Search Results

Search found 5389 results on 216 pages for 'bridge router'.

Page 204/216 | < Previous Page | 200 201 202 203 204 205 206 207 208 209 210 211  | Next Page >

  • Detecting source of memory usage on a Linux box

    - by apeace
    I have a toy Linux box with 256mb RAM running Ubuntu 10.04.1 LTS. Here is the output of free -m: total used free shared buffers cached Mem: 245 122 122 0 19 64 -/+ buffers/cache: 38 206 Swap: 511 0 511 Unless I'm reading this wrong, 122mb is being used and only 84mb of that is disk cache. Here are all processes I'm running sorted by memory usage (ps -eo pmem,pcpu,rss,vsize,args | sort -k 1 -r): %MEM %CPU RSS VSZ COMMAND 5.0 0.0 12648 633140 node /home/node/main/sites.js 1.5 0.0 3884 251736 /usr/sbin/console-kit-daemon --no-daemon 1.3 0.0 3328 77108 sshd: apeace [priv] 0.9 0.0 2344 19624 -bash 0.7 0.0 1776 23620 /sbin/init 0.6 0.0 1624 77108 sshd: apeace@pts/0 0.6 0.0 1544 9940 redis-server /etc/redis/redis.conf 0.6 0.0 1524 25848 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 103:105 0.5 0.0 1324 119880 rsyslogd -c4 0.4 0.0 1084 49308 /usr/sbin/sshd 0.4 0.0 1028 44376 /usr/sbin/exim4 -bd -q30m 0.3 0.0 904 6876 ps -eo pmem,pcpu,rss,vsize,args 0.3 0.0 888 21124 cron 0.3 0.0 868 23472 dbus-daemon --system --fork 0.2 0.0 732 19624 -bash 0.2 0.0 628 6128 /sbin/getty -8 38400 tty1 0.2 0.0 628 16952 upstart-udev-bridge --daemon 0.2 0.0 564 16800 udevd --daemon 0.2 0.0 552 16796 udevd --daemon 0.2 0.0 548 16796 udevd --daemon 0.0 0.0 0 0 [xenwatch] 0.0 0.0 0 0 [xenbus] 0.0 0.0 0 0 [sync_supers] 0.0 0.0 0 0 [netns] 0.0 0.0 0 0 [migration/3] 0.0 0.0 0 0 [migration/2] 0.0 0.0 0 0 [migration/1] 0.0 0.0 0 0 [migration/0] 0.0 0.0 0 0 [kthreadd] 0.0 0.0 0 0 [kswapd0] 0.0 0.0 0 0 [kstriped] 0.0 0.0 0 0 [ksoftirqd/3] 0.0 0.0 0 0 [ksoftirqd/2] 0.0 0.0 0 0 [ksoftirqd/1] 0.0 0.0 0 0 [ksoftirqd/0] 0.0 0.0 0 0 [ksnapd] 0.0 0.0 0 0 [kseriod] 0.0 0.0 0 0 [kjournald] 0.0 0.0 0 0 [khvcd] 0.0 0.0 0 0 [khelper] 0.0 0.0 0 0 [kblockd/3] 0.0 0.0 0 0 [kblockd/2] 0.0 0.0 0 0 [kblockd/1] 0.0 0.0 0 0 [kblockd/0] 0.0 0.0 0 0 [flush-202:1] 0.0 0.0 0 0 [events/3] 0.0 0.0 0 0 [events/2] 0.0 0.0 0 0 [events/1] 0.0 0.0 0 0 [events/0] 0.0 0.0 0 0 [crypto/3] 0.0 0.0 0 0 [crypto/2] 0.0 0.0 0 0 [crypto/1] 0.0 0.0 0 0 [crypto/0] 0.0 0.0 0 0 [cpuset] 0.0 0.0 0 0 [bdi-default] 0.0 0.0 0 0 [async/mgr] 0.0 0.0 0 0 [aio/3] 0.0 0.0 0 0 [aio/2] 0.0 0.0 0 0 [aio/1] 0.0 0.0 0 0 [aio/0] Now, I know that ps is not the best for viewing process memory usage, but that's because it tends to report more memory than is actually being used...meaning no matter how you look at it all my processes combined shouldn't be using near 122mb, even if you account for the disk cache. What's more, memory usage is growing all the time. I've had to restart my server once a week, because once my 256mb fills up it starts swapping, which it wouldn't do just for disk cache. Shouldn't there be some way for me to see the culprit?! I'm new to server admin, so please if there's something obvious I'm overlooking point it out to me. Just for good measure, the output of cat /proc/meminfo: MemTotal: 251140 kB MemFree: 124604 kB Buffers: 20536 kB Cached: 66136 kB SwapCached: 0 kB Active: 65004 kB Inactive: 37576 kB Active(anon): 15932 kB Inactive(anon): 164 kB Active(file): 49072 kB Inactive(file): 37412 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 524284 kB SwapFree: 524284 kB Dirty: 8 kB Writeback: 0 kB AnonPages: 15916 kB Mapped: 10668 kB Shmem: 188 kB Slab: 18604 kB SReclaimable: 10088 kB SUnreclaim: 8516 kB KernelStack: 536 kB PageTables: 1444 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 649852 kB Committed_AS: 64224 kB VmallocTotal: 34359738367 kB VmallocUsed: 752 kB VmallocChunk: 34359737600 kB DirectMap4k: 262144 kB DirectMap2M: 0 kB EDIT: I had misinterpreted the meaning of free -m at first. But even so: the important thing is that my OS eventually begins to use swap memory if I don't restart my server, which disk caching wouldn't do. So where do I look to see what is using all this memory?

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Networking in VirtualBox

    - by Fat Bloke
    Networking in VirtualBox is extremely powerful, but can also be a bit daunting, so here's a quick overview of the different ways you can setup networking in VirtualBox, with a few pointers as to which configurations should be used and when. VirtualBox allows you to configure up to 8 virtual NICs (Network Interface Controllers) for each guest vm (although only 4 are exposed in the GUI) and for each of these NICs you can configure: Which virtualized NIC-type is exposed to the Guest. Examples include: Intel PRO/1000 MT Server (82545EM),  AMD PCNet FAST III (Am79C973, the default) or  a Paravirtualized network adapter (virtio-net). How the NIC operates with respect to your Host's physical networking. The main modes are: Network Address Translation (NAT) Bridged networking Internal networking Host-only networking NAT with Port-forwarding The choice of NIC-type comes down to whether the guest has drivers for that NIC.  VirtualBox, suggests a NIC based on the guest OS-type that you specify during creation of the vm, and you rarely need to modify this. But the choice of networking mode depends on how you want to use your vm (client or server) and whether you want other machines on your network to see it. So let's look at each mode in a bit more detail... Network Address Translation (NAT) This is the default mode for new vm's and works great in most situations when the Guest is a "client" type of vm. (i.e. most network connections are outbound). Here's how it works: When the guest OS boots,  it typically uses DHCP to get an IP address. VirtualBox will field this DHCP request and tell the guest OS its assigned IP address and the gateway address for routing outbound connections. In this mode, every vm is assigned the same IP address (10.0.2.15) because each vm thinks they are on their own isolated network. And when they send their traffic via the gateway (10.0.2.2) VirtualBox rewrites the packets to make them appear as though they originated from the Host, rather than the Guest (running inside the Host). This means that the Guest will work even as the Host moves from network to network (e.g. laptop moving between locations), and from wireless to wired connections too. However, how does another computer initiate a connection into a Guest?  e.g. connecting to a web server running in the Guest. This is not (normally) possible using NAT mode as there is no route into the Guest OS. So for vm's running servers we need a different networking mode.... Bridged Networking Bridged Networking is used when you want your vm to be a full network citizen, i.e. to be an equal to your host machine on the network. In this mode, a virtual NIC is "bridged" to a physical NIC on your host, like this: The effect of this is that each VM has access to the physical network in the same way as your host. It can access any service on the network such as external DHCP services, name lookup services, and routing information just as the host does. Logically, the network looks like this: The downside of this mode is that if you run many vm's you can quickly run out of IP addresses or your network administrator gets fed up with you asking for statically assigned IP addresses. Secondly, if your host has multiple physical NICs (e.g. Wireless and Wired) you must reconfigure the bridge when your host jumps networks.  Hmm, so what if you want to run servers in vm's but don't want to involve your network administrator? Maybe one of the next 2 modes is for you... Internal Networking When you configure one or more vm's to sit on an Internal network, VirtualBox ensures that all traffic on that network stays within the host and is only visible to vm's on that virtual network. Configuration looks like this: The internal network ( in this example "intnet" ) is a totally isolated network and so is very "quiet". This is good for testing when you need a separate, clean network, and you can create sophisticated internal networks with vm's that provide their own services to the internal network. (e.g. Active Directory, DHCP, etc). Note that not even the Host is a member of the internal network, but this mode allows vm's to function even when the Host is not connected to a network (e.g. on a plane). Note that in this mode, VirtualBox provides no "convenience" services such as DHCP, so your machines must be statically configured or one of the vm's needs to provide a DHCP/Name service. Multiple internal networks are possible and you can configure vm's to have multiple NICs to sit across internal and other network modes and thereby provide routes if needed. But all this sounds tricky. What if you want an Internal Network that the host participates on with VirtualBox providing IP addresses to the Guests? Ah, then for this, you might want to consider Host-only Networking... Host-only Networking Host-only Networking is like Internal Networking in that you indicate which network the Guest sits on, in this case, "vboxnet0": All vm's sitting on this "vboxnet0" network will see each other, and additionally, the host can see these vm's too. However, other external machines cannot see Guests on this network, hence the name "Host-only". Logically, the network looks like this: This looks very similar to Internal Networking but the host is now on "vboxnet0" and can provide DHCP services. To configure how a Host-only network behaves, look in the VirtualBox Manager...Preferences...Network dialog: Port-Forwarding with NAT Networking Now you may think that we've provided enough modes here to handle every eventuality but here's just one more... What if you cart around a mobile-demo or dev environment on, say, a laptop and you have one or more vm's that you need other machines to connect into? And you are continually hopping onto different (customer?) networks. In this scenario: NAT - won't work because external machines need to connect in. Bridged - possibly an option, but does your customer want you eating IP addresses and can your software cope with changing networks? Internal - we need the vm(s) to be visible on the network, so this is no good. Host-only - same problem as above, we want external machines to connect in to the vm's. Enter Port-forwarding to save the day! Configure your vm's to use NAT networking; Add Port Forwarding rules; External machines connect to "host":"port number" and connections are forwarded by VirtualBox to the guest:port number specified. For example, if your vm runs a web server on port 80, you could set up rules like this:  ...which reads: "any connections on port 8080 on the Host will be forwarded onto this vm's port 80".  This provides a mobile demo system which won't need re-configuring every time you open your laptop lid. Summary VirtualBox has a very powerful set of options allowing you to set up almost any configuration your heart desires. For more information, check out the VirtualBox User Manual on Virtual Networking. -FB 

    Read the article

  • Creating vCard action result

    - by DigiMortal
    I added support for vCards to one of my ASP.NET MVC applications. I worked vCard support out as very simple and intelligent solution that fits perfectly to ASP.NET MVC applications. In this posting I will show you how to send vCards out as response to ASP.NET MVC request. We need three things: some vCard class, vCard action result, controller method to test vCard action result. Everything is very simple, let’s get hands on. vCard class As first thing we need vCard class. Last year I introduced vCard class that supports also images. Let’s take this class because it is easy to use and some dirty work is already done for us. NB! Take a look at ASP.NET example in the blog posting referred above. We need it later when we close the topic. Now think about how useful blogging and information sharing with others can be. With this class available at public I saved pretty much time now. :) vCardResult As we have vCard it is now time to write action result that we can use in our controllers. Here’s the code. public class vCardResult : ActionResult {     private vCard _card;       protected vCardResult() { }       public vCardResult(vCard card)     {         _card = card;     }       public override void ExecuteResult(ControllerContext context)     {         var response = context.HttpContext.Response;         response.ContentType = "text/vcard";         response.AddHeader("Content-Disposition", "attachment; fileName=" + _card.FirstName + " " + _card.LastName + ".vcf");           var cardString = _card.ToString();         var inputEncoding = Encoding.Default;         var outputEncoding = Encoding.GetEncoding("windows-1257");         var cardBytes = inputEncoding.GetBytes(cardString);           var outputBytes = Encoding.Convert(inputEncoding,                                 outputEncoding, cardBytes);           response.OutputStream.Write(outputBytes, 0, outputBytes.Length);     } } And we are done. Some notes: vCard is sent to browser as downloadable file (user can save or open it with Outlook or any other e-mail client that supports vCards), File name is made of first and last name of contact. Encoding is important because Outlook may not understand vCards otherwise (don’t know if this problem is solved in Outlook 2010). Using vCardResult in controller Now let’s tale a look at simple controller method that accepts person ID and returns vCardResult. public class ContactsController : Controller {       // ... other controller methods ...       public vCardResult vCard(int id)     {         var person = _partyRepository.GetPersonById(id);         var card = new vCard                 {                     FirstName=person.FirstName,                     LastName = person.LastName,                     StreetAddress = person.StreetAddress,                     City = person.City,                     CountryName = person.Country.Name,                       Mobile = person.Mobile,                     Phone = person.Phone,                     Email = person.Email,                 };           return new vCardResult(card);     } } Now you can run Visual Studio and check out how your vCard is moving from your web application to your e-mail client. Conclusion We took old code that worked well with ASP.NET Forms and we divided it into action result and controller method that uses vCard as bridge between our controller and action result. All functionality is located where it should be and we did nothing complex. We wrote only couple of lines of very easy code to achieve our goal. Do you understand now why I love ASP.NET MVC? :)

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • Clustering for Mere Mortals (Pt 3)

    - by Geoff N. Hiten
    The Controller Now we get to the meat of the matter.  You want a virtual cluster, the first thing you have to do is create your own portable domain.  Start with a plain vanilla install of Windows 2003 R2 Standard on a semi-default VM. (1 GB RAM, 2 cores, 2 NICs, 128GB dynamically expanding VHD file).  I chose this because it had the smallest disk and memory footprint of any current supported Microsoft Server product.  I created the VM with a single dynamically expanding VHD, one fixed 16 GB VHD, and two NICs.  One NIC is connected to the outside world and the other one is part of an internal-only network.  The first NIC is set up as a DHCP client.  We will get to the other one later. I actually tried this with Windows 2008 R2, but it failed miserably.  Not sure whether it was 2008 R2 or the fact I tried to use cloned VMs in the cluster.  Clustering is one place where NewSID would really come in handy.  Too bad Microsoft bought and buried it. Load and Patch the OS (hence the need for the outside connection).This is a good time to go get dinner.  Maybe a movie too.  There are close to a hundred patches that need to be downloaded and applied.  Avoiding that mess was why I put so much time into trying to get the 2008 R2 version working.  Maybe next time.  Don’t forget to add the extensions for VMLite (or whatever virtualization product you prefer). Set a fixed IP address on the internal-only NIC.  Do not give it a gateway.  Put the same IP address for the NIC and for the DNS Server.  This IP should be in a range that is never available on your public network.  You will need all the addresses in the range available.  See the previous post for the exact settings I used. I chose 10.97.230.1 as the server.  The rest of the 10.97.230 range is what I will use later.  For the curious, those numbers are based on elements of my home address.  Not truly random, but good enough for this project. Do not bridge the network connections.  I never allowed the cluster nodes direct access to any public network. Format the fixed VHD and leave it alone for now. Promote the VM to a Domain Controller.  If you have never done this, don’t worry.  The only meaningful decision is what to call the new domain.  I prefer a bogus name that does not correspond to a real Top-Level Domain (TLD).  .com, .biz., .net, .org  are all TLDs that we know and love.  I chose .test as the TLD since it is descriptive AND it does not exist in the real world.  The domain is called MicroAD.  This gives me MicroAD.Test as my domain. During the promotion process, you will be prompted to install DNS as part of the Domain creation process.  You want to accept this option.  The installer will automatically assign this DNS server as the authoritative owner of the MicroAD.test DNS domain (not to be confused with the MicroAD.test Active Directory domain.) For the rest of the DCPROMO process, just accept the defaults. Now let’s make our IP address management easy.  Add the DHCP Role to the server.  Add the server (10.97.230.1 in this case) as the default gateway to assign to DHCP clients.  Here is where you have to be VERY careful and bind it ONLY to the Internal NIC.  Trust me, your network admin will NOT like an extra DHCP server “helping” out on her network.  Go ahead and create a range of 10-20 IP Addresses in your scope.  You might find other uses for a pocket domain controller <cough> Mirroring </cough> than just for building a cluster.  And Clustering in SQL 2008 and Windows 2008 R2 fully supports DHCP addresses. Now we have three of the five key roles ready.  Two more to go. Next comes file sharing.  Since your cluster node VMs will not have access to any outside, you have to have some way to get files into these VMs.  I simply go to the root of C: and create a “Shared” folder.  I then share it out and grant full control to “Everyone” to both the share and to the underlying NTFS folder.   This will be immensely useful for Service Packs, demo databases, and any other software that isn’t packaged as an ISO that we can mount to the VM. Finally we need to create a block-level multi-connect storage device.  The kind folks at Starwinds Software (http://www.starwindsoftware.com/) graciously gave me a non-expiring demo license for expressly this purpose.  Their iSCSI SAN software lets you create an iSCSI target from nearly any storage medium.  Refreshingly, their product does exactly what they say it does.  Thanks. Remember that 16 GB VHD file?  That is where we are going to carve into our LUNs.  I created an iSCSI folder off the root, just so I can keep everything organized.  I then carved 5 ea. 2 GB iSCSI targets from that folder.  I chose a fixed VHD for performance.  I tried this earlier with a dynamically expanding VHD, but too many layers of abstraction and sparseness combined to make it unusable even for a demo.  Stick with a fixed VHD so there is a one-to-one mapping between abstract and physical storage.  If you read the previous post, you know what I named these iSCSI LUNs and why.  Yes, I do have some left over space.  Always leave yourself room for future growth or options. This gets us up to where we can actually build the nodes and install SQL.  As with most clusters, the real work happens long before the individual nodes get installed and configured.  At least it does if you want the cluster to be a true high-availability platform.

    Read the article

  • Clustering for Mere Mortals (Pt3)

    - by Geoff N. Hiten
    The Controller Now we get to the meat of the matter.  You want a virtual cluster, the first thing you have to do is create your own portable domain.  IStart with a plain vanilla install of Windows 2003 R2 Standard on a semi-default VM. (1 GB RAM, 2 cores, 2 NICs, 128GB dynamically expanding VHD file).  I chose this because it had the smallest disk and memory footprint of any current supported Microsoft Server product.  I created the VM with a single dynamically expanding VHD, one fixed 16 GB VHD, and two NICs.  One NIC is connected to the outside world and the other one is part of an internal-only network.  The first NIC is set up as a DHCP client.  We will get to the other one later. I actually tried this with Windows 2008 R2, but it failed miserably.  Not sure whether it was 2008 R2 or the fact I tried to use cloned VMs in the cluster.  Clustering is one place where NewSID would really come in handy.  Too bad Microsoft bought and buried it. Load and Patch the OS (hence the need for the outside connection).This is a good time to go get dinner.  Maybe a movie too.  There are close to a hundred patches that need to be downloaded and applied.  Avoiding that mess was why I put so much time into trying to get the 2008 R2 version working.  Maybe next time.  Don’t forget to add the extensions for VMLite (or whatever virtualization product you prefer). Set a fixed IP address on the internal-only NIC.  Do not give it a gateway.  Put the same IP address for the NIC and for the DNS Server.  This IP should be in a range that is never available on your public network.  You will need all the addresses in the range available.  See the previous post for the exact settings I used. I chose 10.97.230.1 as the server.  The rest of the 10.97.230 range is what I will use later.  For the curious, those numbers are based on elements of my home address.  Not truly random, but good enough for this project. Do not bridge the network connections.  I never allowed the cluster nodes direct access to any public network. Format the fixed VHD and leave it alone for now. Promote the VM to a Domain Controller.  If you have never done this, don’t worry.  The only meaningful decision is what to call the new domain.  I prefer a bogus name that does not correspond to a real Top-Level Domain (TLD).  .com, .biz., .net, .org  are all TLDs that we know and love.  I chose .test as the TLD since it is descriptive AND it does not exist in the real world.  The domain is called MicroAD.  This gives me MicroAD.Test as my domain. During the promotion process, you will be prompted to install DNS as part of the Domain creation process.  You want to accept this option.  The installer will automatically assign this DNS server as the authoritative owner of the MicroAD.test DNS domain (not to be confused with the MicroAD.test Active Directory domain.) For the rest of the DCPROMO process, just accept the defaults. Now let’s make our IP address management easy.  Add the DHCP Role to the server.  Add the server (10.97.230.1 in this case) as the default gateway to assign to DHCP clients.  Here is where you have to be VERY careful and bind it ONLY to the Internal NIC.  Trust me, your network admin will NOT like an extra DHCP server “helping” out on her network.  Go ahead and create a range of 10-20 IP Addresses in your scope.  You might find other uses for a pocket domain controller <cough> Mirroring </cough> than just for building a cluster.  And Clustering in SQL 2008 and Windows 2008 R2 fully supports DHCP addresses. Now we have three of the five key roles ready.  Two more to go. Next comes file sharing.  Since your cluster node VMs will not have access to any outside, you have to have some way to get files into these VMs.  I simply go to the root of C: and create a “Shared” folder.  I then share it out and grant full control to “Everyone” to both the share and to the underlying NTFS folder.   This will be immensely useful for Service Packs, demo databases, and any other software that isn’t packaged as an ISO that we can mount to the VM. Finally we need to create a block-level multi-connect storage device.  The kind folks at Starwinds Software (http://www.starwindsoftware.com/) graciously gave me a non-expiring demo license for expressly this purpose.  Their iSCSI SAN software lets you create an iSCSI target from nearly any storage medium.  Refreshingly, their product does exactly what they say it does.  Thanks. Remember that 16 GB VHD file?  That is where we are going to carve into our LUNs.  I created an iSCSI folder off the root, just so I can keep everything organized.  I then carved 5 ea. 2 GB iSCSI targets from that folder.  I chose a fixed VHD for performance.  I tried this earlier with a dynamically expanding VHD, but too many layers of abstraction and sparseness combined to make it unusable even for a demo.  Stick with a fixed VHD so there is a one-to-one mapping between abstract and physical storage.  If you read the previous post, you know what I named these iSCSI LUNs and why.  Yes, I do have some left over space.  Always leave yourself room for future growth or options. This gets us up to where we can actually build the nodes and install SQL.  As with most clusters, the real work happens long before the individual nodes get installed and configured.  At least it does if you want the cluster to be a true high-availability platform.

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • Wireless Network Found, can't connect, repeated requests for authentication

    - by Herm Holland
    After trawling through the internet, on forums, support websites, and through dozens upon dozens of answered questions on this site, I've not found a solution to what seems like a fairly regular problem... I cannot connect to a wireless network, and am continually asked for the network password. I have tried countless suggested solutions on the different locations I've already referred to. None of them have worked. Details of my experience are as follows: I have just recently installed Ubuntu 12.04.1 (32-bit). Ubuntu installed on my system seemingly fine, and I even formatted my hard drive during the process. It's as if it were a new desktop computer. During the installation I was asked to connect to a Wireless Network. I have a USB Wireless Card connected which I have used to connect desktop PC's, laptops, and a Wii to the internet from approximately the same area of the house (thus the same distance from the Wireless Router). I chose my network, entered the correct password for it (I double checked; it's definitely the right password) and proceeded with the installation. Several times before the installation was complete, I was asked to authenticate the connection, and this seemed to do nothing each time. On the repeated screens the password was already entered in the appropriate box. When Ubuntu booted up the first thing I was faced with (other than something about Language settings, or something) was another request for authentication. Again, the password was already there, so I clicked connect. It did not connect. Instead, I was once again faced with repeated requests every few minutes. I went onto my laptop, which is connected to this network, checked the details of the network, and entered them manually into my Ubuntu PC (including the IPv4 and IPv6 information) but this didn't work either, so I set it back to finding the settings automatically. Note, also, that the "Connect automatically" and "Available to all users" boxes are checked, and have been unchecked & rechecked countless times. I have also tried having my User account connect automatically, and to need a password entered at the welcome screen. Whilst I've been writing this, it has gone through a spat of connecting successfully to the network for less than a minute, before coming offline again, only to repeat the process. But it has now returned to prompting me for a password every couple of minutes. This computer has already run on the Fedora OS, and had no trouble connecting to, and maintaining a connection. I also have a laptop running Windows 7 less than a metre away from this desktop PC, which is connected and has no trouble maintaining a connection at 50%-100% strength (fluctuating). Therefore: - I know it's not the wireless card - I know it's not the PC itself - I know it's not the access point - I know it's not the location of my PC or wireless card - It is solely because of Ubuntu Everything else has worked fine, but the moment Ubuntu was introduced into the equation, it has gone completely wrong. Honestly; I prefer Ubuntu as an OS to Fedora, but if I can't solve the problem it'll be straight back to Fedora that I'll have to go. Can anyone help me at all?

    Read the article

  • Fix overscan in Linux with Intel graphics Vizio HDTV

    - by Padenton
    I am connecting my server to my HDTV so that I can conveniently display it there. My VIZIO HDTV cuts off all 4 edges. I already realize it is not optimal to be running a GUI on a server; this server will not have much external traffic so I prefer it for convenience. I have already spent countless hours searching for a fix, but all I could find required an ATI or NVIDIA graphics card, or didn’t work. In Windows, the Intel driver has a setting for underscan, though it seems only to be available by a glitch. Here’s my specs: Ubuntu Linux (Quantal 12.10) (Likely to switch to Arch) This is a home server computer, with KDE for managing(for now, at least) Graphics: Intel HD Graphics 4000 from Ivy Bridge Motherboard: ASRock Z77 Extreme4 CPU: Intel Core i5-3450 My monitors: Dell LCD monitor Vizio VX37L_HDTV10A 37" on HDMI input I have tried all of the following from both HDMI?HDMI and DVI?HDMI cables connected to the ports on my motherboard: Setting properties in xrandr Making sure drivers are all up to date Trying several different modes The TV was “cheap”; max resolution 1080i. I am able to get a 1920x1080 modeline, in both GNU/Linux and Windows, without difficulty. There is no setting in the menu to fix the overscan (I have tried all of them, I realize it’s not always called overscan). I have been in the service menu for the TV, which still does not contain an option to fix it. No aspect ratio settings, etc. The TV has a VGA connector but I am unsure if it would fix it, as I don’t have a VGA cable long enough, and am not sure it would get me the 1920x1080 resolution which I want. Using another resolution does not fix the problem. I tried custom modelines with the dimensions of my screen’s viewable area, but it wouldn’t let me use them. Ubuntu apparently doesn’t automatically generate an xorg.conf file for use. I read somewhere that modifying it may help solve it. I tried X -configure several times(with reboots, etc.) but it consistently gave the following error messages: In log file: … (WW) Falling back to old probe method for vesa Number of created screens does not match number of detected devices. Configuration failed. In output: … (++) Using config file: "/root/xorg.conf.new" (==) Using system config directory "/usr/share/X11/xorg.conf.d" Number of created screens does not match number of detected devices. Configuration failed. Server terminated with error (2). Closing log file. Tried using 'overscan' prop in xrandr: root@xxx:/home/xxx# xrandr --output HDMI1 --set overscan off X Error of failed request: BadName (named color or font does not exist) Major opcode of failed request: 140 (RANDR) Minor opcode of failed request: 11 (RRQueryOutputProperty) Serial number of failed request: 42 Current serial number in output stream: 42 'overscan on', 'underscan off', 'underscan on' were all also tried. Originally tried with Ubuntu 12.04, but failed and so updated to 12.10 when it was released. All software is up to date. I am not opposed to reinstalling my OS, likely will anyways (my preference being Arch).

    Read the article

  • IP address reuse on macvlan devices

    - by Alex Bubnoff
    I'm trying to create easy to use and possibly simple testing environment for some product and got some strange behaviour of macvlan's. What I'm trying to achieve: make a toolset for one-line start/stop of lxc containers(via docker) bound to external ip(I have enough of it on host machine). So, I'm doing something like this: docker run -d -name=container_name container_image pipework eth1 container_name ip/prefix_len@gateway and pipework here does this: GUEST_IFNAME=ph$NSPID$eth1 ip link add link eth1 dev $GUEST_IFNAME type macvlan mode bridge ip link set eth1 up ip link set $GUEST_IFNAME netns $NSPID ip netns exec $NSPID ip link set $GUEST_IFNAME name eth1 ip netns exec $NSPID ip addr add $IPADDR dev eth1 ip netns exec $NSPID ip route delete default ip netns exec $NSPID ip link set eth1 up ip netns exec $NSPID ip route replace default via $GATEWAY ip netns exec $NSPID arping -c 1 -A -I eth1 $IPADDR And it works for first time per IP. But for second time and later packets for containers IP isn't getting into container, while all configuration seem fine. So it looks like this: External machine ? ping 212.76.131.212 ....silence.... Host machine root@ubuntu:~# ip link show eth1 2: eth1: mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 00:15:17:c9:e1:c9 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr show eth1 2: eth1: mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 00:15:17:c9:e1:c9 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# tcpdump -v -i eth1 icmp tcpdump: WARNING: eth1: no IPv4 address assigned tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes 00:00:46.542042 IP (tos 0x0, ttl 60, id 9623, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2345, length 64 00:00:47.549969 IP (tos 0x0, ttl 60, id 9624, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2346, length 64 00:00:48.558143 IP (tos 0x0, ttl 60, id 9625, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2347, length 64 00:00:49.566319 IP (tos 0x0, ttl 60, id 9626, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2348, length 64 00:00:50.573999 IP (tos 0x0, ttl 60, id 9627, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2349, length 64 ^C 5 packets captured 5 packets received by filter 0 packets dropped by kernel 1 packet dropped by interface Host machine, netns of container root@ubuntu:~# ip netns exec 32053 ip link show eth1 48: eth1@if2: mtu 1500 qdisc noqueue state UNKNOWN link/ether b2:12:f7:cc:a1:9d brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip netns exec 32053 ip addr show eth1 48: eth1@if2: mtu 1500 qdisc noqueue state UNKNOWN link/ether b2:12:f7:cc:a1:9d brd ff:ff:ff:ff:ff:ff inet 212.76.131.212/29 scope global eth1 inet6 fe80::b012:f7ff:fecc:a19d/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip netns exec 32053 tcpdump -v -i eth1 icmp tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes ....silence.... ^C 0 packets captured 0 packets received by filter 0 packets dropped by kernel So, can anyone say, what can it be? Can this be caused by not a bug in macvlan implementation? Is there any tools I can use to debug that configuration?

    Read the article

  • Instructions on how to configure a WebLogic Cluster and use it with Oracle Http Server

    - by Laurent Goldsztejn
    On October 17th I delivered a webcast on WebLogic Clustering that included a demo with Apache as the proxy server.  I realized that many steps are needed to set up the configuration I used during the demo.  The purpose of this article is to go through these steps to show how quickly and easily one can define a new cluster and then proxy requests via an Oracle Http Server (OHS). The domain configuration wizard offers the option to create a cluster.  The administration console or WLST, the Weblogic scripting tool can also be used to define a new cluster.  It can be created at any time but the servers that will participate in it cannot be in a running state. Cluster Creation using the configuration wizard Network and architecture requirements need to be considered while choosing between unicast and multicast. Multicast Vs. Unicast with WebLogic Clustering is of great help to make the best decision between the two messaging modes.  In addition, Configure Cluster offers details on each single field displayed above. After this initial configuration page, individual servers could be assigned to this newly created cluster although servers can be added later to the cluster.  What is not recommended is for the Admin server to participate in a cluster as the main purpose of the Admin server is to perform the bulk of the processing for the domain.  Servers need to stop before being assigned to a cluster.  There is also no minimum number of servers that have to participate in the cluster. At this point the configuration should be done and the cluster created successfully.  This can easily be verified from the console. Each clustered managed server can be launched to join the cluster.   At startup the following messages should be logged for each clustered managed server: <Notice> <WeblogicServer> <BEA-000365> <Server state changed to STARTING> <Notice> <Cluster> <BEA-000197> <Listening for announcements from cluster using messaging_mode cluster messaging> <Notice> <Cluster> <BEA-000133> <Waiting to synchronize with other running members of cluster_name>  It's time to try sending requests to the cluster and we will do this with the help of Oracle Http Server to play the role of a proxy server to demonstrate load balancing.  Proxy Server configuration  The first step is to download Weblogic Server Web Server Plugin that will enhance the web server by handling requests aimed at being sent to the Weblogic cluster.  For our test Oracle Http Server (OHS) will be used.  However plug-ins are also available for Apache Http server, Microsoft Internet Information Server (IIS), Oracle iPlanet Webserver or even WebLogic Server with the HttpClusterServlet. Once OHS is installed on the system, the configuration file, mod_wl_ohs.conf, will need to be altered to include Weblogic proxy specifics. First of all, add the following directive to instruct Apache to load the Weblogic shared object module extracted from the plugins file just downloaded. LoadModule weblogic_module modules/mod_wl_ohs.so and then create an IfModule directive to encapsulate the following location block so that proxy will be enabled by path (each request including /wls will be directed directly to the WebLogic Cluster).  You could also proxy requests by MIME type using MatchExpression in the Location block. <IfModule weblogic_module> <Location /wls>    SetHandler weblogic-handler    PathTrim /wls    WebLogicCluster MS1_URL:port,MS2_URL:port    Debug ON    WLLogFile        c:/tmp/global_proxy.log     WLTempDir        "c:/myTemp"    DebugConfigInfo  On </Location> </IfModule> SetHandler specifies the handler for the plug-in module  PathTrim will instruct the plug-in to trim /w ls from the URL before forwarding the request to the cluster. The list of WebLogic Servers defined in WeblogicCluster could contain a mixed set of clustered and single servers.  However, the dynamic list returned for this parameter will only contain valid clustered servers and may contain more servers if not all clustered servers are listed in WeblogicCluster. Testing proxy and load balancing It's time to start OHS web server which should at this point be configured correctly to proxy requests to the clustered servers.  By default round-robin is the load balancing strategy set by WebLogic. Testing the load balancing can be easily done by disabling cookies on your browser given that a request containing a cookie attempts to connect to the primary server. If that attempt fails, the plug-in attempts to make a connection to the next available server in the list in a round-robin fashion.  With cookies enabled, you could use two different browsers to test the load balancing with a JSP page that contains the following: <%@ page contentType="text/html; charset=iso-8859-1" language="java"  %>  <%  String path = request.getContextPath();   String getProtocol=request.getScheme();   String getDomain=request.getServerName();   String getPort=Integer.toString(request.getLocalPort());   String getPath = getProtocol+"://"+getDomain+":"+getPort+path+"/"; %> <html> <body> Receiving Server <%=getPath%> </body> </html>  Assuming that you name the JSP page Test.jsp and the webapp that contains it TestApp, your browsers should open the following URL: http://localhost/wls/TestApp/Test.jsp  Each browser should connect to a different clustered server and this simple JSP should confirm that.  The webapp that contains the JSP needs to be deployed to the cluster. You can also verify that the load is correctly balanced by looking at the proxy log file.  Each request generates a set of log entries that starts with : timestamp ================New Request: Each request is associated with a primary server and a secondary server if one is available.  For our test request, the following entries should appear in the log as well:Using Uri /wls/TestApp/Test.jsp After trimming path: '/TestApp/Test.jsp' The final request string is '/TestApp/Test.jsp' If an exception occurs, it should also be logged in the proxy log file with the prefix:timestamp *******Exception type   WeblogicBridgeConfig DebugConfigInfo enables runtime statistics and the production of configuration information.  For security purposes, this parameter should be turned off in production. http://webserver_host:port/path/xyz.jsp?__WebLogicBridgeConfig will display a proxy bridge page detailing the plugin configuration followed by runtime statistics which could help in diagnosing issues along with the analyzing of the proxy log file.  In our example the url would be: http://localhost/wls/TestApp/Test.jsp?__WebLogicBridgeConfig  Here is how the top section of the screen can look like: The bottom part of the page contains runtime statistics, here is a snippet of it (unrelated with the previous JSP example).   This entire plugin configuration should be very similar with other web servers, what varies is the name of the proxy server configuration file. So, as you can see, it only takes a few minutes to configure a Weblogic cluster and get servers to join it. 

    Read the article

  • what is the best mid/high-end class audio/music creation audio sound card?

    - by Chris
    Hello, I have a computershop myself, and I repair computers. But one of the things I really don't know (yet) is the performace od audio cards for music creation with midi. I have searched and searched and came up with some good reviews, but after browsing for a couple of hours I could't see the trees trough the forrest :-D (it's a dutch expression) At one moment I thought the M-Audio - Delta 1010LT would be a good PCIe card, later on I read that this card was released years ago. (but that could be false information) Also any personal expierence would be great, but not necessairy. I have searched a few cards, and I hope someone can help me make a choice for a friend of mine. He's buget is between $100 and $350 I know there are audio cards from $ 500 - $1850,- this is just too expensive. The following specs are crucial: ASIO Midi Mic in minimal 5.1, 7.1 recommended it's not for airplay, but just to compose music at home. using Ableton and midi keyboard. 1. M-Audio - Delta 1010LT: 8 x 8 analog I/O 2 mic preamps or line inputs S/PDIF digital I/O (coaxial) with 2-channel PCM SCMS copy protection control digital I/O supports surround-encoded AC-3 and DTS pass-through 1 x 1 MIDI I/O directly drive up to 7.1 surround (bass management software included) software controlled 36-bit internal DSP digital mixing/routing +4dbu/-10dBV operation individually switched in software word clock I/O for sample accurate device synchronization 2. RME HDSP 9632: * Stereo Analog Ein- und Ausgang, symmetrisch*, 24-Bit/192kHz, > 110 dB SNR * Optionale Erweiterungsboards mit je 4 symmetrischen Ein- und Ausgängen * Alle analogen I/Os voll 192 kHz-fähig, also keine Reduzierung der Kanalzahl * 1 x ADAT Digital In/Out, 96 kHz-fähig (S/MUX) * 1 x SPDIF Digital In/Out, 192 kHz-fähig * 1 x Breakout Kabel für koaxialen SPDIF-Betrieb* * Also bis zu 16 Ein-und Ausgänge gleichzeitig nutzbar! * 1 x Stereo Kopfhörerausgang, parallel zum analogen Ausgang, aber eigene Pegelanpassung * 1 x MIDI I/O für 16 Kanäle Hi-Speed MIDI über Breakout Kabel * DIGICheck, RMEs einzigartiges Meter- und Analysetool mit Spectral Analyser, Professionelle Level Meter 2/8/16-Kanalig, Vector Audio Scope und diversen weiteren Analysefunktionen * HDSP Meter Bridge: Frei skalierbare Levelmeter mit Peak- und RMS Berechnung in Hardware * TotalMix: 512-Kanal Mischer mit 40 Bit interner Auflösung 3. EMU 1212M (1212 M) PCIe: * Top kwaliteit convertors 24-bit/192kHz convertors. * Hardware gestuurde effecten. * DSP zero-latency hardware mixen en monitoring. * Analoge en digitale I/O plus MIDI. * EMU Production Tools Software Bundle - Cakewalk SONAR , Steinberg Cubase LE, Ableton Live E-MU Edition **EMU 1212M PCI-e inputs/outputs:** * 2 balanced jack inputs. * 2 balanced jack outputs. * 24-bit/192kHz ADAT I/O. * 24-bit/192kHz Coaxiale S/PDif I/O switchable to AES/EBU. * MIDI I/O. 4. M-Audio Audiophile 192: - Up to 24-bit/192kHz audio - 2 balanced analog inputs (1/4” TRS) - 2 balanced analog outputs (1/4” TRS) - S/PDIF digital I/O (coaxial RCA connectors) with 2-channel PCM - SCMS copy protection control - Digital I/O supports surround-encoded AC-3 and DTS pass-through - Direct hardware input monitoring via separate balanced 1/4” TRS monitor outputs - Software routing of inputs and outputs - Digital I/O can be routed to/from external effects - 16-channel MIDI I/O - ASIO, WDM, GSIF 2 and Core Audio driver support for compatibility with most applications - 64-bit driver support for Windows - PCI 2.2 compatibility - Apple G5 compatible - Incompatible exceptions - Includes Ableton Live Lite music production software, so you can make music right away - Works with other Delta cards Technical Specifcations: - Compatibility - ASIO - WDM - GSIF 2 - Core Audio

    Read the article

  • CodePlex Daily Summary for Saturday, June 16, 2012

    CodePlex Daily Summary for Saturday, June 16, 2012Popular ReleasesCosmos (C# Open Source Managed Operating System): Release 92560: Prerequisites Visual Studio 2010 - Any version including Express. Express users must also install Visual Studio 2010 Integrated Shell runtime VMWare - Cosmos can run on real hardware as well as other virtualization environments but our default debug setup is configured for VMWare. VMWare Player (Free). or Workstation VMWare VIX API 1.11AutoUpdaterdotNET : Autoupdate for VB.NET and C# Developer: AutoUpdater.NET 1.1: Release Notes *New feature added that allows user to select remind later interval.Sumzlib: API document: API documentMicrosoft SQL Server Product Samples: Database: AdventureWorks 2008 OLTP Script: Install AdventureWorks2008 OLTP database from script The AdventureWorks database can be created by running the instawdb.sql DDL script contained in the AdventureWorks 2008 OLTP Script.zip file. The instawdb.sql script depends on two path environment variables: SqlSamplesDatabasePath and SqlSamplesSourceDataPath. The SqlSamplesDatabasePath environment variable is set to the default Microsoft ® SQL Server 2008 path. You will need to change the SqlSamplesSourceDataPath environment variable to th...HigLabo: HigLabo_20120613: Bug fix HigLabo.Mail Decode header encoded by CP1252Jasc (just another script compressor): 1.3.1: Updated Ajax Minifier to 4.55.WipeTouch, a jQuery touch plugin: 1.2.0: Changes since 1.1.0: New: wipeMove event, triggered while moving the mouse/finger. New: added "source" to the result object. Bug fix: sometimes vertical wipe events would not trigger correctly. Bug fix: improved tapToClick handler. General code refactoring. Windows Phone 7 is not supported, yet! Its behaviour is completely broken and would require some special tricks to make it work. Maybe in the future...Phalanger - The PHP Language Compiler for the .NET Framework: 3.0.0.3026 (June 2012): Fixes: round( 0.0 ) local TimeZone name TimeZone search compiling multi-script-assemblies PhpString serialization DocDocument::loadHTMLFile() token_get_all() parse_url()BlackJumboDog: Ver5.6.4: 2012.06.13 Ver5.6.4  (1) Web???????、???POST??????????????????Yahoo! UI Library: YUI Compressor for .Net: Version 2.0.0.0 - Ferret: - Merging both 3.5 and 2.0 codebases to a single .NET 2.0 assembly. - MSBuild Task. - NAnt Task.Bumblebee: Version 0.3.1: Changed default config values to decent ones. Restricted visibility of Hive.fs to internal. Added some XML documentation. Added Array.shuffle utility. The dll is also available on NuGet My apologies, the initial source code referenced was missing one file which prevented it from building The source code contains two examples, one in C#, one in F#, illustrating the usage of the framework on the Travelling Salesman Problem: Source CodeSharePoint XSL Templates: SPXSLT 0.0.9: Added new template FixAmpersands. Fixed the contents of the MultiSelectValueCheck.xsl file, which was missing the stylesheet wrapper.ExcelFileEditor: .CS File: nothingBizTalk Scheduled Task Adapter: Release 4.0: Works with BizTalk Server 2010. Compiled in .NET Framework 4.0. In this new version are available small improvements compared to the current version (3.0). We can highlight the following improvements or changes: 24 hours support in “start time” property. Previous versions had an issue with setting the start time, as it shown 12 hours watch but no AM/PM. Daily scheduler review. Solved a small bug on Daily Properties: unable to switch between “Every day” and “on these days” Installation e...Weapsy - ASP.NET MVC CMS: 1.0.0 RC: - Upgrade to Entity Framework 4.3.1 - Added AutoMapper custom version (by nopCommerce Team) - Added missed model properties and localization resources of Plugin Definitions - Minor changes - Fixed some bugsXenta Framework - extensible enterprise n-tier application framework: Xenta Framework 1.8.0 Beta: Catalog and Publication reviews and ratings Store language packs in data base Improve reporting system Improve Import/Export system A lot of WebAdmin app UI improvements Initial implementation of the WebForum app DB indexes Improve and simplify architecture Less abstractions Modernize architecture Improve, simplify and unify API Simplify and improve testing A lot of new unit tests Codebase refactoring and ReSharpering Utilize Castle Windsor Utilize NHibernate ORM ...Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.55: Properly handle IE extension to CSS3 grammar that allows for multiple parameters to functional pseudo-class selectors. add new switch -braces:(new|same) that affects where opening braces are placed in multi-line output. The default, "new" puts them on their own new line; "same" outputs them at the end of the previous line. add new optional values to the -inline switch: -inline:(force|noforce), which can be combined with the existing boolean value via comma-separators; value "force" (which...Microsoft Media Platform: Player Framework: MMP Player Framework 2.7 (Silverlight and WP7): Additional DownloadsSMFv2.7 Full Installer (MSI) - This will install everything you need in order to develop your own SMF player application, including the IIS Smooth Streaming Client. It only includes the assemblies. If you want the source code please follow the link above. Smooth Streaming Sample Player - This is a pre-built player that includes support for IIS Smooth Streaming. You can configure the player to playback your content by simplying editing a configuration file - no need to co...Liberty: v3.2.1.0 Release 10th June 2012: Change Log -Added -Liberty is now digitally signed! If the certificate on Liberty.exe is missing, invalid, or does not state that it was developed by "Xbox Chaos, Open Source Developer," your copy of Liberty may have been altered in some (possibly malicious) way. -Reach Mass biped max health and shield changer -Fixed -H3/ODST Fixed all of the glitches that users kept reporting (also reverted the changes made in 3.2.0.2) -Reach Made some tag names clearer and more consistent between m...Media Companion: Media Companion 3.503b: It has been a while, so it's about time we release another build! Major effort has been for fixing trailer downloads, plus a little bit of work for episode guide tag in TV show NFOs.New Projects.NinJa (dotNinja): An extensive JavaScript Framework revolving around principles found in .NET and aiming to integrate full Intellisense support. bab-rizg: solve unemployment problemBizTalk Multi-part Message Attachments Zipper Pipeline Component: This pipeline component replaces all attachments of a multi-part message, in a send pipeline, for its zipped equivalent.Boggle.Net: A basic implementation of Boggle for WPF.CFScript: CFScript is an ANT-like scripting system for Compact Framework. Tasks like copying files, setting registry values o install CAB files can be done with CFScript.Diablo3: Diablo3Dygraphs.NET: Dygraphs.NETDynamics CRM plugin for nopCommerce: This plugins is a bridge between nopCommerce and Dynamics CRM. nms.gaming: Place holderProject Bright Star: Project Bright Star. Deal with it.RDFSharp: RDFSharp is a library designed to ease the development of .NET applications based on the RDF and Semantic Web data model.SlamCMS: An application framework that allows you to build content managed sites leveraging SharePoint 2010 for publishing with tools to query and manifest your data.test02: no

    Read the article

  • Developing Schema Compare for Oracle (Part 1)

    - by Simon Cooper
    SQL Compare is one of Red Gate's most successful SQL Server tools; it allows developers and DBAs to compare and synchronize the contents of their databases. Although similar tools exist for Oracle, they are quite noticeably lacking in the usability and stability that SQL Compare is known for in the SQL Server world. We could see a real need for a usable schema comparison tools for Oracle, and so the Schema Compare for Oracle project was born. Over the next few weeks, as we come up to release of v1, I'll be doing a series of posts on the development of Schema Compare for Oracle. For the first post, I thought I would start with the main pitfalls that we stumbled across when developing the product, especially from a SQL Server background. 1. Schemas and Databases The most obvious difference is that the concept of a 'database' is quite different between Oracle and SQL Server. On SQL Server, one server instance has multiple databases, each with separate schemas. There is typically little communication between separate databases, and most databases are no more than about 1000-2000 objects. This means SQL Compare can register an entire database in a reasonable amount of time, and cross-database dependencies probably won't be an issue. It is a quite different scene under Oracle, however. The terms 'database' and 'instance' are used interchangeably, (although technically 'database' refers to the datafiles on disk, and 'instance' the running Oracle process that reads & writes to the database), and a database is a single conceptual entity. This immediately presents problems, as it is infeasible to register an entire database as we do in SQL Compare; in my Oracle install, using the standard recommended options, there are 63975 system objects. If we tried to register all those, not only would it take hours, but the client would probably run out of memory before we finished. As a result, we had to allow people to specify what schemas they wanted to register. This decision had quite a few knock-on effects for the design, which I will cover in a future post. 2. Connecting to Oracle The next obvious difference is in actually connecting to Oracle – in SQL Server, you can specify a server and database, and off you go. On Oracle things are slightly more complicated. SIDs, Service Names, and TNS A database (the files on disk) must have a unique identifier for the databases on the system, called the SID. It also has a global database name, which consists of a name (which doesn't have to match the SID) and a domain. Alternatively, you can identify a database using a service name, which normally has a 1-to-1 relationship with instances, but may not if, for example, using RAC (Real Application Clusters) for redundancy and failover. You specify the computer and instance you want to connect to using TNS (Transparent Network Substrate). The user-visible parts are a config file (tnsnames.ora) on the client machine that specifies how to connect to an instance. For example, the entry for one of my test instances is: SC_11GDB1 = (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST = simonctest)(PORT = 1521)) ) (CONNECT_DATA = (SID = 11gR1db1) ) ) This gives the hostname, port, and SID of the instance I want to connect to, and associates it with a name (SC_11GDB1). The tnsnames syntax also allows you to specify failover, multiple descriptions and address lists, and client load balancing. You can then specify this TNS identifier as the data source in a connection string. Although using ODP.NET (the .NET dlls provided by Oracle) was fine for internal prototype builds, once we released the EAP we discovered that this simply wasn't an acceptable solution for installs on other people's machines. Due to .NET assembly strong naming, users had to have installed on their machines the exact same version of the ODP.NET dlls as we had on our build server. We couldn't ship the ODP.NET dlls with our installer as the Oracle license agreement prohibited this, and we didn't want to force users to install another Oracle client just so they can run our program. To be able to list the TNS entries in the connection dialog, we also had to locate and parse the tnsnames.ora file, which was complicated by users with several Oracle client installs and intricate TNS entries. After much swearing at our computers, we eventually decided to use a third party Oracle connection library from Devart that we could ship with our program; this could use whatever client version was installed, parse the TNS entries for us, and also had the nice feature of being able to connect to an Oracle server without having any client installed at all. Unfortunately, their current license agreement prevents us from shipping an Oracle SDK, but that's a bridge we'll cross when we get to it. 3. Running synchronization scripts The most important difference is that in Oracle, DDL is non-transactional; you cannot rollback DDL statements like you can on SQL Server. Although we considered various solutions to this, including using the flashback archive or recycle bin, or generating an undo script, no reliable method of completely undoing a half-executed sync script has yet been found; so in this case we simply have to trust that the DBA or developer will check and verify the script before running it. However, before we got to that stage, we had to get the scripts to run in the first place... To run a synchronization script from SQL Compare we essentially pass the script over to the SqlCommand.ExecuteNonQuery method. However, when we tried to do the same for an OracleConnection we got a very strange error – 'ORA-00911: invalid character', even when running the most basic CREATE TABLE command. After much hair-pulling and Googling, we discovered that Oracle has got some very strange behaviour with semicolons at the end of statements. To understand what's going on, we need to take a quick foray into SQL and PL/SQL. PL/SQL is not T-SQL In SQL Server, T-SQL is the language used to interface with the database. It has DDL, DML, control flow, and many other nice features (like Turing-completeness) that you can mix and match in the same script. In Oracle, DDL SQL and PL/SQL are two completely separate languages, with different syntax, different datatypes and different execution engines within the instance. Oracle SQL is much more like 'pure' ANSI SQL, with no state, no control flow, and only the basic DML commands. PL/SQL is the Turing-complete language, but can only do DML and DCL (i.e. BEGIN TRANSATION commands). Any DDL or SQL commands that aren't recognised by the PL/SQL engine have to be passed back to the SQL engine via an EXECUTE IMMEDIATE command. In PL/SQL, a semicolons is a valid token used to delimit the end of a statement. In SQL, a semicolon is not a valid token (even though the Oracle documentation gives them at the end of the syntax diagrams) . When you execute the command CREATE TABLE table1 (COL1 NUMBER); in SQL*Plus the semicolon on the end is a command to SQL*Plus to execute the preceding statement on the server; it strips off the semicolon before passing it on. SQL Developer does a similar thing. When executing a PL/SQL block, however, the syntax is like so: BEGIN INSERT INTO table1 VALUES (1); INSERT INTO table1 VALUES (2); END; / In this case, the semicolon is accepted by the PL/SQL engine as a statement delimiter, and instead the / is the command to SQL*Plus to execute the current block. This explains the ORA-00911 error we got when trying to run the CREATE TABLE command – the server is complaining about the semicolon on the end. This also means that there is no SQL syntax to execute more than one DDL command in the same OracleCommand. Therefore, we would have to do a round-trip to the server for every command we want to execute. Obviously, this would cause lots of network traffic and be very slow on slow or congested networks. Our first attempt at a solution was to wrap every SQL statement (without semicolon) inside an EXECUTE IMMEDIATE command in a PL/SQL block and pass that to the server to execute. One downside of this solution is that we get no feedback as to how the script execution is going; we're currently evaluating better solutions to this thorny issue. Next up: Dependencies; how we solved the problem of being unable to register the entire database, and the knock-on effects to the whole product.

    Read the article

  • Can't connect to certain HTTPS sites

    - by mind.blank
    I've just moved to a new apartment and with internet connection via a router and I'm finding that I can't connect to quite a few sites that use SSL. For example trying to connect to PayPal: curl -v https://paypal.com * About to connect() to paypal.com port 443 (#0) * Trying 66.211.169.3... connected * successfully set certificate verify locations: * CAfile: none CApath: /etc/ssl/certs * SSLv3, TLS handshake, Client hello (1): * Unknown SSL protocol error in connection to paypal.com:443 * Closing connection #0 curl: (35) Unknown SSL protocol error in connection to paypal.com:443 curl -v -ssl https://paypal.com gives the same output. For some sites it works: curl -v https://www.google.com * About to connect() to www.google.com port 443 (#0) * Trying 74.125.235.112... connected * successfully set certificate verify locations: * CAfile: none CApath: /etc/ssl/certs * SSLv3, TLS handshake, Client hello (1): * SSLv3, TLS handshake, Server hello (2): * SSLv3, TLS handshake, CERT (11): * SSLv3, TLS handshake, Server key exchange (12): * SSLv3, TLS handshake, Server finished (14): * SSLv3, TLS handshake, Client key exchange (16): * SSLv3, TLS change cipher, Client hello (1): * SSLv3, TLS handshake, Finished (20): * SSLv3, TLS change cipher, Client hello (1): * SSLv3, TLS handshake, Finished (20): * SSL connection using ECDHE-RSA-RC4-SHA * Server certificate: * subject: C=US; ST=California; L=Mountain View; O=Google Inc; CN=www.google.com * start date: 2011-10-26 00:00:00 GMT * expire date: 2013-09-30 23:59:59 GMT * common name: www.google.com (matched) * issuer: C=ZA; O=Thawte Consulting (Pty) Ltd.; CN=Thawte SGC CA * SSL certificate verify ok. > GET / HTTP/1.1 > User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3 > Host: www.google.com > Accept: */* > < HTTP/1.1 302 Found < Location: https://www.google.co.jp/ . . . I'm using Ubuntu 12.04, with Windows 7 installed as well. These sites work on Windows :( Not sure if this information helps but I ran ifconfig and got the following: eth0 Link encap:Ethernet HWaddr 1c:c1:de:bc:e2:4f inet6 addr: 2408:c3:7fff:991:686b:8d18:81b3:8dd1/64 Scope:Global inet6 addr: 2408:c3:7fff:991:1ec1:deff:febc:e24f/64 Scope:Global inet6 addr: fe80::1ec1:deff:febc:e24f/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:87075 errors:0 dropped:0 overruns:0 frame:0 TX packets:54522 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:78167937 (78.1 MB) TX bytes:10016891 (10.0 MB) Interrupt:46 Base address:0x4000 eth1 Link encap:Ethernet HWaddr ac:81:12:0d:93:80 inet6 addr: fe80::ae81:12ff:fe0d:9380/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:498 TX packets:0 errors:26 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:17 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:630 errors:0 dropped:0 overruns:0 frame:0 TX packets:630 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:39592 (39.5 KB) TX bytes:39592 (39.5 KB) ppp0 Link encap:Point-to-Point Protocol inet addr:180.57.228.200 P-t-P:118.23.8.175 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1492 Metric:1 RX packets:39631 errors:0 dropped:0 overruns:0 frame:0 TX packets:22391 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3 RX bytes:43462054 (43.4 MB) TX bytes:2834628 (2.8 MB)

    Read the article

  • The Raspberry Pi JavaFX In-Car System (Part 3)

    - by speakjava
    Ras Pi car pt3 Having established communication between a laptop and the ELM327 it's now time to bring in the Raspberry Pi. One of the nice things about the Raspberry Pi is the simplicity of it's power supply.  All we need is 5V at about 700mA, which in a car is as simple as using a USB cigarette lighter adapter (which is handily rated at 1A).  My car has two cigarette lighter sockets (despite being specified with the non-smoking package and therefore no actual cigarette lighter): one in the centre console and one in the rear load area.  This was convenient as my idea is to mount the Raspberry Pi in the back to minimise the disruption to the very clean design of the Audi interior. The first task was to get the Raspberry Pi to communicate using Wi-Fi with the ELM 327.  Initially I tried a cheap Wi-Fi dongle from Amazon, but I could not get this working with my home Wi-Fi network since it just would not handle the WPA security no matter what I did.  I upgraded to a Wi Pi from Farnell and this works very well. The ELM327 uses Ad-Hoc networking, which is point to point communication.  Rather than using a wireless router each connecting device has its own assigned IP address (which needs to be on the same subnet) and uses the same ESSID.  The settings of the ELM327 are fixed to an IP address of 192.168.0.10 and useing the ESSID, "Wifi327".  To configure Raspbian Linux to use these settings we need to modify the /etc/network/interfaces file.  After some searching of the web and a few false starts here's the settings I came up with: auto lo eth0 wlan0 iface lo inet loopback iface eth0 inet static     address 10.0.0.13     gateway 10.0.0.254     netmask 255.255.255.0 iface wlan0 inet static     address 192.168.0.1     netmask 255.255.255.0     wireless-essid Wifi327     wireless-mode ad-ho0 After rebooting, iwconfig wlan0 reported that the Wi-Fi settings were correct.  However, ifconfig showed no assigned IP address.  If I configured the IP address manually using ifconfig wlan0 192.168.0.1 netmask 255.255.255.0 then everything was fine and I was able to happily ping the IP address of the ELM327.  I tried numerous variations on the interfaces file, but nothing I did would get me an IP address on wlan0 when the machine booted.  Eventually I decided that this was a pointless thing to spend more time on and so I put a script in /etc/init.d and registered it with update-rc.d.  All the script does (currently) is execute the ifconfig line and now, having installed the telnet package I am able to telnet to the ELM327 via the Raspberry Pi.  Not nice, but it works. Here's a picture of the Raspberry Pi in the car for testing In the next part we'll look at running the Java code on the Raspberry Pi to collect data from the car systems.

    Read the article

  • Ubuntu 12.04 host – Virtualbox 4.1.12 Guest=Windows 7 – Network will not connect

    - by user287529
    Ubuntu 12.04 host – Virtualbox 4.1.12 Guest=Windows 7 – Network will not connect. I'm using Ubuntu 12.04 on an Acer Aspire 5742-7645 laptop with 4GB memory, Intel Core i3 processor, Intel HD Graphics, DVD drive, 802.1 b/g/n, and 500 GB HD. I connect to my router via a wireless connection. I have installed Virutalbox 4.1.12 from the Ubuntu Software Center and installed Guest additions 4.1.12 in the Windows 7 guest session. I have Windows XP and Windows 7 installed as guests in Virtual box The network settings are different for XP and 7 – see below. Network Settings XP guest = Adapter 1: PCnet-FAST III (NAT) - Network works perfectly and has worked well for several years. Network Settings Win 7 = Adapter 1: Intel PRO/1000 MT Desktop (Bridged adapter, eth1) Promiscuous Mode = allow all Cable connected = checked When I originally installed Windows 7, I tried NAT and the guest network would not connect. Once I changed the setting to the above (Bridged) the Network worked perfectly. However, what I believe is after updates (not sure if it was an Ubuntu or Windows update) the guest network stopped working and I can not get it to connect. Interfaces file content auto lo iface lo inet loopback Ifconfig yields lou@lou-Aspire-5742:~$ ifconfig eth0 Link encap:Ethernet HWaddr 1c:75:08:09:f6:5c UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:16 eth1 Link encap:Ethernet HWaddr 4c:0f:6e:7c:9f:01 inet addr:192.168.1.104 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::4e0f:6eff:fe7c:9f01/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:18095 errors:2 dropped:0 overruns:0 frame:24344 TX packets:9281 errors:47 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:5301926 (5.3 MB) TX bytes:1441885 (1.4 MB) Interrupt:17 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:3208 errors:0 dropped:0 overruns:0 frame:0 TX packets:3208 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:294088 (294.0 KB) TX bytes:294088 (294.0 KB) Ipconfig yields the following: Windows IP Configuration Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Link-local IPv6 Address . . . . . : fe80::38ba:dbca:a21d:c3d1%13 Autoconfiguration IPv4 Address. . : 169.254.195.209 Subnet Mask . . . . . . . . . . . : 255.255.0.0 Default Gateway . . . . . . . . . : Tunnel adapter isatap.{B292E440-679D-4FC5-8E34-77D6804669C8}: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : Tunnel adapter Local Area Connection* 11: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : I'm not sure what else to do. Can someone provide the troubleshooting steps to determine what the problem is and possible solution?

    Read the article

  • How to diagnose and solve an erratic "HDCP Support Required"?

    - by Jom Orgstrom
    I am playing a digital tv broadcast on Windows Media Center for Windows 7. I built this system so it works with HDCP, and in fact I have been able to watch tv and bluray before with this same computer. However, I suddenly started getting an "HDCP Support Required" error from WMC. The entire message is as follows: HDCP Support Required High-bandwidth Digital Content Protection (HDCP) may not be supported by the current video card. Use an HDCP-compliant display, video card, and video driver. Or, connect using an analog connection such as component or VGA. Relevant specs are: CPU: Ivy Bridge Core i7-3770 Motherboard: Asus P8H77-I Memory: 16GB DDR3-1600 Graphics: Radeon HD 7850 (Driver by AMD, version 8.982.0.0 built on 2012/07/27) Display: Acer P243w connected by HDMI Sound: Roland Quad-Capture (It complains even when I use the bundled VIA HD Audio) TV Tuner: I-O Data GV-MC7/HZ3 OS: Windows 7 Professional SP1, Windows Update enabled. All patched and up to date. As you can see, there is nothing weird or old about my setup. I am also not doing anything strange, not doing any overclocking, weird system changes and so on. One thing that does happen from time to time, is that the display goes black for a few seconds (sometimes when watching media contents, sometimes when just using photoshop or Visual Studio). This happened with my previous setup as well, so I'd be inclined to think it is a display or cable issue (apart from the BD drive, these are the only things I kept from my previous setup to this one). But being a digital transfer, as far as I know, these things either work or not. Never erratically or with decreased quality. The thing is that sometimes I can watch the TV, sometimes not. This happens with recorded programs as well, so it's not a per-program thing. Sometimes rebooting helps, sometimes it doesn't. Sometimes unplugging and plugging back the HDMI connector helps, sometimes it doesn't. Sometimes doing so doesn't even turn the screen back on, so I have to reboot. Unfortunately, WMC's error message is quite unhelpful. I'd like to know exactly where the problem is, so I can solve it. I don't want to buy a brand new display just to then find out it was a registry setting that was misconfigured. I've tried looking at the system event viewer, but these errors don't show up at all in there. Other people who have this problem seem to have a setup that is not HDCP compliant, so I turn to you guys here. Anybody knows how to diagnose this problem? Edit: So I got the Cyberlink Blu-ray disc advisor. I ran it and told me everything was okay, except for the Video Connection Type, which showed as "Digital (without HDCP)". I then proceeded to unplug the power cable from the monitor, plugged it in again, ran the tool again, and now it's "Digital (with HDCP)". Needless to say, I can watch my TV and recorded programs on WMP again. I'm guessing that at some point, something may be slightly wrong with the HDCP setup, and Windows decides to reset the entire content protection path (which leads to the screen blanking out). Usually the reset succeeds, but sometimes it doesn't, so Windows defaults to turning HDCP off. There's no way to turn it back on, except by doing a hard reset of the display. I really want to know what the exact error was, so I can fix it. Is it the cable? is it the display? is it the video card? the driver? Also, is there any other way to try and turn HDCP on again without having to hard reset the display? Oh, questions, questions...

    Read the article

  • Let your Signature Experience drive IT-decision making

    - by Tania Le Voi
    Today’s CIO job description:  ‘’Align IT infrastructure and solutions with business goals and objectives ; AND while doing so reduce costs; BUT ALSO, be innovative, ensure the architectures are adaptable and agile as we need to act today on the changes that we may request tomorrow.”   Sound like an unachievable request? The fact is, reality dictates that CIO’s are put under this type of pressure to deliver more with less. In a past career phase I spent a few years as an IT Relationship Manager for a large Insurance company. This is a role that we see all too infrequently in many of our customers, and it’s a shame.  The purpose of this role was to build a bridge, a relationship between IT and the business. Key to achieving that goal was to ensure the same language was being spoken and more importantly that objectives were commonly understood - hence service and projects were delivered to time, to budget and actually solved the business problems. In reality IT and the business are already married, but the relationship is most often defined as ‘supplier’ of IT rather than a ‘trusted partner’. To deliver business value they need to understand how to work together effectively to attain this next level of partnership. The Business cannot compete if they do not get a new product to market ahead of the competition, or for example act in a timely manner to address a new industry problem such as a legislative change. An even better example is when the Application or Service fails and the Business takes a hit by bad publicity, being trending topics on social media and losing direct revenue from online channels. For this reason alone Business and IT need the alignment of their priorities and deliverables now more than ever! Take a look at Forrester’s recent study that found ‘many IT respondents considering themselves to be trusted partners of the business but their efforts are impaired by the inadequacy of tools and organizations’.  IT Meet the Business; Business Meet IT So what is going on? We talk about aligning the business with IT but the reality is it’s difficult to do. Like any relationship each side has different goals and needs and language can be a barrier; business vs. technology jargon! What if we could translate the needs of both sides into actionable information, backed by data both sides understand, presented in a meaningful way?  Well now we can with the Business-Driven Application Management capabilities in Oracle Enterprise Manager 12cR2! Enterprise Manager’s Business-Driven Application Management capabilities provide the information that IT needs to understand the impact of its decisions on business criteria.  No longer does IT need to be focused solely on speeds and feeds, performance and throughput – now IT can understand IT’s impact on business KPIs like inventory turns, order-to-cash cycle, pipeline-to-forecast, and similar.  Similarly, now the line of business can understand which IT services are most critical for the KPIs they care about. There are a good deal of resources on Oracle Technology Network that describe the functionality of these products, so I won’t’ rehash them here.  What I want to talk about is what you do with these products. What’s next after we meet? Where do you start? Step 1:  Identify the Signature Experience. This is THE business process (or set of processes) that is core to the business, the one that drives the economic engine, the process that a customer recognises the company brand for, reputation, the customer experience, the process that a CEO would state as his number one priority. The crème de la crème of your business! Once you have nailed this it gets easy as Enterprise Manager 12c makes it easy. Step 2:  Map the Signature Experience to underlying IT.  Taking the signature experience, map out the touch points of the components that play a part in ensuring this business transaction is successful end to end, think of it like mapping out a critical path; the applications, middleware, databases and hardware. Use the wealth of Enterprise Manager features such as Systems, Services, Business Application Targets and Business Transaction Management (BTM) to assist you. Adding Real User Experience Insight (RUEI) into the mix will make the end to end customer satisfaction story transparent. Work with the business and define meaningful key performance indicators (KPI’s) and thresholds to enable you to report and action upon. Step 3:  Observe the data over time.  You now have meaningful insight into every step enabling your signature experience and you understand the implication of that experience on your underlying IT.  Watch if for a few months, see what happens and reconvene with your business stakeholders and set clear and measurable targets which can re-define service levels.  Step 4:  Change the information about which you and the business communicate.  It’s amazing what happens when you and the business speak the same language.  You’ll be able to make more informed business and IT decisions. From here IT can identify where/how budget is spent whether on the level of support, performance, capacity, HA, DR, certification etc. IT SLA’s no longer need be focused on metrics such as %availability but structured around business process requirements. The power of this way of thinking doesn’t end here. IT staff get to see and understand how their own role contributes to the business making them accountable for the business service. Take a step further and appraise your staff on the business competencies that are linked to the service availability. For the business, the language barrier is removed by producing targeted reports on the signature experience core to the business and therefore key to the CEO. Chargeback or show back becomes easier to justify as the ‘cost of day per outage’ can be more easily calculated; the business will be able to translate the cost to the business to the cost/value of the underlying IT that supports it. Used this way, Oracle Enterprise Manager 12c is a key enabler to a harmonious relationship between the end customer the business and IT to deliver ultimate service and satisfaction. Just engage with the business upfront, make the signature experience visible and let Enterprise Manager 12c do the rest. In the next blog entry we will cover some of the Enterprise Manager features mentioned to enable you to implement this new way of working.  

    Read the article

  • Where is my VMware-ws FreeNAS CIFS(ZFS) bottle-neck?

    - by maka
    Background: I'm building a quiet HTPC + NAS that is also supposed to be used for general computer usage. I'm so far generally happy with things, it was just that I was expecting a little better IO performance. I have no clue if my expectations are unreal. The NAS is there as a general purpose file storage and as a media server for XBMC and other devices. ZFS is a requirement. Question: Where is my bottle-neck, and is there anything I can do config wise, to improve my performance? I'm thinking VM-disk settings could be something but I really have no idea where to go since I'm neither experienced with FreeNAS nor VMware-WS. Tests: When I'm on the host OS and copy files (from the SSD) to the CIFS share, I get around 30 Mbytes/sec read and write. When I'm on my laptop laptop, wired to the network, I get about the same specs. The test I've done are with a 16 GB ISO, and with about 200 MB of RARs and I've tried avoiding the RAM-cache by reading different files than the ones I'm writing ( 10 GB). It feels like having less CPU cores is a lot more efficient, since the resource manager in Windows reports less CPU-usage. With 4 cores in VMware, CPU usage was 50-80%, with 1 core it was 25-60%. EDIT: HD ActiveTime was quite high on SSD so I moved the page file, disabled hibernate and enabled Win DiskCache both on SSD and RAID. This resulted in no real performance difference for one file, but if i transferred 2 files the total speed went up to 50 Mbytes/s vs ~40. The ActiveTime avg also went down a lot (to ~20%) but has now higher bursts. DiskIO is on ~ 30-35 Mbytes/s avgs, with ~100Mb bursts. Network is on 200-250Mbits/s with ~45 active TCP connections. Hardware Asus F2A85-M Pro A10-5700 16GB DDR3 1600 OCZ Vertex 2 128GB SSD 2x Generic 1tb 7200 RPM drives as RAID0 (in win7) Intel Gigabit Desktop CT Software Host OS: Win7 (SSD) VMware Worksation 9 (SSD) FreeNAS 8.3 VM (20GB VDisk on SSD) CPU: I've tried 1, 2 and 4 cores. Virtualisation engine, Preferred mode: Automatic 10,24Gb ram 50Gb SCSI VDisk on the RAID0, VDisk is formatted as ZFS and exposed through CIFS through FreeNAS. NIC Bridge, Replicate physical network state Below are two typical process print-outs while I'm transfering one file to the CIFS share. last pid: 2707; load averages: 0.60, 0.43, 0.24 up 0+00:07:05 00:34:26 32 processes: 2 running, 30 sleeping Mem: 101M Active, 53M Inact, 1620M Wired, 2188K Cache, 149M Buf, 8117M Free Swap: 4096M Total, 4096M Free PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND 2640 root 1 102 0 50164K 10364K RUN 0:25 25.98% smbd 1897 root 6 44 0 168M 74808K uwait 0:02 0.00% python last pid: 2746; load averages: 0.93, 0.60, 0.33 up 0+00:08:53 00:36:14 33 processes: 2 running, 31 sleeping Mem: 101M Active, 53M Inact, 4722M Wired, 2188K Cache, 152M Buf, 5015M Free Swap: 4096M Total, 4096M Free PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND 2640 root 1 76 0 50164K 10364K RUN 0:52 16.99% smbd 1897 root 6 44 0 168M 74816K uwait 0:02 0.00% python I'm sorry if my question isn't phrased right, I'm really bad at these kind of things, and it is the first time I post here at SU. I also appreciate any other suggestions to something, I could have missed.

    Read the article

  • Wireless device bug on 13.10. BCM4313 registers as eth1 instead of wlan0 and no internet access

    - by user205691
    My Hotel wiFi requires me to login with a username & password after connecting to the hotspot. So, my browser would open a page with username & passwrd fields to login and then connect to internet. But unfortunately, firefox & chromium dont seem to work. i dont think it is browser related but a setting for the wifi router or driver which is creating this issue. using Broadcom 801.11 STA wireless driver (proprietary). tried open source as well but same result !! The image linked below shows my wifi connection setting & Chromium. The login page itself comes up after a long time and after entering the credentials, it keeps loading for ever !! it is the same case for every other browser.. so i dont think its browser issue but something to do with wifi setting or network manager stuff.. interestingly, i am able to connect to WiFi networks with WPA key without any issue. Adhoc hotspot is a problem and that is my regular home network :( .. I hope i can get some help solving this issue ! I have tried repeating the same hotspot after login from my android, by creating a virtual repeater with WPA key and it works. I can browse on ubuntu using this method.. but cant be doing this regularly ! I tried loading the same login page of the hotel wifi while browsing through my repeater wifi created on mobile and screen shot attached below. the page loads up quick and easy.. so this means something is wrong with the way network manager handles adhoc connectivity & login ?? i installed wicd0 but it crashes on startup and not helpful at all ! Screenshot of Chromium page Login page with repeated hotspot ifconfig in my terminal results: krishna@krishna-HP-ENVY-4-Notebook-PC:~$ ifconfig eth0 Link encap:Ethernet HWaddr 28:92:4a:1d:54:fa UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) eth1 Link encap:Ethernet HWaddr e0:06:e6:89:fa:49 inet addr:10.24.1.71 Bcast:10.24.1.255 Mask:255.255.255.0 inet6 addr: fe80::e206:e6ff:fe89:fa49/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:10940 errors:0 dropped:0 overruns:0 frame:348431 TX packets:6611 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:7669631 (7.6 MB) TX bytes:864195 (864.1 KB) Interrupt:17 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:2146 errors:0 dropped:0 overruns:0 frame:0 TX packets:2146 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:166120 (166.1 KB) TX bytes:166120 (166.1 KB) I wonder why is the wireless configured under eth1 ? I think this is a bug with earlier ubuntu versions, but is this normal in 13.10 or is there a wrong configuration here ? The wireless device in my pc is BCM4313 and i have installed the bcmwl-kernel-sources, wireless-tools to support the device. i also reinstalled the bcmwl-kernel as suggested on broadcom website, via synaptic package manager. Nothing has changed this situation ! I tried booting into liveUSB and then ifconfig results show wireless under wlan0. But then the wireless connects and loads the login page. So is the problem with the device configuration now ? i really want to get this fixed before i start configuring the other stuff like ATI graphics and such on the laptop for overheating.. lack of internet access is too bad a bug for me :P any help is appreciated!

    Read the article

  • How to handle multi-processing of libraries which already spawn sub-processes?

    - by exhuma
    I am having some trouble coming up with a good solution to limit sub-processes in a script which uses a multi-processed library and the script itself is also multi-processed. Both, the library and script are modifiable by us. I believe the question is more about design than actual code, but for what it's worth, it's written in Python. The goal of the library is to hide implementation details of various internet routers. For that reason, the library has a "Proxy" factory method which takes the IP of a router as parameter. The factory then probes the device using a set of possible proxies. Usually, there is one proxy which immediately knows that is is able to send commands to this device. All others usually take some time to return (given a timeout). One thought was already to simply query the device for an identifier, and then select the proper proxy using that, but in order to do so, you would already need to know how to query the device. Abstracting this knowledge is one of the main purposes of the library, so that becomes a little bit of a "circular-requirement"/deadlock: To connect to a device, you need to know what proxy to use, and to know what proxy to create, you need to connect to a device. So probing the device is - as we can see - the best solution so far, apart from keeping a lookup-table somewhere. The library currently kills all remaining processes once a valid proxy has been found. And yes, there is always only one good proxy per device. Currently there are about 12 proxies. So if one create a proxy instance using the factory, 12 sub-processes are spawned. So far, this has been really useful and worked very well. But recently someone else wanted to use this library to "broadcast" a command to all devices. So he took the library, and wrote his own multi-processed script. This obviously spawned 12 * n processes where n is the number of IPs to which he broadcasted. This has given us two problems: The host on which the command was executed slowed down to a near halt. Aborting the script with CTRL+C ground the system to a total halt. Not even the hardware console responded anymore! This may be due to some Python strangeness which still needs to be investigated. Maybe related to http://bugs.python.org/issue8296 The big underlying question, is how to design a library which does multi-processing, so other applications which use this library and want to be multi-processed themselves do not run into system limitations. My first thought was to require a pool to be passed to the library, and execute all tasks in that pool. In that way, the person using the library has control over the usage of system resources. But my gut tells me that there must be a better solution. Disclaimer: My experience with multiprocessing is fairly limited. I have implemented a few straightforward which did not require access control to resources. So I have not yet any practical experience with semaphores or mutexes. p.s.: In the future, we may have enough information to do this without the probing. But the database which would contain the proper information is not yet operational. Also, the design about multiprocessing a multiprocessed library intrigues me :)

    Read the article

  • Is this over-abstraction? (And is there a name for it?)

    - by mwhite
    I work on a large Django application that uses CouchDB as a database and couchdbkit for mapping CouchDB documents to objects in Python, similar to Django's default ORM. It has dozens of model classes and a hundred or two CouchDB views. The application allows users to register a "domain", which gives them a unique URL containing the domain name that gives them access to a project whose data has no overlap with the data of other domains. Each document that is part of a domain has its domain property set to that domain's name. As far as relationships between the documents go, all domains are effectively mutually exclusive subsets of the data, except for a few edge cases (some users can be members of more than one domain, and there are some administrative reports that include all domains, etc.). The code is full of explicit references to the domain name, and I'm wondering if it would be worth the added complexity to abstract this out. I'd also like to know if there's a name for the sort of bound property approach I'm taking here. Basically, I have something like this in mind: Before in models.py class User(Document): domain = StringProperty() class Group(Document): domain = StringProperty() name = StringProperty() user_ids = StringListProperty() # method that returns related document set def users(self): return [User.get(id) for id in self.user_ids] # method that queries a couch view optimized for a specific lookup @classmethod def by_name(cls, domain, name): # the view method is provided by couchdbkit and handles # wrapping json CouchDB results as Python objects, and # can take various parameters modifying behavior return cls.view('groups/by_name', key=[domain, name]) # method that creates a related document def get_new_user(self): user = User(domain=self.domain) user.save() self.user_ids.append(user._id) return user in views.py: from models import User, Group # there are tons of views like this, (request, domain, ...) def create_new_user_in_group(request, domain, group_name): group = Group.by_name(domain, group_name)[0] user = User(domain=domain) user.save() group.user_ids.append(user._id) group.save() in group/by_name/map.js: function (doc) { if (doc.doc_type == "Group") { emit([doc.domain, doc.name], null); } } After models.py class DomainDocument(Document): domain = StringProperty() @classmethod def domain_view(cls, *args, **kwargs): kwargs['key'] = [cls.domain.default] + kwargs['key'] return super(DomainDocument, cls).view(*args, **kwargs) @classmethod def get(cls, *args, **kwargs, validate_domain=True): ret = super(DomainDocument, cls).get(*args, **kwargs) if validate_domain and ret.domain != cls.domain.default: raise Exception() return ret def models(self): # a mapping of all models in the application. accessing one returns the equivalent of class BoundUser(User): domain = StringProperty(default=self.domain) class User(DomainDocument): pass class Group(DomainDocument): name = StringProperty() user_ids = StringListProperty() def users(self): return [self.models.User.get(id) for id in self.user_ids] @classmethod def by_name(cls, name): return cls.domain_view('groups/by_name', key=[name]) def get_new_user(self): user = self.models.User() user.save() views.py @domain_view # decorator that sets request.models to the same sort of object that is returned by DomainDocument.models and removes the domain argument from the URL router def create_new_user_in_group(request, group_name): group = request.models.Group.by_name(group_name) user = request.models.User() user.save() group.user_ids.append(user._id) group.save() (Might be better to leave the abstraction leaky here in order to avoid having to deal with a couchapp-style //! include of a wrapper for emit that prepends doc.domain to the key or some other similar solution.) function (doc) { if (doc.doc_type == "Group") { emit([doc.name], null); } } Pros and Cons So what are the pros and cons of this? Pros: DRYer prevents you from creating related documents but forgetting to set the domain. prevents you from accidentally writing a django view - couch view execution path that leads to a security breach doesn't prevent you from accessing underlying self.domain and normal Document.view() method potentially gets rid of the need for a lot of sanity checks verifying whether two documents whose domains we expect to be equal are. Cons: adds some complexity hides what's really happening requires no model modules to have classes with the same name, or you would need to add sub-attributes to self.models for modules. However, requiring project-wide unique class names for models should actually be fine because they correspond to the doc_type property couchdbkit uses to decide which class to instantiate them as, which should be unique. removes explicit dependency documentation (from group.models import Group)

    Read the article

< Previous Page | 200 201 202 203 204 205 206 207 208 209 210 211  | Next Page >