Search Results

Search found 1366 results on 55 pages for 'universal coder'.

Page 20/55 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • ReSharper File Location

    - by Ben Griswold
    By default, the ReSharper cache is stored in the solution folder.  It’s one extra folder and one extra .user file.  It’s no big deal but it does clutter up your solution a bit – especially since the files provide no real value. I prefer to store the ReSharper cache in the system Temp folder.  This setting is available by visiting ReSharper > Options > Environment > General. Just update where you’d like to store the ReSharper cache and you’re good to go.  Note, the .user file continues to linger around the solution folder but at least the _ReSharper.SolutionName folder is moved out of sight.

    Read the article

  • Project Euler 9: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 9.  As always, any feedback is welcome. # Euler 9 # http://projecteuler.net/index.php?section=problems&id=9 # A Pythagorean triplet is a set of three natural numbers, # a b c, for which, # a2 + b2 = c2 # For example, 32 + 42 = 9 + 16 = 25 = 52. # There exists exactly one Pythagorean triplet for which # a + b + c = 1000. Find the product abc. import time start = time.time() product = 0 def pythagorean_triplet(): for a in range(1,501): for b in xrange(a+1,501): c = 1000 - a - b if (a*a + b*b == c*c): return a*b*c print pythagorean_triplet() print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 5: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 5.  As always, any feedback is welcome. # Euler 5 # http://projecteuler.net/index.php?section=problems&id=5 # 2520 is the smallest number that can be divided by each # of the numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly # divisible by all of the numbers from 1 to 20? import time start = time.time() def gcd(a, b): while b: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) print reduce(lcm, range(1, 20)) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 14: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 14.  As always, any feedback is welcome. # Euler 14 # http://projecteuler.net/index.php?section=problems&id=14 # The following iterative sequence is defined for the set # of positive integers: # n -> n/2 (n is even) # n -> 3n + 1 (n is odd) # Using the rule above and starting with 13, we generate # the following sequence: # 13 40 20 10 5 16 8 4 2 1 # It can be seen that this sequence (starting at 13 and # finishing at 1) contains 10 terms. Although it has not # been proved yet (Collatz Problem), it is thought that all # starting numbers finish at 1. Which starting number, # under one million, produces the longest chain? # NOTE: Once the chain starts the terms are allowed to go # above one million. import time start = time.time() def collatz_length(n): # 0 and 1 return self as length if n <= 1: return n length = 1 while (n != 1): if (n % 2 == 0): n /= 2 else: n = 3*n + 1 length += 1 return length starting_number, longest_chain = 1, 0 for x in xrange(1, 1000001): l = collatz_length(x) if l > longest_chain: starting_number, longest_chain = x, l print starting_number print longest_chain # Slow 31 seconds print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Language Club

    - by Ben Griswold
    We started a language club at work this week.  Thus far, we have a collective interest in a number of languages: Python, Ruby, F#, Erlang, Objective-C, Scala, Clojure, Haskell and Go. There are more but these 9 received the most votes. During the first few meetings we are going to determine which language we should tackle first. To help make our selection, each member will provide a quick overview of their favored language by answering the following set of questions: Why are you interested in learning “your” language(s). (There’s lots of work, I’m an MS shill, It’s hip and  fun, etc) What type of language is it?  (OO, dynamic, functional, procedural, declarative, etc) What types of problems is your language best suited to solve?  (Algorithms over big data, rapid application development, modeling, merely academic, etc) Can you provide examples of where/how it is being used?  If it isn’t being used, why not?  (Erlang was invented at Ericsson to provide an extremely fault tolerant, concurrent system.) Quick history – Who created/sponsored the language?  When was it created?  Is it currently active? Does the language have hardware support (an attempt was made at one point to create processor instruction sets specific to Prolog), or can it run as an interpreted language inside another language (like Ruby in the JVM)? Are there facilities for programs written in this language to communicate with other languages?  How does this affect its utility? Does the language have a IDE tool support?  (Think Eclipse or Visual Studio) How well is the language supported in terms of books, community and documentation? What’s the number one things which differentiates the language from others?  (i.e. Why is it cool?) How is the language applicability to us as consultants?  What would the impact be of using the language in terms of cost, maintainability, personnel costs, etc.? What’s the number one things which differentiates the language from others?  (i.e. Why is it cool?) This should provide an decent introduction into nearly a dozen languages and give us enough context to decide which single language deserves our undivided attention for the weeks to come.  Stay tuned for the winner…

    Read the article

  • Project Euler 8: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 8.  As always, any feedback is welcome. # Euler 8 # http://projecteuler.net/index.php?section=problems&id=8 # Find the greatest product of five consecutive digits # in the following 1000-digit number import time start = time.time() number = '\ 73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450' max = 0 for i in xrange(0, len(number) - 5): nums = [int(x) for x in number[i:i+5]] val = reduce(lambda agg, x: agg*x, nums) if val > max: max = val print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Managing .NET External Dependencies

    - by Ben Griswold
    Noah and I continue our screencast series by sharing our approach to managing external dependencies referenced within a .NET solution.  This is another introductory episode but you might find a hidden gem in the short 4-minute clip.  ELMAH (Error Logging Modules and Handlers) is the external dependencies we are focusing on in the presentation.  If you are not familiar with ELMAH, this episode may be worth your time.   YouTube - Managing .NET External Dependencies This is one of our first screencasts.  If you have feedback, I’d love to hear it.

    Read the article

  • JOGL program does not compile - javac with classpath

    - by user1720523
    I want to run a HelloWorld JOGL programm on the commandline. I downloaded the .jars from jogamp.org and put the gluegen-rt.jar , jogl.all.jar , gluegen-java-src.zip , jogl-java-src.zip , gluegen-rt-natives-macosx-universal.jar , jogl-all-natives-macosx-universal.jar in a directory "jar" in my HelloWorld folder - as described in http://jogamp.org/wiki/index.php/Downloading_and_installing_JOGL . Now I try to compile with javac -classpath "jar/gluegen-rt.jar:jar/jogl.all.jar" HelloWorld.java as described on https://jogamp.org/wiki/index.php/Setting_up_a_JogAmp_project_in_your_favorite_IDE . Then it throws me 14 errors starting with HelloWorld.java:7: package javax.media.opengl does not exist import javax.media.opengl.GL; ^ When I try to compile with absolute paths using javac -classpath "/Users/jonas/Desktop/cool_jogl/helloworld/jar/gluegen-rt.jar:/Users/jonas/Desktop/cool_jogl/helloworld/jar/jogl-all.jar" HelloWorld.java it still throws me 12 errors starting with HelloWorld.java:9: cannot find symbol symbol : class GLCanvas location: package javax.media.opengl import javax.media.opengl.GLCanvas; ^

    Read the article

  • Project Euler 52: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 52.  Compared to Problem 51, this problem was a snap. Brute force and pretty quick… As always, any feedback is welcome. # Euler 52 # http://projecteuler.net/index.php?section=problems&id=52 # It can be seen that the number, 125874, and its double, # 251748, contain exactly the same digits, but in a # different order. # # Find the smallest positive integer, x, such that 2x, 3x, # 4x, 5x, and 6x, contain the same digits. timer_start = Time.now def contains_same_digits?(n) value = (n*2).to_s.split(//).uniq.sort.join 3.upto(6) do |i| return false if (n*i).to_s.split(//).uniq.sort.join != value end true end i = 100_000 answer = 0 while answer == 0 answer = i if contains_same_digits?(i) i+=1 end puts answer puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • Project Euler 12: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 12.  As always, any feedback is welcome. # Euler 12 # http://projecteuler.net/index.php?section=problems&id=12 # The sequence of triangle numbers is generated by adding # the natural numbers. So the 7th triangle number would be # 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms # would be: # 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... # Let us list the factors of the first seven triangle # numbers: # 1: 1 # 3: 1,3 # 6: 1,2,3,6 # 10: 1,2,5,10 # 15: 1,3,5,15 # 21: 1,3,7,21 # 28: 1,2,4,7,14,28 # We can see that 28 is the first triangle number to have # over five divisors. What is the value of the first # triangle number to have over five hundred divisors? import time start = time.time() from math import sqrt def divisor_count(x): count = 2 # itself and 1 for i in xrange(2, int(sqrt(x)) + 1): if ((x % i) == 0): if (i != sqrt(x)): count += 2 else: count += 1 return count def triangle_generator(): i = 1 while True: yield int(0.5 * i * (i + 1)) i += 1 triangles = triangle_generator() answer = 0 while True: num = triangles.next() if (divisor_count(num) >= 501): answer = num break; print answer print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 17: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 17.  As always, any feedback is welcome. # Euler 17 # http://projecteuler.net/index.php?section=problems&id=17 # If the numbers 1 to 5 are written out in words: # one, two, three, four, five, then there are # 3 + 3 + 5 + 4 + 4 = 19 letters used in total. # If all the numbers from 1 to 1000 (one thousand) # inclusive were written out in words, how many letters # would be used? # # NOTE: Do not count spaces or hyphens. For example, 342 # (three hundred and forty-two) contains 23 letters and # 115 (one hundred and fifteen) contains 20 letters. The # use of "and" when writing out numbers is in compliance # with British usage. import time start = time.time() def to_word(n): h = { 1 : "one", 2 : "two", 3 : "three", 4 : "four", 5 : "five", 6 : "six", 7 : "seven", 8 : "eight", 9 : "nine", 10 : "ten", 11 : "eleven", 12 : "twelve", 13 : "thirteen", 14 : "fourteen", 15 : "fifteen", 16 : "sixteen", 17 : "seventeen", 18 : "eighteen", 19 : "nineteen", 20 : "twenty", 30 : "thirty", 40 : "forty", 50 : "fifty", 60 : "sixty", 70 : "seventy", 80 : "eighty", 90 : "ninety", 100 : "hundred", 1000 : "thousand" } word = "" # Reverse the numbers so position (ones, tens, # hundreds,...) can be easily determined a = [int(x) for x in str(n)[::-1]] # Thousands position if (len(a) == 4 and a[3] != 0): # This can only be one thousand based # on the problem/method constraints word = h[a[3]] + " thousand " # Hundreds position if (len(a) >= 3 and a[2] != 0): word += h[a[2]] + " hundred" # Add "and" string if the tens or ones # position is occupied with a non-zero value. # Note: routine is broken up this way for [my] clarity. if (len(a) >= 2 and a[1] != 0): # catch 10 - 99 word += " and" elif len(a) >= 1 and a[0] != 0: # catch 1 - 9 word += " and" # Tens and ones position tens_position_value = 99 if (len(a) >= 2 and a[1] != 0): # Calculate the tens position value per the # first and second element in array # e.g. (8 * 10) + 1 = 81 tens_position_value = int(a[1]) * 10 + a[0] if tens_position_value <= 20: # If the tens position value is 20 or less # there's an entry in the hash. Use it and there's # no need to consider the ones position word += " " + h[tens_position_value] else: # Determine the tens position word by # dividing by 10 first. E.g. 8 * 10 = h[80] # We will pick up the ones position word later in # the next part of the routine word += " " + h[(a[1] * 10)] if (len(a) >= 1 and a[0] != 0 and tens_position_value > 20): # Deal with ones position where tens position is # greater than 20 or we have a single digit number word += " " + h[a[0]] # Trim the empty spaces off both ends of the string return word.replace(" ","") def to_word_length(n): return len(to_word(n)) print sum([to_word_length(i) for i in xrange(1,1001)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 19: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 19.  As always, any feedback is welcome. # Euler 19 # http://projecteuler.net/index.php?section=problems&id=19 # You are given the following information, but you may # prefer to do some research for yourself. # # - 1 Jan 1900 was a Monday. # - Thirty days has September, # April, June and November. # All the rest have thirty-one, # Saving February alone, # Which has twenty-eight, rain or shine. # And on leap years, twenty-nine. # - A leap year occurs on any year evenly divisible by 4, # but not on a century unless it is divisible by 400. # # How many Sundays fell on the first of the month during # the twentieth century (1 Jan 1901 to 31 Dec 2000)? import time start = time.time() import datetime sundays = 0 for y in range(1901,2001): for m in range(1,13): # monday == 0, sunday == 6 if datetime.datetime(y,m,1).weekday() == 6: sundays += 1 print sundays print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 2: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 2.  As always, any feedback is welcome. # Euler 2 # http://projecteuler.net/index.php?section=problems&id=2 # Find the sum of all the even-valued terms in the # Fibonacci sequence which do not exceed four million. # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. By starting with 1 # and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # Find the sum of all the even-valued terms in the # sequence which do not exceed four million. import time start = time.time() total = 0 previous = 0 i = 1 while i <= 4000000: if i % 2 == 0: total +=i # variable swapping removes the need for a temp variable i, previous = previous, previous + i print total print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 11: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 11.  As always, any feedback is welcome. # Euler 11 # http://projecteuler.net/index.php?section=problems&id=11 # What is the greatest product # of four adjacent numbers in any direction (up, down, left, # right, or diagonally) in the 20 x 20 grid? import time start = time.time() grid = [\ [8,02,22,97,38,15,00,40,00,75,04,05,07,78,52,12,50,77,91,8],\ [49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,04,56,62,00],\ [81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,03,49,13,36,65],\ [52,70,95,23,04,60,11,42,69,24,68,56,01,32,56,71,37,02,36,91],\ [22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80],\ [24,47,32,60,99,03,45,02,44,75,33,53,78,36,84,20,35,17,12,50],\ [32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70],\ [67,26,20,68,02,62,12,20,95,63,94,39,63,8,40,91,66,49,94,21],\ [24,55,58,05,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72],\ [21,36,23,9,75,00,76,44,20,45,35,14,00,61,33,97,34,31,33,95],\ [78,17,53,28,22,75,31,67,15,94,03,80,04,62,16,14,9,53,56,92],\ [16,39,05,42,96,35,31,47,55,58,88,24,00,17,54,24,36,29,85,57],\ [86,56,00,48,35,71,89,07,05,44,44,37,44,60,21,58,51,54,17,58],\ [19,80,81,68,05,94,47,69,28,73,92,13,86,52,17,77,04,89,55,40],\ [04,52,8,83,97,35,99,16,07,97,57,32,16,26,26,79,33,27,98,66],\ [88,36,68,87,57,62,20,72,03,46,33,67,46,55,12,32,63,93,53,69],\ [04,42,16,73,38,25,39,11,24,94,72,18,8,46,29,32,40,62,76,36],\ [20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,04,36,16],\ [20,73,35,29,78,31,90,01,74,31,49,71,48,86,81,16,23,57,05,54],\ [01,70,54,71,83,51,54,69,16,92,33,48,61,43,52,01,89,19,67,48]] # left and right max, product = 0, 0 for x in range(0,17): for y in xrange(0,20): product = grid[y][x] * grid[y][x+1] * \ grid[y][x+2] * grid[y][x+3] if product > max : max = product # up and down for x in range(0,20): for y in xrange(0,17): product = grid[y][x] * grid[y+1][x] * \ grid[y+2][x] * grid[y+3][x] if product > max : max = product # diagonal right for x in range(0,17): for y in xrange(0,17): product = grid[y][x] * grid[y+1][x+1] * \ grid[y+2][x+2] * grid[y+3][x+3] if product > max: max = product # diagonal left for x in range(0,17): for y in xrange(0,17): product = grid[y][x+3] * grid[y+1][x+2] * \ grid[y+2][x+1] * grid[y+3][x] if product > max : max = product print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 16: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 16.  As always, any feedback is welcome. # Euler 16 # http://projecteuler.net/index.php?section=problems&id=16 # 2^15 = 32768 and the sum of its digits is # 3 + 2 + 7 + 6 + 8 = 26. # What is the sum of the digits of the number 2^1000? import time start = time.time() print sum([int(i) for i in str(2**1000)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 7: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 7.  As always, any feedback is welcome. # Euler 7 # http://projecteuler.net/index.php?section=problems&id=7 # By listing the first six prime numbers: 2, 3, 5, 7, # 11, and 13, we can see that the 6th prime is 13. What # is the 10001st prime number? import time start = time.time() def nthPrime(nth): primes = [2] number = 3 while len(primes) < nth: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes[nth - 1] print nthPrime(10001) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 4: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 4.  As always, any feedback is welcome. # Euler 4 # http://projecteuler.net/index.php?section=problems&id=4 # Find the largest palindrome made from the product of # two 3-digit numbers. A palindromic number reads the # same both ways. The largest palindrome made from the # product of two 2-digit numbers is 9009 = 91 x 99. # Find the largest palindrome made from the product of # two 3-digit numbers. import time start = time.time() def isPalindrome(s): return s == s[::-1] max = 0 for i in xrange(100, 999): for j in xrange(i, 999): n = i * j; if (isPalindrome(str(n))): if (n > max): max = n print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 13: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 13.  As always, any feedback is welcome. # Euler 13 # http://projecteuler.net/index.php?section=problems&id=13 # Work out the first ten digits of the sum of the # following one-hundred 50-digit numbers. import time start = time.time() number_string = '\ 37107287533902102798797998220837590246510135740250\ 46376937677490009712648124896970078050417018260538\ 74324986199524741059474233309513058123726617309629\ 91942213363574161572522430563301811072406154908250\ 23067588207539346171171980310421047513778063246676\ 89261670696623633820136378418383684178734361726757\ 28112879812849979408065481931592621691275889832738\ 44274228917432520321923589422876796487670272189318\ 47451445736001306439091167216856844588711603153276\ 70386486105843025439939619828917593665686757934951\ 62176457141856560629502157223196586755079324193331\ 64906352462741904929101432445813822663347944758178\ 92575867718337217661963751590579239728245598838407\ 58203565325359399008402633568948830189458628227828\ 80181199384826282014278194139940567587151170094390\ 35398664372827112653829987240784473053190104293586\ 86515506006295864861532075273371959191420517255829\ 71693888707715466499115593487603532921714970056938\ 54370070576826684624621495650076471787294438377604\ 53282654108756828443191190634694037855217779295145\ 36123272525000296071075082563815656710885258350721\ 45876576172410976447339110607218265236877223636045\ 17423706905851860660448207621209813287860733969412\ 81142660418086830619328460811191061556940512689692\ 51934325451728388641918047049293215058642563049483\ 62467221648435076201727918039944693004732956340691\ 15732444386908125794514089057706229429197107928209\ 55037687525678773091862540744969844508330393682126\ 18336384825330154686196124348767681297534375946515\ 80386287592878490201521685554828717201219257766954\ 78182833757993103614740356856449095527097864797581\ 16726320100436897842553539920931837441497806860984\ 48403098129077791799088218795327364475675590848030\ 87086987551392711854517078544161852424320693150332\ 59959406895756536782107074926966537676326235447210\ 69793950679652694742597709739166693763042633987085\ 41052684708299085211399427365734116182760315001271\ 65378607361501080857009149939512557028198746004375\ 35829035317434717326932123578154982629742552737307\ 94953759765105305946966067683156574377167401875275\ 88902802571733229619176668713819931811048770190271\ 25267680276078003013678680992525463401061632866526\ 36270218540497705585629946580636237993140746255962\ 24074486908231174977792365466257246923322810917141\ 91430288197103288597806669760892938638285025333403\ 34413065578016127815921815005561868836468420090470\ 23053081172816430487623791969842487255036638784583\ 11487696932154902810424020138335124462181441773470\ 63783299490636259666498587618221225225512486764533\ 67720186971698544312419572409913959008952310058822\ 95548255300263520781532296796249481641953868218774\ 76085327132285723110424803456124867697064507995236\ 37774242535411291684276865538926205024910326572967\ 23701913275725675285653248258265463092207058596522\ 29798860272258331913126375147341994889534765745501\ 18495701454879288984856827726077713721403798879715\ 38298203783031473527721580348144513491373226651381\ 34829543829199918180278916522431027392251122869539\ 40957953066405232632538044100059654939159879593635\ 29746152185502371307642255121183693803580388584903\ 41698116222072977186158236678424689157993532961922\ 62467957194401269043877107275048102390895523597457\ 23189706772547915061505504953922979530901129967519\ 86188088225875314529584099251203829009407770775672\ 11306739708304724483816533873502340845647058077308\ 82959174767140363198008187129011875491310547126581\ 97623331044818386269515456334926366572897563400500\ 42846280183517070527831839425882145521227251250327\ 55121603546981200581762165212827652751691296897789\ 32238195734329339946437501907836945765883352399886\ 75506164965184775180738168837861091527357929701337\ 62177842752192623401942399639168044983993173312731\ 32924185707147349566916674687634660915035914677504\ 99518671430235219628894890102423325116913619626622\ 73267460800591547471830798392868535206946944540724\ 76841822524674417161514036427982273348055556214818\ 97142617910342598647204516893989422179826088076852\ 87783646182799346313767754307809363333018982642090\ 10848802521674670883215120185883543223812876952786\ 71329612474782464538636993009049310363619763878039\ 62184073572399794223406235393808339651327408011116\ 66627891981488087797941876876144230030984490851411\ 60661826293682836764744779239180335110989069790714\ 85786944089552990653640447425576083659976645795096\ 66024396409905389607120198219976047599490197230297\ 64913982680032973156037120041377903785566085089252\ 16730939319872750275468906903707539413042652315011\ 94809377245048795150954100921645863754710598436791\ 78639167021187492431995700641917969777599028300699\ 15368713711936614952811305876380278410754449733078\ 40789923115535562561142322423255033685442488917353\ 44889911501440648020369068063960672322193204149535\ 41503128880339536053299340368006977710650566631954\ 81234880673210146739058568557934581403627822703280\ 82616570773948327592232845941706525094512325230608\ 22918802058777319719839450180888072429661980811197\ 77158542502016545090413245809786882778948721859617\ 72107838435069186155435662884062257473692284509516\ 20849603980134001723930671666823555245252804609722\ 53503534226472524250874054075591789781264330331690' total = 0 for i in xrange(0, 100 * 50 - 1, 50): total += int(number_string[i:i+49]) print str(total)[:10] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 6: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 6.  As always, any feedback is welcome. # Euler 6 # http://projecteuler.net/index.php?section=problems&id=6 # Find the difference between the sum of the squares of # the first one hundred natural numbers and the square # of the sum. import time start = time.time() square_of_sums = sum(range(1,101)) ** 2 sum_of_squares = reduce(lambda agg, i: agg+i**2, range(1,101)) print square_of_sums - sum_of_squares print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • How to assume/steal another process's windows as my own?

    - by Marco Z
    I'd like to show another app's windows under my app's taskbar button. It's a background app that reports another process's windows as my app's own. Is there any universal way to do this, e.g. each "new" window, alert glow, progressmeter, and other taskbar features, show under my own app's button? For example, Winfox runs under its own process and steals Firefox's windows. It also adds features, but that's irrelevant -- I just want to support another app's existing taskbar features under my own app's button -- multiple windows, progressmeter, alert flashing, error flashing, mini-icons, etc. Is there a near-universal way to steal an app, or is it largely app-specific? Thanks!

    Read the article

  • Project Euler 20: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 20.  As always, any feedback is welcome. # Euler 20 # http://projecteuler.net/index.php?section=problems&id=20 # n! means n x (n - 1) x ... x 3 x 2 x 1 # Find the sum of digits in 100! import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) print sum([int(i) for i in str(factorial(100))]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 1: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 1.  As always, any feedback is welcome. # Euler 1 # http://projecteuler.net/index.php?section=problems&amp;id=1 # If we list all the natural numbers below 10 that are # multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of # these multiples is 23. Find the sum of all the multiples # of 3 or 5 below 1000. import time start = time.time() print sum([x for x in range(1000) if x % 3== 0 or x % 5== 0]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue') # Also cool def constraint(x): return x % 3 == 0 or x % 5 == 0 print sum(filter(constraint, range(1000)))

    Read the article

  • Project Euler 3: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 3.  As always, any feedback is welcome. # Euler 3 # http://projecteuler.net/index.php?section=problems&id=3 # The prime factors of 13195 are 5, 7, 13 and 29. # What is the largest prime factor of the number # 600851475143? import time start = time.time() def largest_prime_factor(n): max = n divisor = 2 while (n >= divisor ** 2): if n % divisor == 0: max, n = n, n / divisor else: divisor += 1 return max print largest_prime_factor(600851475143) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • What is the "official" place for community support for the Mere Mortals .NET framework?

    - by Ryan Hayes
    My team is using the Mere Mortals .NET framework from Oak Leaf. Being used to working with primarily open source software, I found it excruciatingly painful to find ANY community support for MM.NET. When I asked if there was any, the only place I was given to look for support was Universal Thread, which is a site which requires a membership for search and archived questions. It seems like a third party, pay-for site should not be the primary source of support for anything like this, especially MM.NET which costs $700 per developer. It doesn' to me like an entire community around MM.NET would choose to all pay on top of the license just to use a forum. If not Universal Thread, then what is the "official" place to find support for the Mere Mortals .NET framework?

    Read the article

  • Virtual Printer Driver for Windows

    - by bitsbunny
    Hello, can you please help me with the following questions... If I need a virtual printer that will convert a PostScript stream to a different format, do I have to implement a virtual printer from scratch or implement a rendering plug-in? The rendering plug-in seems to support only certain customizations. Also the data invariably goes to the spooler which is not needed in this case. If I implement a virtual printer driver does it completely replace the Microsoft PostScript Driver or the Microsoft Universal Driver? Since my driver is virtual, does it matter if I write a PostScript compliant or a Universal Driver compliant one? Any other method to convert a printed document to a custom document format apart from implementing a virtual printer driver? Can I hook on as a port monitor or something? From what I could understand I guess not.

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >