Because I am wary of manipulating grub, mostly I'm terrified that our server may fail to restart - I ask you guys, the pro *nix admins - where exactly in this file does the recommended insertion below: # line from 1&1 for time syncing issue (Case 5163) noapic nolapic divider=10 nolapic_timer go? Please specify where exactly, and whether the order of commands is or is not important. Why is the block below "title CentOS ..." indented? If someone could give me an overview of how this works or point me to a resource that's easy to follow, that's what I'm looking for immediately, a light overview or basic understanding of what I;m doing. If GRUB and bootloaders are a deep dark treasure trove of kernel hacking or something, that's great well-recommended in-depth resources are also very welcome. This is my current /boot/grub/menu.lst # grub.conf generated by anaconda # # Note that you do not have to rerun grub after making changes to this file #boot=/dev/sda # serial --unit=0 --speed=57600 terminal --timeout=5 serial console timeout=5 title CentOS (2.6.18-164.11.1.el5) root (hd0,0) kernel /boot/vmlinuz-2.6.18-164.11.1.el5 ro root=/dev/hda1 console=tty0 console=tty initrd /boot/initrd-2.6.18-164.11.1.el5.img MOST IMPORTANT: I need to know where in the file above it is appropriate to paste the suggested line so I can confidently restart my VPS after manipulating GRUB config

    Read the article

  • Unable to send mail to hotmail from rackspace cloud

    - by Jo Erlang
    I'm having issue sending mail from postfix on a rackspace cloud instance for my domain. Hotmail says "550 SC-001 (SNT0-MC4-F35) Unfortunately, messages from 198.101.x.x weren't sent. Please contact your Internet service provider since part of their network is on our block list. " Here is the mail log Sep 20 08:02:59 mydomain postfix/smtpd[1810]: disconnect from localhost[127.0.0.1] Sep 20 08:02:59 mydomain postfix/smtp[1814]: 59CFF4B191: to=<[email protected]>, relay=mx3.hotmail.com[65.55.92.184]:25, delay=0.19, delays=0.1/0.01/0.06/0.01, dsn=5.0.0, status=bounced (host mx3.hotmail.com[65.55.92.184] said: 550 SC-001 (SNT0-MC4-F35) Unfortunately, messages from 198.101.x.x weren't sent. Please contact your Internet service provider since part of their network is on our block list. You can also refer your provider to http://mail.live.com/mail/troubleshooting.aspx#errors. (in reply to MAIL FROM command)) Sep 20 08:02:59 mydomain postfix/smtp[1814]: 59CFF4B191: lost connection with mx3.hotmail.com[65.55.92.184] while sending RCPT TO I have implemented rDNS, SPF and DKIM they all are looking fine. I have checked my IP and domain, on most of the spam black lists and it is listed as ok on those, (not listed as spamming IP) What should I try next?

    Read the article

  • What are the pre-requisites for writing .NET web services?

    - by wackytacky99
    I am very new to web development. I have been a C,C++ programmer for 5 years and I'm starting to get into the web development, writing web services, etc. I understand that basic concepts of web services. I know .Net web services can be written in VB or C#. Working with C,C++ will help getting used to writing code in C#. I do not have experience in .Net framework. I'd like to quickly get into writing .Net web services and learning on the go, without extensively spending a lot of time learning .Net framework (if possible) Any suggestions? Update - I know my way around databases and sql express in Visual Studio

    Read the article

  • What is the best private cloud storage setup

    - by vdrmrt
    I need to create a private cloud and I'm searching for the best setup. These are my 2 most important requirements 1. Disk and system redundant 2. Price / GB as low as possible The system is going to be used as backup setup which will receive data 24/7 over SFTP and rsync. High throughput is not that important. I'm planning to use glusterfs and consumer grade 4TB hard-drives. I have worked out 3 possible setups 3 servers with 11 4TB HDD Setup up a replica 3 glusterfs and setup each hard drive as a separate ext4 brick. Total capacity: 44TB HDD / TB ratio of 0.75 (33HDD / 44TB) 2 servers with 11 4TB HDD The 11 hard-drives are combined in a RAIDZ3 ZFS storage pool. With a replica 2 gluster setup. Total capacity: 32TB (+ zfs compression) HDD / TB ratio of 0.68 (22HDD / 32TB) 3 servers with 11 4TB consumer hard-drives Setup up a replica 3 glusterfs and setup each hard-drive as a separate zfs storage pool and export each pool as a brick. Total capacity: 32TB (+ zfs compression) HDD / TB ratio of 0.68 (22HDD / 32TB) (Cheapest) My remarks and concerns: If a hard drive fails which setup will recover the quickest? In my opinion setup 1 and 3 because there only the contents of 1 hard-drive needs to be copied over the network. Instead of setup 2 were the hard-drive needs te be reconstructed by reading the parity of all the other harddrives in the system. Will a zfs pool on 1 harddrive give me extra protection against for example bit rot? With setup 1 and 3 I can loose 2 systems and still be up and running with setup 2 I can only loose 1 system. When I use ZFS I can enable compression which will give me some extra storage.

    Read the article

  • Managing rolling deployments in the cloud

    - by Josh Nankin
    Recently I've been experimenting with various cloud management tools like RightScale, Scalr, custom scripts for managing a variety of servers, each hosting several roles (app, db, load balancer, job queues, etc). The one thing I find lacking in most solutions is a way to do rolling deployments, i.e. running deployments sequentially across a number of servers with the same role. For instance, I dont want to build all of my webservers at the same time, as that will almost definitely result in some down time or 500s for my customers. I'd rather have one or two servers build at a time, while other servers are still available to handle requests. The other alternative is obviously to launch new servers that automatically update themselves on boot, but this isn't as cost effective, and most likely requires more time for the build to complete (it's faster to build on an existing server than to launch a new server and kill old ones). We've all heard of the big companies having the famous "push to build" button (companies like Twilio, Etsy, etc.) but it seems that they all have custom implementations of this. I'm not talking about a simple ssh-loop, clusterssh, or even an mcollective - I preferably want something with a nice simple interface that allows me to specify something like a RightScript or a Scalr script to run on a set of servers with a specific role, and it builds them sequentially. Does any one know of easy ways to get this done, or is this a candidate for a new open source project?

    Read the article

  • Dans le Cloud computing, un tutoriel pour débutant, traduit par Nicolas vieux et Vincent Viale

    Qu'est-ce que le Cloud computing ? Le Cloud computing est devenu le nouveau mot à la mode tirée en grande partie par le marketing et les offres de services de grands groupes comme Google, IBM et Amazon. Cloud computing est la prochaine étape dans l'évolution d'Internet. Cloud computing fournit le moyen par lequel tout - de la puissance de calcul de l'infrastructure informatique, des applications, des processus d'affaires pour une autoentreprise - peut être livré comme un service où et quand vous en avez besoin.

    Read the article

  • BRE (Business Rules Engine) Data Services is out...!!!

    - by Vishal
    A few months ago we at Tellago had open sourced the BizTalk Data Services. We were meanwhile working on other artifacts which comes along with BizTalk Server like the “Business Rules Engine”.  We are happy to announce the first version of BRE Data Services. BRE Data Services is a same concept which we covered through BTS Data Services, providing a RESTFul OData – based API to interact with the Business Rules Engine via HTTP using ATOM Publishing Protocol or JSON as the encoding mechanism.   In the first version release, we mainly focused on the browsing, querying and searching BRE artifacts via a RESTFul interface. Also along with that we provide the functionality to execute Business Rules by inserting the Facts for policies via the IUpdatable implementation of WCF Data Services.   The BRE Data Services API provides a lightweight interface for managing Business Rules Engine artifacts such as Policies, Rules, Vocabularies, Conditions, Actions, Facts etc. The following are some examples which details some of the available features in the current version of the API.   Basic Querying: Querying BRE Policies http://localhost/BREDataServices/BREMananagementService.svc/Policies Querying BRE Rules http://localhost/BREDataServices/BREMananagementService.svc/Rules Querying BRE Vocabularies http://localhost/BREDataServices/BREMananagementService.svc/Vocabularies   Navigation: The BRE Data Services API also leverages WCF Data Services to enable navigation across related different BRE objects. Querying a specific Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies(‘PolicyName’) Querying a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules(‘RuleName’) Querying all Rules under a Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies('PolicyName')/Rules Querying all Facts under a Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies('PolicyName')/Facts Querying all Actions for a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules('RuleName')/Actions Querying all Conditions for a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules('RuleName')/Actions Querying a specific Vocabulary: http://localhost/BREDataServices/BREMananagementService.svc/Vocabularies('VocabName')   Implementation: With the BRE Data Services, we also provide the functionality of executing a particular policy via HTTP. There are couple of ways you can do that though the API.   Ø First is though Service Operations feature of WCF Data Services in which you can execute the Facts by passing them in the URL itself. This is a very simple implementations of the executing the policies due to the limitations & restrictions (only primitive types of input parameters which can be passed) currently of the Service Operations of the WCF Data Services. Below is a code sample.                Below is a traced Request/Response message.                                 Ø Second is through the IUpdatable Interface of WCF Data Services. In this method, you can first query the rule which you want to execute and then inserts Facts for that particular Rules and finally when you perform the SaveChanges() call for the IUpdatable Interface API, it executes the policy with the facts which you inserted at runtime. Below is a sample of client side code. Due to the limitations of current version of WCF Data Services where there is no way you can return back the updates happening on the service side back to the client via the SaveChanges() method. Here we are executing the rule passing a serialized XML as Facts and there is no changes made to any data where we can query back to fetch the changes. This is overcome though the first way to executing the policies which is by executing it as a Service Operation call.     This actually generates a AtomPub message shown as below:   POST /Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/$batch HTTP/1.1 User-Agent: Microsoft ADO.NET Data Services DataServiceVersion: 1.0;NetFx MaxDataServiceVersion: 2.0;NetFx Accept: application/atom+xml,application/xml Accept-Charset: UTF-8 Content-Type: multipart/mixed; boundary=batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7 Host: localhost:8080 Content-Length: 1481 Expect: 100-continue   --batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7 Content-Type: multipart/mixed; boundary=changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf   --changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf Content-Type: application/http Content-Transfer-Encoding: binary   MERGE http://localhost:8080/Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/Facts('TestPolicy') HTTP/1.1 Content-ID: 4 Content-Type: application/atom+xml;type=entry Content-Length: 927   <?xml version="1.0" encoding="utf-8" standalone="yes"?> <entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" font-size: x-small"http://www.w3.org/2005/Atom">   <category scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" term="Tellago.BRE.REST.Resources.Fact" />   <title />   <author>     <name />   </author>   <updated>2011-01-31T20:09:15.0023982Z</updated>   <id>http://localhost:8080/Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/Facts('TestPolicy')</id>   <content type="application/xml">     <m:properties>       <d:FactInstance>&lt;ns0:LoanStatus xmlns:ns0="http://tellago.com"&gt;&lt;Age&gt;10&lt;/Age&gt;&lt;Status&gt;true&lt;/Status&gt;&lt;/ns0:LoanStatus&gt;</d:FactInstance>       <d:FactType>TestSchema</d:FactType>       <d:ID>TestPolicy</d:ID>     </m:properties>   </content> </entry> --changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf-- --batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7—     Installation: The installation of the BRE Data Services is pretty straight forward. ·         Create a new IIS website say BREDataServices. ·         Download the SourceCode from TellagoCodeplex and copy the content from Tellago.BRE.REST.ServiceHost to the physical location of the above created website.     ·         The appPool account running the website should have admin access to the BizTalkRuleEngineDb database. ·         TheRight click the BREManagementService.svc in the IIS ContentView for the website and wala..     Conclusion: The BRE Data Services API is an experiment intended to bring the capabilities of RESTful/OData based services to the Traditional BTS/BRE Solutions. The future releases will target on technologies like BAM, ESB Toolkit. This version has been tested with various version of BizTalk Server and we have uploaded the source code to our Tellago's DevLabs workspace at Codeplex. I hope you guys enjoy this release. Keep an eye on our new releases @ Tellago Codeplex. We are working on various other Biztalk Artifacts like BAM, ESB Toolkit.     Till than happy BizzRuling…!!!     Thanks,   Vishal Mody

    Read the article

  • Oracle Cloud Services Referral Program Now Available

    - by Cinzia Mascanzoni
    Partners can now take advantage of the five different Cloud Services programs: The Cloud Referral Partner program allows partners to get rewarded for referring Oracle Cloud opportunities to Oracle. The Cloud Services Partner Referral program is an extension of Oracle’s existing referral program but offers a standard 10% referral rate paid on guaranteed revenue with $50K cap. For a limited time, Oracle is offering a 20% referral rate for [offering still being finalized]. Contact your partner manager for more details and click here for more information.

    Read the article

  • Free E-Book from APress - Building the Infrastructure for Cloud Security

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/05/29/free-e-book-from-apress---building-the-infrastructure-for-cloud.aspxAt http://www.apress.com/9781430261452, APress are offering a free E-Book on Building the Infrastructure for Cloud Security. “This book provides a comprehensive look at the various facets of cloud security – infrastructure, network, services, Compliance and users.  It will provide real world case studies to articulate the real and perceived risks and challenges in deploying and managing services in a cloud infrastructure from a security perspective. ”

    Read the article

  • Create a Social Community of Trust Along With Your Federal Digital Services Governance

    - by TedMcLaughlan
    The Digital Services Governance Recommendations were recently released, supporting the US Federal Government's Digital Government Strategy Milestone Action #4.2 to establish agency-wide governance structures for developing and delivering digital services. Figure 1 - From: "Digital Services Governance Recommendations" While extremely important from a policy and procedure perspective within an Agency's information management and communications enterprise, these recommendations only very lightly reference perhaps the most important success enabler - the "Trusted Community" required for ultimate usefulness of the services delivered. By "ultimate usefulness", I mean the collection of public, transparent properties around government information and digital services that include social trust and validation, social reach, expert respect, and comparative, standard measures of relative value. In other words, do the digital services meet expectations of the public, social media ecosystem (people AND machines)? A rigid governance framework, controlling by rules, policies and roles the creation and dissemination of digital services may meet the expectations of direct end-users and most stakeholders - including the agency information stewards and security officers. All others who may share comments about the services, write about them, swap or review extracts, repackage, visualize or otherwise repurpose the output for use in entirely unanticipated, social ways - these "stakeholders" will not be governed, but may observe guidance generated by a "Trusted Community". As recognized members of the trusted community, these stakeholders may ultimately define the right scope and detail of governance that all other users might observe, promoting and refining the usefulness of the government product as the social ecosystem expects. So, as part of an agency-centric governance framework, it's advised that a flexible governance model be created for stewarding a "Community of Trust" around the digital services. The first steps follow the approach outlined in the Recommendations: Step 1: Gather a Core Team In addition to the roles and responsibilities described, perhaps a set of characteristics and responsibilities can be developed for the "Trusted Community Steward/Advocate" - i.e. a person or team who (a) are entirely cognizant of and respected within the external social media communities, and (b) are trusted both within the agency and outside as practical, responsible, non-partisan communicators of useful information. The may seem like a standard Agency PR/Outreach team role - but often an agency or stakeholder subject matter expert with a public, active social persona works even better. Step 2: Assess What You Have In addition to existing, agency or stakeholder decision-making bodies and assets, it's important to take a PR/Marketing view of the social ecosystem. How visible are the services across the social channels utilized by current or desired constituents of your agency? What's the online reputation of your agency and perhaps the service(s)? Is Search Engine Optimization (SEO) a facet of external communications/publishing lifecycles? Who are the public champions, instigators, value-adders for the digital services, or perhaps just influential "communicators" (i.e. with no stake in the game)? You're essentially assessing your market and social presence, and identifying the actors (including your own agency employees) in the existing community of trust. Step 3: Determine What You Want The evolving Community of Trust will most readily absorb, support and provide feedback regarding "Core Principles" (Element B of the "six essential elements of a digital services governance structure") shared by your Agency, and obviously play a large, though probably very unstructured part in Element D "Stakeholder Input and Participation". Plan for this, and seek input from the social media community with respect to performance metrics - these should be geared around the outcome and growth of the trusted communities actions. How big and active is this community? What's the influential reach of this community with respect to particular messaging or campaigns generated by the Agency? What's the referral rate TO your digital services, FROM channels owned or operated by members of this community? (this requires governance with respect to content generation inclusive of "markers" or "tags"). At this point, while your Agency proceeds with steps 4 ("Build/Validate the Governance Structure") and 5 ("Share, Review, Upgrade"), the Community of Trust might as well just get going, and start adding value and usefulness to the existing conversations, existing data services - loosely though directionally-stewarded by your trusted advocate(s). Why is this an "Enterprise Architecture" topic? Because it's increasingly apparent that a Public Service "Enterprise" is not wholly contained within Agency facilities, firewalls and job titles - it's also manifested in actual, perceived or representative forms outside the walls, on the social Internet. An Agency's EA model and resulting investments both facilitate and are impacted by the "Social Enterprise". At Oracle, we're very active both within our Enterprise and outside, helping foster social architectures that enable truly useful public services, digital or otherwise.

    Read the article

  • iOS Support with Windows Azure Mobile Services – now with Push Notifications

    - by ScottGu
    A few weeks ago I posted about a number of improvements to Windows Azure Mobile Services. One of these was the addition of an Objective-C client SDK that allows iOS developers to easily use Mobile Services for data and authentication.  Today I'm excited to announce a number of improvement to our iOS SDK and, most significantly, our new support for Push Notifications via APNS (Apple Push Notification Services).  This makes it incredibly easy to fire push notifications to your iOS users from Windows Azure Mobile Service scripts. Push Notifications via APNS We've provided two complete tutorials that take you step-by-step through the provisioning and setup process to enable your Windows Azure Mobile Service application with APNS (Apple Push Notification Services), including all of the steps required to configure your application for push in the Apple iOS provisioning portal: Getting started with Push Notifications - iOS Push notifications to users by using Mobile Services - iOS Once you've configured your application in the Apple iOS provisioning portal and uploaded the APNS push certificate to the Apple provisioning portal, it's just a matter of uploading your APNS push certificate to Mobile Services using the Windows Azure admin portal: Clicking the “upload” within the “Push” tab of your Mobile Service allows you to browse your local file-system and locate/upload your exported certificate.  As part of this you can also select whether you want to use the sandbox (dev) or production (prod) Apple service: Now, the code to send a push notification to your clients from within a Windows Azure Mobile Service is as easy as the code below: push.apns.send(deviceToken, {      alert: 'Toast: A new Mobile Services task.',      sound: 'default' }); This will cause Windows Azure Mobile Services to connect to APNS (Apple Push Notification Service) and send a notification to the iOS device you specified via the deviceToken: Check out our reference documentation for full details on how to use the new Windows Azure Mobile Services apns object to send your push notifications. Feedback Scripts An important part of working with any PNS (Push Notification Service) is handling feedback for expired device tokens and channels. This typically happens when your application is uninstalled from a particular device and can no longer receive your notifications. With Windows Notification Services you get an instant response from the HTTP server.  Apple’s Notification Services works in a slightly different way and provides an additional endpoint you can connect to poll for a list of expired tokens. As with all of the capabilities we integrate with Mobile Services, our goal is to allow developers to focus more on building their app and less on building infrastructure to support their ideas. Therefore we knew we had to provide a simple way for developers to integrate feedback from APNS on a regular basis.  This week’s update now includes a new screen in the portal that allows you to optionally provide a script to process your APNS feedback – and it will be executed by Mobile Services on an ongoing basis: This script is invoked periodically while your service is active. To poll the feedback endpoint you can simply call the apns object's getFeedback method from within this script: push.apns.getFeedback({       success: function(results) {           // results is an array of objects with a deviceToken and time properties      } }); This returns you a list of invalid tokens that can now be removed from your database. iOS Client SDK improvements Over the last month we've continued to work with a number of iOS advisors to make improvements to our Objective-C SDK. The SDK is being developed under an open source license (Apache 2.0) and is available on github. Many of the improvements are behind the scenes to improve performance and memory usage. However, one of the biggest improvements to our iOS Client API is the addition of an even easier login method.  Below is the Objective-C code you can now write to invoke it: [client loginWithProvider:@"twitter"                     onController:self                        animated:YES                      completion:^(MSUser *user, NSError *error) {      // if no error, you are now logged in via twitter }]; This code will automatically present and dismiss our login view controller as a modal dialog on the specified controller.  This does all the hard work for you and makes login via Twitter, Google, Facebook and Microsoft Account identities just a single line of code. My colleague Josh just posted a short video demonstrating these new features which I'd recommend checking out: Summary The above features are all now live in production and are available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using Mobile Services today. Visit the Windows Azure Mobile Developer Center to learn more about how to build apps with Mobile Services. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Sharepoint 2010 web front end servers and services configuration

    - by Yash
    I have a sharepoint insfrastructure where a document library is made available both locally and on the internet. I have a few web front end servers facing the public (in the DMZ) while having another set inside the secured network for internal use. I also have an application server for sharepoint services inside the secured network. My goal is to configure sharepoint in such a way that the sharepoint services are available only locally and not via the internet. The users accessing the system online should not benefit of the sharepoint services. Is this possible on the same farm?

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >