Search Results

Search found 25093 results on 1004 pages for 'console output'.

Page 201/1004 | < Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >

  • Converting a PV vm back into an HVM vm

    - by wim.coekaerts
    I have been doing some Oracle VM benchmark stuff in the last week or 2 in my off hours and yesterday I wanted to convert one of my VMs that was based on a paravirt kernel into a vm that just boots as a regular hardware virt VM with a standard x86-64 kernel. It took me a little while to figure out the fastest way so now that I have it pretty much down I wanted to share the steps. A PV kernel uses pygrub and a paravirt kernel image that lives on the vm image virtual disk. since this disk image does not have to be bootable it doesn't contain a boot sector and if you just restart the VM in hvm mode the virtual bios will just not do much as it can't start the boot process from disk The first thing I do is make a backup of my vm.cfg file :-) and then edit it as follows : the original file contains : bootloader = '/usr/bin/pygrub' I replace that with : acpi = 1 apic = 1 builder = 'hvm' device_model = '/usr/lib/xen/bin/qemu-dm' kernel = '/usr/lib/xen/boot/hvmloader' then changing the disk files. I change my xvd disks to hd disks and I copy over the iso image of my instal lDVD. In the case of my VM template it was based on OL5U4 So I downloaded Enterprise-R5-U4-Server-x86_64-dvd.iso and added it as a cd device. disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,xvda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,xvdb,w', ] to disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,hda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,hdb,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Enterprise-R5-U4-Server-x86_64-dvd.iso, hdc:cdrom,r', ] boot='d' for the network devices (vifs) I change : vif = ['bridge=xenbr2,type=netfront'] to vif = ['bridge=xenbr2,type=ioemu'] That should do it. Next, inside the VM, I copy over the regular kernel rpm that I want to end up running in hvm mode. In this example case it was : kernel-2.6.18-164.0.0.0.1.el5.x8664.rpm. I will use that later on in the process. I put this kernel simply in /root At this point I just start the vm with xm create vm.cfg and start my vnc console to the vm console. Oracle Linux will boot from the iso image, I just go through the install steps and click on UPgrade existing (not re-install). Because the VM is the same as the ISO the install won't actually do anything and it will run through instantly. When the "Reboot" button pops up, don't reboot. Switch to the command prompt console. hi alt-f2 to go to the shell prompt. Now it's easy : umount /mnt/sysimage/boot cd /mnt/sysimage chroot . mount /dev/hda1 (if that was your /boot partition) export PATH=/sbin:$PATH (just to clean that up) edit /etc/modprobe.conf and comment out the xen modules (just put a # in front) Install grub. if your /boot is hda1 then that is (hd0,0) $ grub root (hd0,0) setup (hd0) exit grub now you have a good bootsector, grub installed and you have your grub.conf file Install the new kernel cd root (this is your old /root in your pv image) rpm -ivh remove (or comment out) boot='d' in your vm.cfg restart the VM and you should be good to go, regular grub should start and load your environment. Caveats : this assumes you used labels for your filesystems. if /etc/fstab were to have devices listed then you would have to rename these device before rebooting as well. If you had a /dev/xvda disk then this would be /dev/hda or /dev/sda. All in all it is a relatively short and simple process.

    Read the article

  • Converting a PV vm back into an HVM vm

    - by wim.coekaerts
    I have been doing some Oracle VM benchmark stuff in the last week or 2 in my off hours and yesterday I wanted to convert one of my VMs that was based on a paravirt kernel into a vm that just boots as a regular hardware virt VM with a standard x86-64 kernel. It took me a little while to figure out the fastest way so now that I have it pretty much down I wanted to share the steps. A PV kernel uses pygrub and a paravirt kernel image that lives on the vm image virtual disk. since this disk image does not have to be bootable it doesn't contain a boot sector and if you just restart the VM in hvm mode the virtual bios will just not do much as it can't start the boot process from disk The first thing I do is make a backup of my vm.cfg file :-) and then edit it as follows : the original file contains : bootloader = '/usr/bin/pygrub' I replace that with : acpi = 1 apic = 1 builder = 'hvm' device_model = '/usr/lib/xen/bin/qemu-dm' kernel = '/usr/lib/xen/boot/hvmloader' then changing the disk files. I change my xvd disks to hd disks and I copy over the iso image of my instal lDVD. In the case of my VM template it was based on OL5U4 So I downloaded Enterprise-R5-U4-Server-x86_64-dvd.iso and added it as a cd device. disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,xvda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,xvdb,w', ] to disk = ['file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/System.img,hda,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Oracle11202RAC_x86_64-xvdb.img,hdb,w', 'file:/ovs/OVM_EL5U4_X86_64_11202RAC_PVM/Enterprise-R5-U4-Server-x86_64-dvd.iso, hdc:cdrom,r', ] boot='d' for the network devices (vifs) I change : vif = ['bridge=xenbr2,type=netfront'] to vif = ['bridge=xenbr2,type=ioemu'] That should do it. Next, inside the VM, I copy over the regular kernel rpm that I want to end up running in hvm mode. In this example case it was : kernel-2.6.18-164.0.0.0.1.el5.x8664.rpm. I will use that later on in the process. I put this kernel simply in /root At this point I just start the vm with xm create vm.cfg and start my vnc console to the vm console. Oracle Linux will boot from the iso image, I just go through the install steps and click on UPgrade existing (not re-install). Because the VM is the same as the ISO the install won't actually do anything and it will run through instantly. When the "Reboot" button pops up, don't reboot. Switch to the command prompt console. hi alt-f2 to go to the shell prompt. Now it's easy : umount /mnt/sysimage/boot cd /mnt/sysimage chroot . mount /dev/hda1 (if that was your /boot partition) export PATH=/sbin:$PATH (just to clean that up) edit /etc/modprobe.conf and comment out the xen modules (just put a # in front) Install grub. if your /boot is hda1 then that is (hd0,0) $ grub root (hd0,0) setup (hd0) exit grub now you have a good bootsector, grub installed and you have your grub.conf file Install the new kernel cd root (this is your old /root in your pv image) rpm -ivh remove (or comment out) boot='d' in your vm.cfg restart the VM and you should be good to go, regular grub should start and load your environment. Caveats : this assumes you used labels for your filesystems. if /etc/fstab were to have devices listed then you would have to rename these device before rebooting as well. If you had a /dev/xvda disk then this would be /dev/hda or /dev/sda. All in all it is a relatively short and simple process.

    Read the article

  • Stepping outside Visual Studio IDE [Part 2 of 2] with Mono 2.6.4

    - by mbcrump
    Continuing part 2 of my Stepping outside the Visual Studio IDE, is the open-source Mono Project. Mono is a software platform designed to allow developers to easily create cross platform applications. Sponsored by Novell (http://www.novell.com/), Mono is an open source implementation of Microsoft's .NET Framework based on the ECMA standards for C# and the Common Language Runtime. A growing family of solutions and an active and enthusiastic contributing community is helping position Mono to become the leading choice for development of Linux applications. So, to clarify. You can use Mono to develop .NET applications that will run on Linux, Windows or Mac. It’s basically a IDE that has roots in Linux. Let’s first look at the compatibility: Compatibility If you already have an application written in .Net, you can scan your application with the Mono Migration Analyzer (MoMA) to determine if your application uses anything not supported by Mono. The current release version of Mono is 2.6. (Released December 2009) The easiest way to describe what Mono currently supports is: Everything in .NET 3.5 except WPF and WF, limited WCF. Here is a slightly more detailed view, by .NET framework version: Implemented C# 3.0 System.Core LINQ ASP.Net 3.5 ASP.Net MVC C# 2.0 (generics) Core Libraries 2.0: mscorlib, System, System.Xml ASP.Net 2.0 - except WebParts ADO.Net 2.0 Winforms/System.Drawing 2.0 - does not support right-to-left C# 1.0 Core Libraries 1.1: mscorlib, System, System.Xml ASP.Net 1.1 ADO.Net 1.1 Winforms/System.Drawing 1.1 Partially Implemented LINQ to SQL - Mostly done, but a few features missing WCF - silverlight 2.0 subset completed Not Implemented WPF - no plans to implement WF - Will implement WF 4 instead on future versions of Mono. System.Management - does not map to Linux System.EnterpriseServices - deprecated Links to documentation. The Official Mono FAQ’s Links to binaries. Mono IDE Latest Version is 2.6.4 That's it, nothing more is required except to compile and run .net code in Linux. Installation After landing on the mono project home page, you can select which platform you want to download. I typically pick the Virtual PC image since I spend all of my day using Windows 7. Go ahead and pick whatever version is best for you. The Virtual PC image comes with Suse Linux. Once the image is launch, you will see the following: I’m not going to go through each option but its best to start with “Start Here” icon. It will provide you with information on new projects or existing VS projects. After you get Mono installed, it's probably a good idea to run a quick Hello World program to make sure everything is setup properly. This allows you to know that your Mono is working before you try writing or running a more complex application. To write a "Hello World" program follow these steps: Start Mono Development Environment. Create a new Project: File->New->Solution Select "Console Project" in the category list. Enter a project name into the Project name field, for example, "HW Project". Click "Forward" Click “Packaging” then OK. You should have a screen very simular to a VS Console App. Click the "Run" button in the toolbar (Ctrl-F5). Look in the Application Output and you should have the “Hello World!” Your screen should look like the screen below. That should do it for a simple console app in mono. To test out an ASP.NET application, simply copy your code to a new directory in /srv/www/htdocs, then visit the following URL: http://localhost/directoryname/page.aspx where directoryname is the directory where you deployed your application and page.aspx is the initial page for your software. Databases You can continue to use SQL server database or use MySQL, Postgress, Sybase, Oracle, IBM’s DB2 or SQLite db. Conclusion I hope this brief look at the Mono IDE helps someone get acquainted with development outside of VS. As always, I welcome any suggestions or comments.

    Read the article

  • Ops Center 12c - Update - Provisioning Solaris on x86 Using a Card-Based NIC

    - by scottdickson
    Last week, I posted a blog describing how to use Ops Center to provision Solaris over the network via a NIC on a card rather than the built-in NIC.  Really, that was all about how to install Solaris on a SPARC system.  This week, we'll look at how to do the same thing for an x86-based server. Really, the overall process is exactly the same, at least for Solaris 11, with only minor updates. We will focus on Solaris 11 for this blog.  Once I verify that the same approach works for Solaris 10, I will provide another update. Booting Solaris 11 on x86 Just as before, in order to configure the server for network boot across a card-based NIC, it is necessary to declare the asset to associate the additional MACs with the server.  You likely will need to access the server console via the ILOM to figure out the MAC and to get a good idea of the network instance number.  The simplest way to find both of these is to start a network boot using the desired NIC and see where it appears in the list of network interfaces and what MAC is used when it tries to boot.  Go to the ILOM for the server.  Reset the server and start the console.  When the BIOS loads, select the boot menu, usually with Ctrl-P.  This will give you a menu of devices to boot from, including all of the NICs.  Select the NIC you want to boot from.  Its position in the list is a good indication of what network number Solaris will give the device. In this case, we want to boot from the 5th interface (GB_4, net4).  Pick it and start the boot processes.  When it starts to boot, you will see the MAC address for the interface Once you have the network instance and the MAC, go through the same process of declaring the asset as in the SPARC case.  This associates the additional network interface with the server.. Creating an OS Provisioning Plan The simplest way to do the boot via an alternate interface on an x86 system is to do a manual boot.  Update the OS provisioning profile as in the SPARC case to reflect the fact that we are booting from a different interface.  Update, in this case, the network boot device to be GB_4/net4, or the device corresponding to your network instance number.  Configure the profile to support manual network boot by checking the box for manual boot in the OS Provisioning profile. Booting the System Once you have created a profile and plan to support booting from the additional NIC, we are ready to install the server. Again, from the ILOM, reset the system and start the console.  When the BIOS loads, select boot from the Boot Menu as above.  Select the network interface from the list as before and start the boot process.  When the grub bootloader loads, the default boot image is the Solaris Text Installer.  On the grub menu, select Automated Installer and Ops Center takes over from there. Lessons The key lesson from all of this is that Ops Center is a valuable tool for provisioning servers whether they are connected via built-in network interfaces or via high-speed NICs on cards.  This is great news for modern datacenters using converged network infrastructures.  The process works for both SPARC and x86 Solaris installations.  And it's easy and repeatable.

    Read the article

  • Microsoft and jQuery

    - by Rick Strahl
    The jQuery JavaScript library has been steadily getting more popular and with recent developments from Microsoft, jQuery is also getting ever more exposure on the ASP.NET platform including now directly from Microsoft. jQuery is a light weight, open source DOM manipulation library for JavaScript that has changed how many developers think about JavaScript. You can download it and find more information on jQuery on www.jquery.com. For me jQuery has had a huge impact on how I develop Web applications and was probably the main reason I went from dreading to do JavaScript development to actually looking forward to implementing client side JavaScript functionality. It has also had a profound impact on my JavaScript skill level for me by seeing how the library accomplishes things (and often reviewing the terse but excellent source code). jQuery made an uncomfortable development platform (JavaScript + DOM) a joy to work on. Although jQuery is by no means the only JavaScript library out there, its ease of use, small size, huge community of plug-ins and pure usefulness has made it easily the most popular JavaScript library available today. As a long time jQuery user, I’ve been excited to see the developments from Microsoft that are bringing jQuery to more ASP.NET developers and providing more integration with jQuery for ASP.NET’s core features rather than relying on the ASP.NET AJAX library. Microsoft and jQuery – making Friends jQuery is an open source project but in the last couple of years Microsoft has really thrown its weight behind supporting this open source library as a supported component on the Microsoft platform. When I say supported I literally mean supported: Microsoft now offers actual tech support for jQuery as part of their Product Support Services (PSS) as jQuery integration has become part of several of the ASP.NET toolkits and ships in several of the default Web project templates in Visual Studio 2010. The ASP.NET MVC 3 framework (still in Beta) also uses jQuery for a variety of client side support features including client side validation and we can look forward toward more integration of client side functionality via jQuery in both MVC and WebForms in the future. In other words jQuery is becoming an optional but included component of the ASP.NET platform. PSS support means that support staff will answer jQuery related support questions as part of any support incidents related to ASP.NET which provides some piece of mind to some corporate development shops that require end to end support from Microsoft. In addition to including jQuery and supporting it, Microsoft has also been getting involved in providing development resources for extending jQuery’s functionality via plug-ins. Microsoft’s last version of the Microsoft Ajax Library – which is the successor to the native ASP.NET AJAX Library – included some really cool functionality for client templates, databinding and localization. As it turns out Microsoft has rebuilt most of that functionality using jQuery as the base API and provided jQuery plug-ins of these components. Very recently these three plug-ins were submitted and have been approved for inclusion in the official jQuery plug-in repository and been taken over by the jQuery team for further improvements and maintenance. Even more surprising: The jQuery-templates component has actually been approved for inclusion in the next major update of the jQuery core in jQuery V1.5, which means it will become a native feature that doesn’t require additional script files to be loaded. Imagine this – an open source contribution from Microsoft that has been accepted into a major open source project for a core feature improvement. Microsoft has come a long way indeed! What the Microsoft Involvement with jQuery means to you For Microsoft jQuery support is a strategic decision that affects their direction in client side development, but nothing stopped you from using jQuery in your applications prior to Microsoft’s official backing and in fact a large chunk of developers did so readily prior to Microsoft’s announcement. Official support from Microsoft brings a few benefits to developers however. jQuery support in Visual Studio 2010 means built-in support for jQuery IntelliSense, automatically added jQuery scripts in many projects types and a common base for client side functionality that actually uses what most developers are already using. If you have already been using jQuery and were worried about straying from the Microsoft line and their internal Microsoft Ajax Library – worry no more. With official support and the change in direction towards jQuery Microsoft is now following along what most in the ASP.NET community had already been doing by using jQuery, which is likely the reason for Microsoft’s shift in direction in the first place. ASP.NET AJAX and the Microsoft AJAX Library weren’t bad technology – there was tons of useful functionality buried in these libraries. However, these libraries never got off the ground, mainly because early incarnations were squarely aimed at control/component developers rather than application developers. For all the functionality that these controls provided for control developers they lacked in useful and easily usable application developer functionality that was easily accessible in day to day client side development. The result was that even though Microsoft shipped support for these tools in the box (in .NET 3.5 and 4.0), other than for the internal support in ASP.NET for things like the UpdatePanel and the ASP.NET AJAX Control Toolkit as well as some third party vendors, the Microsoft client libraries were largely ignored by the developer community opening the door for other client side solutions. Microsoft seems to be acknowledging developer choice in this case: Many more developers were going down the jQuery path rather than using the Microsoft built libraries and there seems to be little sense in continuing development of a technology that largely goes unused by the majority of developers. Kudos for Microsoft for recognizing this and gracefully changing directions. Note that even though there will be no further development in the Microsoft client libraries they will continue to be supported so if you’re using them in your applications there’s no reason to start running for the exit in a panic and start re-writing everything with jQuery. Although that might be a reasonable choice in some cases, jQuery and the Microsoft libraries work well side by side so that you can leave existing solutions untouched even as you enhance them with jQuery. The Microsoft jQuery Plug-ins – Solid Core Features One of the most interesting developments in Microsoft’s embracing of jQuery is that Microsoft has started contributing to jQuery via standard mechanism set for jQuery developers: By submitting plug-ins. Microsoft took some of the nicest new features of the unpublished Microsoft Ajax Client Library and re-wrote these components for jQuery and then submitted them as plug-ins to the jQuery plug-in repository. Accepted plug-ins get taken over by the jQuery team and that’s exactly what happened with the three plug-ins submitted by Microsoft with the templating plug-in even getting slated to be published as part of the jQuery core in the next major release (1.5). The following plug-ins are provided by Microsoft: jQuery Templates – a client side template rendering engine jQuery Data Link – a client side databinder that can synchronize changes without code jQuery Globalization – provides formatting and conversion features for dates and numbers The first two are ports of functionality that was slated for the Microsoft Ajax Library while functionality for the globalization library provides functionality that was already found in the original ASP.NET AJAX library. To me all three plug-ins address a pressing need in client side applications and provide functionality I’ve previously used in other incarnations, but with more complete implementations. Let’s take a close look at these plug-ins. jQuery Templates http://api.jquery.com/category/plugins/templates/ Client side templating is a key component for building rich JavaScript applications in the browser. Templating on the client lets you avoid from manually creating markup by creating DOM nodes and injecting them individually into the document via code. Rather you can create markup templates – similar to the way you create classic ASP server markup – and merge data into these templates to render HTML which you can then inject into the document or replace existing content with. Output from templates are rendered as a jQuery matched set and can then be easily inserted into the document as needed. Templating is key to minimize client side code and reduce repeated code for rendering logic. Instead a single template can be used in many places for updating and adding content to existing pages. Further if you build pure AJAX interfaces that rely entirely on client rendering of the initial page content, templates allow you to a use a single markup template to handle all rendering of each specific HTML section/element. I’ve used a number of different client rendering template engines with jQuery in the past including jTemplates (a PHP style templating engine) and a modified version of John Resig’s MicroTemplating engine which I built into my own set of libraries because it’s such a commonly used feature in my client side applications. jQuery templates adds a much richer templating model that allows for sub-templates and access to the data items. Like John Resig’s original Micro Template engine, the core basics of the templating engine create JavaScript code which means that templates can include JavaScript code. To give you a basic idea of how templates work imagine I have an application that downloads a set of stock quotes based on a symbol list then displays them in the document. To do this you can create an ‘item’ template that describes how each of the quotes is renderd as a template inside of the document: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div><div>${LastPrice}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div><div>${LastQuoteTimeString}</div> </div> </script> The ‘template’ is little more than HTML with some markup expressions inside of it that define the template language. Notice the embedded ${} expressions which reference data from the quote objects returned from an AJAX call on the server. You can embed any JavaScript or value expression in these template expressions. There are also a number of structural commands like {{if}} and {{each}} that provide for rudimentary logic inside of your templates as well as commands ({{tmpl}} and {{wrap}}) for nesting templates. You can find more about the full set of markup expressions available in the documentation. To load up this data you can use code like the following: <script type="text/javascript"> //var Proxy = new ServiceProxy("../PageMethods/PageMethodsService.asmx/"); $(document).ready(function () { $("#btnGetQuotes").click(GetQuotes); }); function GetQuotes() { var symbols = $("#txtSymbols").val().split(","); $.ajax({ url: "../PageMethods/PageMethodsService.asmx/GetStockQuotes", data: JSON.stringify({ symbols: symbols }), // parameter map type: "POST", // data has to be POSTed contentType: "application/json", timeout: 10000, dataType: "json", success: function (result) { var quotes = result.d; var jEl = $("#stockTemplate").tmpl(quotes); $("#quoteDisplay").empty().append(jEl); }, error: function (xhr, status) { alert(status + "\r\n" + xhr.responseText); } }); }; </script> In this case an ASMX AJAX service is called to retrieve the stock quotes. The service returns an array of quote objects. The result is returned as an object with the .d property (in Microsoft service style) that returns the actual array of quotes. The template is applied with: var jEl = $("#stockTemplate").tmpl(quotes); which selects the template script tag and uses the .tmpl() function to apply the data to it. The result is a jQuery matched set of elements that can then be appended to the quote display element in the page. The template is merged against an array in this example. When the result is an array the template is automatically applied to each each array item. If you pass a single data item – like say a stock quote – the template works exactly the same way but is applied only once. Templates also have access to a $data item which provides the current data item and information about the tempalte that is currently executing. This makes it possible to keep context within the context of the template itself and also to pass context from a parent template to a child template which is very powerful. Templates can be evaluated by using the template selector and calling the .tmpl() function on the jQuery matched set as shown above or you can use the static $.tmpl() function to provide a template as a string. This allows you to dynamically create templates in code or – more likely – to load templates from the server via AJAX calls. In short there are options The above shows off some of the basics, but there’s much for functionality available in the template engine. Check the documentation link for more information and links to additional examples. The plug-in download also comes with a number of examples that demonstrate functionality. jQuery templates will become a native component in jQuery Core 1.5, so it’s definitely worthwhile checking out the engine today and get familiar with this interface. As much as I’m stoked about templating becoming part of the jQuery core because it’s such an integral part of many applications, there are also a couple shortcomings in the current incarnation: Lack of Error Handling Currently if you embed an expression that is invalid it’s simply not rendered. There’s no error rendered into the template nor do the various  template functions throw errors which leaves finding of bugs as a runtime exercise. I would like some mechanism – optional if possible – to be able to get error info of what is failing in a template when it’s rendered. No String Output Templates are always rendered into a jQuery matched set and there’s no way that I can see to directly render to a string. String output can be useful for debugging as well as opening up templating for creating non-HTML string output. Limited JavaScript Access Unlike John Resig’s original MicroTemplating Engine which was entirely based on JavaScript code generation these templates are limited to a few structured commands that can ‘execute’. There’s no code execution inside of script code which means you’re limited to calling expressions available in global objects or the data item passed in. This may or may not be a big deal depending on the complexity of your template logic. Error handling has been discussed quite a bit and it’s likely there will be some solution to that particualar issue by the time jQuery templates ship. The others are relatively minor issues but something to think about anyway. jQuery Data Link http://api.jquery.com/category/plugins/data-link/ jQuery Data Link provides the ability to do two-way data binding between input controls and an underlying object’s properties. The typical scenario is linking a textbox to a property of an object and have the object updated when the text in the textbox is changed and have the textbox change when the value in the object or the entire object changes. The plug-in also supports converter functions that can be applied to provide the conversion logic from string to some other value typically necessary for mapping things like textbox string input to say a number property and potentially applying additional formatting and calculations. In theory this sounds great, however in reality this plug-in has some serious usability issues. Using the plug-in you can do things like the following to bind data: person = { firstName: "rick", lastName: "strahl"}; $(document).ready( function() { // provide for two-way linking of inputs $("form").link(person); // bind to non-input elements explicitly $("#objFirst").link(person, { firstName: { name: "objFirst", convertBack: function (value, source, target) { $(target).text(value); } } }); $("#objLast").link(person, { lastName: { name: "objLast", convertBack: function (value, source, target) { $(target).text(value); } } }); }); This code hooks up two-way linking between a couple of textboxes on the page and the person object. The first line in the .ready() handler provides mapping of object to form field with the same field names as properties on the object. Note that .link() does NOT bind items into the textboxes when you call .link() – changes are mapped only when values change and you move out of the field. Strike one. The two following commands allow manual binding of values to specific DOM elements which is effectively a one-way bind. You specify the object and a then an explicit mapping where name is an ID in the document. The converter is required to explicitly assign the value to the element. Strike two. You can also detect changes to the underlying object and cause updates to the input elements bound. Unfortunately the syntax to do this is not very natural as you have to rely on the jQuery data object. To update an object’s properties and get change notification looks like this: function updateFirstName() { $(person).data("firstName", person.firstName + " (code updated)"); } This works fine in causing any linked fields to be updated. In the bindings above both the firstName input field and objFirst DOM element gets updated. But the syntax requires you to use a jQuery .data() call for each property change to ensure that the changes are tracked properly. Really? Sure you’re binding through multiple layers of abstraction now but how is that better than just manually assigning values? The code savings (if any) are going to be minimal. As much as I would like to have a WPF/Silverlight/Observable-like binding mechanism in client script, this plug-in doesn’t help much towards that goal in its current incarnation. While you can bind values, the ‘binder’ is too limited to be really useful. If initial values can’t be assigned from the mappings you’re going to end up duplicating work loading the data using some other mechanism. There’s no easy way to re-bind data with a different object altogether since updates trigger only through the .data members. Finally, any non-input elements have to be bound via code that’s fairly verbose and frankly may be more voluminous than what you might write by hand for manual binding and unbinding. Two way binding can be very useful but it has to be easy and most importantly natural. If it’s more work to hook up a binding than writing a couple of lines to do binding/unbinding this sort of thing helps very little in most scenarios. In talking to some of the developers the feature set for Data Link is not complete and they are still soliciting input for features and functionality. If you have ideas on how you want this feature to be more useful get involved and post your recommendations. As it stands, it looks to me like this component needs a lot of love to become useful. For this component to really provide value, bindings need to be able to be refreshed easily and work at the object level, not just the property level. It seems to me we would be much better served by a model binder object that can perform these binding/unbinding tasks in bulk rather than a tool where each link has to be mapped first. I also find the choice of creating a jQuery plug-in questionable – it seems a standalone object – albeit one that relies on the jQuery library – would provide a more intuitive interface than the current forcing of options onto a plug-in style interface. Out of the three Microsoft created components this is by far the least useful and least polished implementation at this point. jQuery Globalization http://github.com/jquery/jquery-global Globalization in JavaScript applications often gets short shrift and part of the reason for this is that natively in JavaScript there’s little support for formatting and parsing of numbers and dates. There are a number of JavaScript libraries out there that provide some support for globalization, but most are limited to a particular portion of globalization. As .NET developers we’re fairly spoiled by the richness of APIs provided in the framework and when dealing with client development one really notices the lack of these features. While you may not necessarily need to localize your application the globalization plug-in also helps with some basic tasks for non-localized applications: Dealing with formatting and parsing of dates and time values. Dates in particular are problematic in JavaScript as there are no formatters whatsoever except the .toString() method which outputs a verbose and next to useless long string. With the globalization plug-in you get a good chunk of the formatting and parsing functionality that the .NET framework provides on the server. You can write code like the following for example to format numbers and dates: var date = new Date(); var output = $.format(date, "MMM. dd, yy") + "\r\n" + $.format(date, "d") + "\r\n" + // 10/25/2010 $.format(1222.32213, "N2") + "\r\n" + $.format(1222.33, "c") + "\r\n"; alert(output); This becomes even more useful if you combine it with templates which can also include any JavaScript expressions. Assuming the globalization plug-in is loaded you can create template expressions that use the $.format function. Here’s the template I used earlier for the stock quote again with a couple of formats applied: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div> <div>${$.format(LastPrice,"N2")}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div> <div>${$.format(LastQuoteTime,"MMM dd, yyyy")}</div> </div> </script> There are also parsing methods that can parse dates and numbers from strings into numbers easily: alert($.parseDate("25.10.2010")); alert($.parseInt("12.222")); // de-DE uses . for thousands separators As you can see culture specific options are taken into account when parsing. The globalization plugin provides rich support for a variety of locales: Get a list of all available cultures Query cultures for culture items (like currency symbol, separators etc.) Localized string names for all calendar related items (days of week, months) Generated off of .NET’s supported locales In short you get much of the same functionality that you already might be using in .NET on the server side. The plugin includes a huge number of locales and an Globalization.all.min.js file that contains the text defaults for each of these locales as well as small locale specific script files that define each of the locale specific settings. It’s highly recommended that you NOT use the huge globalization file that includes all locales, but rather add script references to only those languages you explicitly care about. Overall this plug-in is a welcome helper. Even if you use it with a single locale (like en-US) and do no other localization, you’ll gain solid support for number and date formatting which is a vital feature of many applications. Changes for Microsoft It’s good to see Microsoft coming out of its shell and away from the ‘not-built-here’ mentality that has been so pervasive in the past. It’s especially good to see it applied to jQuery – a technology that has stood in drastic contrast to Microsoft’s own internal efforts in terms of design, usage model and… popularity. It’s great to see that Microsoft is paying attention to what customers prefer to use and supporting the customer sentiment – even if it meant drastically changing course of policy and moving into a more open and sharing environment in the process. The additional jQuery support that has been introduced in the last two years certainly has made lives easier for many developers on the ASP.NET platform. It’s also nice to see Microsoft submitting proposals through the standard jQuery process of plug-ins and getting accepted for various very useful projects. Certainly the jQuery Templates plug-in is going to be very useful to many especially since it will be baked into the jQuery core in jQuery 1.5. I hope we see more of this type of involvement from Microsoft in the future. Kudos!© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  

    Read the article

  • juju illegal base64 data at input byte 9

    - by ayr-ton
    After bootstrap a environment via manual provisioning, juju give me the following output for juju status: ERROR Unable to connect to environment "manual". Please check your credentials or use 'juju bootstrap' to create a new environment. Error details: illegal base64 data at input byte 9 And doing bootstrap again shows me: WARNING ignoring environments.yaml: using bootstrap config in file "/home/ayrton/.juju/environments/manual.jenv" ERROR illegal base64 data at input byte 9 The first bootstrap shows me no error, but the status crash as above and the second one output is just the base64 error. My juju version is 1.19.4-trusty-amd64, running in trusty 64. The bootstrap environment is a VPS with 1GB of memory, 20GB of hd and precise 64bits. Please, let me know if I can provide any further information.

    Read the article

  • Developer Dashboard in SharePoint 2010

    - by jcortez
    Introducing the Developer Dashboard As a SharePoint developer (or IT Professional), how many times have you had the pleasure of figuring out why a particular page on your site is taking too long to render? I'm sure one of the techniques you have employed in troubleshooting is the process of elimination - removing individual web parts from the page hoping to identify which web part is misbehaving. One of the new features of SharePoint 2010 is the Developer Dashboard. This dashboard provides tracing and performance information that can be useful when you are trying to troubleshoot pages that are loading too slow. The Developer Dashboard is turned off by default and I'll go over 3 different ways to display it. Here is a screenshot of what the Developer Dashboard looks like when displayed at the bottom of the page:   You can see on the left side the different events that fired during the page processing pipeline and how long these events took. This is where you will see individual web parts being processed and how long it took to complete (obviously the kind of processing depends on what the web part does). On the right side you would see the different database calls issued through the SharePoint Object Model to process the page. You will notice that each of these database queries are actually a hyperlink and clicking on it displays a pop-up window that shows the actual SQL Query Text, the Call Stack that triggered the database call, and the IO statistics of that query. Enabling the Developer Dashboard Option 1: Managed Code   The Developer Dashboard is a farm-wide setting and the code above won't work if it is used within a web part hosted on any non-Central Admin site. The SPDeveloperDashboardLevel enum has three possible values: On, Off, and OnDemand. Setting it to On will always display the Developer Dashboard at the bottom of the page. Setting it Off will hide the Developer Dashboard. Setting it to OnDemand will add an icon at the top right corner of the page (see screenshot below) where a Site Collection Admin can toggle the display of the Developer Dashboard for a particular site collection. In my opinion, OnDemand is the best setting when troubleshooting a page or during development since a Site Collection Admin can turn it on or off and for a particular site only. The first cool thing about this is that the Site Collection Admin that turned it on will be the only one to see the Developer Dashboard output. Everyday users won't see the Developer Dashboard output even if it was turned on by a Site Collection Admin. If you need more flexibility on who gets to see the Developer Dashboard output, you can set the SPDeveloperDashboardSettings.RequiredPermissions to control which group of users will have the permission to see the output. Option 2: Using stsadm Using stsadm, you can run the following command to configure the Developer Dashboard: STSADM –o setproperty –pn developer-dashboard –pv OnDemand To successfully execute this command, be sure you that are running as a Farm Admin. Option 3: Using PowerShell For all scripts in SharePoint 2010, I prefer writing them as PowerShell scripts. Though the stsadm command is less verbose, the PowerShell equivalent is pretty straightforward and uses the SharePoint Object Model: You can of course parameterized the value that gets assigned to the DisplayLevel property so you can turn it On, Off or OnDemand depending on the parameter. Events and the Developer Dashboard  Now, don't assume that all the code inside your web part or page will show up in the Developer Dashboard complete with all the great troubleshooting information. Only a finite set of events are monitored by default (for a web part it will events in the base web part class). Let's say you have a click event that could take some time, for example a web service call. And you want to include troubleshooting information for this event in the Developer Dashboard. Enter SPMonitoredScope which is also a new feature in SharePoint 2010. In SharePoint 2010, everything is executed within a "Monitored Scope". And each scope has a set of "Monitors" that measures and counts calls and timings which appears in the Developer Dashboard. Below is an example on how to get your custom code to get included in the Developer Dashboard by wrapping it inside a new monitored scope: The code above would include your new scope "My long web service call" into the Developer Dashboard and would log the time it took to complete processing. In my opinion, wrapping your custom code in a SPMonitoredScope is a SharePoint development best practice since it provides you visibility and a better understanding on the performance of your components.

    Read the article

  • West Wind WebSurge - an easy way to Load Test Web Applications

    - by Rick Strahl
    A few months ago on a project the subject of load testing came up. We were having some serious issues with a Web application that would start spewing SQL lock errors under somewhat heavy load. These sort of errors can be tough to catch, precisely because they only occur under load and not during typical development testing. To replicate this error more reliably we needed to put a load on the application and run it for a while before these SQL errors would flare up. It’s been a while since I’d looked at load testing tools, so I spent a bit of time looking at different tools and frankly didn’t really find anything that was a good fit. A lot of tools were either a pain to use, didn’t have the basic features I needed, or are extravagantly expensive. In  the end I got frustrated enough to build an initially small custom load test solution that then morphed into a more generic library, then gained a console front end and eventually turned into a full blown Web load testing tool that is now called West Wind WebSurge. I got seriously frustrated looking for tools every time I needed some quick and dirty load testing for an application. If my aim is to just put an application under heavy enough load to find a scalability problem in code, or to simply try and push an application to its limits on the hardware it’s running I shouldn’t have to have to struggle to set up tests. It should be easy enough to get going in a few minutes, so that the testing can be set up quickly so that it can be done on a regular basis without a lot of hassle. And that was the goal when I started to build out my initial custom load tester into a more widely usable tool. If you’re in a hurry and you want to check it out, you can find more information and download links here: West Wind WebSurge Product Page Walk through Video Download link (zip) Install from Chocolatey Source on GitHub For a more detailed discussion of the why’s and how’s and some background continue reading. How did I get here? When I started out on this path, I wasn’t planning on building a tool like this myself – but I got frustrated enough looking at what’s out there to think that I can do better than what’s available for the most common simple load testing scenarios. When we ran into the SQL lock problems I mentioned, I started looking around what’s available for Web load testing solutions that would work for our whole team which consisted of a few developers and a couple of IT guys both of which needed to be able to run the tests. It had been a while since I looked at tools and I figured that by now there should be some good solutions out there, but as it turns out I didn’t really find anything that fit our relatively simple needs without costing an arm and a leg… I spent the better part of a day installing and trying various load testing tools and to be frank most of them were either terrible at what they do, incredibly unfriendly to use, used some terminology I couldn’t even parse, or were extremely expensive (and I mean in the ‘sell your liver’ range of expensive). Pick your poison. There are also a number of online solutions for load testing and they actually looked more promising, but those wouldn’t work well for our scenario as the application is running inside of a private VPN with no outside access into the VPN. Most of those online solutions also ended up being very pricey as well – presumably because of the bandwidth required to test over the open Web can be enormous. When I asked around on Twitter what people were using– I got mostly… crickets. Several people mentioned Visual Studio Load Test, and most other suggestions pointed to online solutions. I did get a bunch of responses though with people asking to let them know what I found – apparently I’m not alone when it comes to finding load testing tools that are effective and easy to use. As to Visual Studio, the higher end skus of Visual Studio and the test edition include a Web load testing tool, which is quite powerful, but there are a number of issues with that: First it’s tied to Visual Studio so it’s not very portable – you need a VS install. I also find the test setup and terminology used by the VS test runner extremely confusing. Heck, it’s complicated enough that there’s even a Pluralsight course on using the Visual Studio Web test from Steve Smith. And of course you need to have one of the high end Visual Studio Skus, and those are mucho Dinero ($$$) – just for the load testing that’s rarely an option. Some of the tools are ultra extensive and let you run analysis tools on the target serves which is useful, but in most cases – just plain overkill and only distracts from what I tend to be ultimately interested in: Reproducing problems that occur at high load, and finding the upper limits and ‘what if’ scenarios as load is ramped up increasingly against a site. Yes it’s useful to have Web app instrumentation, but often that’s not what you’re interested in. I still fondly remember early days of Web testing when Microsoft had the WAST (Web Application Stress Tool) tool, which was rather simple – and also somewhat limited – but easily allowed you to create stress tests very quickly. It had some serious limitations (mainly that it didn’t work with SSL),  but the idea behind it was excellent: Create tests quickly and easily and provide a decent engine to run it locally with minimal setup. You could get set up and run tests within a few minutes. Unfortunately, that tool died a quiet death as so many of Microsoft’s tools that probably were built by an intern and then abandoned, even though there was a lot of potential and it was actually fairly widely used. Eventually the tools was no longer downloadable and now it simply doesn’t work anymore on higher end hardware. West Wind Web Surge – Making Load Testing Quick and Easy So I ended up creating West Wind WebSurge out of rebellious frustration… The goal of WebSurge is to make it drop dead simple to create load tests. It’s super easy to capture sessions either using the built in capture tool (big props to Eric Lawrence, Telerik and FiddlerCore which made that piece a snap), using the full version of Fiddler and exporting sessions, or by manually or programmatically creating text files based on plain HTTP headers to create requests. I’ve been using this tool for 4 months now on a regular basis on various projects as a reality check for performance and scalability and it’s worked extremely well for finding small performance issues. I also use it regularly as a simple URL tester, as it allows me to quickly enter a URL plus headers and content and test that URL and its results along with the ability to easily save one or more of those URLs. A few weeks back I made a walk through video that goes over most of the features of WebSurge in some detail: Note that the UI has slightly changed since then, so there are some UI improvements. Most notably the test results screen has been updated recently to a different layout and to provide more information about each URL in a session at a glance. The video and the main WebSurge site has a lot of info of basic operations. For the rest of this post I’ll talk about a few deeper aspects that may be of interest while also giving a glance at how WebSurge works. Session Capturing As you would expect, WebSurge works with Sessions of Urls that are played back under load. Here’s what the main Session View looks like: You can create session entries manually by individually adding URLs to test (on the Request tab on the right) and saving them, or you can capture output from Web Browsers, Windows Desktop applications that call services, your own applications using the built in Capture tool. With this tool you can capture anything HTTP -SSL requests and content from Web pages, AJAX calls, SOAP or REST services – again anything that uses Windows or .NET HTTP APIs. Behind the scenes the capture tool uses FiddlerCore so basically anything you can capture with Fiddler you can also capture with Web Surge Session capture tool. Alternately you can actually use Fiddler as well, and then export the captured Fiddler trace to a file, which can then be imported into WebSurge. This is a nice way to let somebody capture session without having to actually install WebSurge or for your customers to provide an exact playback scenario for a given set of URLs that cause a problem perhaps. Note that not all applications work with Fiddler’s proxy unless you configure a proxy. For example, .NET Web applications that make HTTP calls usually don’t show up in Fiddler by default. For those .NET applications you can explicitly override proxy settings to capture those requests to service calls. The capture tool also has handy optional filters that allow you to filter by domain, to help block out noise that you typically don’t want to include in your requests. For example, if your pages include links to CDNs, or Google Analytics or social links you typically don’t want to include those in your load test, so by capturing just from a specific domain you are guaranteed content from only that one domain. Additionally you can provide url filters in the configuration file – filters allow to provide filter strings that if contained in a url will cause requests to be ignored. Again this is useful if you don’t filter by domain but you want to filter out things like static image, css and script files etc. Often you’re not interested in the load characteristics of these static and usually cached resources as they just add noise to tests and often skew the overall url performance results. In my testing I tend to care only about my dynamic requests. SSL Captures require Fiddler Note, that in order to capture SSL requests you’ll have to install the Fiddler’s SSL certificate. The easiest way to do this is to install Fiddler and use its SSL configuration options to get the certificate into the local certificate store. There’s a document on the Telerik site that provides the exact steps to get SSL captures to work with Fiddler and therefore with WebSurge. Session Storage A group of URLs entered or captured make up a Session. Sessions can be saved and restored easily as they use a very simple text format that simply stored on disk. The format is slightly customized HTTP header traces separated by a separator line. The headers are standard HTTP headers except that the full URL instead of just the domain relative path is stored as part of the 1st HTTP header line for easier parsing. Because it’s just text and uses the same format that Fiddler uses for exports, it’s super easy to create Sessions by hand manually or under program control writing out to a simple text file. You can see what this format looks like in the Capture window figure above – the raw captured format is also what’s stored to disk and what WebSurge parses from. The only ‘custom’ part of these headers is that 1st line contains the full URL instead of the domain relative path and Host: header. The rest of each header are just plain standard HTTP headers with each individual URL isolated by a separator line. The format used here also uses what Fiddler produces for exports, so it’s easy to exchange or view data either in Fiddler or WebSurge. Urls can also be edited interactively so you can modify the headers easily as well: Again – it’s just plain HTTP headers so anything you can do with HTTP can be added here. Use it for single URL Testing Incidentally I’ve also found this form as an excellent way to test and replay individual URLs for simple non-load testing purposes. Because you can capture a single or many URLs and store them on disk, this also provides a nice HTTP playground where you can record URLs with their headers, and fire them one at a time or as a session and see results immediately. It’s actually an easy way for REST presentations and I find the simple UI flow actually easier than using Fiddler natively. Finally you can save one or more URLs as a session for later retrieval. I’m using this more and more for simple URL checks. Overriding Cookies and Domains Speaking of HTTP headers – you can also overwrite cookies used as part of the options. One thing that happens with modern Web applications is that you have session cookies in use for authorization. These cookies tend to expire at some point which would invalidate a test. Using the Options dialog you can actually override the cookie: which replaces the cookie for all requests with the cookie value specified here. You can capture a valid cookie from a manual HTTP request in your browser and then paste into the cookie field, to replace the existing Cookie with the new one that is now valid. Likewise you can easily replace the domain so if you captured urls on west-wind.com and now you want to test on localhost you can do that easily easily as well. You could even do something like capture on store.west-wind.com and then test on localhost/store which would also work. Running Load Tests Once you’ve created a Session you can specify the length of the test in seconds, and specify the number of simultaneous threads to run each session on. Sessions run through each of the URLs in the session sequentially by default. One option in the options list above is that you can also randomize the URLs so each thread runs requests in a different order. This avoids bunching up URLs initially when tests start as all threads run the same requests simultaneously which can sometimes skew the results of the first few minutes of a test. While sessions run some progress information is displayed: By default there’s a live view of requests displayed in a Console-like window. On the bottom of the window there’s a running total summary that displays where you’re at in the test, how many requests have been processed and what the requests per second count is currently for all requests. Note that for tests that run over a thousand requests a second it’s a good idea to turn off the console display. While the console display is nice to see that something is happening and also gives you slight idea what’s happening with actual requests, once a lot of requests are processed, this UI updating actually adds a lot of CPU overhead to the application which may cause the actual load generated to be reduced. If you are running a 1000 requests a second there’s not much to see anyway as requests roll by way too fast to see individual lines anyway. If you look on the options panel, there is a NoProgressEvents option that disables the console display. Note that the summary display is still updated approximately once a second so you can always tell that the test is still running. Test Results When the test is done you get a simple Results display: On the right you get an overall summary as well as breakdown by each URL in the session. Both success and failures are highlighted so it’s easy to see what’s breaking in your load test. The report can be printed or you can also open the HTML document in your default Web Browser for printing to PDF or saving the HTML document to disk. The list on the right shows you a partial list of the URLs that were fired so you can look in detail at the request and response data. The list can be filtered by success and failure requests. Each list is partial only (at the moment) and limited to a max of 1000 items in order to render reasonably quickly. Each item in the list can be clicked to see the full request and response data: This particularly useful for errors so you can quickly see and copy what request data was used and in the case of a GET request you can also just click the link to quickly jump to the page. For non-GET requests you can find the URL in the Session list, and use the context menu to Test the URL as configured including any HTTP content data to send. You get to see the full HTTP request and response as well as a link in the Request header to go visit the actual page. Not so useful for a POST as above, but definitely useful for GET requests. Finally you can also get a few charts. The most useful one is probably the Request per Second chart which can be accessed from the Charts menu or shortcut. Here’s what it looks like:   Results can also be exported to JSON, XML and HTML. Keep in mind that these files can get very large rather quickly though, so exports can end up taking a while to complete. Command Line Interface WebSurge runs with a small core load engine and this engine is plugged into the front end application I’ve shown so far. There’s also a command line interface available to run WebSurge from the Windows command prompt. Using the command line you can run tests for either an individual URL (similar to AB.exe for example) or a full Session file. By default when it runs WebSurgeCli shows progress every second showing total request count, failures and the requests per second for the entire test. A silent option can turn off this progress display and display only the results. The command line interface can be useful for build integration which allows checking for failures perhaps or hitting a specific requests per second count etc. It’s also nice to use this as quick and dirty URL test facility similar to the way you’d use Apache Bench (ab.exe). Unlike ab.exe though, WebSurgeCli supports SSL and makes it much easier to create multi-URL tests using either manual editing or the WebSurge UI. Current Status Currently West Wind WebSurge is still in Beta status. I’m still adding small new features and tweaking the UI in an attempt to make it as easy and self-explanatory as possible to run. Documentation for the UI and specialty features is also still a work in progress. I plan on open-sourcing this product, but it won’t be free. There’s a free version available that provides a limited number of threads and request URLs to run. A relatively low cost license  removes the thread and request limitations. Pricing info can be found on the Web site – there’s an introductory price which is $99 at the moment which I think is reasonable compared to most other for pay solutions out there that are exorbitant by comparison… The reason code is not available yet is – well, the UI portion of the app is a bit embarrassing in its current monolithic state. The UI started as a very simple interface originally that later got a lot more complex – yeah, that never happens, right? Unless there’s a lot of interest I don’t foresee re-writing the UI entirely (which would be ideal), but in the meantime at least some cleanup is required before I dare to publish it :-). The code will likely be released with version 1.0. I’m very interested in feedback. Do you think this could be useful to you and provide value over other tools you may or may not have used before? I hope so – it already has provided a ton of value for me and the work I do that made the development worthwhile at this point. You can leave a comment below, or for more extensive discussions you can post a message on the West Wind Message Board in the WebSurge section Microsoft MVPs and Insiders get a free License If you’re a Microsoft MVP or a Microsoft Insider you can get a full license for free. Send me a link to your current, official Microsoft profile and I’ll send you a not-for resale license. Send any messages to [email protected]. Resources For more info on WebSurge and to download it to try it out, use the following links. West Wind WebSurge Home Download West Wind WebSurge Getting Started with West Wind WebSurge Video© Rick Strahl, West Wind Technologies, 2005-2014Posted in ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Create and Consume WCF service using Visual Studio 2010

    - by sreejukg
    In this article I am going to demonstrate how to create a WCF service, that can be hosted inside IIS and a windows application that consume the WCF service. To support service oriented architecture, Microsoft developed the programming model named Windows Communication Foundation (WCF). ASMX was the prior version from Microsoft, was completely based on XML and .Net framework continues to support ASMX web services in future versions also. While ASMX web services was the first step towards the service oriented architecture, Microsoft has made a big step forward by introducing WCF. An overview of planning for WCF can be found from this link http://msdn.microsoft.com/en-us/library/ff649584.aspx . The following are the important differences between WCF and ASMX from an asp.net developer point of view. 1. ASMX web services are easy to write, configure and consume 2. ASMX web services are only hosted in IIS 3. ASMX web services can only use http 4. WCF, can be hosted inside IIS, windows service, console application, WAS(Windows Process Activation Service) etc 5. WCF can be used with HTTP, TCP/IP, MSMQ and other protocols. The detailed difference between ASMX web service and WCF can be found here. http://msdn.microsoft.com/en-us/library/cc304771.aspx Though WCF is a bigger step for future, Visual Studio makes it simpler to create, publish and consume the WCF service. In this demonstration, I am going to create a service named SayHello that accepts 2 parameters such as name and language code. The service will return a hello to user name that corresponds to the language. So the proposed service usage is as follows. Caller: SayHello(“Sreeju”, “en”) -> return value -> Hello Sreeju Caller: SayHello(“???”, “ar”) -> return value -> ????? ??? Caller: SayHello(“Sreeju”, “es”) - > return value -> Hola Sreeju Note: calling an automated translation service is not the intention of this article. If you are interested, you can find bing translator API and can use in your application. http://www.microsofttranslator.com/dev/ So Let us start First I am going to create a Service Application that offer the SayHello Service. Open Visual Studio 2010, Go to File -> New Project, from your preferred language from the templates section select WCF, select WCF service application as the project type, give the project a name(I named it as HelloService), click ok so that visual studio will create the project for you. In this demonstration, I have used C# as the programming language. Visual studio will create the necessary files for you to start with. By default it will create a service with name Service1.svc and there will be an interface named IService.cs. The screenshot for the project in solution explorer is as follows Since I want to demonstrate how to create new service, I deleted Service1.Svc and IService1.cs files from the project by right click the file and select delete. Now in the project there is no service available, I am going to create one. From the solution explorer, right click the project, select Add -> New Item Add new item dialog will appear to you. Select WCF service from the list, give the name as HelloService.svc, and click on the Add button. Now Visual studio will create 2 files with name IHelloService.cs and HelloService.svc. These files are basically the service definition (IHelloService.cs) and the service implementation (HelloService.svc). Let us examine the IHelloService interface. The code state that IHelloService is the service definition and it provides an operation/method (similar to web method in ASMX web services) named DoWork(). Any WCF service will have a definition file as an Interface that defines the service. Let us see what is inside HelloService.svc The code illustrated is implementing the interface IHelloService. The code is self-explanatory; the HelloService class needs to implement all the methods defined in the Service Definition. Let me do the service as I require. Open IHelloService.cs in visual studio, and delete the DoWork() method and add a definition for SayHello(), do not forget to add OperationContract attribute to the method. The modified IHelloService.cs will look as follows Now implement the SayHello method in the HelloService.svc.cs file. Here I wrote the code for SayHello method as follows. I am done with the service. Now you can build and run the service by clicking f5 (or selecting start debugging from the debug menu). Visual studio will host the service in give you a client to test it. The screenshot is as follows. In the left pane, it shows the services available in the server and in right side you can invoke the service. To test the service sayHello, double click on it from the above window. It will ask you to enter the parameters and click on the invoke button. See a sample output below. Now I have done with the service. The next step is to write a service client. Creating a consumer application involves 2 steps. One generating the class and configuration file corresponds to the service. Create a project that utilizes the generated class and configuration file. First I am going to generate the class and configuration file. There is a great tool available with Visual Studio named svcutil.exe, this tool will create the necessary class and configuration files for you. Read the documentation for the svcutil.exe here http://msdn.microsoft.com/en-us/library/aa347733.aspx . Open Visual studio command prompt, you can find it under Start Menu -> All Programs -> Visual Studio 2010 -> Visual Studio Tools -> Visual Studio command prompt Make sure the service is in running state in visual studio. Note the url for the service(from the running window, you can right click and choose copy address). Now from the command prompt, enter the svcutil.exe command as follows. I have mentioned the url and the /d switch – for the directory to store the output files(In this case d:\temp). If you are using windows drive(in my case it is c: ) , make sure you open the command prompt with run as administrator option, otherwise you will get permission error(Only in windows 7 or windows vista). The tool has created 2 files, HelloService.cs and output.config. Now the next step is to create a new project and use the created files and consume the service. Let us do that now. I am going to add a console application to the current solution. Right click solution name in the solution explorer, right click, Add-> New Project Under Visual C#, select console application, give the project a name, I named it TestService Now navigate to d:\temp where I generated the files with the svcutil.exe. Rename output.config to app.config. Next step is to add both files (d:\temp\helloservice.cs and app.config) to the files. In the solution explorer, right click the project, Add -> Add existing item, browse to the d:\temp folder, select the 2 files as mentioned before, click on the add button. Now you need to add a reference to the System.ServiceModel to the project. From solution explorer, right click the references under testservice project, select Add reference. In the Add reference dialog, select the .Net tab, select System.ServiceModel, and click ok Now open program.cs by double clicking on it and add the code to consume the web service to the main method. The modified file looks as follows Right click the testservice project and set as startup project. Click f5 to run the project. See the sample output as follows Publishing WCF service under IIS is similar to publishing ASP.Net application. Publish the application to a folder using Visual studio publishing feature, create a virtual directory and create it as an application. Don’t forget to set the application pool to use ASP.Net version 4. One last thing you need to check is the app.config file you have added to the solution. See the element client under ServiceModel element. There is an endpoint element with address attribute that points to the published service URL. If you permanently host the service under IIS, you can simply change the address parameter to the corresponding one and your application will consume the service. You have seen how easily you can build/consume WCF service. If you need the solution in zipped format, please post your email below.

    Read the article

  • Cleaner HTML Markup with ASP.NET 4 Web Forms - Client IDs (VS 2010 and .NET 4.0 Series)

    - by ScottGu
    This is the sixteenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post is the first of a few blog posts I’ll be doing that talk about some of the important changes we’ve made to make Web Forms in ASP.NET 4 generate clean, standards-compliant, CSS-friendly markup.  Today I’ll cover the work we are doing to provide better control over the “ID” attributes rendered by server controls to the client. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Clean, Standards-Based, CSS-Friendly Markup One of the common complaints developers have often had with ASP.NET Web Forms is that when using server controls they don’t have the ability to easily generate clean, CSS-friendly output and markup.  Some of the specific complaints with previous ASP.NET releases include: Auto-generated ID attributes within HTML make it hard to write JavaScript and style with CSS Use of tables instead of semantic markup for certain controls (in particular the asp:menu control) make styling ugly Some controls render inline style properties even if no style property on the control has been set ViewState can often be bigger than ideal ASP.NET 4 provides better support for building standards-compliant pages out of the box.  The built-in <asp:> server controls with ASP.NET 4 now generate cleaner markup and support CSS styling – and help address all of the above issues.  Markup Compatibility When Upgrading Existing ASP.NET Web Forms Applications A common question people often ask when hearing about the cleaner markup coming with ASP.NET 4 is “Great - but what about my existing applications?  Will these changes/improvements break things when I upgrade?” To help ensure that we don’t break assumptions around markup and styling with existing ASP.NET Web Forms applications, we’ve enabled a configuration flag – controlRenderingCompatbilityVersion – within web.config that let’s you decide if you want to use the new cleaner markup approach that is the default with new ASP.NET 4 applications, or for compatibility reasons render the same markup that previous versions of ASP.NET used:   When the controlRenderingCompatbilityVersion flag is set to “3.5” your application and server controls will by default render output using the same markup generation used with VS 2008 and .NET 3.5.  When the controlRenderingCompatbilityVersion flag is set to “4.0” your application and server controls will strictly adhere to the XHTML 1.1 specification, have cleaner client IDs, render with semantic correctness in mind, and have extraneous inline styles removed. This flag defaults to 4.0 for all new ASP.NET Web Forms applications built using ASP.NET 4. Any previous application that is upgraded using VS 2010 will have the controlRenderingCompatbilityVersion flag automatically set to 3.5 by the upgrade wizard to ensure backwards compatibility.  You can then optionally change it (either at the application level, or scope it within the web.config file to be on a per page or directory level) if you move your pages to use CSS and take advantage of the new markup rendering. Today’s Cleaner Markup Topic: Client IDs The ability to have clean, predictable, ID attributes on rendered HTML elements is something developers have long asked for with Web Forms (ID values like “ctl00_ContentPlaceholder1_ListView1_ctrl0_Label1” are not very popular).  Having control over the ID values rendered helps make it much easier to write client-side JavaScript against the output, makes it easier to style elements using CSS, and on large pages can help reduce the overall size of the markup generated. New ClientIDMode Property on Controls ASP.NET 4 supports a new ClientIDMode property on the Control base class.  The ClientIDMode property indicates how controls should generate client ID values when they render.  The ClientIDMode property supports four possible values: AutoID—Renders the output as in .NET 3.5 (auto-generated IDs which will still render prefixes like ctrl00 for compatibility) Predictable (Default)— Trims any “ctl00” ID string and if a list/container control concatenates child ids (example: id=”ParentControl_ChildControl”) Static—Hands over full ID naming control to the developer – whatever they set as the ID of the control is what is rendered (example: id=”JustMyId”) Inherit—Tells the control to defer to the naming behavior mode of the parent container control The ClientIDMode property can be set directly on individual controls (or within container controls – in which case the controls within them will by default inherit the setting): Or it can be specified at a page or usercontrol level (using the <%@ Page %> or <%@ Control %> directives) – in which case controls within the pages/usercontrols inherit the setting (and can optionally override it): Or it can be set within the web.config file of an application – in which case pages within the application inherit the setting (and can optionally override it): This gives you the flexibility to customize/override the naming behavior however you want. Example: Using the ClientIDMode property to control the IDs of Non-List Controls Let’s take a look at how we can use the new ClientIDMode property to control the rendering of “ID” elements within a page.  To help illustrate this we can create a simple page called “SingleControlExample.aspx” that is based on a master-page called “Site.Master”, and which has a single <asp:label> control with an ID of “Message” that is contained with an <asp:content> container control called “MainContent”: Within our code-behind we’ll then add some simple code like below to dynamically populate the Label’s Text property at runtime:   If we were running this application using ASP.NET 3.5 (or had our ASP.NET 4 application configured to run using 3.5 rendering or ClientIDMode=AutoID), then the generated markup sent down to the client would look like below: This ID is unique (which is good) – but rather ugly because of the “ct100” prefix (which is bad). Markup Rendering when using ASP.NET 4 and the ClientIDMode is set to “Predictable” With ASP.NET 4, server controls by default now render their ID’s using ClientIDMode=”Predictable”.  This helps ensure that ID values are still unique and don’t conflict on a page, but at the same time it makes the IDs less verbose and more predictable.  This means that the generated markup of our <asp:label> control above will by default now look like below with ASP.NET 4: Notice that the “ct100” prefix is gone. Because the “Message” control is embedded within a “MainContent” container control, by default it’s ID will be prefixed “MainContent_Message” to avoid potential collisions with other controls elsewhere within the page. Markup Rendering when using ASP.NET 4 and the ClientIDMode is set to “Static” Sometimes you don’t want your ID values to be nested hierarchically, though, and instead just want the ID rendered to be whatever value you set it as.  To enable this you can now use ClientIDMode=static, in which case the ID rendered will be exactly the same as what you set it on the server-side on your control.  This will cause the below markup to be rendered with ASP.NET 4: This option now gives you the ability to completely control the client ID values sent down by controls. Example: Using the ClientIDMode property to control the IDs of Data-Bound List Controls Data-bound list/grid controls have historically been the hardest to use/style when it comes to working with Web Form’s automatically generated IDs.  Let’s now take a look at a scenario where we’ll customize the ID’s rendered using a ListView control with ASP.NET 4. The code snippet below is an example of a ListView control that displays the contents of a data-bound collection — in this case, airports: We can then write code like below within our code-behind to dynamically databind a list of airports to the ListView above: At runtime this will then by default generate a <ul> list of airports like below.  Note that because the <ul> and <li> elements in the ListView’s template are not server controls, no IDs are rendered in our markup: Adding Client ID’s to Each Row Item Now, let’s say that we wanted to add client-ID’s to the output so that we can programmatically access each <li> via JavaScript.  We want these ID’s to be unique, predictable, and identifiable. A first approach would be to mark each <li> element within the template as being a server control (by giving it a runat=server attribute) and by giving each one an id of “airport”: By default ASP.NET 4 will now render clean IDs like below (no ctl001-like ids are rendered):   Using the ClientIDRowSuffix Property Our template above now generates unique ID’s for each <li> element – but if we are going to access them programmatically on the client using JavaScript we might want to instead have the ID’s contain the airport code within them to make them easier to reference.  The good news is that we can easily do this by taking advantage of the new ClientIDRowSuffix property on databound controls in ASP.NET 4 to better control the ID’s of our individual row elements. To do this, we’ll set the ClientIDRowSuffix property to “Code” on our ListView control.  This tells the ListView to use the databound “Code” property from our Airport class when generating the ID: And now instead of having row suffixes like “1”, “2”, and “3”, we’ll instead have the Airport.Code value embedded within the IDs (e.g: _CLE, _CAK, _PDX, etc): You can use this ClientIDRowSuffix approach with other databound controls like the GridView as well. It is useful anytime you want to program row elements on the client – and use clean/identified IDs to easily reference them from JavaScript code. Summary ASP.NET 4 enables you to generate much cleaner HTML markup from server controls and from within your Web Forms applications.  In today’s post I covered how you can now easily control the client ID values that are rendered by server controls.  In upcoming posts I’ll cover some of the other markup improvements that are also coming with the ASP.NET 4 release. Hope this helps, Scott

    Read the article

  • ASP.NET MVC 3: Razor’s @: and <text> syntax

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (today) In today’s post I’m going to discuss two useful syntactical features of the new Razor view-engine – the @: and <text> syntax support. Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post.  Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a list of products: When run, it generates output like:   One of the techniques that Razor uses to implicitly identify when a code block ends is to look for tag/element content to denote the beginning of a content region.  For example, in the code snippet above Razor automatically treated the inner <li></li> block within our foreach loop as an HTML content block because it saw the opening <li> tag sequence and knew that it couldn’t be valid C#.  This particular technique – using tags to identify content blocks within code – is one of the key ingredients that makes Razor so clean and productive with scenarios involving HTML creation. Using @: to explicitly indicate the start of content Not all content container blocks start with a tag element tag, though, and there are scenarios where the Razor parser can’t implicitly detect a content block. Razor addresses this by enabling you to explicitly indicate the beginning of a line of content by using the @: character sequence within a code block.  The @: sequence indicates that the line of content that follows should be treated as a content block: As a more practical example, the below snippet demonstrates how we could output a “(Out of Stock!)” message next to our product name if the product is out of stock: Because I am not wrapping the (Out of Stock!) message in an HTML tag element, Razor can’t implicitly determine that the content within the @if block is the start of a content block.  We are using the @: character sequence to explicitly indicate that this line within our code block should be treated as content. Using Code Nuggets within @: content blocks In addition to outputting static content, you can also have code nuggets embedded within a content block that is initiated using a @: character sequence.  For example, we have two @: sequences in the code snippet below: Notice how within the second @: sequence we are emitting the number of units left within the content block (e.g. - “(Only 3 left!”). We are doing this by embedding a @p.UnitsInStock code nugget within the line of content. Multiple Lines of Content Razor makes it easy to have multiple lines of content wrapped in an HTML element.  For example, below the inner content of our @if container is wrapped in an HTML <p> element – which will cause Razor to treat it as content: For scenarios where the multiple lines of content are not wrapped by an outer HTML element, you can use multiple @: sequences: Alternatively, Razor also allows you to use a <text> element to explicitly identify content: The <text> tag is an element that is treated specially by Razor. It causes Razor to interpret the inner contents of the <text> block as content, and to not render the containing <text> tag element (meaning only the inner contents of the <text> element will be rendered – the tag itself will not).  This makes it convenient when you want to render multi-line content blocks that are not wrapped by an HTML element.  The <text> element can also optionally be used to denote single-lines of content, if you prefer it to the more concise @: sequence: The above code will render the same output as the @: version we looked at earlier.  Razor will automatically omit the <text> wrapping element from the output and just render the content within it.  Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s smart detection of <tag> elements to identify the beginning of content regions is one of the reasons that the Razor approach works so well with HTML generation scenarios, and it enables you to avoid having to explicitly mark the beginning/ending of content regions in about 95% of if/else and foreach scenarios. Razor’s @: and <text> syntax can then be used for scenarios where you want to avoid using an HTML element within a code container block, and need to more explicitly denote a content region. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Calling Web Service Functions Asynchronously from a Web Page

    - by SGWellens
    Over on the Asp.Net forums where I moderate, a user had a problem calling a Web Service from a web page asynchronously. I tried his code on my machine and was able to reproduce the problem. I was able to solve his problem, but only after taking the long scenic route through some of the more perplexing nuances of Web Services and Proxies. Here is the fascinating story of that journey. Start with a simple Web Service     public class Service1 : System.Web.Services.WebService    {        [WebMethod]        public string HelloWorld()        {            // sleep 10 seconds            System.Threading.Thread.Sleep(10 * 1000);            return "Hello World";        }    } The 10 second delay is added to make calling an asynchronous function more apparent. If you don't call the function asynchronously, it takes about 10 seconds for the page to be rendered back to the client. If the call is made from a Windows Forms application, the application freezes for about 10 seconds. Add the web service to a web site. Right-click the project and select "Add Web Reference…" Next, create a web page to call the Web Service. Note: An asp.net web page that calls an 'Async' method must have the Async property set to true in the page's header: <%@ Page Language="C#"          AutoEventWireup="true"          CodeFile="Default.aspx.cs"          Inherits="_Default"           Async='true'  %> Here is the code to create the Web Service proxy and connect the event handler. Shrewdly, we make the proxy object a member of the Page class so it remains instantiated between the various events. public partial class _Default : System.Web.UI.Page {    localhost.Service1 MyService;  // web service proxy     // ---- Page_Load ---------------------------------     protected void Page_Load(object sender, EventArgs e)    {        MyService = new localhost.Service1();        MyService.HelloWorldCompleted += EventHandler;          } Here is the code to invoke the web service and handle the event:     // ---- Async and EventHandler (delayed render) --------------------------     protected void ButtonHelloWorldAsync_Click(object sender, EventArgs e)    {        // blocks        ODS("Pre HelloWorldAsync...");        MyService.HelloWorldAsync();        ODS("Post HelloWorldAsync");    }    public void EventHandler(object sender, localhost.HelloWorldCompletedEventArgs e)    {        ODS("EventHandler");        ODS("    " + e.Result);    }     // ---- ODS ------------------------------------------------    //    // Helper function: Output Debug String     public static void ODS(string Msg)    {        String Out = String.Format("{0}  {1}", DateTime.Now.ToString("hh:mm:ss.ff"), Msg);        System.Diagnostics.Debug.WriteLine(Out);    } I added a utility function I use a lot: ODS (Output Debug String). Rather than include the library it is part of, I included it in the source file to keep this example simple. Fire up the project, open up a debug output window, press the button and we get this in the debug output window: 11:29:37.94 Pre HelloWorldAsync... 11:29:37.94 Post HelloWorldAsync 11:29:48.94 EventHandler 11:29:48.94 Hello World   Sweet. The asynchronous call was made and returned immediately. About 10 seconds later, the event handler fires and we get the result. Perfect….right? Not so fast cowboy. Watch the browser during the call: What the heck? The page is waiting for 10 seconds. Even though the asynchronous call returned immediately, Asp.Net is waiting for the event to fire before it renders the page. This is NOT what we wanted. I experimented with several techniques to work around this issue. Some may erroneously describe my behavior as 'hacking' but, since no ingesting of Twinkies was involved, I do not believe hacking is the appropriate term. If you examine the proxy that was automatically created, you will find a synchronous call to HelloWorld along with an additional set of methods to make asynchronous calls. I tried the other asynchronous method supplied in the proxy:     // ---- Begin and CallBack ----------------------------------     protected void ButtonBeginHelloWorld_Click(object sender, EventArgs e)    {        ODS("Pre BeginHelloWorld...");        MyService.BeginHelloWorld(AsyncCallback, null);        ODS("Post BeginHelloWorld");    }    public void AsyncCallback(IAsyncResult ar)    {        String Result = MyService.EndHelloWorld(ar);         ODS("AsyncCallback");        ODS("    " + Result);    } The BeginHelloWorld function in the proxy requires a callback function as a parameter. I tested it and the debug output window looked like this: 04:40:58.57 Pre BeginHelloWorld... 04:40:58.57 Post BeginHelloWorld 04:41:08.58 AsyncCallback 04:41:08.58 Hello World It works the same as before except for one critical difference: The page rendered immediately after the function call. I was worried the page object would be disposed after rendering the page but the system was smart enough to keep the page object in memory to handle the callback. Both techniques have a use: Delayed Render: Say you want to verify a credit card, look up shipping costs and confirm if an item is in stock. You could have three web service calls running in parallel and not render the page until all were finished. Nice. You can send information back to the client as part of the rendered page when all the services are finished. Immediate Render: Say you just want to start a service running and return to the client. You can do that too. However, the page gets sent to the client before the service has finished running so you will not be able to update parts of the page when the service finishes running. Summary: YourFunctionAsync() and an EventHandler will not render the page until the handler fires. BeginYourFunction() and a CallBack function will render the page as soon as possible. I found all this to be quite interesting and did a lot of searching and researching for documentation on this subject….but there isn't a lot out there. The biggest clues are the parameters that can be sent to the WSDL.exe program: http://msdn.microsoft.com/en-us/library/7h3ystb6(VS.100).aspx Two parameters are oldAsync and newAsync. OldAsync will create the Begin/End functions; newAsync will create the Async/Event functions. Caveat: I haven't tried this but it was stated in this article. I'll leave confirming this as an exercise for the student J. Included Code: I'm including the complete test project I created to verify the findings. The project was created with VS 2008 SP1. There is a solution file with 3 projects, the 3 projects are: Web Service Asp.Net Application Windows Forms Application To decide which program runs, you right-click a project and select "Set as Startup Project". I created and played with the Windows Forms application to see if it would reveal any secrets. I found that in the Windows Forms application, the generated proxy did NOT include the Begin/Callback functions. Those functions are only generated for Asp.Net pages. Probably for the reasons discussed earlier. Maybe those Microsoft boys and girls know what they are doing. I hope someone finds this useful. Steve Wellens

    Read the article

  • Introducing… SharePress!

    - by Bil Simser
    For those that follow me I’ve been away from blogging and twittering for a couple of months. This is the reason. For the last few months I’ve been working with a cross-functional team putting together a new product from the people that run WordPress, the free premiere blogging platform. The result is a new product we call SharePress, a highly extensible blogging and content management platform with the usability of WordPress and the power of SharePoint combined into a single product. SharePress gives you SharePoint sites that are SEO-friendly delivered with a Web 2.0 ease of use, leveraging all of the existing abilities of SharePoint and WordPress that we know today. The Reason Back in December I was approached by the WordPress team about building a new platform that took advantage of the power of SharePoint but the ease of WordPress. I’m no stranger to WordPress and it’s 5 minute no-holds-barred install (I’ve always wanted SharePoint to do this!) and I run my personal blog on WordPress as does my better half, Princess Jenn. There’s always been a pitch by so-called Web 2.0 applications to deliver the power of SharePoint but the ease of [insert product here] over the past year or so. I checked each and every one of them out, but they fell woefully short when it came to SharePoint’s document management, versioning, and customization. They try, but it’s never been up to par in my books. On the flipside, SharePoint has always been tops in collaboration in the Enterprise but it’s painful to develop web parts, UI customization can be tricky, and there’s just no user community for something as simple as themes and designs. The Product Enter SharePress. Is it SharePoint? Is it WordPress? It’s both, and neither. Everything you like about both products are there but this is a bold new product that is positioned to bring SharePoint to the masses while maintaining the fidelity of an Enterprise 2.0 collaboration platform. SharePress delivers on all fronts including: The ability to leverage any WordPress/Joomla/Drupal/DotNetNuke themes and skins inside of SharePoint Run any WordPress/Drupal/Joomla/DotNetNuke/SharePoint plug-in/module/web part/feature works out of the box with SharePress SEO-friendly URLs and pages Permalinks for all content All the features of SharePoint Server 2010 (including InfoPath, Excel, and Access services) included in the price Small deployment footprint. You decide how much to deploy and where. Independent Database Abstraction Layer (iDal) that allows you to deploy to SQL Server 2005/2008, MySQL, and PostgreSQL Portable Rendering Engine Layer (PREL) so you host .NET or PHP on Apache or IIS (version 7 or higher). The install feature is built around WordPress and it’s famous 5-minute install (actually, it’s never taken me more than 1 minute). SharePress installs with two screens after the files are uploaded to your server (which can be done entirely using FTP): After you enter two fields of information click “Install SharePress” and you’ll be done: No mess, no fuss, no complicated dependencies, and no server access required! How simpler could this be? The Technology WordPress plug-ins and themes working with SharePoint? Of course! The answer is IronPython which has now reached a maturity level capable of doing on the fly code language conversions. SharePress is a brand new product not built on top of any previous platform but leverages all the power of each of those applications through a patent pending technique called SharePress Multi-plAtfoRm Technology (SMART). SMART will convert PHP code on the fly into Python (using SWIG as an intermediate processor) which is then compiled to MSIL and then delivered back as an ASP.NET MVC application (output is C# or VB.NET, but you can build your own SMART converter to output a different language). Sound complicated? It is, but it’s all behind the scenes and you don’t have to worry about a thing. This image illustrates the technology stack and process: So users can load up out of the box PHP themes and plug-ins from the WordPress/Joomla/Drupal community into the SMART converter and output MSIL that is used by the SharePress engine and rendered on the fly to the end user. Supported PHP versions are 4.xx and 5.xx with version 6 support to come when it’s released. Similarly you can take any .NET application, DotNetNuke Module, SharePoint Web Part or event handler and feed it into the converter to output the same. Everything is reverse compiled into MSIL so it becomes technology agnostic. No source code access is needed and the SMART converter can handle obfuscated .NET assemblies that were built with .NET 1.0, 1.1, 2.0, 3.5, and 4.0. With this technology you can also with the flip of a switch have the output create PHP pages for you. This allows you to run SharePress on Unix based systems running PHP and MySQL, allowing you to deliver your SharePoint like experience to your users with a $0 infrastructure footprint. Here’s SharePress with the default WordPress post imported then a stock SharePoint collaboration site was imported. The site was then applied with the default Kubrick theme from WordPress. The Features Deploy any of the freely available 100,000 WordPress/Joomla/Drupal themes instantly to your runtime SharePress environment and preview or activate them right from your browser. Built-in Web 2.0 jQuery Enabled End User and Administrator Web Interface. Never have to remote into a server again! Run any SharePoint Web Part or Event Handler directly without modification or access to source code in SharePress. Use any WordPress/Joomla/Drupal plug-in directly in SharePress, no local admin or access to server. Just upload and activate. Upload and Activate any SharePoint Solution Package to any site remotely. No rebuilding. Changes made to sites require no compiling or rebuilding and are published immediately. Password Protected Content. You can give passwords to individual posts, articles, pages, documents, forms, and list items. A powerful polymorphic Captcha system backs the security interface and vendors can easily tie into smart card readers, fingerprint readers, and retina scanners for authorization and identification. OpenID, Windows Live, and Windows Authentication are supported out of the box. Infinitely customizable and extensible. You can leverage plug-ins from the open source community to do practically anything, all configured and uploaded via the browser. Additionally the developer API (available soon) allows you to build extensions in .NET, PHP, and Python with little effort. Easy Importing. We have importers for Blogger, WordPress, Drupal, Joomla, DotNetNuke, and SharePoint so you can populate your site quickly and easily with full metadata modeling and creation. Banner Management. It’s easy to setup banners for your web site complete with impression numbers, special URLs, and more. Menu Manager. The Menu Manager allows you to create as many menus as you want, each one can be associated to specific audiences or roles and then be styled across multiple contexts including the same menu delivered as a fly out, rollover, drop down, and just about any navigation you can think of. Collaborative ShareBook. Our exclusive book feature allows you to setup a “book” and then authorize individuals to contribute content. Permalinks. All content in SharePress has a permanent or “perma link” associated with it so people can link to it freely without fear of broken links. Apache or IIS, Unix / Linux / BSD / Solaris / Windows / Mac OS X support. Deliver SharePress the way *you* want from the platform *you* decide. Database Independence. We know people wanted to run on any database platform so SharePress is built on top of a database abstraction layer that allows you to run on SQL Server, MySQL, PostgreSQL. Other databases can be supported by writing a supporting database script consisting of fourteen function calls. The script can be written in Perl, Python, AWK, PowerShell, Unix Shell scripts, VBA, or simple DOS batch files. The Team SharePress is the work of a lot of people in both the WordPress and SharePoint community. I worked with a lot of SharePoint MVPs to create this new product as we really wanted to deliver the most compatible and feature rich system in a product that we would be proud of. Many thanks go out to Eli Bleeker, Todd Robillard, Scot Larson, Daniel Hillier, Shane Fox, Box Peran, Amanda English, and Bill Murray for doing the heavy lifting and all of their expertise and innovative thinking to get this product out. Licensing and Pricing SharePress is still in the final stages for pricing but we’re looking at a price point somewhere between $99-$100 to make it affordable for everyone. We plan to announce final pricing sometime in the next few weeks. There are no additional charges for Enterprise versions or additional features. Everything you see is what’s available and it’s just a matter of lighting up your site with whatever feature you want to enable. The product will not be open source but source code licenses will be available to ISVs who are interested in interfacing with the API at a low level. Cost will be $25,000 USD per developer and gives you complete access to the source code to the SharePress Foundation System and the .NET 4.0 Framework source code. Conclusion We hope you enjoy the launch of SharePress as the new premium blogging and content management platform for both Intranets and the Internet. We think we’ve build the best of breed solutions here and made it easy for anyone to get started with a minimal of infrastructure but allow the scalability of SharePress to shine through in the Enterprise 2.0 world. We encourage your feedback so please leave comments as to what you’re looking for in this system as we’re always evolving it to make it a better product for everyone.

    Read the article

  • Best practices to work on several programming projects simultaneously

    - by Mahbubur R Aaman
    Most of the time I have to work on several projects simultaneously. I want to provide my best output at every project. What practices would be the best for me work on each project with better output? EDIT: It is better to follow http://www.joelonsoftware.com/articles/fog0000000022.html But every companies does not follow JOEL methodologies. In this situation, what should i do? EDIT: I am a lead programmer. I have to lead several projects. Need to solve several programming problems of programmers. In this situation, what should i do?

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Linux software raid fails to include one device for one RAID1 array

    - by user1389890
    One of my four Linux software raid arrays drops one of its two devices when I reboot my system. The other three arrays work fine. I am running RAID1 on kernel version 2.6.32-5-amd64. Every time I reboot, /dev/md2 comes up with only one device. I can manually add the device by saying $ sudo mdadm /dev/md2 --add /dev/sdc1. This works fine, and mdadm confirms that the device has been re-added as follows: mdadm: re-added /dev/sdc1 After adding the device and and allowing the array time to resynch, this is what the output of $ cat /proc/mdstat looks like: Personalities : [raid1] md3 : active raid1 sda4[0] sdb4[1] 244186840 blocks super 1.2 [2/2] [UU] md2 : active raid1 sdc1[0] sdd1[1] 732574464 blocks [2/2] [UU] md1 : active raid1 sda3[0] sdb3[1] 722804416 blocks [2/2] [UU] md0 : active raid1 sda1[0] sdb1[1] 6835520 blocks [2/2] [UU] unused devices: <none> Then after I reboot, this is what the output of $ cat /proc/mdstat looks like: Personalities : [raid1] md3 : active raid1 sda4[0] sdb4[1] 244186840 blocks super 1.2 [2/2] [UU] md2 : active raid1 sdd1[1] 732574464 blocks [2/1] [_U] md1 : active raid1 sda3[0] sdb3[1] 722804416 blocks [2/2] [UU] md0 : active raid1 sda1[0] sdb1[1] 6835520 blocks [2/2] [UU] unused devices: <none> During reboot, here is the output of $ sudo cat /var/log/syslog | grep mdadm : Jun 22 19:00:08 rook mdadm[1709]: RebuildFinished event detected on md device /dev/md2 Jun 22 19:00:08 rook mdadm[1709]: SpareActive event detected on md device /dev/md2, component device /dev/sdc1 Jun 22 19:00:20 rook kernel: [ 7819.446412] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.446415] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.446782] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.446785] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.515844] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.515847] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.606829] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.606832] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855616] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855620] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855950] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855952] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8027.962169] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8027.962171] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8028.054365] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8028.054368] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.588662] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.588664] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.601990] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.601991] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.602693] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.602695] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.605981] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.605983] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.606138] mdadm: sending ioctl 800c0910 to a partition! Jun 22 19:10:23 rook kernel: [ 9.606139] mdadm: sending ioctl 800c0910 to a partition! Jun 22 19:10:48 rook mdadm[1737]: DegradedArray event detected on md device /dev/md2 Here is the mdadm.conf file: ARRAY /dev/md0 metadata=0.90 UUID=92121d42:37f46b82:926983e9:7d8aad9b ARRAY /dev/md1 metadata=0.90 UUID=9c1bafc3:1762d51d:c1ae3c29:66348110 ARRAY /dev/md2 metadata=0.90 UUID=98cea6ca:25b5f305:49e8ec88:e84bc7f0 ARRAY /dev/md3 metadata=1.2 name=rook:3 UUID=ca3fce37:95d49a09:badd0ddc:b63a4792 I also ran $ sudo smartctl -t long /dev/sdc and no hardware issues were detected. As long as I do not reboot, /dev/md2 seems to work fine. Does anyone have any suggestions? Here is the output of $ sudo mdadm -E /dev/sdc1 after re-adding the device and letting it resync: /dev/sdc1: Magic : a92b4efc Version : 0.90.00 UUID : 98cea6ca:25b5f305:49e8ec88:e84bc7f0 (local to host rook) Creation Time : Sun Jul 13 08:05:55 2008 Raid Level : raid1 Used Dev Size : 732574464 (698.64 GiB 750.16 GB) Array Size : 732574464 (698.64 GiB 750.16 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 2 Update Time : Mon Jun 24 07:42:49 2013 State : clean Active Devices : 2 Working Devices : 2 Failed Devices : 0 Spare Devices : 0 Checksum : 5fd6cc13 - correct Events : 180998 Number Major Minor RaidDevice State this 0 8 33 0 active sync /dev/sdc1 0 0 8 33 0 active sync /dev/sdc1 1 1 8 49 1 active sync /dev/sdd1 Here is the output of $ sudo mdadm -D /dev/md2 after re-adding the device and letting it resync: /dev/md2: Version : 0.90 Creation Time : Sun Jul 13 08:05:55 2008 Raid Level : raid1 Array Size : 732574464 (698.64 GiB 750.16 GB) Used Dev Size : 732574464 (698.64 GiB 750.16 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 2 Persistence : Superblock is persistent Update Time : Mon Jun 24 07:42:49 2013 State : clean Active Devices : 2 Working Devices : 2 Failed Devices : 0 Spare Devices : 0 UUID : 98cea6ca:25b5f305:49e8ec88:e84bc7f0 (local to host rook) Events : 0.180998 Number Major Minor RaidDevice State 0 8 33 0 active sync /dev/sdc1 1 8 49 1 active sync /dev/sdd1

    Read the article

  • Upon reboot, Linux software raid fails to include one device of a RAID1 array

    - by user1389890
    One of my four Linux software raid arrays drops one of its two devices when I reboot my system. The other three arrays work fine. I am running RAID1 on kernel version 2.6.32-5-amd64 (Debian Squeeze). Every time I reboot, /dev/md2 comes up with only one device. I can manually add the device by saying $ sudo mdadm /dev/md2 --add /dev/sdc1. This works fine, and mdadm confirms that the device has been re-added as follows: mdadm: re-added /dev/sdc1 After adding the device and allowing the array time to resynch, this is what the output of $ cat /proc/mdstat looks like: Personalities : [raid1] md3 : active raid1 sda4[0] sdb4[1] 244186840 blocks super 1.2 [2/2] [UU] md2 : active raid1 sdc1[0] sdd1[1] 732574464 blocks [2/2] [UU] md1 : active raid1 sda3[0] sdb3[1] 722804416 blocks [2/2] [UU] md0 : active raid1 sda1[0] sdb1[1] 6835520 blocks [2/2] [UU] unused devices: <none> Then after I reboot, this is what the output of $ cat /proc/mdstat looks like: Personalities : [raid1] md3 : active raid1 sda4[0] sdb4[1] 244186840 blocks super 1.2 [2/2] [UU] md2 : active raid1 sdd1[1] 732574464 blocks [2/1] [_U] md1 : active raid1 sda3[0] sdb3[1] 722804416 blocks [2/2] [UU] md0 : active raid1 sda1[0] sdb1[1] 6835520 blocks [2/2] [UU] unused devices: <none> During reboot, here is the output of $ sudo cat /var/log/syslog | grep mdadm : Jun 22 19:00:08 rook mdadm[1709]: RebuildFinished event detected on md device /dev/md2 Jun 22 19:00:08 rook mdadm[1709]: SpareActive event detected on md device /dev/md2, component device /dev/sdc1 Jun 22 19:00:20 rook kernel: [ 7819.446412] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.446415] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.446782] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.446785] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.515844] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.515847] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.606829] mdadm: sending ioctl 1261 to a partition! Jun 22 19:00:20 rook kernel: [ 7819.606832] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855616] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855620] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855950] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:48 rook kernel: [ 8027.855952] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8027.962169] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8027.962171] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8028.054365] mdadm: sending ioctl 1261 to a partition! Jun 22 19:03:49 rook kernel: [ 8028.054368] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.588662] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.588664] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.601990] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.601991] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.602693] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.602695] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.605981] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.605983] mdadm: sending ioctl 1261 to a partition! Jun 22 19:10:23 rook kernel: [ 9.606138] mdadm: sending ioctl 800c0910 to a partition! Jun 22 19:10:23 rook kernel: [ 9.606139] mdadm: sending ioctl 800c0910 to a partition! Jun 22 19:10:48 rook mdadm[1737]: DegradedArray event detected on md device /dev/md2 Here is the result of $ cat /etc/mdadm/mdadm.conf: ARRAY /dev/md0 metadata=0.90 UUID=92121d42:37f46b82:926983e9:7d8aad9b ARRAY /dev/md1 metadata=0.90 UUID=9c1bafc3:1762d51d:c1ae3c29:66348110 ARRAY /dev/md2 metadata=0.90 UUID=98cea6ca:25b5f305:49e8ec88:e84bc7f0 ARRAY /dev/md3 metadata=1.2 name=rook:3 UUID=ca3fce37:95d49a09:badd0ddc:b63a4792 Here is the output of $ sudo mdadm -E /dev/sdc1 after re-adding the device and letting it resync: /dev/sdc1: Magic : a92b4efc Version : 0.90.00 UUID : 98cea6ca:25b5f305:49e8ec88:e84bc7f0 (local to host rook) Creation Time : Sun Jul 13 08:05:55 2008 Raid Level : raid1 Used Dev Size : 732574464 (698.64 GiB 750.16 GB) Array Size : 732574464 (698.64 GiB 750.16 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 2 Update Time : Mon Jun 24 07:42:49 2013 State : clean Active Devices : 2 Working Devices : 2 Failed Devices : 0 Spare Devices : 0 Checksum : 5fd6cc13 - correct Events : 180998 Number Major Minor RaidDevice State this 0 8 33 0 active sync /dev/sdc1 0 0 8 33 0 active sync /dev/sdc1 1 1 8 49 1 active sync /dev/sdd1 Here is the output of $ sudo mdadm -D /dev/md2 after re-adding the device and letting it resync: /dev/md2: Version : 0.90 Creation Time : Sun Jul 13 08:05:55 2008 Raid Level : raid1 Array Size : 732574464 (698.64 GiB 750.16 GB) Used Dev Size : 732574464 (698.64 GiB 750.16 GB) Raid Devices : 2 Total Devices : 2 Preferred Minor : 2 Persistence : Superblock is persistent Update Time : Mon Jun 24 07:42:49 2013 State : clean Active Devices : 2 Working Devices : 2 Failed Devices : 0 Spare Devices : 0 UUID : 98cea6ca:25b5f305:49e8ec88:e84bc7f0 (local to host rook) Events : 0.180998 Number Major Minor RaidDevice State 0 8 33 0 active sync /dev/sdc1 1 8 49 1 active sync /dev/sdd1 I also ran $ sudo smartctl -t long /dev/sdc and no hardware issues were detected. As long as I do not reboot, /dev/md2 seems to work fine. Does anyone have any suggestions?

    Read the article

  • Querying Networking Statistics: dlstat(1M)

    - by user12612042
    Oracle Solaris 11 took another big leap forward in networking technologies providing a reliable, secure and scalable infrastructure to meet the growing needs of today's datacenter implementations. Oracle Solaris 11 introduced a new and powerful network stack architecture, also known as Project Crossbow. From Solaris 11 onwards, we introduced a command line tool viz. dlstat(1M) to query network statistics. dlstat (for datalink statistics) is a statistics querying counterpart for dladm(1M) - the datalink administration tool. The tool is very easy to get started. Just type dlstat on a shell prompt on Solaris 11 (or later). For example,: # dlstat LINK IPKTS RBYTES OPKTS OBYTES net0 834.11K 145.91M 575.19K 104.24M net1 7.87K 2.04M 0 0 In this example, the system has two datalinks net0 and net1. The output columns denote input packets/bytes as well as output packets/bytes. The numbers are abbreviated in xxx.xxUnit format. However, one could get the actual counts by simply running dlstat -u R (R for raw): # dlstat -u R LINK IPKTS RBYTES OPKTS OBYTES net0 834271 145931244 575246 104242934 net1 7869 2036958 0 0 In addition, dlstat also supports various subcommands dlstat help The following subcommands are supported: Stats : show-aggr show-ether show-link show-phys show-bridge For more info, run: dlstat help {default|} I will only describe couple of interesting subcommands/options here. For a comprehensive description of all the dlstat subcommands refer dlstat's official manual . For NICs that support multiple rings (e.g. ixgbe), dlstat show-phys -r allows us to query per Rx ring statistics. For example: dlstat show-phys -r net4 LINK TYPE INDEX IPKTS RBYTES net4 rx 0 0 0 net4 rx 1 0 0 net4 rx 2 0 0 net4 rx 3 0 0 net4 rx 4 0 0 net4 rx 5 0 0 net4 rx 6 0 0 net4 rx 7 0 0 In this case, net4 is just a vanity name for an ixgbe datalink. This view is especially useful if one wants to look at the network traffic spread across all the available rings. Furthermore, any of the dlstat commands could be run with -i option to periodically query and display stats. For example, running dlstat show-phys -r net4 -i 5 will emit per Rx ring stats every 5 seconds. This is especially useful while analyzing a live system. Similarly, dlstat show-phys -t could be used to query per Tx ring stats. -r and -t could also be combined as dlstat show-phys -rt to query both Rx as well as Tx stats at the same time. Finally, there is also a quick way to dump ALL the stats. Just run dlstat -A. You probably want to redirect this output to a file because you are going to get a whole load of stats :-).

    Read the article

  • ifup eth0 failed in Ubuntu 11.10 and Ubuntu 10.04.3

    - by Ajay
    ifup eth0 failed to bring up eth0 First, I have set static ip using the below commands: Commands: ifdown eth0 ifconfig eth0 X.X.X.X netmask 255.255.252.0 up route add default gw X.X.X.X I was successful in setting up static ip X.X.X.X and I could see the same in the output of command "ifconfig". Now I am trying to revert network back to dhcp using the below commands: Commands: ifdown eth0 ifup eth0 Output : RTNETLINK answers: File exists ssh stop/waiting ssh start/running, process 1524 ifup eth0, failed to bring back dhcp. Contents of /etc/network/interfaces root@bdhcp396:~# cat /etc/network/interfaces # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp Is this a bug in Ubuntu 11.10/10.04.3? I see a similar bug raised - https://bugs.launchpad.net/ubuntu/+source/ifupdown/+bug/876829

    Read the article

  • Edit Media Center TV Recordings with Windows Live Movie Maker

    - by DigitalGeekery
    Have you ever wanted to take a TV program you’ve recorded in Media Center and remove the commercials or save clips of favorite scenes? Today we’ll take a look at editing WTV and DVR-MS files with Windows Live Movie Maker. Download and Install Windows Live Movie Maker. The download link can be found at the end of the article. WLMM is part of Windows Live Essentials, but you can choose to install only the applications you want. You’ll also want to be sure to uncheck any unwanted settings like settings Bing as default search provider or MSN as your browser home page.   Add your recorded TV file to WLMM by clicking the Add videos and photos button, or by dragging and dropping it onto the storyboard.   You’ll see your video displayed in the Preview window on the left and on the storyboard. Adjust the Zoom Time Scale slider at the lower right to change the level of detail displayed on the storyboard. You may want to start zoomed out and zoom in for more detailed edits.   Removing Commercials or Unwanted Sections Note: Changes and edits made in Windows Live Movie Maker do not change or effect the original video file. To accomplish this, we will makes cuts, or “splits,” and the beginning and end of the section we want to remove, and then we will delete that section from our project. Click and drag the slider bar along the the storyboard to scroll through the video. When you get to the end of a row in on the storyboard, drag the slider down to the beginning of the next row. We’ve found it easiest and most accurate to get close to the end of the commercial break and then use the Play button and the Previous Frame and Next Frame buttons underneath the Preview window to fine tune your cut point. When you find the right place to make your first cut, click the split button on the Edit tab on the ribbon. You will see your video “split” into two sections. Now, repeat the process of scrolling through the storyboard to find the end of the section you wish to cut. When you are at the proper point, click the Split button again.   Now we’ll delete that section by selecting it and pressing the Delete key, selecting remove on the Home tab, or by right clicking on the section and selecting Remove.   Trim Tool This tool allows you to select a portion of the video to keep while trimming away the rest.   Click and drag the sliders in the preview windows to select the area you want to keep. The area outside the sliders will be trimmed away. The area inside is the section that is kept in the movie. You can also adjust the Start and End points manually on the ribbon.   Delete any additional clips you don’t want in the final output. You can also accomplish this by using the Set start point and Set end point buttons. Clicking Set start point will eliminate everything before the start point. Set end point will eliminate everything after the end point. And you’re left with only the clip you want to keep.   Output your Video Select the icon at the top left, then select Save movie. All of these settings will output your movie as a WMV file, but file size and quality will vary by setting. The Burn to DVD option also outputs a WMV file, but then opens Windows DVD Maker and prompts you to create and burn a DVD.   Conclusion WLMM is one of the few applications that can edit WTV files, and it’s the only one we’re aware of that’s free. We should note only WTV and DVR-MS files will appear in the Recorded TV library in Media Center, so if you want to view your WMV output file in WMC you’ll need to add it to the Video or Movie library. Would you like to learn more about Windows Live Movie Maker? Check out are article on how to turn photos and home videos into movies with Windows Live Movie Maker. Need to add videos from a network location? WLMM doesn’t allow this by default, but you check out how to add network support to Windows Live Move Maker. Download Windows Live Similar Articles Productive Geek Tips Rotate a Video 90 degrees with VLC or Windows Live Movie MakerHow to Make/Edit a movie with Windows Movie Maker in Windows VistaFamily Fun: Share Photos with Photo Gallery and Windows Live SpacesAutomatically Mount and View ISO files in Windows 7 Media CenterAutomatically Start Windows 7 Media Center in Live TV Mode TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Get a free copy of WinUtilities Pro 2010 World Cup Schedule Boot Snooze – Reboot and then Standby or Hibernate Customize Everything Related to Dates, Times, Currency and Measurement in Windows 7 Google Earth replacement Icon (Icons we like) Build Great Charts in Excel with Chart Advisor

    Read the article

  • Ubuntu 12.04, Can hear the sound but Sound option in settings shows no sound card

    - by Vivek Srivastava
    I have weired issue. I did a fresh installation of Ubuntu 12.04. Then I installed Nvidia drives for my graphics card. I executed the command "modprobe nvidia" after installing the Nvidia drivers and rebooted. After reboot, sound indicator in top panel is disabled and I can't control the volume from there. I opened Settings Sound and it does not show any sound card installed. However, I can hear the sound. Please help. Output of lspci | grep Audio 00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01) 01:00.1 Audio device: NVIDIA Corporation GF110 High Definition Audio Controller (rev a1) Output of lsmod | grep snd snd_hda_codec_hdmi 32191 4 snd_hda_codec_realtek 73851 1 snd_hda_intel 33367 0 snd_hda_codec 134156 3 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel snd_hwdep 13668 1 snd_hda_codec snd_pcm 97188 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec snd_timer 29990 1 snd_pcm snd 78855 7 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_timer soundcore 15091 1 snd snd_page_alloc 18529 2 snd_hda_intel,snd_pcm

    Read the article

  • Regular expression in Umbraco for number validation.

    - by Vizioz Limited
    This evening I was looking for a way to validate an Umbraco node that could be either text or a numeric value, in my case a salary that could be either an hourly amount, an annual figure or a comment. In the case where the node contained a value I wanted the XSLT to output a pound sign (£) and for any that contained text it would just output the text, as this could be something like "Contact Us" or "Negotiable"I thought someone else might find this useful so here is the XSLT and the regular expression.First if you are using Umbraco, don't forget to include the reference to the EXSLT Regular expression library at the top of your XSLT.<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:msxml="urn:schemas-microsoft-com:xslt" xmlns:umbraco.library="urn:umbraco.library" xmlns:Exslt.ExsltRegularExpressions="urn:Exslt.ExsltRegularExpressions" exclude-result-prefixes="msxml umbraco.library Exslt.ExsltRegularExpressions">Then the code I used was:<xsl:if test="Exslt.ExsltRegularExpressions:match($currentPage/data [@alias='Salary'], '^[0-9]*\,?[0-9]*\.?[0-9]+$') != ''"> <xsl:text>£</xsl:text></xsl:if>This regular expression allows any number of digits, an optional comma, more digits, an optional decimal point and finally more digits, so all the following are valid:12,00014.43334,342.03

    Read the article

  • Configure 27" 2560x1440 for a monitor with corrupt EDID

    - by Aras
    I am trying to get a monitor work with my Ubuntu laptop. The monitor is this cheap 27" Korean monitors which has a 2560x1440 resolution -- and nothing else. Here are some specifications of this monitor: 2560x1440 @60Hz Only one dual link DVI-D input -- no other input port (no HDMI or display port) no OSD no scalar reports corrupt EDID does 2560x1440 @60Hz, did I say that already? Anyways, the monitor works beautifully with my Ubuntu desktop which has an nVidia card with DVI output. However, I am having problem using this monitor with my laptop. After some searching around I found a few posts suggesting to use an active adaptor for mini display port, so I went and bought a mini display to dual link DVI-D adaptor.. When using this adaptor the monitor is recognized by nvidia-settings tool but with incorrect resolution information. As you can see the monitor is incorrectly recognized and there are no other resolution available to set. This post on ubuntu forums and this other post on overclock both suggest that the monitor is reporting corrupt EDID file. I have tried following their instructions, but so far I have not been able to display any image on the monitor from my laptop. The laptop I am using is an ASUS G75VW with a 1920x1080 screen. It has a VGA, an HDMI 1.4a, and a mini display port. The graphic card is an nvidia gforce gtx 660M with 2GB dedicated memory. I am running Ubuntu 12.10 on here which I upgrade from 12.04 a few weeks ago. As I said I have tried several suggestions, including specifying Modeline in xorg.conf and also linking to EDID files I found from those forum posts above. However, I am not sure if the EDID files I found are suitable for my monitor. I think the solution to my problem consist of obtaining the EDID file of my monitor and then fixing it and modifying xorg.conf to force nvidia driver to load the correct resolution. However, I am not sure what steps I need to take to do this. Here is the part of sudo xrandr --prop output that is related to this monitor: DP-1 connected 800x600+1920+0 (normal left inverted right x axis y axis) 0mm x 0mm SignalFormat: DisplayPort supported: DisplayPort ConnectorType: DisplayPort ConnectorNumber: 3 (0x00000003) _ConnectorLocation: 3 (0x00000003) 800x600 60.3*+ I was expecting to see the EDID file in this output as was mentioned in this post, but it is not there. After several hours of tweaking X configurations, I decided it was time to ask for help here. I would really appreciate if someone with experience regarding EDID and X configuration could give me a hand to solve this issue.

    Read the article

  • How do I get the Apple Wireless Keyboard Working in 10.10?

    - by Jamie
    So I've gone and bought a Magic Mouse and Apple Wireless Non-Numeric Keyboard. The magic mouse worked out-of-the-box almost perfectly, except for the forward/back gesture which still isn't functioning, whereas the keyboard didn't. It has constant trouble with the bluetooth connection. Only the 7, 8 and 9 buttons and volume media keys correspond correctly with the output. Pressing every single key on keyboard has this output: 789/=456*123-0.+ When I use Blueman the keyboard can be setup and shows up in "Devices" but I get a warning when I click "Setup"; "Device added successfully, but failed to connect" (although removing the keyboard and setting it up as a new device doesn't incur this error). Using gnome-bluetooth I have encountered no error messages but it connects properly less often than Blueman and I can still only type the aforementioned output. What am I not doing? Where is this going wrong? EDIT: I have read this http://ubuntuforums.org/showthread.php?t=224673 inside out several times to no avail. It seems these commands don't work for me with the apple peripherals sudo hidd --search hcitool scan Fortunately I have the luxury of a 1TB hard drive, near limitless patience and no job. I have installed a fresh Ubuntu 10.10 64bit (albeit smaller than mine) and after updating and restarting for the first time, I set up my devices in exactly the same way as I have learnt on my original install I succeeded once again with the mouse and, to my joy, with the keyboard also. Though I could not seem to find Alt+F2 and had to reconfigure that and several other keyboard shortcuts, the keyboard is working and in a spectacular fashion. Still, this leaves me with the issue of my original install. I returned to it with some new found knowledge but failed again. Perhaps I have a missing dependancy? I did uninstall bluetooth after the initial set up and reinstalled it recently for the pupose of these peripherals. Maybe it's because I'm running 64bit? This is still not solved, but easily avoided by not changing too much from the original install. Just hide stuff or turn it off, don't uninstall too much.

    Read the article

  • Creating Visual Studio projects that only contain static files

    - by Eilon
    Have you ever wanted to create a Visual Studio project that only contained static files and didn’t contain any code? While working on ASP.NET MVC we had a need for exactly this type of project. Most of the projects in the ASP.NET MVC solution contain code, such as managed code (C#), unit test libraries (C#), and Script# code for generating our JavaScript code. However, one of the projects, MvcFuturesFiles, contains no code at all. It only contains static files that get copied to the build output folder: As you may well know, adding static files to an existing Visual Studio project is easy. Just add the file to the project and in the property grid set its Build Action to “Content” and the Copy to Output Directory to “Copy if newer.” This works great if you have just a few static files that go along with other code that gets compiled into an executable (EXE, DLL, etc.). But this solution does not work well if the projects only contains static files and has no compiled code. If you create a new project in Visual Studio and add static files to it you’ll still get an EXE or DLL copied to the output folder, despite not having any actual code. We wanted to avoid having a teeny little DLL generated in the output folder. In ASP.NET MVC 2 we came up with a simple solution to this problem. We started out with a regular C# Class Library project but then edited the project file to alter how it gets built. The critical part to get this to work is to define the MSBuild targets for Build, Clean, and Rebuild to perform custom tasks instead of running the compiler. The Build, Clean, and Rebuild targets are the three main targets that Visual Studio requires in every project so that the normal UI functions properly. If they are not defined then running certain commands in Visual Studio’s Build menu will cause errors. Once you create the class library projects there are a few easy steps to change it into a static file project: The first step in editing the csproj file is to remove the reference to the Microsoft.CSharp.targets file because the project doesn’t contain any C# code: <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The second step is to define the new Build, Clean, and Rebuild targets to delete and then copy the content files: <Target Name="Build"> <Copy SourceFiles="@(Content)" DestinationFiles="@(Content->'$(OutputPath)%(RelativeDir)%(Filename)%(Extension)')" /> </Target> <Target Name="Clean"> <Exec Command="rd /s /q $(OutputPath)" Condition="Exists($(OutputPath))" /> </Target> <Target Name="Rebuild" DependsOnTargets="Clean;Build"> </Target> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The third and last step is to add all the files to the project as normal Content files (as you would do in any project type). To see how we did this in the ASP.NET MVC 2 project you can download the source code and inspect the MvcFutureFules.csproj project file. If you’re working on a project that contains many static files I hope this solution helps you out!

    Read the article

< Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >