Search Results

Search found 3223 results on 129 pages for 'maximum'.

Page 20/129 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • How to Load Oracle Tables From Hadoop Tutorial (Part 5 - Leveraging Parallelism in OSCH)

    - by Bob Hanckel
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Using OSCH: Beyond Hello World In the previous post we discussed a “Hello World” example for OSCH focusing on the mechanics of getting a toy end-to-end example working. In this post we are going to talk about how to make it work for big data loads. We will explain how to optimize an OSCH external table for load, paying particular attention to Oracle’s DOP (degree of parallelism), the number of external table location files we use, and the number of HDFS files that make up the payload. We will provide some rules that serve as best practices when using OSCH. The assumption is that you have read the previous post and have some end to end OSCH external tables working and now you want to ramp up the size of the loads. Using OSCH External Tables for Access and Loading OSCH external tables are no different from any other Oracle external tables.  They can be used to access HDFS content using Oracle SQL: SELECT * FROM my_hdfs_external_table; or use the same SQL access to load a table in Oracle. INSERT INTO my_oracle_table SELECT * FROM my_hdfs_external_table; To speed up the load time, you will want to control the degree of parallelism (i.e. DOP) and add two SQL hints. ALTER SESSION FORCE PARALLEL DML PARALLEL  8; ALTER SESSION FORCE PARALLEL QUERY PARALLEL 8; INSERT /*+ append pq_distribute(my_oracle_table, none) */ INTO my_oracle_table SELECT * FROM my_hdfs_external_table; There are various ways of either hinting at what level of DOP you want to use.  The ALTER SESSION statements above force the issue assuming you (the user of the session) are allowed to assert the DOP (more on that in the next section).  Alternatively you could embed additional parallel hints directly into the INSERT and SELECT clause respectively. /*+ parallel(my_oracle_table,8) *//*+ parallel(my_hdfs_external_table,8) */ Note that the "append" hint lets you load a target table by reserving space above a given "high watermark" in storage and uses Direct Path load.  In other doesn't try to fill blocks that are already allocated and partially filled. It uses unallocated blocks.  It is an optimized way of loading a table without incurring the typical resource overhead associated with run-of-the-mill inserts.  The "pq_distribute" hint in this context unifies the INSERT and SELECT operators to make data flow during a load more efficient. Finally your target Oracle table should be defined with "NOLOGGING" and "PARALLEL" attributes.   The combination of the "NOLOGGING" and use of the "append" hint disables REDO logging, and its overhead.  The "PARALLEL" clause tells Oracle to try to use parallel execution when operating on the target table. Determine Your DOP It might feel natural to build your datasets in Hadoop, then afterwards figure out how to tune the OSCH external table definition, but you should start backwards. You should focus on Oracle database, specifically the DOP you want to use when loading (or accessing) HDFS content using external tables. The DOP in Oracle controls how many PQ slaves are launched in parallel when executing an external table. Typically the DOP is something you want to Oracle to control transparently, but for loading content from Hadoop with OSCH, it's something that you will want to control. Oracle computes the maximum DOP that can be used by an Oracle user. The maximum value that can be assigned is an integer value typically equal to the number of CPUs on your Oracle instances, times the number of cores per CPU, times the number of Oracle instances. For example, suppose you have a RAC environment with 2 Oracle instances. And suppose that each system has 2 CPUs with 32 cores. The maximum DOP would be 128 (i.e. 2*2*32). In point of fact if you are running on a production system, the maximum DOP you are allowed to use will be restricted by the Oracle DBA. This is because using a system maximum DOP can subsume all system resources on Oracle and starve anything else that is executing. Obviously on a production system where resources need to be shared 24x7, this can’t be allowed to happen. The use cases for being able to run OSCH with a maximum DOP are when you have exclusive access to all the resources on an Oracle system. This can be in situations when your are first seeding tables in a new Oracle database, or there is a time where normal activity in the production database can be safely taken off-line for a few hours to free up resources for a big incremental load. Using OSCH on high end machines (specifically Oracle Exadata and Oracle BDA cabled with Infiniband), this mode of operation can load up to 15TB per hour. The bottom line is that you should first figure out what DOP you will be allowed to run with by talking to the DBAs who manage the production system. You then use that number to derive the number of location files, and (optionally) the number of HDFS data files that you want to generate, assuming that is flexible. Rule 1: Find out the maximum DOP you will be allowed to use with OSCH on the target Oracle system Determining the Number of Location Files Let’s assume that the DBA told you that your maximum DOP was 8. You want the number of location files in your external table to be big enough to utilize all 8 PQ slaves, and you want them to represent equally balanced workloads. Remember location files in OSCH are metadata lists of HDFS files and are created using OSCH’s External Table tool. They also represent the workload size given to an individual Oracle PQ slave (i.e. a PQ slave is given one location file to process at a time, and only it will process the contents of the location file.) Rule 2: The size of the workload of a single location file (and the PQ slave that processes it) is the sum of the content size of the HDFS files it lists For example, if a location file lists 5 HDFS files which are each 100GB in size, the workload size for that location file is 500GB. The number of location files that you generate is something you control by providing a number as input to OSCH’s External Table tool. Rule 3: The number of location files chosen should be a small multiple of the DOP Each location file represents one workload for one PQ slave. So the goal is to keep all slaves busy and try to give them equivalent workloads. Obviously if you run with a DOP of 8 but have 5 location files, only five PQ slaves will have something to do and the other three will have nothing to do and will quietly exit. If you run with 9 location files, then the PQ slaves will pick up the first 8 location files, and assuming they have equal work loads, will finish up about the same time. But the first PQ slave to finish its job will then be rescheduled to process the ninth location file, potentially doubling the end to end processing time. So for this DOP using 8, 16, or 32 location files would be a good idea. Determining the Number of HDFS Files Let’s start with the next rule and then explain it: Rule 4: The number of HDFS files should try to be a multiple of the number of location files and try to be relatively the same size In our running example, the DOP is 8. This means that the number of location files should be a small multiple of 8. Remember that each location file represents a list of unique HDFS files to load, and that the sum of the files listed in each location file is a workload for one Oracle PQ slave. The OSCH External Table tool will look in an HDFS directory for a set of HDFS files to load.  It will generate N number of location files (where N is the value you gave to the tool). It will then try to divvy up the HDFS files and do its best to make sure the workload across location files is as balanced as possible. (The tool uses a greedy algorithm that grabs the biggest HDFS file and delegates it to a particular location file. It then looks for the next biggest file and puts in some other location file, and so on). The tools ability to balance is reduced if HDFS file sizes are grossly out of balance or are too few. For example suppose my DOP is 8 and the number of location files is 8. Suppose I have only 8 HDFS files, where one file is 900GB and the others are 100GB. When the tool tries to balance the load it will be forced to put the singleton 900GB into one location file, and put each of the 100GB files in the 7 remaining location files. The load balance skew is 9 to 1. One PQ slave will be working overtime, while the slacker PQ slaves are off enjoying happy hour. If however the total payload (1600 GB) were broken up into smaller HDFS files, the OSCH External Table tool would have an easier time generating a list where each workload for each location file is relatively the same.  Applying Rule 4 above to our DOP of 8, we could divide the workload into160 files that were approximately 10 GB in size.  For this scenario the OSCH External Table tool would populate each location file with 20 HDFS file references, and all location files would have similar workloads (approximately 200GB per location file.) As a rule, when the OSCH External Table tool has to deal with more and smaller files it will be able to create more balanced loads. How small should HDFS files get? Not so small that the HDFS open and close file overhead starts having a substantial impact. For our performance test system (Exadata/BDA with Infiniband), I compared three OSCH loads of 1 TiB. One load had 128 HDFS files living in 64 location files where each HDFS file was about 8GB. I then did the same load with 12800 files where each HDFS file was about 80MB size. The end to end load time was virtually the same. However when I got ridiculously small (i.e. 128000 files at about 8MB per file), it started to make an impact and slow down the load time. What happens if you break rules 3 or 4 above? Nothing draconian, everything will still function. You just won’t be taking full advantage of the generous DOP that was allocated to you by your friendly DBA. The key point of the rules articulated above is this: if you know that HDFS content is ultimately going to be loaded into Oracle using OSCH, it makes sense to chop them up into the right number of files roughly the same size, derived from the DOP that you expect to use for loading. Next Steps So far we have talked about OLH and OSCH as alternative models for loading. That’s not quite the whole story. They can be used together in a way that provides for more efficient OSCH loads and allows one to be more flexible about scheduling on a Hadoop cluster and an Oracle Database to perform load operations. The next lesson will talk about Oracle Data Pump files generated by OLH, and loaded using OSCH. It will also outline the pros and cons of using various load methods.  This will be followed up with a final tutorial lesson focusing on how to optimize OLH and OSCH for use on Oracle's engineered systems: specifically Exadata and the BDA. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • Throttling in OSB

    - by Knut Vatsendvik
    Technorati Tags: soa,integration,osb,throttling,overload protection A common problem with integration is the risk of overloading a particular web service. When the capacity of a web service is reached and it continues to accept connections, it will most likely start to deteriorate. Fortunately there are 2 techniques, with Oracle Service Bus, that you can apply for protecting this from happening. You can either limit the concurrent number of requests for a Business Service (outbound requests) or you can limit the number of threads processing the requests for a Proxy Service (inbound requests). Limiting the Concurrent Number of Requests Limiting the concurrent requests for a Business Service cannot be set at design time so you have to use the built-in Oracle Service Bus Administration Console to do it (/sbconsole). Follow these steps to enable it: In Change Center, click Create to start a new Session Select Project Explorer, and navigate to the Business Service you want to limit Select the Operational Settings tab of the View a Business Service page In this tab, under Throttling, select the Enable check box. By enabling throttling you Specify a value for Maximum Concurrency Specify a positive integer value for Throttling Queue to backlog messages that has exceeded the message concurrency limit Specify the maximum time in milliseconds for Message Expiration a message can spend in Throttling Queue Click Update Click Active in Change Center to active the new settings If you re-publish the service, it will not overwrite the settings. Only if the resource is renamed or moved, it will. Please note that a throttling queue is an in-memory queue. Messages that are placed in this queue are not recoverable when a server fails or when you restart a server. Limiting the Number of Threads A better approach, in my opinion, is to limit the number of threads that can work with request. Follow these steps to do it: Open the WebLogic Server Console (/console) In Change Center, click Create to start a new Session In the left pane expand Environment and select Work Managers In the Global Work Managers page, click New    Click the Work Manager radio button, then click Next Enter a Name for the new Work Manager, and click Next In the Available Targets list, select server instances or clusters on which you will deploy applications that reference the Work Manager Click Finish. The new Work Manager now appears in the Global Work Managers page. Select the new Work Manager Right next to the Maximum Threads Constraint drop-down box, click New   Click the Maximum Threads Constraint radio button, then click Next Enter a Name and a thread Count to be the maximum size to allocate for requests. Click Next  In the Available Targets list, select server instances or clusters on which you will deploy applications that reference the Work Manager Click Finish Click Save Click Active in Change Center to active your changes.  A restart may be necessary.   Puh! Almost there. Start a new session. Go to the Service Bus Console (/sbconsole) and find your consuming Proxy Service. Click the Edit button of the Transport Configuration tab. Click Next Set the Dispatch Policy to the new Work Manager Click Last Click Save Click Active in Change Center to active your changes. 

    Read the article

  • Extending Python’s int type to accept only values within a given range

    - by igor
    I would like to create a custom data type which basically behaves like an ordinary int, but with the value restricted to be within a given range. I guess I need some kind of factory function, but I cannot figure out how to do it. myType = MyCustomInt(minimum=7, maximum=49, default=10) i = myType(16) # OK i = myType(52) # raises ValueError i = myType() # i == 10 positiveInt = MyCustomInt(minimum=1) # no maximum restriction negativeInt = MyCustomInt(maximum=-1) # no minimum restriction nonsensicalInt = MyCustomInt() # well, the same as an ordinary int Any hint is appreciated. Thanks!

    Read the article

  • Can't Remove Logical Drive/Array from HP P400

    - by Myles
    This is my first post here. Thank you in advance for any assistance with this matter. I'm trying to remove a logical drive (logical drive 2) and an array (array "B") from my Smart Array P400. The host is a DL580 G5 running 64-bit Red Hat Enterprise Linux Server release 5.7 (Tikanga). I am unable to remove the array using either hpacucli or cpqacuxe. I believe it is because of "OS Status: LOCKED". The file system that lives on this array has been unmounted. I do not want to reboot the host. Is there some way to "release" this logical drive so I can remove the array? Note that I do not need to preserve the data on logical drive 2. I intend to physically remove the drives from the machine and replace them with larger drives. I'm using the cciss kernel module that ships with Red Hat 5.7. Here is some information pertaining to the host and the P400 configuration: [root@gort ~]# cat /etc/redhat-release Red Hat Enterprise Linux Server release 5.7 (Tikanga) [root@gort ~]# uname -a Linux gort 2.6.18-274.el5 #1 SMP Fri Jul 8 17:36:59 EDT 2011 x86_64 x86_64 x86_64 GNU/Linux [root@gort ~]# rpm -qa | egrep '^(hp|cpq)' cpqacuxe-9.30-15.0 hp-health-9.25-1551.7.rhel5 hpsmh-7.1.2-3 hpdiags-9.3.0-466 hponcfg-3.1.0-0 hp-snmp-agents-9.25-2384.8.rhel5 hpacucli-9.30-15.0 [root@gort ~]# hpacucli HP Array Configuration Utility CLI 9.30.15.0 Detecting Controllers...Done. Type "help" for a list of supported commands. Type "exit" to close the console. => ctrl all show config detail Smart Array P400 in Slot 0 (Embedded) Bus Interface: PCI Slot: 0 Cache Serial Number: PA82C0J9SVW34U RAID 6 (ADG) Status: Enabled Controller Status: OK Hardware Revision: D Firmware Version: 7.22 Rebuild Priority: Medium Expand Priority: Medium Surface Scan Delay: 15 secs Surface Scan Mode: Idle Wait for Cache Room: Disabled Surface Analysis Inconsistency Notification: Disabled Post Prompt Timeout: 0 secs Cache Board Present: True Cache Status: OK Cache Ratio: 25% Read / 75% Write Drive Write Cache: Disabled Total Cache Size: 256 MB Total Cache Memory Available: 208 MB No-Battery Write Cache: Disabled Cache Backup Power Source: Batteries Battery/Capacitor Count: 1 Battery/Capacitor Status: OK SATA NCQ Supported: True Logical Drive: 1 Size: 136.7 GB Fault Tolerance: RAID 1 Heads: 255 Sectors Per Track: 32 Cylinders: 35132 Strip Size: 128 KB Full Stripe Size: 128 KB Status: OK Caching: Enabled Unique Identifier: 600508B100184A395356573334550002 Disk Name: /dev/cciss/c0d0 Mount Points: /boot 101 MB, /tmp 7.8 GB, /usr 3.9 GB, /usr/local 2.0 GB, /var 3.9 GB, / 2.0 GB, /local 113.2 GB OS Status: LOCKED Logical Drive Label: A0027AA78DEE Mirror Group 0: physicaldrive 1I:1:2 (port 1I:box 1:bay 2, SAS, 146 GB, OK) Mirror Group 1: physicaldrive 1I:1:1 (port 1I:box 1:bay 1, SAS, 146 GB, OK) Drive Type: Data Array: A Interface Type: SAS Unused Space: 0 MB Status: OK Array Type: Data physicaldrive 1I:1:1 Port: 1I Box: 1 Bay: 1 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM57RF40000983878FX Model: HP DG146BB976 Current Temperature (C): 29 Maximum Temperature (C): 35 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 1I:1:2 Port: 1I Box: 1 Bay: 2 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM55VQC000098388524 Model: HP DG146BB976 Current Temperature (C): 29 Maximum Temperature (C): 36 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown Logical Drive: 2 Size: 546.8 GB Fault Tolerance: RAID 5 Heads: 255 Sectors Per Track: 32 Cylinders: 65535 Strip Size: 64 KB Full Stripe Size: 256 KB Status: OK Caching: Enabled Parity Initialization Status: Initialization Completed Unique Identifier: 600508B100184A395356573334550003 Disk Name: /dev/cciss/c0d1 Mount Points: None OS Status: LOCKED Logical Drive Label: A5C9C6F81504 Drive Type: Data Array: B Interface Type: SAS Unused Space: 0 MB Status: OK Array Type: Data physicaldrive 1I:1:3 Port: 1I Box: 1 Bay: 3 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM2H5PE00009802NK19 Model: HP DG146ABAB4 Current Temperature (C): 30 Maximum Temperature (C): 37 PHY Count: 1 PHY Transfer Rate: Unknown physicaldrive 1I:1:4 Port: 1I Box: 1 Bay: 4 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM28YY400009750MKPJ Model: HP DG146ABAB4 Current Temperature (C): 31 Maximum Temperature (C): 36 PHY Count: 1 PHY Transfer Rate: 3.0Gbps physicaldrive 2I:1:5 Port: 2I Box: 1 Bay: 5 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM2FGYV00009802N3GN Model: HP DG146ABAB4 Current Temperature (C): 30 Maximum Temperature (C): 38 PHY Count: 1 PHY Transfer Rate: Unknown physicaldrive 2I:1:6 Port: 2I Box: 1 Bay: 6 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM8AFAK00009920MMV1 Model: HP DG146BB976 Current Temperature (C): 31 Maximum Temperature (C): 41 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:7 Port: 2I Box: 1 Bay: 7 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 146 GB Rotational Speed: 10000 Firmware Revision: HPDE Serial Number: 3NM2FJQD00009801MSHQ Model: HP DG146ABAB4 Current Temperature (C): 29 Maximum Temperature (C): 39 PHY Count: 1 PHY Transfer Rate: Unknown

    Read the article

  • SWT Layout for absolute positioning with minimal-spanning composites

    - by pure.equal
    Hi, I'm writing a DND-editor where I can position elemtents (like buttons, images ...) freely via absolute positioning. Every element has a parent composite. These composites should span/grasp/embrace every element they contain. There can be two or more elements in the same composite and a composite can contain another composite. This image shows how it should look like. To achive this I wrote a custom layoutmanager: import org.eclipse.swt.SWT; import org.eclipse.swt.graphics.Point; import org.eclipse.swt.widgets.Composite; import org.eclipse.swt.widgets.Control; import org.eclipse.swt.widgets.Layout; public class SpanLayout extends Layout { Point[] sizes; int calcedHeight, calcedWidth, calcedX, calcedY; Point[] positions; /* * (non-Javadoc) * * @see * org.eclipse.swt.widgets.Layout#computeSize(org.eclipse.swt.widgets.Composite * , int, int, boolean) * * A composite calls computeSize() on its associated layout to determine the * minimum size it should occupy, while still holding all its child controls * at their minimum sizes. */ @Override protected Point computeSize(Composite composite, int wHint, int hHint, boolean flushCache) { int width = wHint, height = hHint; if (wHint == SWT.DEFAULT) width = composite.getBounds().width; if (hHint == SWT.DEFAULT) height = composite.getBounds().height; return new Point(width, height); } /* * (non-Javadoc) * * @see * org.eclipse.swt.widgets.Layout#layout(org.eclipse.swt.widgets.Composite, * boolean) * * Calculates the positions and sizes for the children of the passed * Composite, then places them accordingly by calling setBounds() on each * one. */ @Override protected void layout(Composite composite, boolean flushCache) { Control children[] = composite.getChildren(); for (int i = 0; i < children.length; i++) { calcedX = calcX(children[i]); calcedY = calcY(children[i]); calcedHeight = calcHeight(children[i]) - calcedY; calcedWidth = calcWidth(children[i]) - calcedX; if (composite instanceof Composite) { calcedX = calcedX - composite.getLocation().x; calcedY = calcedY - composite.getLocation().y; } children[i].setBounds(calcedX, calcedY, calcedWidth, calcedHeight); } } private int calcHeight(Control control) { int maximum = 0; if (control instanceof Composite) { if (((Composite) control).getChildren().length > 0) { for (Control child : ((Composite) control).getChildren()) { int calculatedHeight = calcHeight(child); if (calculatedHeight > maximum) { maximum = calculatedHeight; } } return maximum; } } return control.computeSize(SWT.DEFAULT, SWT.DEFAULT, true).y + control.getLocation().y; } private int calcWidth(Control control) { int maximum = 0; if (control instanceof Composite) { if (((Composite) control).getChildren().length > 0) { for (Control child : ((Composite) control).getChildren()) { int calculatedWidth = calcWidth(child); if (calculatedWidth > maximum) { maximum = calculatedWidth; } } return maximum; } } return control.computeSize(SWT.DEFAULT, SWT.DEFAULT, true).x + control.getLocation().x; } private int calcX(Control control) { int minimum = Integer.MAX_VALUE; if (control instanceof Composite) { if (((Composite) control).getChildren().length > 0) { for (Control child : ((Composite) control).getChildren()) { int calculatedX = calcX(child); if (calculatedX < minimum) { minimum = calculatedX; } } return minimum; } } return control.getLocation().x; } private int calcY(Control control) { int minimum = Integer.MAX_VALUE; if (control instanceof Composite) { if (((Composite) control).getChildren().length > 0) { for (Control child : ((Composite) control).getChildren()) { int calculatedY = calcY(child); if (calculatedY < minimum) { minimum = calculatedY; } } return minimum; } } return control.getLocation().y; } } The problem with it is that it always positions the composite at the position (0,0). This is because it tries to change the absolute positioning into a relative one. Lets say I position a image at position (100,100) and one at (200,200). Then it has to calculate the location of the composite to be at (100,100) and spanning the one at (200,200). But as all child positions are relative to their parents I have to change the positions of the children to remove the 100px offset of the parent. When the layout gets updated it moves everything to the top-left corner (as seen in the image) because the position of the image is not (100,100) but (0,0) since I tried to remove the 100px offset of the partent. Where is my error in reasoning? Is this maybe a totally wrong approach? Is there maybe an other way to achive the desired behavior? Thanks in advance! Best regards, Ed

    Read the article

  • Retrieving "invalid" value from a NumericUpDown Validating event

    - by alhazen
    When the user enters a value above numericUpDown.Maximum, the control's value is automatically set to the maximum. I'd like to display a MessageBox when this occurs, but I'm not able to do that because control.Value and control.Text already contain the automatically set value, maximum, when Validating event is raised. private void numericUpDown_Validating(object sender, System.ComponentModel.CancelEventArgs e) { NumericUpDown control = sender as NumericUpDown; decimal newValue = control.Value; // decimal newValue; // decimal.TryParse(control.Text, out newValue) if (newValue > control.Maximum || newValue < control.Minimum) { // MessageBox } } Thanks

    Read the article

  • Incorrect sizing of a JPanel in a JScrollPane In Java 1.5

    - by Coder
    Hi, I am making an image loading component which consists of a JPanel containing a JScrollPane, which in turn contains another JPanel. What this component does is allows images to be dropped on top of it, after which point the image is loaded and the inner most JPanel is set to the size of the image dropped. This in turn causes the scroll bars to show up and the user can scroll the image. This all works fine. The problem comes in when i try to auto-shrink the image to the maximum visible area in the outer JPanel. In this case i do a uniform scale of the image to be less than or equal to the width and height of the outer JPanel. What happens now is that both the horizontal and vertical scroll bars show up indicating the the inner JPanel is bigger than the visible area (which should not be the case). I verified that the image is scale to the proper dimensions(ie. the maximum width and height is respected). I also verified that if i decrease the maximum height by 3 pixels, then no scroll bars appear. What i believe the problem is, is that panel.getWidth() and panel.getHeight() don't actually return the visible area (maximum area) that sub components can take up. Ie. there is likely some more width and height taken up by the border around the JPanel or something like that. My question is, how do i get around this problem. Functionally all i want is to determine the maximum size a JPanel can be in a JScrollPane, then set the panel to that size and paint an image over top of it and be assured that the scroll bars of the scroll pane will not show up. Right now the scroll bars are set to AS_NEEDED. Thanks!

    Read the article

  • How to create list of numbers and append its reverse to it efficiently in Ruby

    - by Kiwi
    Given a minimum integer and maximum integer, I want to create an array which counts from the minimum to the maximum by two, then back down (again by two, repeating the maximum number). For example, if the minimum number is 1 and the maximum is 9, I want [1, 3, 5, 7, 9, 9, 7, 5, 3, 1]. I'm trying to be as concise as possible, which is why I'm using one-liners. In Python, I would do this: range(1, 10, 2) + range(9, 0, -2) In Ruby, which I'm just beginning to learn, all I've come up with so far is: (1..9).inject([]) { |r, num| num%2 == 1 ? r << num : r }.reverse.inject([]) { |r, num| r.unshift(num).push(num) } Which works, but I know there must be a better way. What is it?

    Read the article

  • Puzzle related to cake [closed]

    - by Abhi
    Dear All While having tea with one of my colleague at evening time yesterday. He asked me one puzzle related to cake. The puzzle goes this way: Suppose i have a circular cake. And to that cake, I have to cut three times anywhere with maximum number of pieces without bothering abt the equal segment So how many maximum number of pieces it will make? A/c to me, the maximum number of pieces will be 7. But i am not sure. So please can u all tell me how many maximum number of pieces it will make & how? Please answer one at a time..... Thanks in advance...

    Read the article

  • How do I UPDATE a Linked Server table where "alias" is required, in SQL Server 2000?

    - by Mark Hurd
    In SQL Server 2005 tablename can be used to distinguish which table you're referring to: UPDATE LinkedServer.database.user.tablename SET val=u.val FROM localtable u WHERE tablename.ID=u.ID In SQL Server 2000 this results in Server: Msg 107, Level 16, State 2 The column prefix 'tablename' does not match with a table name or alias name used in the query. Trying UPDATE LinkedServer.database.user.tablename SET val=u.val FROM localtable u WHERE LinkedServer.database.user.tablename.ID=u.ID results in Server: Msg 117, Level 15, State 2 The number name 'LinkedServer.database.user.tablename' contains more than the maximum number of prefixes. The maximum is 3. And, of course, UPDATE LinkedServer.database.user.tablename SET val=u.val FROM localtable u WHERE ID=u.ID results in Server: Msg 209, Level 16, State 1 Ambiguous column name 'ID'. (In fact searching on "The number name contains more than the maximum number of prefixes. The maximum is 3." I found the answer, but I've typed up this question and I'm going to post it! :-) )

    Read the article

  • Why does my binding break down on SilverLight ProgressBars?

    - by Bill Jeeves
    I asked a similar question about charts but I have given up on that and I am using progress bars instead. Essentially, I have ten progress bars in a Silverlight control. Each is showing a different value and updating every couple of seconds (it's a process monitor). Each progress bar has the same minimum value and maximum value so the bars can be compared. Trying to follow the M-V-VM model, I have bound the value of each bar to a property in my ViewModel. All of the maximum values for the bar are bound to a single property. When the model updates, the values and the maximum can all update. This allows the bars to re-scale as the sizes grow. I'm finding that the binding will stop working sometimes on one or more bars. I suspect it is because a bar's value becomes higher than the maximum occasionally. This is because if I update the maximums first and they are going down, the values will be to high. If I update the values first when the maximum needs increasing, the values are too high again. Is there a way to stop this behaviour? Some way, perhaps, to tell the progress bars that it's OK to temporarily go too high? Or some way to tell the bindings that they shouldn't be disabled when this happens? Or maybe I've got this completely wrong and there's some other issue with ProgressBar binding I don't know about?

    Read the article

  • Project Euler 18: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 18.  As always, any feedback is welcome. # Euler 18 # http://projecteuler.net/index.php?section=problems&id=18 # By starting at the top of the triangle below and moving # to adjacent numbers on the row below, the maximum total # from top to bottom is 23. # # 3 # 7 4 # 2 4 6 # 8 5 9 3 # # That is, 3 + 7 + 4 + 9 = 23. # Find the maximum total from top to bottom of the triangle below: # 75 # 95 64 # 17 47 82 # 18 35 87 10 # 20 04 82 47 65 # 19 01 23 75 03 34 # 88 02 77 73 07 63 67 # 99 65 04 28 06 16 70 92 # 41 41 26 56 83 40 80 70 33 # 41 48 72 33 47 32 37 16 94 29 # 53 71 44 65 25 43 91 52 97 51 14 # 70 11 33 28 77 73 17 78 39 68 17 57 # 91 71 52 38 17 14 91 43 58 50 27 29 48 # 63 66 04 68 89 53 67 30 73 16 69 87 40 31 # 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 # NOTE: As there are only 16384 routes, it is possible to solve # this problem by trying every route. However, Problem 67, is the # same challenge with a triangle containing one-hundred rows; it # cannot be solved by brute force, and requires a clever method! ;o) import time start = time.time() triangle = [ [75], [95, 64], [17, 47, 82], [18, 35, 87, 10], [20, 04, 82, 47, 65], [19, 01, 23, 75, 03, 34], [88, 02, 77, 73, 07, 63, 67], [99, 65, 04, 28, 06, 16, 70, 92], [41, 41, 26, 56, 83, 40, 80, 70, 33], [41, 48, 72, 33, 47, 32, 37, 16, 94, 29], [53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14], [70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57], [91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48], [63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31], [04, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 04, 23]] # Loop through each row of the triangle starting at the base. for a in range(len(triangle) - 1, -1, -1): for b in range(0, a): # Get the maximum value for adjacent cells in current row. # Update the cell which would be one step prior in the path # with the new total. For example, compare the first two # elements in row 15. Add the max of 04 and 62 to the first # position of row 14.This provides the max total from row 14 # to 15 starting at the first position. Continue to work up # the triangle until the maximum total emerges at the # triangle's apex. triangle [a-1][b] += max(triangle [a][b], triangle [a][b+1]) print triangle [0][0] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Oracle’s Sun Server X4-8 with Built-in Elastic Computing

    - by kgee
    We are excited to announce the release of Oracle's new 8-socket server, Sun Server X4-8. It’s the most flexible 8-socket x86 server Oracle has ever designed, and also the most powerful. Not only does it use the fastest Intel® Xeon® E7 v2 processors, but also its memory, I/O and storage subsystems are all designed for maximum performance and throughput. Like its predecessor, the Sun Server X4-8 uses a “glueless” design that allows for maximum performance for Oracle Database, while also reducing power consumption and improving reliability. The specs are pretty impressive. Sun Server X4-8 supports 120 cores (or 240 threads), 6 TB memory, 9.6 TB HDD capacity or 3.2 TB SSD capacity, contains 16 PCIe Gen 3 I/O expansion slots, and allows for up to 6.4 TB Sun Flash Accelerator F80 PCIe Cards. The Sun Server X4-8 is also the most dense x86 server with its 5U chassis, allowing 60% higher rack-level core and DIMM slot density than the competition.  There has been a lot of innovation in Oracle’s x86 product line, but the latest and most significant is a capability called elastic computing. This new capability is built into each Sun Server X4-8.   Elastic computing starts with the Intel processor. While Intel provides a wide range of processors each with a fixed combination of core count, operational frequency, and power consumption, customers have been forced to make tradeoffs when they select a particular processor. They have had to make educated guesses on which particular processor (core count/frequency/cache size) will be best suited for the workload they intend to execute on the server.Oracle and Intel worked jointly to define a new processor, the Intel Xeon E7-8895 v2 for the Sun Server X4-8, that has unique characteristics and effectively combines the capabilities of three different Xeon processors into a single processor. Oracle system design engineers worked closely with Oracle’s operating system development teams to achieve the ability to vary the core count and operating frequency of the Xeon E7-8895 v2 processor with time without the need for a system level reboot.  Along with the new processor, enhancements have been made to the system BIOS, Oracle Solaris, and Oracle Linux, which allow the processors in the system to dynamically clock up to faster speeds as cores are disabled and to reach higher maximum turbo frequencies for the remaining active cores. One customer, a stock market trading company, will take advantage of the elastic computing capability of Sun Server X4-8 by repurposing servers between daytime stock trading activity and nighttime stock portfolio processing, daily, to achieve maximum performance of each workload.To learn more about Sun Server X4-8, you can find more details including the data sheet and white papers here.Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software. He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers.

    Read the article

  • SQL Server Max SmallInt Value

    - by Derek Dieter
    The maximum value for a smallint in SQL Server is: -32768 through 32767 And the byte size is: 2 bytes other maximum values: BigInt: -9223372036854775808 through 9223372036854775807 (8 bytes) Int: -2147483648 through 2147483647 (4 bytes) TinyInt: 0 through 255 (1 byte) Related Posts:»SQL Server Max TinyInt Value»SQL Server Max Int Value»SQL Server Bigint Max Value»Dynamic Numbers Table»Troubleshooting SQL Server Slowness

    Read the article

  • SQL Server Max TinyInt Value

    - by Derek Dieter
    The maximum value for a tinyint in SQL Server is: 0 through 255 And the byte size is: 1 byte other maximum values: BigInt: -9223372036854775808 through 9223372036854775807 (8 bytes) Int: -2147483648 through 2147483647 (4 bytes) SmallInt: -32768 through 32767 (2 bytes) Related Posts:»SQL Server Max SmallInt Value»SQL Server Max Int Value»SQL Server Bigint Max Value»Create Date Table»Dynamic Numbers Table

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • Help decide HTML5 library or framework

    - by aoi
    I need a library or framework for small html5 contents and animation centric softwares. My priority isn't things like physics or network. I need fast rendering speed, support for touch event and most of all maximum compatibility across various platforms, including ios and android. I am pondering upon sprite js, crafty js, and kinetic js. But i can't really test the platform compatibilities, so can someone please tell me which one covers the maximum number of platforms, and if there are any better free alternatives?

    Read the article

  • nokia cell phone not accepting IP from dnsmasq dhcp server

    - by samix
    Hello, I having problem connecting a NOkia cell phone to my home wifi network. The wifi network is provided by a wireless card in a machine running Debian Testing and 2.6.26-2-686 kernel. The cars is D-Link DWL-G520 working in ap mode and has WPA encryption enabled. The wireless network is provided by hostapd using madwifi driver. Windows and Mac machines work properly with this wifi network. When I try to get the Nokia phone to connect to the wifi network, I get these lines in my dnsmasq log (to see lines without wrapping, here is the pastebin link for convenience - http://pastebin.com/m466c8fd2): Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: disassociated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: associated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 RADIUS: starting accounting session 4AE664FA-00000036 Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: pairwise key handshake completed (WPA) Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: group key handshake completed (WPA) Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 Available DHCP range: 192.168.5.150 -- 192.168.5.199 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPDISCOVER(ath0) 0.0.0.0 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPOFFER(ath0) 192.168.5.21 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 12:hostname, 6:dns-server, 15:domain-name, Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 1:netmask, 3:router, 28:broadcast, 120:sip-server Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 tags: known, ath0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 next server: 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 1 option: 53:message-type 02 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 54:server-identifier 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 51:lease-time 00:00:46:50 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 58:T1 00:00:23:28 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 59:T2 00:00:3d:86 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 1:netmask 255.255.255.0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 28:broadcast 192.168.5.255 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 3:router 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 6:dns-server 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 8 option: 15:domain-name home.pvt Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 3 option: 12:hostname NokiaCellPhone Anybody know the problem might be? If I switch off dnsmasq dhcp queries logging, i.e. if I decrease the verbosity of the log, all I see are two lines of DHCPDISCOVER(ath0) and DHCPOFFER(ath0) repeatedly in the log with no acceptance by the cell phone. It appears as though the phone is not accepting the dhcp offer. However, if I give the phone a static IP address in its configuration, it works properly on the wifi network. So it appears as though the problem is dhcp related. Hints? Suggestions? Installed stuff: $ dpkg -l dnsmasq hostap* | grep ^i ii dnsmasq 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii dnsmasq-base 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii hostapd 1:0.6.9-3 user space IEEE 802.11 AP and IEEE 802.1X/WPA/ Thanks. PS: Here is the DHCP tcp dump for more information (with mac addresses changed): $ sudo dhcpdump -i ath0 -h ^11:22:33:44:55:66 TIME: 2009-10-30 12:15:32.916 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.923 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:38.919 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.920 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.921 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.945 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:48.952 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 ... and so on ...

    Read the article

  • one way routing

    - by user101531
    I have two computers connected with VPN, and some virtual machines on each. I want everything to see each other (that is basically 4 different networked machines). What I've not managed so far is that a computer on the one end to be visible to the other end. In tracert terms: 192.168.78.42>tracert 192.168.69.18 Tracing route to WIN-2K8R2 [192.168.69.18] over a maximum of 30 hops: 1 <1 ms <1 ms <1 ms 192.168.78.17 2 * * * Request timed out. 3 217 ms 78 ms 78 ms WIN-2K8R2 [192.168.69.18] Trace complete. 192.168.78.42>tracert 192.168.69.112 Tracing route to 192.168.69.112 over a maximum of 30 hops 1 <1 ms <1 ms <1 ms 192.168.78.17 2 333 ms * 337 ms WIN-2K8R2 [192.168.86.22] 3/4/5 * * * Request timed out. 6 ^C 192.168.69.18>tracert 192.168.69.112 Tracing route to 192.168.69.112 over a maximum of 30 hops 1 <1 ms <1 ms <1 ms 192.168.69.112 Trace complete. 192.168.69.112>tracert 192.168.78.42 Tracing route to 192.168.78.42 over a maximum of 30 hops 1 1 ms * <1 ms 192.168.69.18 2 79 ms 77 ms 80 ms 192.168.86.21 3 80 ms 77 ms 81 ms 192.168.78.42 Trace complete. Note: the 4 machines are 192.168.69.112 (winXP), 192.168.69.18=192.168.86.22 (win2K8R2), 192.168.86.21=192.168.78.17 (Linux), 192.168.78.42 (win2K3). The VPN is a TAP openvpn connection between 192.168.86.21 and 192.168.86.22. I would say that the problem is in the win2K8 machine, but Windows networking is my weak point.

    Read the article

  • ADSL throughput loss from Reed-Solomon encoding

    - by javano
    I'm reading about ADSL starting here and I am confused by how the Reed-Solomon encoding for ECC is limiting the available transfer rate, as much as it does (nearly half). This pdf on the same subject contains the following; A maximum of 255 sub-carriers can be used to modulate data in the downstream direction. Sub-carrier 256, the downstream Nyquist frequency, and sub-carrier 64, the downstream pilot frequency, are not available for user data, thus limiting the total number of available downstream sub-carriers to 254. Each of these 254 sub-carriers can support the modulation of 0 to 15 bits. Since the ADSL DMT data frame rate is 4000 frames per second, the maximum theoretical downstream data rate of an ADSL system is 15.24Mbps. Due to limitations in system architecture, specifically the maximum allowable Reed-Solomon codeword size (255 bytes), the maximum achievable downstream data rate is 8.16Mbps. How is this nearly halving the throughput? Is all that extra bandwidth overhead of the RS encoding? 15240000 bps (15.24Mbps) - 8160000 bps (8.12Mbps) = 7080000 bps (7.08Mbps). Where has that 7Mbps of throughput gone? EDIT: I tried to read the wiki page on Reed-Soloman but it's all crazy maths and algerbra, which I don't understand. I can understand that data is split into 255 byte codewords, because that maybe the max codeword size whilst still maintaining accuracy during transmission; But I don't understand why that means less data is sent?

    Read the article

  • Orphan IBM JVM process

    - by Nicholas Key
    Hi people, I have this issue about orphan IBM JVM process being created in the process tree: For example: C:\Program Files\IBM\WebSphere\AppServer\bin>wsadmin -lang jython -f "C:\Hello.py" Hello.py has the simple implementation: import time i = 0 while (1): i = i + 1 print "Hello World " + str(i) time.sleep(3.0) My machine has such JVM information: C:\Program Files\WebSphere\java\bin>java -verbose:sizes -version -Xmca32K RAM class segment increment -Xmco128K ROM class segment increment -Xmns0K initial new space size -Xmnx0K maximum new space size -Xms4M initial memory size -Xmos4M initial old space size -Xmox1624995K maximum old space size -Xmx1624995K memory maximum -Xmr16K remembered set size -Xlp4K large page size available large page sizes: 4K 4M -Xmso256K operating system thread stack size -Xiss2K java thread stack initial size -Xssi16K java thread stack increment -Xss256K java thread stack maximum size java version "1.6.0" Java(TM) SE Runtime Environment (build pwi3260sr6ifix-20091015_01(SR6+152211+155930+156106)) IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 Windows Server 2003 x86-32 jvmwi3260sr6-20091001_43491 (JIT enabled, AOT enabled) J9VM - 20091001_043491 JIT - r9_20090902_1330ifx1 GC - 20090817_AA) JCL - 20091006_01 While the program is running, I tried to kill it and subsequently I found an orphan IBM JVM process in the process tree. Is there a way to fix this issue? Why is there an orphan process in the first place? Is there something wrong with my code? I really don't believe that my simplistic code is wrongly implemented. Any suggestions?

    Read the article

  • What is the "in-the-wire" size of a ethernet frame? 1518 or 1542?

    - by chrisapotek
    According to the table here, it says that MTU = 1500 bytes and that the payload part is 1500 - 42 bytes or 1458 bytes (<- this is actually wrong!). Now on top of that you have to add IPv4 and UDP headers, which are 28 bytes (20 IP + 8 UDP). That leaves my maximum possible application message to as 1430 bytes! But by looking for this number in the Internet I see 1472 instead. Am I doing this calculation wrong here? All I want to find out is the maximum application message I can send over the wire without the risk of fragmentation. It is definitely not 1500 because that includes the frame headers. Can someone help? The confusion is the the PAYLOAD can actually be as large as 1500 bytes and that's the MTU. So now what is the size in-the-wire for a payload of 1500? From that table it can be as big as 1542 bytes. So the maximum app messages I can send is 1472 (1500 - 20 (ip) - 8 (udp)) for a maximum in the wire size of 1542. It amazes me how things can get so complicated when they are actually simple. And I have not clue how someone came up with the number 1518 if the table says 1542.

    Read the article

  • Coherence Warnings in WLS

    - by john.graves(at)oracle.com
    With 11g (10.3.4 WLS), coherence is now built into many applications.  I’ve been noticing errors in my OSB logs like these:####<10/03/2011 10:45:40 AM EST> <Warning> <Coherence> <osb-jeos> <osb_server1> <Logger@324239121 3.6.0.4> <<anonymous>> <> <583c1 0bfdbd326ba:-8c38159:12e9d02c829:-8000-0000000000000003> <1299714340643> <BEA-000000> <Oracle Coherence 3.6.0.4 (member=n/a): Unic astUdpSocket failed to set receive buffer size to 714 packets (1023KB); actual size is 12%, 89 packets (127KB). Consult your OS do cumentation regarding increasing the maximum socket buffer size. Proceeding with the actual value may cause sub-optimal performanc e.> ####<10/03/2011 10:45:40 AM EST> <Warning> <Coherence> <osb-jeos> <osb_server1> <Logger@324239121 3.6.0.4> <<anonymous>> <> <583c1 0bfdbd326ba:-8c38159:12e9d02c829:-8000-0000000000000003> <1299714340650> <BEA-000000> <Oracle Coherence 3.6.0.4 (member=n/a): Pref erredUnicastUdpSocket failed to set receive buffer size to 1428 packets (1.99MB); actual size is 6%, 89 packets (127KB). Consult y our OS documentation regarding increasing the maximum socket buffer size. Proceeding with the actual value may cause sub-optimal p erformance.> ####<10/03/2011 10:45:40 AM EST> <Warning> <Coherence> <osb-jeos> <osb_server1> <Logger@324239121 3.6.0.4> <<anonymous>> <> <583c1 0bfdbd326ba:-8c38159:12e9d02c829:-8000-0000000000000003> <1299714340659> <BEA-000000> <Oracle Coherence 3.6.0.4 (member=n/a): Mult icastUdpSocket failed to set receive buffer size to 714 packets (1023KB); actual size is 12%, 89 packets (127KB). Consult your OS documentation regarding increasing the maximum socket buffer size. Proceeding with the actual value may cause sub-optimal performa nce.> I was able to “fix” this on my ubuntu system by adding the following lines to the /etc/sysctl.conf file:# Setup networking for coherence # maximum receive socket buffer size, default 131071 net.core.rmem_max = 2000000 # maximum send socket buffer size, default 131071 net.core.wmem_max = 1000000 # default receive socket buffer size, default 65535 net.core.rmem_default = 2524287 # default send socket buffer size, default 65535 net.core.wmem_default = 2524287 .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }

    Read the article

  • Limit download usage for clients

    - by Kumar P
    i am maintaining few windows xp machines under rhel 5 . i want to set quota for download file size. How to do it ? I mean, in lan usar A's maximum donload file size is 300 MB , and user B's maximum download file size in 200 MB. I want to block downloading when user try to download more than 300 MB file.User should not allow to download 300MB file at a time. Or how to set quota for maximum download per day, is there possible to do it ? How can i do this ?

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >