Search Results

Search found 62199 results on 2488 pages for 'first order logic'.

Page 207/2488 | < Previous Page | 203 204 205 206 207 208 209 210 211 212 213 214  | Next Page >

  • SPARC T4 ??????: SPARC T4 ??????????!!

    - by user13138700
    ?? 2011 ? 9 ?? SPARC T4 CPU ???????? SPARC T4 ????????????????2011??10?????????????????????????? ????????????????????SPARC T4 ?????????????????????????????????????????????????????????? SPARC T4 CPU ???? SPARC T4 ?????????????????????????????????? ??????????????????????4/4, 4/5, 4/6 ? 3???????? Oracle Open World 2012 ???????? Oracle Open World 2012 Tokyo ?? Oracle ?????&????? ??? Oracle Solaris ????????????·????????? SPARC&Solaris ??????????????SPARC&Solaris ????????????????????????????????????????????????????????????????????????? Oracle OpenWorld Tokyo 2012 ???? URL http://www.oracle.com/openworld/jp-ja/index.html ?????? 7264 ??????????????? ????Oracle Open World 2012 Tokyo ?????????????????????????SPARC T4 ????? ????????????????? SPARC T4 ????????? SPARC T3 ????????(S2??)??????????????????????????(S3??)??????????????????? ???????" T " ???????????????(?)?????? SPARC T1/T2/T3 ???????????????????????????(????????)????????????????????????? ?SPARC T4 ????????????????????????????? ?SPARC T4 ???????DB?????????????????????????????? ???????????????? ????????????????????????????????????????????? ???? SPARC T3 ???????????????????????????2???????????? ????????????????????????????????????????????????????? ?????????????? SPARC T4 ????????????????????????????????????SPARC T4 ????????? SPARC T4 ??????????????????????????????????????????? ?????????????? T4 ??????????????????? SPARC ???????????????????????????????????????????????????????????????????&??????????? ?????????????????????????????????????????????????????????Web?????????????DB?????????????????????????????????????? (????????????) ???????????? SPARC T4 ????????????????????????????? < T4 ???????? > ??? SPARC ??(S3??)??? x5??????????????????? x2????????????????????? Crypto (?????)?????????? ?????????????????????????/???????????????? ?????? 1, 2,& 4 ??????????? < T4 ????? ??????? > 8x SPARC S3 ?? (64????/???) 4MB ?? L3 ????? (8???/16???) 8x9 ????? 4x DDR3 ??????????? @6.4Gbps 6x ?????????? @9.6Gbps 2x8 PCIe 2.0 (5GTS) 2x10Gb XAUI ??????? < S3???????????? > ALU : Arithmetic Logic Unit BRU : Branch Logic Unit FGU : Flouting-point Graphics Unit IRF : Integer Register File FRF : Flouting-point Register File WRF : Working Register File MMU : Memory Management Unit LSU : Load Store Unit Crypto(SPU) : Streaming Processing Unit TRU : Trap Logic Unit < S3????????? > ????? 8????/?? ?????? Out-of-Order ?? 16???????????????? ????????????? ???????????? ??????? ????????? 64???? ITLB ? 128???? DTLB 64KB 4??? L1 ?????????????? 128KB 8??? ???? L2 ????? < T4 ???????? vs T3 ???????? > T4 ????????????? Out-Of-Order ???? Pick ???????? In-Order ?? Pick ?????? Commit ??????? Out-Of-Order ?? Commit ?????? In-Order ?? < T4 ?????????? > ???????????vs????????????????????????????? ????????Active??????????????????? ???????????????????????? ??????????????????? < T4vsT1/T2/T3 ??????? > SPARC T4 ???? T3????????Web??????????? DB?????????????????????????????? ????????????????????SPARC T4 ?????&Solaris ?????????????(????????)??????????????????????????????????????????????????????????!!? ????Oracle Open World 2012 Tokyo ????????????????SPARC T4 ?????????????????????? 4/4, 4/5, 4/6 ?3????????????????????????????????????????????????????????????????????????????????????? ????????????????? URL http://www.oracle.com/openworld/jp-ja/exhibit/index.html

    Read the article

  • How can I use Perl regular expressions to parse XML data?

    - by Luke
    I have a pretty long piece of XML that I want to parse. I want to remove everything except for the subclass-code and city. So that I am left with something like the example below. EXAMPLE TEST SUBCLASS|MIAMI CODE <?xml version="1.0" standalone="no"?> <web-export> <run-date>06/01/2010 <pub-code>TEST <ad-type>TEST <cat-code>Real Estate</cat-code> <class-code>TEST</class-code> <subclass-code>TEST SUBCLASS</subclass-code> <placement-description></placement-description> <position-description>Town House</position-description> <subclass3-code></subclass3-code> <subclass4-code></subclass4-code> <ad-number>0000284708-01</ad-number> <start-date>05/28/2010</start-date> <end-date>06/09/2010</end-date> <line-count>6</line-count> <run-count>13</run-count> <customer-type>Private Party</customer-type> <account-number>100099237</account-number> <account-name>DOE, JOHN</account-name> <addr-1>207 CLARENCE STREET</addr-1> <addr-2> </addr-2> <city>MIAMI</city> <state>FL</state> <postal-code>02910</postal-code> <country>USA</country> <phone-number>4014612880</phone-number> <fax-number></fax-number> <url-addr> </url-addr> <email-addr>[email protected]</email-addr> <pay-flag>N</pay-flag> <ad-description>DEANESTATES2BEDS2BATHSAPPLIANCED</ad-description> <order-source>Import</order-source> <order-status>Live</order-status> <payor-acct>100099237</payor-acct> <agency-flag>N</agency-flag> <rate-note></rate-note> <ad-content> MIAMI&#47;Dean Estates&#58; 2 beds&#44; 2 baths&#46; Applianced&#46; Central air&#46; Carpets&#46; Laundry&#46; 2 decks&#46; Pool&#46; Parking&#46; Close to everything&#46;No smoking&#46; No utilities&#46; &#36;1275 mo&#46; 401&#45;578&#45;1501&#46; </ad-content> </ad-type> </pub-code> </run-date> </web-export> PERL So what I want to do is open an existing file read the contents then use regular expressions to eliminate the unnecessary XML tags. open(READFILE, "FILENAME"); while(<READFILE>) { $_ =~ s/<\?xml version="(.*)" standalone="(.*)"\?>\n.*//g; $_ =~ s/<subclass-code>//g; $_ =~ s/<\/subclass-code>\n.*/|/g; $_ =~ s/(.*)PJ RER Houses /PJ RER Houses/g; $_ =~ s/\G //g; $_ =~ s/<city>//g; $_ =~ s/<\/city>\n.*//g; $_ =~ s/<(\/?)web-export>(.*)\n.*//g; $_ =~ s/<(\/?)run-date>(.*)\n.*//g; $_ =~ s/<(\/?)pub-code>(.*)\n.*//g; $_ =~ s/<(\/?)ad-type>(.*)\n.*//g; $_ =~ s/<(\/?)cat-code>(.*)<(\/?)cat-code>\n.*//g; $_ =~ s/<(\/?)class-code>(.*)<(\/?)class-code>\n.*//g; $_ =~ s/<(\/?)placement-description>(.*)<(\/?)placement-description>\n.*//g; $_ =~ s/<(\/?)position-description>(.*)<(\/?)position-description>\n.*//g; $_ =~ s/<(\/?)subclass3-code>(.*)<(\/?)subclass3-code>\n.*//g; $_ =~ s/<(\/?)subclass4-code>(.*)<(\/?)subclass4-code>\n.*//g; $_ =~ s/<(\/?)ad-number>(.*)<(\/?)ad-number>\n.*//g; $_ =~ s/<(\/?)start-date>(.*)<(\/?)start-date>\n.*//g; $_ =~ s/<(\/?)end-date>(.*)<(\/?)end-date>\n.*//g; $_ =~ s/<(\/?)line-count>(.*)<(\/?)line-count>\n.*//g; $_ =~ s/<(\/?)run-count>(.*)<(\/?)run-count>\n.*//g; $_ =~ s/<(\/?)customer-type>(.*)<(\/?)customer-type>\n.*//g; $_ =~ s/<(\/?)account-number>(.*)<(\/?)account-number>\n.*//g; $_ =~ s/<(\/?)account-name>(.*)<(\/?)account-name>\n.*//g; $_ =~ s/<(\/?)addr-1>(.*)<(\/?)addr-1>\n.*//g; $_ =~ s/<(\/?)addr-2>(.*)<(\/?)addr-2>\n.*//g; $_ =~ s/<(\/?)state>(.*)<(\/?)state>\n.*//g; $_ =~ s/<(\/?)postal-code>(.*)<(\/?)postal-code>\n.*//g; $_ =~ s/<(\/?)country>(.*)<(\/?)country>\n.*//g; $_ =~ s/<(\/?)phone-number>(.*)<(\/?)phone-number>\n.*//g; $_ =~ s/<(\/?)fax-number>(.*)<(\/?)fax-number>\n.*//g; $_ =~ s/<(\/?)url-addr>(.*)<(\/?)url-addr>\n.*//g; $_ =~ s/<(\/?)email-addr>(.*)<(\/?)email-addr>\n.*//g; $_ =~ s/<(\/?)pay-flag>(.*)<(\/?)pay-flag>\n.*//g; $_ =~ s/<(\/?)ad-description>(.*)<(\/?)ad-description>\n.*//g; $_ =~ s/<(\/?)order-source>(.*)<(\/?)order-source>\n.*//g; $_ =~ s/<(\/?)order-status>(.*)<(\/?)order-status>\n.*//g; $_ =~ s/<(\/?)payor-acct>(.*)<(\/?)payor-acct>\n.*//g; $_ =~ s/<(\/?)agency-flag>(.*)<(\/?)agency-flag>\n.*//g; $_ =~ s/<(\/?)rate-note>(.*)<(\/?)rate-note>\n.*//g; $_ =~ s/<ad-content>(.*)\n.*//g; $_ =~ s/\t(.*)\n.*//g; $_ =~ s/<\/ad-content>(.*)\n.*//g; } close( READFILE1 ); Is there an easier way of doing this? I don't want to use any modules. I know that it might make this easier but the file I am reading has a lot of data in it.

    Read the article

  • Need help with copy constructor for very basic implementation of singly linked lists

    - by Jesus
    Last week, we created a program that manages sets of strings, using classes and vectors. I was able to complete this 100%. This week, we have to replace the vector we used to store strings in our class with simple singly linked lists. The function basically allows users to declare sets of strings that are empty, and sets with only one element. In the main file, there is a vector whose elements are a struct that contain setName and strSet (class). HERE IS MY PROBLEM: It deals with the copy constructor of the class. When I remove/comment out the copy constructor, I can declare as many empty or single sets as I want, and output their values without a problem. But I know I will obviously need the copy constructor for when I implement the rest of the program. When I leave the copy constructor in, I can declare one set, either single or empty, and output its value. But if I declare a 2nd set, and i try to output either of the first two sets, i get a Segmentation Fault. Moreover, if i try to declare more then 2 sets, I get a Segmentation Fault. Any help would be appreciated!! Here is my code for a very basic implementation of everything: Here is the setcalc.cpp: (main file) #include <iostream> #include <cctype> #include <cstring> #include <string> #include "help.h" #include "strset2.h" using namespace std; // Declares of structure to hold all the sets defined struct setsOfStr { string nameOfSet; strSet stringSet; }; // Checks if the set name inputted is unique bool isSetNameUnique( vector<setsOfStr> strSetArr, string setName) { for(unsigned int i = 0; i < strSetArr.size(); i++) { if( strSetArr[i].nameOfSet == setName ) { return false; } } return true; } int main(int argc, char *argv[]) { char commandChoice; // Declares a vector with our declared structure as the type vector<setsOfStr> strSetVec; string setName; string singleEle; // Sets a loop that will constantly ask for a command until 'q' is typed while (1) { // declaring a set to be empty if(commandChoice == 'd') { cin >> setName; // Check that the set name inputted is unique if (isSetNameUnique(strSetVec, setName) == true) { strSet emptyStrSet; setsOfStr set1; set1.nameOfSet = setName; set1.stringSet = emptyStrSet; strSetVec.push_back(set1); } else { cerr << "ERROR: Re-declaration of set '" << setName << "'\n"; } } // declaring a set to be a singleton else if(commandChoice == 's') { cin >> setName; cin >> singleEle; // Check that the set name inputted is unique if (isSetNameUnique(strSetVec, setName) == true) { strSet singleStrSet(singleEle); setsOfStr set2; set2.nameOfSet = setName; set2.stringSet = singleStrSet; strSetVec.push_back(set2); } else { cerr << "ERROR: Re-declaration of set '" << setName << "'\n"; } } // using the output function else if(commandChoice == 'o') { cin >> setName; if(isSetNameUnique(strSetVec, setName) == false) { // loop through until the set name is matched and call output on its strSet for(unsigned int k = 0; k < strSetVec.size(); k++) { if( strSetVec[k].nameOfSet == setName ) { (strSetVec[k].stringSet).output(); } } } else { cerr << "ERROR: No such set '" << setName << "'\n"; } } // quitting else if(commandChoice == 'q') { break; } else { cerr << "ERROR: Ignoring bad command: '" << commandChoice << "'\n"; } } return 0; } Here is the strSet2.h: #ifndef _STRSET_ #define _STRSET_ #include <iostream> #include <vector> #include <string> struct node { std::string s1; node * next; }; class strSet { private: node * first; public: strSet (); // Create empty set strSet (std::string s); // Create singleton set strSet (const strSet &copy); // Copy constructor // will implement destructor later void output() const; strSet& operator = (const strSet& rtSide); // Assignment }; // End of strSet class #endif // _STRSET_ And here is the strSet2.cpp (implementation of class) #include <iostream> #include <vector> #include <string> #include "strset2.h" using namespace std; strSet::strSet() { first = NULL; } strSet::strSet(string s) { node *temp; temp = new node; temp->s1 = s; temp->next = NULL; first = temp; } strSet::strSet(const strSet& copy) { cout << "copy-cst\n"; node *n = copy.first; node *prev = NULL; while (n) { node *newNode = new node; newNode->s1 = n->s1; newNode->next = NULL; if (prev) { prev->next = newNode; } else { first = newNode; } prev = newNode; n = n->next; } } void strSet::output() const { if(first == NULL) { cout << "Empty set\n"; } else { node *temp; temp = first; while(1) { cout << temp->s1 << endl; if(temp->next == NULL) break; temp = temp->next; } } } strSet& strSet::operator = (const strSet& rtSide) { first = rtSide.first; return *this; }

    Read the article

  • EC2 instance suddenly refusing SSH connections and won't respond to ping

    - by Chris
    My instance was running fine and this morning I was able to access a Ruby on Rails app hosted on it. An hour later I suddenly wasn't able to access my site, my SSH connection attempts were refused and the server wasn't even responding to ping. I didn't change anything on my system during that hour and reboots aren't fixing it. I've never had any problems connecting or pinging the system before. Can someone please help? This is on my production system! OS: CentOS 5 AMI ID: ami-10b55379 Type: m1.small [] ~% ssh -v *****@meeteor.com OpenSSH_5.2p1, OpenSSL 0.9.8l 5 Nov 2009 debug1: Reading configuration data /etc/ssh_config debug1: Connecting to meeteor.com [184.73.235.191] port 22. debug1: connect to address 184.73.235.191 port 22: Connection refused ssh: connect to host meeteor.com port 22: Connection refused [] ~% ping meeteor.com PING meeteor.com (184.73.235.191): 56 data bytes Request timeout for icmp_seq 0 Request timeout for icmp_seq 1 Request timeout for icmp_seq 2 ^C --- meeteor.com ping statistics --- 4 packets transmitted, 0 packets received, 100.0% packet loss [] ~% ========= System Log ========= Restarting system. Linux version 2.6.16-xenU ([email protected]) (gcc version 4.0.1 20050727 (Red Hat 4.0.1-5)) #1 SMP Mon May 28 03:41:49 SAST 2007 BIOS-provided physical RAM map: Xen: 0000000000000000 - 000000006a400000 (usable) 980MB HIGHMEM available. 727MB LOWMEM available. NX (Execute Disable) protection: active IRQ lockup detection disabled Built 1 zonelists Kernel command line: root=/dev/sda1 ro 4 Enabling fast FPU save and restore... done. Enabling unmasked SIMD FPU exception support... done. Initializing CPU#0 PID hash table entries: 4096 (order: 12, 65536 bytes) Xen reported: 2599.998 MHz processor. Dentry cache hash table entries: 131072 (order: 7, 524288 bytes) Inode-cache hash table entries: 65536 (order: 6, 262144 bytes) Software IO TLB disabled vmalloc area: ee000000-f53fe000, maxmem 2d7fe000 Memory: 1718700k/1748992k available (1958k kernel code, 20948k reserved, 620k data, 144k init, 1003528k highmem) Checking if this processor honours the WP bit even in supervisor mode... Ok. Calibrating delay using timer specific routine.. 5202.30 BogoMIPS (lpj=26011526) Mount-cache hash table entries: 512 CPU: L1 I Cache: 64K (64 bytes/line), D cache 64K (64 bytes/line) CPU: L2 Cache: 1024K (64 bytes/line) Checking 'hlt' instruction... OK. Brought up 1 CPUs migration_cost=0 Grant table initialized NET: Registered protocol family 16 Brought up 1 CPUs xen_mem: Initialising balloon driver. highmem bounce pool size: 64 pages VFS: Disk quotas dquot_6.5.1 Dquot-cache hash table entries: 1024 (order 0, 4096 bytes) Initializing Cryptographic API io scheduler noop registered io scheduler anticipatory registered (default) io scheduler deadline registered io scheduler cfq registered i8042.c: No controller found. RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize Xen virtual console successfully installed as tty1 Event-channel device installed. netfront: Initialising virtual ethernet driver. mice: PS/2 mouse device common for all mice md: md driver 0.90.3 MAX_MD_DEVS=256, MD_SB_DISKS=27 md: bitmap version 4.39 NET: Registered protocol family 2 Registering block device major 8 IP route cache hash table entries: 65536 (order: 6, 262144 bytes) TCP established hash table entries: 262144 (order: 9, 2097152 bytes) TCP bind hash table entries: 65536 (order: 7, 524288 bytes) TCP: Hash tables configured (established 262144 bind 65536) TCP reno registered TCP bic registered NET: Registered protocol family 1 NET: Registered protocol family 17 NET: Registered protocol family 15 Using IPI No-Shortcut mode md: Autodetecting RAID arrays. md: autorun ... md: ... autorun DONE. kjournald starting. Commit interval 5 seconds EXT3-fs: mounted filesystem with ordered data mode. VFS: Mounted root (ext3 filesystem) readonly. Freeing unused kernel memory: 144k freed *************************************************************** *************************************************************** ** WARNING: Currently emulating unsupported memory accesses ** ** in /lib/tls glibc libraries. The emulation is ** ** slow. To ensure full performance you should ** ** install a 'xen-friendly' (nosegneg) version of ** ** the library, or disable tls support by executing ** ** the following as root: ** ** mv /lib/tls /lib/tls.disabled ** ** Offending process: init (pid=1) ** *************************************************************** *************************************************************** Pausing... 5Pausing... 4Pausing... 3Pausing... 2Pausing... 1Continuing... INIT: version 2.86 booting Welcome to CentOS release 5.4 (Final) Press 'I' to enter interactive startup. Setting clock : Fri Oct 1 14:35:26 EDT 2010 [ OK ] Starting udev: [ OK ] Setting hostname localhost.localdomain: [ OK ] No devices found Setting up Logical Volume Management: [ OK ] Checking filesystems Checking all file systems. [/sbin/fsck.ext3 (1) -- /] fsck.ext3 -a /dev/sda1 /dev/sda1: clean, 275424/1310720 files, 1161123/2621440 blocks [ OK ] Remounting root filesystem in read-write mode: [ OK ] Mounting local filesystems: [ OK ] Enabling local filesystem quotas: [ OK ] Enabling /etc/fstab swaps: [ OK ] INIT: Entering runlevel: 4 Entering non-interactive startup Starting background readahead: [ OK ] Applying ip6tables firewall rules: modprobe: FATAL: Module ip6_tables not found. ip6tables-restore v1.3.5: ip6tables-restore: unable to initializetable 'filter' Error occurred at line: 3 Try `ip6tables-restore -h' or 'ip6tables-restore --help' for more information. [FAILED] Applying iptables firewall rules: [ OK ] Loading additional iptables modules: ip_conntrack_netbios_ns [ OK ] Bringing up loopback interface: [ OK ] Bringing up interface eth0: Determining IP information for eth0... done. [ OK ] Starting auditd: [FAILED] Starting irqbalance: [ OK ] Starting portmap: [ OK ] FATAL: Module lockd not found. Starting NFS statd: [ OK ] Starting RPC idmapd: FATAL: Module sunrpc not found. FATAL: Error running install command for sunrpc Error: RPC MTAB does not exist. Starting system message bus: [ OK ] Starting Bluetooth services:[ OK ] [ OK ] Can't open RFCOMM control socket: Address family not supported by protocol Mounting other filesystems: [ OK ] Starting PC/SC smart card daemon (pcscd): [ OK ] Starting hidd: Can't open HIDP control socket: Address family not supported by protocol [FAILED] Starting autofs: Starting automount: automount: test mount forbidden or incorrect kernel protocol version, kernel protocol version 5.00 or above required. [FAILED] [FAILED] Starting sshd: [ OK ] Starting cups: [ OK ] Starting sendmail: [ OK ] Starting sm-client: [ OK ] Starting console mouse services: no console device found[FAILED] Starting crond: [ OK ] Starting xfs: [ OK ] Starting anacron: [ OK ] Starting atd: [ OK ] % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 390 100 390 0 0 58130 0 --:--:-- --:--:-- --:--:-- 58130 100 390 100 390 0 0 56984 0 --:--:-- --:--:-- --:--:-- 0 Starting yum-updatesd: [ OK ] Starting Avahi daemon... [ OK ] Starting HAL daemon: [ OK ] Starting OSSEC: [ OK ] Starting smartd: [ OK ] c CentOS release 5.4 (Final) Kernel 2.6.16-xenU on an i686 domU-12-31-39-00-C4-97 login: INIT: Id "2" respawning too fast: disabled for 5 minutes INIT: Id "3" respawning too fast: disabled for 5 minutes INIT: Id "4" respawning too fast: disabled for 5 minutes INIT: Id "5" respawning too fast: disabled for 5 minutes INIT: Id "6" respawning too fast: disabled for 5 minutes

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Visiting the Emtel Data Centre

    Back in February at the first event of the Emtel Knowledge Series (EKS) I spoke to various people at Emtel about their data centre here on the island. I was trying to see whether it would be possible to arrange a meeting over there for a selected group of our community members. Well, let's say it like this... My first approach wasn't that promising and far from successful but during the following months there were more and more occasions to get in touch with the "right" contact persons at Emtel to make it happen... Setting up an appointment and pre-requisites The major improvement came during a Boot Camp for Windows Phone 8.1 App development organised by Microsoft Indian Ocean Islands in cooperation with Emtel at the Emtel World, Ebene. Apart from learning bits and pieces regarding Universal Apps I took the opportunity to get in touch with Arvin Lockee, Sales Executive - Data, during our lunch break. And this really kicked off the whole procedure. Prior to get access to the Emtel data centre it is requested that you provide full name and National ID of anyone going to visit. Also, it should be noted that there was only a limited amount of seats available. Anyways, packed with this information I posted through the usual social media channels. Responses came in very quickly and based on First-come, first-serve (FCFS) principle I noted down the details and forwarded them to Emtel in order to fix a date and time for the visit. In preparation on our side, all attendees exchanged contact details and we organised transport options to go to the data centre in Arsenal. The day before and on the day of our meeting, Arvin send me a reminder to check whether everything is still confirmed and ready to go... Of course, it was! Arriving at the Emtel Data Centre As I'm coming from Flic En Flac towards the North, we agreed that I'm going to pick up a couple of young fellows near the old post office in Port Louis. All went well, except that Sean eventually might be living in another time zone compared to the rest of us. Anyway, after some extended stop we were complete and arrived just in time in Arsenal to meet and greet with Ish and Veer. Again, Emtel is taking access procedures to their data centre very serious and the gate stayed close until all our IDs had been noted and compared to the list of registered attendees. Despite having a good laugh at the mixture of old and new ID cards it was a straight-forward processing. The ward was very helpful and guided us to the waiting area at the entrance section of the building. Shortly after we were welcomed by Kamlesh Bokhoree, the Data Centre Officer. He gave us brief introduction into the rules and regulations during our visit, like no photography allowed, not touching the buttons, and following his instructions through the whole visit. Of course! Inside the data centre Next, he explained us the multi-factor authentication system using a combination of bio-metric data, like finger print reader, and "classic" pin panel. The Emtel data centre provides multiple services and next to co-location for your own hardware they also offer storage options for your backup and archive data in their massive, fire-resistant vault. Very impressive to get to know about the considerations that have been done in choosing the right location and how to set up the whole premises. It should also be noted that there is 24/7 CCTV surveillance inside and outside the buildings. Strengths of the Emtel TIER 3 Data Centre, Mauritius Finally, we were guided into the first server room. And wow, the whole setup is cleverly planned and outlined in the architecture. From the false floor and ceilings in order to provide optimum air flow, over to the separation of cold and hot aisles between the full-size server racks, and of course the monitored air conditions in order to analyse and watch changes in temperature, smoke detection and other parameters. And not surprisingly everything has been implemented in two independent circuits. There is a standardised classification for the construction and operation of data centres world-wide, and the Emtel's one has been designed to be a TIER 4 building but due to the lack of an alternative power supplier on the island it is officially registered as a TIER 3 compliant data centre. Maybe in the long run there might be a second supplier of energy next to CEB... time will tell. Luckily, the data centre is integrated into the National Fibre Optic Gigabit Ring and Emtel already connects internationally through diverse undersea cable routes like SAFE & LION/LION2 out of Mauritius and through several other providers for onwards connectivity. The data centre is part of the National Fibre Optic Gigabit Ring and has redundant internet connectivity onwards. Meanwhile, Arvin managed to join our little group of geeks and he supported Kamlesh in answering our technical questions regarding the capacities and general operation of the data centre. Visiting the NOC and its dedicated team of IT professionals was surely one of the visual highlights. Seeing their wall of screens to monitor any kind of activities on the data lines, the managed servers and the activity in and around the building was great. Even though I'm using a multi-head setup since years I cannot keep it up with that setup... ;-) But I got a couple of ideas on how to improve my work spaces here at the office. Clear advantages of hosting your e-commerce and mobile backends locally After the completely isolated NOC area we continued our Q&A session with Kamlesh and Arvin in the second server room which is dedictated to shared environments. On first thought it should be well-noted that there is lots of space for full-sized racks and therefore co-location of your own hardware. Actually, given the feedback that there will be upcoming changes in prices the facilities at the Emtel data centre are getting more and more competitive and interesting for local companies, especially small and medium enterprises. After seeing this world-class infrastructure available on the island, I'm already considering of moving one of my root servers abroad to be co-located here on the island. This would provide an improved user experience in terms of site performance and latency. This would be a good improvement, especially for upcoming e-commerce solutions for two of my local clients. Later on, we actually started the conversation of additional services that could be a catalyst for the local market in order to attract more small and medium companies to take the data centre into their evaluations regarding online activities. Until today Emtel does not provide virtualised server environments but there might be ongoing plans in the future to cover this field as well. Emtel is a mobile operator and internet connectivity provider in the first place, entering a market of managed and virtualised server infrastructures including capacities in terms of cloud storage and computing are rather new and there is a continuous learning curve at Emtel, too. You cannot just jump into a new market and see how it works out... And I appreciate Emtel's approach towards a solid fundament and then building new services on top of that. Emtel as a future one-stop-shop service provider for all your internet and telecommunications needs. Emtel's promotional video about their TIER 3 data centre in Arsenal, Mauritius More details are thoroughly described in Emtel's brochure of their data centre. Check out their PDF document here. Thanks for this opportunity Visiting and walking through the Emtel data centre for more than 2 hours was a great experience. As representative of the Mauritius Software Craftsmanship Community (MSCC) I would like to thank anyone at Emtel involved in the process of making it happen, and especially to Arvin Lockee and Kamlesh Bokhoree for their time and patience in explaining the infrastructure and answering all the endless questions from our members. Thank You!

    Read the article

  • CodePlex Daily Summary for Saturday, March 20, 2010

    CodePlex Daily Summary for Saturday, March 20, 2010New ProjectsaMaze Mapa Generator: Parte do Projeto aMazeASP.Net RIA Controls: Simple ASP.Net server controls to integrate Flash and Silverlight controls into your web applications. Included controls don't use any JavaScript,...BMap.NET: BMaps.NET is a .NET application written in C#, for access Bing Maps from your computer without web browsers. With it you can access to Bing Maps an...DaliNet: A .NET API for the Tridonic.Atco DALI USB device.Fabrica7: This is the main project of Fabrica 7 Corp.Image Ripper: A Winform application parse & fetch various HD pictures in specific photo galleries.IoCWrap: Provides interfaces which wrap various IoC container implementations so that it is possible to switch to a different provider without changing any ...NetSockets: NetSockets is a .NET class library that provides easy-to-use, multi-threaded, event-based, client and server network communication.Network Backup: Network Backup is a home and small company backup solution for workstations and a backup server. It incorporates a backup service, scheduler, data ...NUnit.Specs: Specification extensions for NUnit.Nutrivida: Sistema para avaliação de especialização.OHTB Snake: OHTB Snake is a multiplayer game. In this incarnation, snakes may eat 3 types of powerups: standard berries, causing them to grow; sawberries, caus...Playground TDrouen: Tjerk's PlaygroundPower Plan Chooser: This is my first endeavor into a C# Windows application with XAML. The program sits in the notification area (task bar) and lets you quickly activa...Search IMDB in C#: In lack of an IMDB API most of us resort to screen scraping utilities to query the Internet Movie Database. This one is written in C# (.NET 2.0 sta...SIGPRO Desktop: FUNCERNSql2008 PerfMonCounter Fix: Small console application to Fix the SQL 2008 Express Edition installation error: Pequena aplicação para Corrigir o seguinte erro de Instalação do...TwiztedTracker: TwiztedTracker designed to make your bug tracking easy.UmbracoXsltLogHelper: I needed a way to easily add log rows from my xslt macros, and added a single-line-extension for that reason. Then I played around with the umbraco...VisualStock: VisualStock is stock data visualization, analysis application build on the Micorsoft Composite Application Library.WHS File Mover: A Windows Home Server Plugin to move files from a local directory ("drop" or "staging" directory to a folder share)XML based Content Deployment in SharePoint: XML based Content Deployment in Sharepoint helps you to easy deploy content into SharePoint, including webs, lists, items, files and folder. You wi...New ReleasesASP.Net RIA Controls: Version 1.0 Beta: The first functionnal version.BMap.NET: BMap.NET 1: This is the 1st version of BMap.NETDigital Media Processing Project 1: Image Processor: Image Processor 1.0: All features implemented. Added: clipping imageFamily Tree Analyzer: Version 1.3.1.0: Version 1.3.1.0 Added a cancel button to marriage and children IGI Searches Opening Results window now automatically shows first record Updated IGI...Free Silverlight & WPF Chart Control - Visifire: Visifire SL and WPF Charts 3.0.5 Released: Hi, This release contains fix for the following bug: * Chart threw exception if ZoomingEnabled property was set to True at real-time. You ca...Homework Helper: Homework Helper v.1.1: Sorry but the latest release didn't seem to be the latest. This should be the right one!Image Ripper: Image Ripper: Image Ripper based on HtmlAgilityPack and GData library.ManPowerEngine: 0.1: UpdatesSound System added. Bitmap Collider in Physics System works now. Improved the performance of HTTP download in images Physics Framework...NIPO Data Processing Component Framework: NIPO 1.0: The first release of NIPO. Includes the NIPO binary dll and documentation. This release does not include a starter application since it is still in...patterns & practices SharePoint Guidance: SPG2010 Drop7: SharePoint Guidance Drop Notes Microsoft patterns and practices ****************************************** ***************************************...Photosynth Point Cloud Exporter: Photosynth Point Cloud Exporter 1.0.2: Photosynth webservice reference updated to work with the new site OBJ file format support added (Note: this format doesn't support vertex colors)Power Plan Chooser: Power Plan Chooser 1.0.0: Power Plan Chooser is a small utility that sits in the notification area (task bar) in Windows 7 and allows the user to quickly activate one of the...Restart Explorer: RestartExplorer Release 1.00.0001: Initial release: Start, stop and restart Windows Explorer with this utility.Search IMDB in C#: Search IMDB 1.0: Source code included with compiled example.SIMD Detector: 3rd Release: Added Intel AES instruction check Added a CSharp Winform NetSIMDDetector application. Changes the red ball and green ball images to red cross a...Sql2008 PerfMonCounter Fix: Sql2008FIx_PerfMonCounter.zip: Small console application to Fix the SQL 2008 Express Edition installation error: http://support.microsoft.com/kb/300956 Rule Name PerfMonCounter...UmbracoXsltLogHelper: 0.9 Working Beta: First version. XsltLogHelper09 is the installable package.VCC: Latest build, v2.1.30319.0: Automatic drop of latest buildWCF RIA Services Contrib: RIA Services Contrib RC Release: This version is recompiled against the RC release of WCF RIA Services.XML based Content Deployment in SharePoint: SPContentDeployment 1.0.0.0: The first link contains the resources and a sample project. The second link contains everything included in the first package and an additional fo...Yet Another GPS: YAGPS Alfa.2: Yet another GPS tracker is a very powerful GPS track application for Windows Mobile Speed Guage, Sat Count number, KML for google map file formatZGuideTV.NET: ZGuideTV.NET 0.92: Vendredi 19 mars 2010 (ZGuideTV.NET bêta 9 build 0.92) - English below Corrections : - Gestion de certains contrôles dans l'écran principal. - Div...Most Popular ProjectsMetaSharpRawrWBFS ManagerSilverlight ToolkitASP.NET Ajax LibraryMicrosoft SQL Server Product Samples: DatabaseAJAX Control ToolkitLiveUpload to FacebookWindows Presentation Foundation (WPF)ASP.NETMost Active ProjectsLINQ to TwitterRawrOData SDK for PHPjQuery Library for SharePoint Web ServicesDirectQPHPExcelpatterns & practices – Enterprise LibraryBlogEngine.NETFarseer Physics EngineNB_Store - Free DotNetNuke Ecommerce Catalog Module

    Read the article

  • Using the BAM Interceptor with Continuation

    - by Charles Young
    Originally posted on: http://geekswithblogs.net/cyoung/archive/2014/06/02/using-the-bam-interceptor-with-continuation.aspxI’ve recently been resurrecting some code written several years ago that makes extensive use of the BAM Interceptor provided as part of BizTalk Server’s BAM event observation library.  In doing this, I noticed an issue with continuations.  Essentially, whenever I tried to configure one or more continuations for an activity, the BAM Interceptor failed to complete the activity correctly.   Careful inspection of my code confirmed that I was initializing and invoking the BAM interceptor correctly, so I was mystified.  However, I eventually found the problem.  It is a logical error in the BAM Interceptor code itself. The BAM Interceptor provides a useful mechanism for implementing dynamic tracking.  It supports configurable ‘track points’.  These are grouped into named ‘locations’.  BAM uses the term ‘step’ as a synonym for ‘location’.   Each track point defines a BAM action such as starting an activity, extracting a data item, enabling a continuation, etc.  Each step defines a collection of track points. Understanding Steps The BAM Interceptor provides an abstract model for handling configuration of steps.  It doesn’t, however, define any specific configuration mechanism (e.g., config files, SSO, etc.)  It is up to the developer to decide how to store, manage and retrieve configuration data.  At run time, this configuration is used to register track points which then drive the BAM Interceptor. The full semantics of a step are not immediately clear from Microsoft’s documentation.  They represent a point in a business activity where BAM tracking occurs.  They are named locations in the code.  What is less obvious is that they always represent either the full tracking work for a given activity or a discrete fragment of that work which commences with the start of a new activity or the continuation of an existing activity.  The BAM Interceptor enforces this by throwing an error if no ‘start new’ or ‘continue’ track point is registered for a named location. This constraint implies that each step must marked with an ‘end activity’ track point.  One of the peculiarities of BAM semantics is that when an activity is continued under a correlated ID, you must first mark the current activity as ‘ended’ in order to ensure the right housekeeping is done in the database.  If you re-start an ended activity under the same ID, you will leave the BAM import tables in an inconsistent state.  A step, therefore, always represents an entire unit of work for a given activity or continuation ID.  For activities with continuation, each unit of work is termed a ‘fragment’. Instance and Fragment State Internally, the BAM Interceptor maintains state data at two levels.  First, it represents the overall state of the activity using a ‘trace instance’ token.  This token contains the name and ID of the activity together with a couple of state flags.  The second level of state represents a ‘trace fragment’.   As we have seen, a fragment of an activity corresponds directly to the notion of a ‘step’.  It is the unit of work done at a named location, and it must be bounded by start and end, or continue and end, actions. When handling continuations, the BAM Interceptor differentiates between ‘root’ fragments and other fragments.  Very simply, a root fragment represents the start of an activity.  Other fragments represent continuations.  This is where the logic breaks down.  The BAM Interceptor loses state integrity for root fragments when continuations are defined. Initialization Microsoft’s BAM Interceptor code supports the initialization of BAM Interceptors from track point configuration data.  The process starts by populating an Activity Interceptor Configuration object with an array of track points.  These can belong to different steps (aka ‘locations’) and can be registered in any order.  Once it is populated with track points, the Activity Interceptor Configuration is used to initialise the BAM Interceptor.  The BAM Interceptor sets up a hash table of array lists.  Each step is represented by an array list, and each array list contains an ordered set of track points.  The BAM Interceptor represents track points as ‘executable’ components.  When the OnStep method of the BAM Interceptor is called for a given step, the corresponding list of track points is retrieved and each track point is executed in turn.  Each track point retrieves any required data using a call back mechanism and then serializes a BAM trace fragment object representing a specific action (e.g., start, update, enable continuation, stop, etc.).  The serialised trace fragment is then handed off to a BAM event stream (buffered or direct) which takes the appropriate action. The Root of the Problem The logic breaks down in the Activity Interceptor Configuration.  Each Activity Interceptor Configuration is initialised with an instance of a ‘trace instance’ token.  This provides the basic metadata for the activity as a whole.  It contains the activity name and ID together with state flags indicating if the activity ID is a root (i.e., not a continuation fragment) and if it is completed.  This single token is then shared by all trace actions for all steps registered with the Activity Interceptor Configuration. Each trace instance token is automatically initialised to represent a root fragment.  However, if you subsequently register a ‘continuation’ step with the Activity Interceptor Configuration, the ‘root’ flag is set to false at the point the ‘continue’ track point is registered for that step.   If you use a ‘reflector’ tool to inspect the code for the ActivityInterceptorConfiguration class, you can see the flag being set in one of the overloads of the RegisterContinue method.    This makes no sense.  The trace instance token is shared across all the track points registered with the Activity Interceptor Configuration.  The Activity Interceptor Configuration is designed to hold track points for multiple steps.  The ‘root’ flag is clearly meant to be initialised to ‘true’ for the preliminary root fragment and then subsequently set to false at the point that a continuation step is processed.  Instead, if the Activity Interceptor Configuration contains a continuation step, it is changed to ‘false’ before the root fragment is processed.  This is clearly an error in logic. The problem causes havoc when the BAM Interceptor is used with continuation.  Effectively the root step is no longer processed correctly, and the ultimate effect is that the continued activity never completes!   This has nothing to do with the root and the continuation being in the same process.  It is due to a fundamental mistake of setting the ‘root’ flag to false for a continuation before the root fragment is processed. The Workaround Fortunately, it is easy to work around the bug.  The trick is to ensure that you create a new Activity Interceptor Configuration object for each individual step.  This may mean filtering your configuration data to extract the track points for a single step or grouping the configured track points into individual steps and the creating a separate Activity Interceptor Configuration for each group.  In my case, the first approach was required.  Here is what the amended code looks like: // Because of a logic error in Microsoft's code, a separate ActivityInterceptorConfiguration must be used // for each location. The following code extracts only those track points for a given step name (location). var trackPointGroup = from ResolutionService.TrackPoint tp in bamActivity.TrackPoints                       where (string)tp.Location == bamStepName                       select tp; var bamActivityInterceptorConfig =     new Microsoft.BizTalk.Bam.EventObservation.ActivityInterceptorConfiguration(activityName); foreach (var trackPoint in trackPointGroup) {     switch (trackPoint.Type)     {         case TrackPointType.Start:             bamActivityInterceptorConfig.RegisterStartNew(trackPoint.Location, trackPoint.ExtractionInfo);             break; etc… I’m using LINQ to filter a list of track points for those entries that correspond to a given step and then registering only those track points on a new instance of the ActivityInterceptorConfiguration class.   As soon as I re-wrote the code to do this, activities with continuations started to complete correctly.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Google Chrome: JavaScript associative arrays, evaluated out of sequence

    - by Jerry
    Ok, so on a web page, I've got a JavaScript object which I'm using as an associative array. This exists statically in a script block when the page loads: var salesWeeks = { "200911" : ["11 / 2009", "Fiscal 2009"], "200910" : ["10 / 2009", "Fiscal 2009"], "200909" : ["09 / 2009", "Fiscal 2009"], "200908" : ["08 / 2009", "Fiscal 2009"], "200907" : ["07 / 2009", "Fiscal 2009"], "200906" : ["06 / 2009", "Fiscal 2009"], "200905" : ["05 / 2009", "Fiscal 2009"], "200904" : ["04 / 2009", "Fiscal 2009"], "200903" : ["03 / 2009", "Fiscal 2009"], "200902" : ["02 / 2009", "Fiscal 2009"], "200901" : ["01 / 2009", "Fiscal 2009"], "200852" : ["52 / 2008", "Fiscal 2009"], "200851" : ["51 / 2008", "Fiscal 2009"] }; The order of the key/value pairs is intentional, as I'm turning the object into an HTML select box such as this: <select id="ddl_sw" name="ddl_sw"> <option value="">== SELECT WEEK ==</option> <option value="200911">11 / 2009 (Fiscal 2009)</option> <option value="200910">10 / 2009 (Fiscal 2009)</option> <option value="200909">09 / 2009 (Fiscal 2009)</option> <option value="200908">08 / 2009 (Fiscal 2009)</option> <option value="200907">07 / 2009 (Fiscal 2009)</option> <option value="200906">06 / 2009 (Fiscal 2009)</option> <option value="200905">05 / 2009 (Fiscal 2009)</option> <option value="200904">04 / 2009 (Fiscal 2009)</option> <option value="200903">03 / 2009 (Fiscal 2009)</option> <option value="200902">02 / 2009 (Fiscal 2009)</option> <option value="200901">01 / 2009 (Fiscal 2009)</option> <option value="200852">52 / 2008 (Fiscal 2009)</option> <option value="200851">51 / 2008 (Fiscal 2009)</option> </select> ...with code that looks like this (snipped from a function): var arr = []; arr.push( "<select id=\"ddl_sw\" name=\"ddl_sw\">" + "<option value=\"\">== SELECT WEEK ==</option>" ); for(var key in salesWeeks) { arr.push( "<option value=\"" + key + "\">" + salesWeeks[key][0] + " (" + salesWeeks[key][1] + ")" + "<\/option>" ); } arr.push("<\/select>"); return arr.join(""); This all works fine in IE, FireFox and Opera. However in Chrome, the order comes out all weird: <select id="ddl_sw" name="ddl_sw"> <option value="">== SELECT WEEK ==</option> <option value="200852">52 / 2008 (Fiscal 2009)</option> <option value="200908">08 / 2009 (Fiscal 2009)</option> <option value="200906">06 / 2009 (Fiscal 2009)</option> <option value="200902">02 / 2009 (Fiscal 2009)</option> <option value="200907">07 / 2009 (Fiscal 2009)</option> <option value="200904">04 / 2009 (Fiscal 2009)</option> <option value="200909">09 / 2009 (Fiscal 2009)</option> <option value="200903">03 / 2009 (Fiscal 2009)</option> <option value="200905">05 / 2009 (Fiscal 2009)</option> <option value="200901">01 / 2009 (Fiscal 2009)</option> <option value="200910">10 / 2009 (Fiscal 2009)</option> <option value="200911">11 / 2009 (Fiscal 2009)</option> <option value="200851">51 / 2008 (Fiscal 2009)</option> </select> NOTE: This order, though weird, does not change on subsequent refreshes. It's always in this order. So, what is Chrome doing? Some optimization in how it processes the loop? In the first place, am I wrong to rely on the order that the key/value pairs are declared in any associative array? I never questioned it before, I just assumed the order would hold because this technique has always worked for me in the other browsers. But I suppose I've never seen it stated anywhere that the order is guaranteed. Maybe it's not? Any insight would be awesome. Thanks.

    Read the article

  • Beginner’s Guide to Flock, the Social Media Browser

    - by Asian Angel
    Are you wanting a browser that can work as a social hub from the first moment that you start it up? If you love the idea of a browser that is ready to go out of the box then join us as we look at Flock. During the Install Process When you are installing Flock there are two install windows that you should watch for. The first one lets you choose between the “Express Setup & Custom Setup”. We recommend the “Custom Setup”. Once you have selected the “Custom Setup” you can choose which of the following options will enabled. Notice the “anonymous usage statistics” option at the bottom…you can choose to leave this enabled or disable it based on your comfort level. The First Look When you start Flock up for the first time it will open with three tabs. All three are of interest…especially if this is your first time using Flock. With the first tab you can jump right into “logging in/activating” favorite social services within Flock. This page is set to display each time that you open Flock unless you deselect the option in the lower left corner. The second tab provides a very nice overview of Flock and its’ built-in social management power. The third and final page can be considered a “Personal Page”. You can make some changes to the content displayed for quick and easy access and/or monitoring “Twitter Search, Favorite Feeds, Favorite Media, Friend Activity, & Favorite Sites”. Use the “Widget Menu” in the upper left corner to select the “Personal Page Components” that you would like to use. In the upper right corner there is a built-in “Search Bar” and buttons for “Posting to Your Blog & Uploading Media”. To help personalize the “My World Page” just a bit more you can even change the text to your name or whatever best suits your needs. The Flock Toolbar The “Flock Toolbar” is full of social account management goodness. In order from left to right the buttons are: My World (Homepage), Open People Sidebar, Open Media Bar, Open Feeds Sidebar, Webmail, Open Favorites Sidebar, Open Accounts and Services Sidebar, Open Web Clipboard Sidebar, Open Blog Editor, & Open Photo Uploader. The buttons will be “highlighted” with a blue background to help indicate which area you are in. The first area will display a listing of people that you are watching/following at the services shown here. Clicking on the “Media Bar Button” will display the following “Media Slider Bar” above your “Tab Bar”. Notice that there is a built-in “Search Bar” on the right side. Any photos, etc. clicked on will be opened in the currently focused tab below the “Media Bar”. Here is a listing of the “Media Streams” available for viewing. By default Flock will come with a small selection of pre-subscribed RSS Feeds. You can easily unsubscribe, rearrange, add custom folders, or non-categorized feeds as desired. RSS Feeds subscribed to here can be viewed combined together as a single feed (clickable links) in the “My World Page”. or can be viewed individually in a new tab. Very nice! Next on the “Flock Toolbar is the “Webmail Button”. You can set up access to your favorite “Yahoo!, Gmail, & AOL Mail” accounts from here. The “Favorites Sidebar” combines your “Browser History & Bookmarks” into one convenient location. The “Accounts and Services Sidebar” gives you quick and easy access to get logged into your favorite social accounts. Clicking on any of the links will open that particular service’s login page in a new tab. Want to store items such as photos, links, and text to add into a blog post or tweet later on? Just drag and drop them into the “Web Clipboard Sidebar” for later access. Clicking on the “Blog Editor Button” will open up a separate blogging window to compose your posts in. If you have not logged into or set up an account yet in Flock you will see the following message window. The “Blogging Window”…nice, simple, and straightforward. If you are not already logged into your photo account(s) then you will see the following message window when you click on the “Photo Uploader Button”. Clicking “OK” will open the “Accounts and Services Sidebar” with compatible photo services highlighted in a light yellow color. Log in to your favorite service to start uploading all those great images. After Setting Up Here is what our browser looked like after setting up some of our favorite services. The Twitter feed is certainly looking nice and easy to read through… Some tweaking in the “RSS Feeds Sidebar” makes for a perfect reading experience. Keeping up with our e-mail is certainly easy to do too. A look back at the “Accounts and Services Sidebar” shows that all of our accounts are actively logged in (green dot on the right side). Going back to our “My World Page” you can see how nice everything looks for monitoring our “Friend Activity & Favorite Feeds”. Moving on to regular browsing everything is looking very good… Flock is a perfect choice for anyone wanting a browser and social hub all built into a single app. Conclusion Anyone who loves keeping up with their favorite social services while browsing will find using Flock to be a wonderful experience. You literally get the best of both worlds with this browser. Links Download Flock The Official Flock Extensions Homepage The Official Flock Toolbar Homepage Similar Articles Productive Geek Tips Add Color Coding to Windows 7 Media Center Program GuideAdd Social Bookmarking (Digg This!) Links to your Wordpress BlogHow to use an ISO image on Ubuntu LinuxAdvertise on How-To GeekFixing When Windows Media Player Library Won’t Let You Add Files TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Have Fun Editing Photo Editing with Citrify Outlook Connector Upgrade Error Gadfly is a cool Twitter/Silverlight app Enable DreamScene in Windows 7 Microsoft’s “How Do I ?” Videos Home Networks – How do they look like & the problems they cause

    Read the article

  • Error when pushing to Heroku - ...appear in group - Ruby on Rails

    - by bgadoci
    I am trying to deploy my first rails app to Heroku and seem to be having a problem. After git push heroku master, and heroku rake db:migrate I get an error saying: SELECT posts.*, count(*) as vote_total FROM "posts" INNER JOIN "votes" ON votes.post_id = posts.id GROUP BY votes.post_id ORDER BY created_at DESC LIMIT 5 OFFSET 0): I have included the full error below and also included the PostControll#index as it seems that is where I am doing the grouping. Lastly I included my routes.rb file. I am new to ruby, rails, and heroku so sorry for simple/obvious questions. Processing PostsController#index (for 99.7.50.140 at 2010-04-21 12:50:47) [GET] ActiveRecord::StatementInvalid (PGError: ERROR: column "posts.id" must appear in the GROUP BY clause or be used in an aggregate function : SELECT posts.*, count(*) as vote_total FROM "posts" INNER JOIN "votes" ON votes.post_id = posts.id GROUP BY votes.post_id ORDER BY created_at DESC LIMIT 5 OFFSET 0): vendor/gems/will_paginate-2.3.12/lib/will_paginate/finder.rb:82:in `send' vendor/gems/will_paginate-2.3.12/lib/will_paginate/finder.rb:82:in `paginate' vendor/gems/will_paginate-2.3.12/lib/will_paginate/collection.rb:87:in `create' vendor/gems/will_paginate-2.3.12/lib/will_paginate/finder.rb:76:in `paginate' app/controllers/posts_controller.rb:28:in `index' /home/heroku_rack/lib/static_assets.rb:9:in `call' /home/heroku_rack/lib/last_access.rb:25:in `call' /home/heroku_rack/lib/date_header.rb:14:in `call' thin (1.0.1) lib/thin/connection.rb:80:in `pre_process' thin (1.0.1) lib/thin/connection.rb:78:in `catch' thin (1.0.1) lib/thin/connection.rb:78:in `pre_process' thin (1.0.1) lib/thin/connection.rb:57:in `process' thin (1.0.1) lib/thin/connection.rb:42:in `receive_data' eventmachine (0.12.6) lib/eventmachine.rb:240:in `run_machine' eventmachine (0.12.6) lib/eventmachine.rb:240:in `run' thin (1.0.1) lib/thin/backends/base.rb:57:in `start' thin (1.0.1) lib/thin/server.rb:150:in `start' thin (1.0.1) lib/thin/controllers/controller.rb:80:in `start' thin (1.0.1) lib/thin/runner.rb:173:in `send' thin (1.0.1) lib/thin/runner.rb:173:in `run_command' thin (1.0.1) lib/thin/runner.rb:139:in `run!' thin (1.0.1) bin/thin:6 /usr/local/bin/thin:20:in `load' /usr/local/bin/thin:20 PostsController def index @tag_counts = Tag.count(:group => :tag_name, :order => 'count_all DESC', :limit => 20) conditions, joins = {}, :votes @ugtag_counts = Ugtag.count(:group => :ugctag_name, :order => 'count_all DESC', :limit => 20) conditions, joins = {}, :votes @vote_counts = Vote.count(:group => :post_title, :order => 'count_all DESC', :limit => 20) conditions, joins = {}, :votes unless(params[:tag_name] || "").empty? conditions = ["tags.tag_name = ? ", params[:tag_name]] joins = [:tags, :votes] end @posts=Post.paginate( :select => "posts.*, count(*) as vote_total", :joins => joins, :conditions=> conditions, :group => "votes.post_id", :order => "created_at DESC", :page => params[:page], :per_page => 5) @popular_posts=Post.paginate( :select => "posts.*, count(*) as vote_total", :joins => joins, :conditions=> conditions, :group => "votes.post_id", :order => "vote_total DESC", :page => params[:page], :per_page => 3) respond_to do |format| format.html # index.html.erb format.xml { render :xml => @posts } format.json { render :json => @posts } format.atom end end routes.rb ActionController::Routing::Routes.draw do |map| map.resources :ugtags map.resources :wysihat_files map.resources :users map.resources :votes map.resources :votes, :belongs_to => :user map.resources :tags, :belongs_to => :user map.resources :ugtags, :belongs_to => :user map.resources :posts, :collection => {:auto_complete_for_tag_tag_name => :get } map.resources :posts, :sessions map.resources :posts, :has_many => :comments map.resources :posts, :has_many => :tags map.resources :posts, :has_many => :ugtags map.resources :posts, :has_many => :votes map.resources :posts, :belongs_to => :user map.resources :tags, :collection => {:auto_complete_for_tag_tag_name => :get } map.resources :ugtags, :collection => {:auto_complete_for_ugtag_ugctag_name => :get } map.login 'login', :controller => 'sessions', :action => 'new' map.logout 'logout', :controller => 'sessions', :action => 'destroy' map.root :controller => "posts" map.connect ':controller/:action/:id' map.connect ':controller/:action/:id.:format' end UPDATE TO SHOW MODEL AND MIGRATION FOR POST class Post < ActiveRecord::Base has_attached_file :photo validates_presence_of :body, :title has_many :comments, :dependent => :destroy has_many :tags, :dependent => :destroy has_many :ugtags, :dependent => :destroy has_many :votes, :dependent => :destroy belongs_to :user after_create :self_vote def self_vote # I am assuming you have a user_id field in `posts` and `votes` table. self.votes.create(:user => self.user) end cattr_reader :per_page @@per_page = 10 end migrations for post class CreatePosts < ActiveRecord::Migration def self.up create_table :posts do |t| t.string :title t.text :body t.timestamps end end def self.down drop_table :posts end end _ class AddUserIdToPost < ActiveRecord::Migration def self.up add_column :posts, :user_id, :string end def self.down remove_column :posts, :user_id end end

    Read the article

  • When is a Seek not a Seek?

    - by Paul White
    The following script creates a single-column clustered table containing the integers from 1 to 1,000 inclusive. IF OBJECT_ID(N'tempdb..#Test', N'U') IS NOT NULL DROP TABLE #Test ; GO CREATE TABLE #Test ( id INTEGER PRIMARY KEY CLUSTERED ); ; INSERT #Test (id) SELECT V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 1000 ; Let’s say we need to find the rows with values from 100 to 170, excluding any values that divide exactly by 10.  One way to write that query would be: SELECT T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; That query produces a pretty efficient-looking query plan: Knowing that the source column is defined as an INTEGER, we could also express the query this way: SELECT T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; We get a similar-looking plan: If you look closely, you might notice that the line connecting the two icons is a little thinner than before.  The first query is estimated to produce 61.9167 rows – very close to the 63 rows we know the query will return.  The second query presents a tougher challenge for SQL Server because it doesn’t know how to predict the selectivity of the modulo expression (T.id % 10 > 0).  Without that last line, the second query is estimated to produce 68.1667 rows – a slight overestimate.  Adding the opaque modulo expression results in SQL Server guessing at the selectivity.  As you may know, the selectivity guess for a greater-than operation is 30%, so the final estimate is 30% of 68.1667, which comes to 20.45 rows. The second difference is that the Clustered Index Seek is costed at 99% of the estimated total for the statement.  For some reason, the final SELECT operator is assigned a small cost of 0.0000484 units; I have absolutely no idea why this is so, or what it models.  Nevertheless, we can compare the total cost for both queries: the first one comes in at 0.0033501 units, and the second at 0.0034054.  The important point is that the second query is costed very slightly higher than the first, even though it is expected to produce many fewer rows (20.45 versus 61.9167). If you run the two queries, they produce exactly the same results, and both complete so quickly that it is impossible to measure CPU usage for a single execution.  We can, however, compare the I/O statistics for a single run by running the queries with STATISTICS IO ON: Table '#Test'. Scan count 63, logical reads 126, physical reads 0. Table '#Test'. Scan count 01, logical reads 002, physical reads 0. The query with the IN list uses 126 logical reads (and has a ‘scan count’ of 63), while the second query form completes with just 2 logical reads (and a ‘scan count’ of 1).  It is no coincidence that 126 = 63 * 2, by the way.  It is almost as if the first query is doing 63 seeks, compared to one for the second query. In fact, that is exactly what it is doing.  There is no indication of this in the graphical plan, or the tool-tip that appears when you hover your mouse over the Clustered Index Seek icon.  To see the 63 seek operations, you have click on the Seek icon and look in the Properties window (press F4, or right-click and choose from the menu): The Seek Predicates list shows a total of 63 seek operations – one for each of the values from the IN list contained in the first query.  I have expanded the first seek node to show the details; it is seeking down the clustered index to find the entry with the value 101.  Each of the other 62 nodes expands similarly, and the same information is contained (even more verbosely) in the XML form of the plan. Each of the 63 seek operations starts at the root of the clustered index B-tree and navigates down to the leaf page that contains the sought key value.  Our table is just large enough to need a separate root page, so each seek incurs 2 logical reads (one for the root, and one for the leaf).  We can see the index depth using the INDEXPROPERTY function, or by using the a DMV: SELECT S.index_type_desc, S.index_depth FROM sys.dm_db_index_physical_stats ( DB_ID(N'tempdb'), OBJECT_ID(N'tempdb..#Test', N'U'), 1, 1, DEFAULT ) AS S ; Let’s look now at the Properties window when the Clustered Index Seek from the second query is selected: There is just one seek operation, which starts at the root of the index and navigates the B-tree looking for the first key that matches the Start range condition (id >= 101).  It then continues to read records at the leaf level of the index (following links between leaf-level pages if necessary) until it finds a row that does not meet the End range condition (id <= 169).  Every row that meets the seek range condition is also tested against the Residual Predicate highlighted above (id % 10 > 0), and is only returned if it matches that as well. You will not be surprised that the single seek (with a range scan and residual predicate) is much more efficient than 63 singleton seeks.  It is not 63 times more efficient (as the logical reads comparison would suggest), but it is around three times faster.  Let’s run both query forms 10,000 times and measure the elapsed time: DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON; SET STATISTICS XML OFF; ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; GO DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; On my laptop, running SQL Server 2008 build 4272 (SP2 CU2), the IN form of the query takes around 830ms and the range query about 300ms.  The main point of this post is not performance, however – it is meant as an introduction to the next few parts in this mini-series that will continue to explore scans and seeks in detail. When is a seek not a seek?  When it is 63 seeks © Paul White 2011 email: [email protected] twitter: @SQL_kiwi

    Read the article

  • How to trace a function array argument in DTrace

    - by uejio
    I still use dtrace just about every day in my job and found that I had to print an argument to a function which was an array of strings.  The array was variable length up to about 10 items.  I'm not sure if the is the right way to do it, but it seems to work and is not too painful if the array size is small.Here's an example.  Suppose in your application, you have the following function, where n is number of item in the array s.void arraytest(int n, char **s){    /* Loop thru s[0] to s[n-1] */}How do you use DTrace to print out the values of s[i] or of s[0] to s[n-1]?  DTrace does not have if-then blocks or for loops, so you can't do something like:    for i=0; i<arg0; i++        trace arg1[i]; It turns out that you can use probe ordering as a kind of iterator. Probes with the same name will fire in the order that they appear in the script, so I can save the value of "n" in the first probe and then use it as part of the predicate of the next probe to determine if the other probe should fire or not.  So the first probe for tracing the arraytest function is:pid$target::arraytest:entry{    self->n = arg0;}Then, if I want to print out the first few items of the array, I first check the value of n.  If it's greater than the index that I want to print out, then I can print that index.  For example, if I want to print out the 3rd element of the array, I would do something like:pid$target::arraytest:entry/self->n > 2/{    printf("%s",stringof(arg1 + 2 * sizeof(pointer)));}Actually, that doesn't quite work because arg1 is a pointer to an array of pointers and needs to be copied twice from the user process space to the kernel space (which is where dtrace is). Also, the sizeof(char *) is 8, but for some reason, I have to use 4 which is the sizeof(uint32_t). (I still don't know how that works.)  So, the script that prints the 3rd element of the array should look like:pid$target::arraytest:entry{    /* first, save the size of the array so that we don't get            invalid address errors when indexing arg1+n. */    self->n = arg0;}pid$target::arraytest:entry/self->n > 2/{    /* print the 3rd element (index = 2) of the second arg. */    i = 2;    size = 4;    self->a_t = copyin(arg1+size*i,size);    printf("%s: a[%d]=%s",probefunc,i,copyinstr(*(uint32_t *)self->a_t));}If your array is large, then it's quite painful since you have to write one probe for every array index.  For example, here's the full script for printing the first 5 elements of the array:#!/usr/sbin/dtrace -spid$target::arraytest:entry{        /* first, save the size of the array so that we don't get           invalid address errors when indexing arg1+n. */        self->n = arg0;}pid$target::arraytest:entry/self->n > 0/{        i = 0;        size = sizeof(uint32_t);        self->a_t = copyin(arg1+size*i,size);        printf("%s: a[%d]=%s",probefunc,i,copyinstr(*(uint32_t *)self->a_t));}pid$target::arraytest:entry/self->n > 1/{        i = 1;        size = sizeof(uint32_t);        self->a_t = copyin(arg1+size*i,size);        printf("%s: a[%d]=%s",probefunc,i,copyinstr(*(uint32_t *)self->a_t));}pid$target::arraytest:entry/self->n > 2/{        i = 2;        size = sizeof(uint32_t);        self->a_t = copyin(arg1+size*i,size);        printf("%s: a[%d]=%s",probefunc,i,copyinstr(*(uint32_t *)self->a_t));}pid$target::arraytest:entry/self->n > 3/{        i = 3;        size = sizeof(uint32_t);        self->a_t = copyin(arg1+size*i,size);        printf("%s: a[%d]=%s",probefunc,i,copyinstr(*(uint32_t *)self->a_t));}pid$target::arraytest:entry/self->n > 4/{        i = 4;        size = sizeof(uint32_t);        self->a_t = copyin(arg1+size*i,size);        printf("%s: a[%d]=%s",probefunc,i,copyinstr(*(uint32_t *)self->a_t));} If the array is large, then your script will also have to be very long to print out all values of the array.

    Read the article

  • MS Access Premiere Products Exercise

    - by rynwtts
    I am working with Microsoft Access, Premiere Products Exercises for a college course. I can't seem to get past a specific question. We are working with DBDL and E-R Diagrams. The question is here. Indicate the changes you need to make to the design of the Premiere Products database to support the following situation. A customer is not necessarily represented by a single sales rep but can be represented by several sales reps. when a customer places an order, the sales rep who gets the commission on the order must be one of the collection of sales reps who represents the customer. In the database already each customer is represented by a sales rep. Which yields a one to one relationship. I need to enable a customer to have several sales reps, and make it so that only those sales rep will be eligible for commission upon each order.

    Read the article

  • Mixing SSL and non-SSL content in an Apache2 virtual host

    - by gravyface
    I have a (hopefully) common scenario for one of my sites that I just can't seem to figure out how to deploy correctly. I have the following site and directories for example.com: These need to require SSL: /var/www/example.com/admin /var/www/example.com/order These need to be non-SSL: /var/www/example.com/maps These need to support both: /var/www/example.com/css /var/www/example.com/js /var/www/example.com/img I have two virtual host declarations for the one site in my /sites-available/example.com file; the top one is *:443 the second one is *:80. Since I have two sites, and if a request comes in on 443, the top virtualhost is used, same with the bottom if it's a port 80 request. However, I can't seem to enforce my SSL requirements using SSLRequireSSL because I'm assuming a port 80 request to /admin or /order is not even hitting the *:443 vhost. Should I just Deny All to /order and /admin within the *:80 virtual host so that if you try to request it on 80, you'll get a 403 Forbidden?

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • What does this regex mean and why

    - by Kalec
    $ sed "s/\(^[a-z,0-9]*\)\(.*\)\( [a-z,0-9]*$\)/\1\2 \1/g" desired_file_name I apreciate it even if you only explain part of it or at lest structure it with words as in s\alphanumerical_at_start\something\alphanumerical_at_end\something_else\global Could someone explain what that means, why and are all regEx so ... awful ? I know that it replaces the first lowcase alphanumerical word with the last one. But could you explain bit by bit what's going on here ? what's with all the /\ and \(.*\)\ and everything else ? I'm just lost. EDIT: Here is what I do get: (^[a-z0-9]*) starting with a trough z and 0 trough 9; and [a-z,0-9]*$ is the same but the last word (however [0-9,a-z] = just first 2 characters / first character, or the entire word ?). Also: what does the * or the \(.*\)\ even mean ?

    Read the article

  • A Look at the GridView's New Sorting Styles in ASP.NET 4.0

    Like every Web control in the ASP.NET toolbox, the GridView includes a variety of style-related properties, including CssClass, Font, ForeColor, BackColor, Width, Height, and so on. The GridView also includes style properties that apply to certain classes of rows in the grid, such as RowStyle, AlternatingRowStyle, HeaderStyle, and PagerStyle. Each of these meta-style properties offer the standard style properties (CssClass, Font, etc.) as subproperties. In ASP.NET 4.0, Microsoft added four new style properties to the GridView control: SortedAscendingHeaderStyle, SortedAscendingCellStyle, SortedDescendingHeaderStyle, and SortedDescendingCellStyle. These four properties are meta-style properties like RowStyle and HeaderStyle, but apply to column of cells rather than a row. These properties only apply when the GridView is sorted - if the grid's data is sorted in ascending order then the SortedAscendingHeaderStyle and SortedAscendingCellStyle properties define the styles for the column the data is sorted by. The SortedDescendingHeaderStyle and SortedDescendingCellStyle properties apply to the sorted column when the results are sorted in descending order. These four new properties make it easier to customize the appearance of the column by which the data is sorted. Using these properties along with a touch of Cascading Style Sheets (CSS) it is possible to add up and down arrows to the sorted column's header to indicate whether the data is sorted in ascending or descending order. Likewise, these properties can be used to shade the sorted column or make its text bold. This article shows how to use these four new properties to style the sorted column. Read on to learn more! Read More >

    Read the article

  • "No bootable device - insert boot disk" after restart on Ubuntu 10.04 b1 update

    - by anjanesh
    I was making an update on my Ubuntu 10.04 beta1 64-bit PC when, after reboot I get PXE-E61: Mediaa test failure, check cable PXE-M0F: Exiting Intel Boot Agent. No bootable device - insert boot disk and press any key How did my boot record disappear ? BIOS Boot Boot Menu Type : Normal Boot Device Priority : <CD/DVD-ROM Drive> <Hard Disk Drive> <Floppy Drive> <Ethernet> Hard Driver Order : No Hard Disk Drive CD/DVD ROM Drive Order : <PT-TSSTcorp CDDV> Removable Drive Order : No Removable Drive Boot to Optical Devices : <Enable> Boot to Removable Devices : <Enable> Boot to Network : <Enable> USB Boot : <Enable>

    Read the article

  • Apache2 on Raspbian: Multiviews is enabled but not working

    - by Christian L
    I recently moved webserver, from a ubuntuserver set up by my brother (I have sudo) to a rasbianserver set up by my self. On the other server multiviews worked out of the box, but on the raspbian it does not seem to work althoug it seems to be enabled out of the box there as well. What I am trying to do is to get it to find my.doma.in/mobile.php when I enter my.doma.in/mobile in the adress field. I am using the same available-site-file as I did before, the file looks as this: <VirtualHost *:80> ServerName my.doma.in ServerAdmin [email protected] DocumentRoot /home/christian/www/do <Directory /> Options FollowSymLinks AllowOverride All </Directory> <Directory /home/christian/www/do> Options Indexes FollowSymLinks MultiViews AllowOverride All Order allow,deny allow from all </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog ${APACHE_LOG_DIR}/access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> From what I have read various places while googling this issue I found that the negotiation module had to be enabled so I tried to enable it. sudo a2enmod negotiation Giving me this result Module negotiation already enabled I have read through the /etc/apache2/apache2.conf and I did not find anything in particular that seemed to be helping me there, but please do ask if you think I should post it. Any ideas on how to solve this through getting Multiviews to work?

    Read the article

  • Sendmail Failing to Forward Locally Addressed Mail to Exchange Server

    - by DomainSoil
    I've recently gained employment as a web developer with a small company. What they neglected to tell me upon hire was that I would be administrating the server along with my other daily duties. Now, truth be told, I'm not clueless when it comes to these things, but this is my first rodeo working with a rack server/console.. However, I'm confident that I will be able to work through any solutions you provide. Short Description: When a customer places an order via our (Magento CE 1.8.1.0) website, a copy of said order is supposed to be BCC'd to our sales manager. I say supposed because this was a working feature before the old administrator left. Long Description: Shortly after I started, we had a server crash which required a server restart. After restart, we noticed a few features on our site weren't working, but all those have been cleaned up except this one. I had to create an account on our server for root access. When a customer places an order, our sites software (Magento CE 1.8.1.0) is configured to BCC the customers order email to our sales manager. We use a Microsoft Exchange 2007 Server for our mail, which is hosted on a different machine (in-house) that I don't have access to ATM, but I'm sure I could if needed. As far as I can tell, all other external emails work.. Only INTERNAL email addresses fail to deliver. I know this because I've also tested my own internal address via our website. I set up an account with an internal email, made a test order, and never received the email. I changed my email for the account to an external GMail account, and received emails as expected. Let's dive into the logs and config's. For privacy/security reasons, names have been changed to the following: domain.com = Our Top Level Domain. email.local = Our Exchange Server. example.com = ANY other TLD. OLDadmin = Our previous Server Administrator. NEWadmin = Me. SALES@ = Our Sales Manager. Customer# = A Customer. Here's a list of the programs and config files used that hold relevant for this issue: Server: > [root@www ~]# cat /etc/centos-release CentOS release 6.3 (final) Sendmail: > [root@www ~]# sendmail -d0.1 -bt < /dev/null Version 8.14.4 ========SYSTEM IDENTITY (after readcf)======== (short domain name) $w = domain (canonical domain name) $j = domain.com (subdomain name) $m = com (node name) $k = www.domain.com > [root@www ~]# rpm -qa | grep -i sendmail sendmail-cf-8.14.4-8.e16.noarch sendmail-8.14-4-8.e16.x86_64 nslookup: > [root@www ~]# nslookup email.local Name: email.local Address: 192.168.1.50 hostname: > [root@www ~]# hostname www.domain.com /etc/mail/access: > [root@www ~]# vi /etc/mail/access Connect:localhost.localdomain RELAY Connect:localhost RELAY Connect:127.0.0.1 RELAY /etc/mail/domaintable: > [root@www ~]# vi /etc/mail/domaintable # /etc/mail/local-host-names: > [root@www ~]# vi /etc/mail/local-host-names # /etc/mail/mailertable: > [root@www ~]# vi /etc/mail/mailertable # /etc/mail/sendmail.cf: > [root@www ~]# vi /etc/mail/sendmail.cf ###################################################################### ##### ##### DO NOT EDIT THIS FILE! Only edit the source .mc file. ##### ###################################################################### ###################################################################### ##### $Id: cfhead.m4,v 8.120 2009/01/23 22:39:21 ca Exp $ ##### ##### $Id: cf.m4,v 8.32 1999/02/07 07:26:14 gshapiro Exp $ ##### ##### setup for linux ##### ##### $Id: linux.m4,v 8.13 2000/09/17 17:30:00 gshapiro Exp $ ##### ##### $Id: local_procmail.m4,v 8.22 2002/11/17 04:24:19 ca Exp $ ##### ##### $Id: no_default_msa.m4,v 8.2 2001/02/14 05:03:22 gshapiro Exp $ ##### ##### $Id: smrsh.m4,v 8.14 1999/11/18 05:06:23 ca Exp $ ##### ##### $Id: mailertable.m4,v 8.25 2002/06/27 23:23:57 gshapiro Exp $ ##### ##### $Id: virtusertable.m4,v 8.23 2002/06/27 23:23:57 gshapiro Exp $ ##### ##### $Id: redirect.m4,v 8.15 1999/08/06 01:47:36 gshapiro Exp $ ##### ##### $Id: always_add_domain.m4,v 8.11 2000/09/12 22:00:53 ca Exp $ ##### ##### $Id: use_cw_file.m4,v 8.11 2001/08/26 20:58:57 gshapiro Exp $ ##### ##### $Id: use_ct_file.m4,v 8.11 2001/08/26 20:58:57 gshapiro Exp $ ##### ##### $Id: local_procmail.m4,v 8.22 2002/11/17 04:24:19 ca Exp $ ##### ##### $Id: access_db.m4,v 8.27 2006/07/06 21:10:10 ca Exp $ ##### ##### $Id: blacklist_recipients.m4,v 8.13 1999/04/02 02:25:13 gshapiro Exp $ ##### ##### $Id: accept_unresolvable_domains.m4,v 8.10 1999/02/07 07:26:07 gshapiro Exp $ ##### ##### $Id: masquerade_envelope.m4,v 8.9 1999/02/07 07:26:10 gshapiro Exp $ ##### ##### $Id: masquerade_entire_domain.m4,v 8.9 1999/02/07 07:26:10 gshapiro Exp $ ##### ##### $Id: proto.m4,v 8.741 2009/12/11 00:04:53 ca Exp $ ##### # level 10 config file format V10/Berkeley # override file safeties - setting this option compromises system security, # addressing the actual file configuration problem is preferred # need to set this before any file actions are encountered in the cf file #O DontBlameSendmail=safe # default LDAP map specification # need to set this now before any LDAP maps are defined #O LDAPDefaultSpec=-h localhost ################## # local info # ################## # my LDAP cluster # need to set this before any LDAP lookups are done (including classes) #D{sendmailMTACluster}$m Cwlocalhost # file containing names of hosts for which we receive email Fw/etc/mail/local-host-names # my official domain name # ... define this only if sendmail cannot automatically determine your domain #Dj$w.Foo.COM # host/domain names ending with a token in class P are canonical CP. # "Smart" relay host (may be null) DSemail.local # operators that cannot be in local usernames (i.e., network indicators) CO @ % ! # a class with just dot (for identifying canonical names) C.. # a class with just a left bracket (for identifying domain literals) C[[ # access_db acceptance class C{Accept}OK RELAY C{ResOk}OKR # Hosts for which relaying is permitted ($=R) FR-o /etc/mail/relay-domains # arithmetic map Karith arith # macro storage map Kmacro macro # possible values for TLS_connection in access map C{Tls}VERIFY ENCR # who I send unqualified names to if FEATURE(stickyhost) is used # (null means deliver locally) DRemail.local. # who gets all local email traffic # ($R has precedence for unqualified names if FEATURE(stickyhost) is used) DHemail.local. # dequoting map Kdequote dequote # class E: names that should be exposed as from this host, even if we masquerade # class L: names that should be delivered locally, even if we have a relay # class M: domains that should be converted to $M # class N: domains that should not be converted to $M #CL root C{E}root C{w}localhost.localdomain C{M}domain.com # who I masquerade as (null for no masquerading) (see also $=M) DMdomain.com # my name for error messages DnMAILER-DAEMON # Mailer table (overriding domains) Kmailertable hash -o /etc/mail/mailertable.db # Virtual user table (maps incoming users) Kvirtuser hash -o /etc/mail/virtusertable.db CPREDIRECT # Access list database (for spam stomping) Kaccess hash -T<TMPF> -o /etc/mail/access.db # Configuration version number DZ8.14.4 /etc/mail/sendmail.mc: > [root@www ~]# vi /etc/mail/sendmail.mc divert(-1)dnl dnl # dnl # This is the sendmail macro config file for m4. If you make changes to dnl # /etc/mail/sendmail.mc, you will need to regenerate the dnl # /etc/mail/sendmail.cf file by confirming that the sendmail-cf package is dnl # installed and then performing a dnl # dnl # /etc/mail/make dnl # include(`/usr/share/sendmail-cf/m4/cf.m4')dnl VERSIONID(`setup for linux')dnl OSTYPE(`linux')dnl dnl # dnl # Do not advertize sendmail version. dnl # dnl define(`confSMTP_LOGIN_MSG', `$j Sendmail; $b')dnl dnl # dnl # default logging level is 9, you might want to set it higher to dnl # debug the configuration dnl # dnl define(`confLOG_LEVEL', `9')dnl dnl # dnl # Uncomment and edit the following line if your outgoing mail needs to dnl # be sent out through an external mail server: dnl # define(`SMART_HOST', `email.local')dnl dnl # define(`confDEF_USER_ID', ``8:12'')dnl dnl define(`confAUTO_REBUILD')dnl define(`confTO_CONNECT', `1m')dnl define(`confTRY_NULL_MX_LIST', `True')dnl define(`confDONT_PROBE_INTERFACES', `True')dnl define(`PROCMAIL_MAILER_PATH', `/usr/bin/procmail')dnl define(`ALIAS_FILE', `/etc/aliases')dnl define(`STATUS_FILE', `/var/log/mail/statistics')dnl define(`UUCP_MAILER_MAX', `2000000')dnl define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl define(`confPRIVACY_FLAGS', `authwarnings,novrfy,noexpn,restrictqrun')dnl define(`confAUTH_OPTIONS', `A')dnl dnl # dnl # The following allows relaying if the user authenticates, and disallows dnl # plaintext authentication (PLAIN/LOGIN) on non-TLS links dnl # dnl define(`confAUTH_OPTIONS', `A p')dnl dnl # dnl # PLAIN is the preferred plaintext authentication method and used by dnl # Mozilla Mail and Evolution, though Outlook Express and other MUAs do dnl # use LOGIN. Other mechanisms should be used if the connection is not dnl # guaranteed secure. dnl # Please remember that saslauthd needs to be running for AUTH. dnl # dnl TRUST_AUTH_MECH(`EXTERNAL DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl dnl define(`confAUTH_MECHANISMS', `EXTERNAL GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl dnl # dnl # Rudimentary information on creating certificates for sendmail TLS: dnl # cd /etc/pki/tls/certs; make sendmail.pem dnl # Complete usage: dnl # make -C /etc/pki/tls/certs usage dnl # dnl define(`confCACERT_PATH', `/etc/pki/tls/certs')dnl dnl define(`confCACERT', `/etc/pki/tls/certs/ca-bundle.crt')dnl dnl define(`confSERVER_CERT', `/etc/pki/tls/certs/sendmail.pem')dnl dnl define(`confSERVER_KEY', `/etc/pki/tls/certs/sendmail.pem')dnl dnl # dnl # This allows sendmail to use a keyfile that is shared with OpenLDAP's dnl # slapd, which requires the file to be readble by group ldap dnl # dnl define(`confDONT_BLAME_SENDMAIL', `groupreadablekeyfile')dnl dnl # dnl define(`confTO_QUEUEWARN', `4h')dnl dnl define(`confTO_QUEUERETURN', `5d')dnl dnl define(`confQUEUE_LA', `12')dnl dnl define(`confREFUSE_LA', `18')dnl define(`confTO_IDENT', `0')dnl dnl FEATURE(delay_checks)dnl FEATURE(`no_default_msa', `dnl')dnl FEATURE(`smrsh', `/usr/sbin/smrsh')dnl FEATURE(`mailertable', `hash -o /etc/mail/mailertable.db')dnl FEATURE(`virtusertable', `hash -o /etc/mail/virtusertable.db')dnl FEATURE(redirect)dnl FEATURE(always_add_domain)dnl FEATURE(use_cw_file)dnl FEATURE(use_ct_file)dnl dnl # dnl # The following limits the number of processes sendmail can fork to accept dnl # incoming messages or process its message queues to 20.) sendmail refuses dnl # to accept connections once it has reached its quota of child processes. dnl # dnl define(`confMAX_DAEMON_CHILDREN', `20')dnl dnl # dnl # Limits the number of new connections per second. This caps the overhead dnl # incurred due to forking new sendmail processes. May be useful against dnl # DoS attacks or barrages of spam. (As mentioned below, a per-IP address dnl # limit would be useful but is not available as an option at this writing.) dnl # dnl define(`confCONNECTION_RATE_THROTTLE', `3')dnl dnl # dnl # The -t option will retry delivery if e.g. the user runs over his quota. dnl # FEATURE(local_procmail, `', `procmail -t -Y -a $h -d $u')dnl FEATURE(`access_db', `hash -T<TMPF> -o /etc/mail/access.db')dnl FEATURE(`blacklist_recipients')dnl EXPOSED_USER(`root')dnl dnl # dnl # For using Cyrus-IMAPd as POP3/IMAP server through LMTP delivery uncomment dnl # the following 2 definitions and activate below in the MAILER section the dnl # cyrusv2 mailer. dnl # dnl define(`confLOCAL_MAILER', `cyrusv2')dnl dnl define(`CYRUSV2_MAILER_ARGS', `FILE /var/lib/imap/socket/lmtp')dnl dnl # dnl # The following causes sendmail to only listen on the IPv4 loopback address dnl # 127.0.0.1 and not on any other network devices. Remove the loopback dnl # address restriction to accept email from the internet or intranet. dnl # DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl dnl # dnl # The following causes sendmail to additionally listen to port 587 for dnl # mail from MUAs that authenticate. Roaming users who can't reach their dnl # preferred sendmail daemon due to port 25 being blocked or redirected find dnl # this useful. dnl # dnl DAEMON_OPTIONS(`Port=submission, Name=MSA, M=Ea')dnl dnl # dnl # The following causes sendmail to additionally listen to port 465, but dnl # starting immediately in TLS mode upon connecting. Port 25 or 587 followed dnl # by STARTTLS is preferred, but roaming clients using Outlook Express can't dnl # do STARTTLS on ports other than 25. Mozilla Mail can ONLY use STARTTLS dnl # and doesn't support the deprecated smtps; Evolution <1.1.1 uses smtps dnl # when SSL is enabled-- STARTTLS support is available in version 1.1.1. dnl # dnl # For this to work your OpenSSL certificates must be configured. dnl # dnl DAEMON_OPTIONS(`Port=smtps, Name=TLSMTA, M=s')dnl dnl # dnl # The following causes sendmail to additionally listen on the IPv6 loopback dnl # device. Remove the loopback address restriction listen to the network. dnl # dnl DAEMON_OPTIONS(`port=smtp,Addr=::1, Name=MTA-v6, Family=inet6')dnl dnl # dnl # enable both ipv6 and ipv4 in sendmail: dnl # dnl DAEMON_OPTIONS(`Name=MTA-v4, Family=inet, Name=MTA-v6, Family=inet6') dnl # dnl # We strongly recommend not accepting unresolvable domains if you want to dnl # protect yourself from spam. However, the laptop and users on computers dnl # that do not have 24x7 DNS do need this. dnl # FEATURE(`accept_unresolvable_domains')dnl dnl # dnl FEATURE(`relay_based_on_MX')dnl dnl # dnl # Also accept email sent to "localhost.localdomain" as local email. dnl # LOCAL_DOMAIN(`localhost.localdomain')dnl dnl # dnl # The following example makes mail from this host and any additional dnl # specified domains appear to be sent from mydomain.com dnl # MASQUERADE_AS(`domain.com')dnl dnl # dnl # masquerade not just the headers, but the envelope as well dnl FEATURE(masquerade_envelope)dnl dnl # dnl # masquerade not just @mydomainalias.com, but @*.mydomainalias.com as well dnl # FEATURE(masquerade_entire_domain)dnl dnl # MASQUERADE_DOMAIN(domain.com)dnl dnl MASQUERADE_DOMAIN(localhost.localdomain)dnl dnl MASQUERADE_DOMAIN(mydomainalias.com)dnl dnl MASQUERADE_DOMAIN(mydomain.lan)dnl MAILER(smtp)dnl MAILER(procmail)dnl dnl MAILER(cyrusv2)dnl /etc/mail/trusted-users: > [root@www ~]# vi /etc/mail/trusted-users # /etc/mail/virtusertable: > [root@www ~]# vi /etc/mail/virtusertable [email protected] [email protected] [email protected] [email protected] /etc/hosts: > [root@www ~]# vi /etc/hosts 127.0.0.1 localhost.localdomain localhost ::1 localhost6.localdomain6 localhost6 192.168.1.50 email.local I've only included the "local info" part of sendmail.cf, to save space. If there are any files that I've missed, please advise so I may produce them. Now that that's out of the way, lets look at some entries from /var/log/maillog. The first entry is from an order BEFORE the crash, when the site was working as expected. ##Order 200005374 Aug 5, 2014 7:06:38 AM## Aug 5 07:06:39 www sendmail[26149]: s75C6dqB026149: from=OLDadmin, size=11091, class=0, nrcpts=2, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 07:06:39 www sendmail[26150]: s75C6dXe026150: from=<[email protected]>, size=11257, class=0, nrcpts=2, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 07:06:39 www sendmail[26149]: s75C6dqB026149: [email protected],=?utf-8?B?dGhvbWFzICBHaWxsZXNwaWU=?= <[email protected]>, ctladdr=OLDadmin (501/501), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=71091, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75C6dXe026150 Message accepted for delivery) Aug 5 07:06:40 www sendmail[26152]: s75C6dXe026150: to=<[email protected]>,<[email protected]>, delay=00:00:01, xdelay=00:00:01, mailer=relay, pri=161257, relay=email.local. [192.168.1.50], dsn=2.0.0, stat=Sent ( <[email protected]> Queued mail for delivery) This next entry from maillog is from an order AFTER the crash. ##Order 200005375 Aug 5, 2014 9:45:25 AM## Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: from=OLDadmin, size=11344, class=0, nrcpts=2, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 09:45:26 www sendmail[30022]: s75EjQm1030022: <[email protected]>... User unknown Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: [email protected], ctladdr=OLDadmin (501/501), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=71344, relay=[127.0.0.1] [127.0.0.1], dsn=5.1.1, stat=User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm1030022: from=<[email protected]>, size=11500, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: to==?utf-8?B?S2VubmV0aCBCaWViZXI=?= <[email protected]>, ctladdr=OLDadmin (501/501), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=71344, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75EjQm1030022 Message accepted for delivery) Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: s75EjQ4P030021: DSN: User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm3030022: <[email protected]>... User unknown Aug 5 09:45:26 www sendmail[30021]: s75EjQ4P030021: to=OLDadmin, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=42368, relay=[127.0.0.1] [127.0.0.1], dsn=5.1.1, stat=User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm3030022: from=<>, size=12368, class=0, nrcpts=0, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:45:26 www sendmail[30021]: s75EjQ4P030021: s75EjQ4Q030021: return to sender: User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm5030022: from=<>, size=14845, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:45:26 www sendmail[30021]: s75EjQ4Q030021: to=postmaster, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=43392, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75EjQm5030022 Message accepted for delivery) Aug 5 09:45:26 www sendmail[30025]: s75EjQm5030022: to=root, delay=00:00:00, xdelay=00:00:00, mailer=local, pri=45053, dsn=2.0.0, stat=Sent Aug 5 09:45:27 www sendmail[30024]: s75EjQm1030022: to=<[email protected]>, delay=00:00:01, xdelay=00:00:01, mailer=relay, pri=131500, relay=email.local. [192.168.1.50], dsn=2.0.0, stat=Sent ( <[email protected]> Queued mail for delivery) To add a little more, I think I've pinpointed the actual crash event. ##THE CRASH## Aug 5 09:39:46 www sendmail[3251]: restarting /usr/sbin/sendmail due to signal Aug 5 09:39:46 www sm-msp-queue[3260]: restarting /usr/sbin/sendmail due to signal Aug 5 09:39:46 www sm-msp-queue[29370]: starting daemon (8.14.4): queueing@01:00:00 Aug 5 09:39:47 www sendmail[29372]: starting daemon (8.14.4): SMTP+queueing@01:00:00 Aug 5 09:40:02 www sendmail[29465]: s75Ee2vT029465: Authentication-Warning: www.domain.com: OLDadmin set sender to root using -f Aug 5 09:40:02 www sendmail[29464]: s75Ee2IF029464: Authentication-Warning: www.domain.com: OLDadmin set sender to root using -f Aug 5 09:40:02 www sendmail[29465]: s75Ee2vT029465: from=root, size=1426, class=0, nrcpts=1, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 09:40:02 www sendmail[29464]: s75Ee2IF029464: from=root, size=1426, class=0, nrcpts=1, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 09:40:02 www sendmail[29466]: s75Ee23t029466: from=<[email protected]>, size=1784, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:40:02 www sendmail[29466]: s75Ee23t029466: to=<[email protected]>, delay=00:00:00, mailer=local, pri=31784, dsn=4.4.3, stat=queued Aug 5 09:40:02 www sendmail[29467]: s75Ee2wh029467: from=<[email protected]>, size=1784, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:40:02 www sendmail[29467]: s75Ee2wh029467: to=<[email protected]>, delay=00:00:00, mailer=local, pri=31784, dsn=4.4.3, stat=queued Aug 5 09:40:02 www sendmail[29464]: s75Ee2IF029464: to=OLDadmin, ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=31426, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75Ee23t029466 Message accepted for delivery) Aug 5 09:40:02 www sendmail[29465]: s75Ee2vT029465: to=OLDadmin, ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=31426, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75Ee2wh029467 Message accepted for delivery) Aug 5 09:40:06 www sm-msp-queue[29370]: restarting /usr/sbin/sendmail due to signal Aug 5 09:40:06 www sendmail[29372]: restarting /usr/sbin/sendmail due to signal Aug 5 09:40:06 www sm-msp-queue[29888]: starting daemon (8.14.4): queueing@01:00:00 Aug 5 09:40:06 www sendmail[29890]: starting daemon (8.14.4): SMTP+queueing@01:00:00 Aug 5 09:40:06 www sendmail[29891]: s75Ee23t029466: to=<[email protected]>, delay=00:00:04, mailer=local, pri=121784, dsn=5.1.1, stat=User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee23t029466: s75Ee6xY029891: DSN: User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee6xY029891: to=<[email protected]>, delay=00:00:00, xdelay=00:00:00, mailer=local, pri=33035, dsn=2.0.0, stat=Sent Aug 5 09:40:06 www sendmail[29891]: s75Ee2wh029467: to=<[email protected]>, delay=00:00:04, mailer=local, pri=121784, dsn=5.1.1, stat=User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee2wh029467: s75Ee6xZ029891: DSN: User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee6xZ029891: to=<[email protected]>, delay=00:00:00, xdelay=00:00:00, mailer=local, pri=33035, dsn=2.0.0, stat=Sent Something to note about the maillog's: Before the crash, the msgid included localhost.localdomain; after the crash it's been domain.com. Thanks to all who take the time to read and look into this issue. I appreciate it and look forward to tackling this issue together.

    Read the article

  • Does software architect/designer require more skills and intellectual than software engineer (implementation)?

    - by Amumu
    So I heard the positions for designing software and writing spec for developers to implement are higher and getting paid more. I think many companies are using the Software Engineering title to depict the person to implement software, which means using tools and technologies to write the actual code. I know that in order to be a software architecture, one needs to be good at implementation in order to have an architectural overview of a system using a set of specific technologies. This is different than I thought of a Software Engineer. My thinking is similar to the standard of IEEE: A software engineer is an engineer who is capable of going from requirement analysis until the software is deployed, based on the SWEBOK (IEEE). Just look at the table of content. The IEEE even has the certificate for Software Engineering, since ABET (Accreditation Board for Engineering and Technology) seems to not have an official qualification test for Software Engineer (although IEEE is a member of ABET). The two certificates are CSDA and CSDP. I intend to take on these two examination in the future to be qualified as a software engineer, although I am already working as one (Junior position). On a side note on the issues of Software Engineer, you can read the dicussion here: Just a Programmer and Just a Software Engineer. The information of ABET does not accredit Software Engineer is in "Just a Software Engineer". On the other hand, why is Programmer/Softwar Engineer who writes code considered a low level position? Suppose if two people have equal skills after the same years of experience, one becomes a software architect and one keeps focus on implementation aspect of Software Engineering (of course he also has design skill to compose a system, since he's a software engineer as well, but maybe less than the specialized software architect), how comes work from Software Engineer is less complicated than the Software Architect? In order to write great code with turn design into reality, it requires far greater skill than just understanding a particular language and a framework. I don't think the ones who wrote and contributing Linux OS are lower level job and easier than conceptual design and writing spec. Can someone enlighten me?

    Read the article

  • Oracle Coherence & Oracle Service Bus: REST API Integration

    - by Nino Guarnacci
    This post aims to highlight one of the features found in Oracle Coherence which allows it to be easily added and integrated inside a wider variety of projects.  The features in question are the REST API exposed by the Coherence nodes, with which you can interact in the wider mode in memory data grid.Oracle Coherence and Oracle Service Bus are natively integrated through a feature found in the Oracle Service Bus, which allows you to use the coherence grid cache during the configuration phase of a business service. This feature allows you to use an intermediate layer of cache to retrieve the answers from previous invocations of the same service, without necessarily having to invoke the real business service again. Directly from the web console of Oracle Service Bus, you can decide the policies of eviction of the objects / answers and define the discriminating parameters that identify their uniqueness.The coherence REST APIs, however, allow you to integrate both products for other necessities enabling realization of new architectures design.  Consider coherence’s node as a simple service which interoperates through the stardard services and in particular REST (with JSON and XML). Thinking of coherence as a company’s shared service, able to have an implementation of a centralized “map and reduce” which you can access  by a huge variety of protocols (transport and envelopes).An amazing step forward for those who still imagine connectors and code. This type of integration does not require writing custom code or complex implementation to be self-supported. The added value is made unique by the incredible value of both products independently, and still more out of their simple and robust integration.As already mentioned this scenario discovers a hidden new door behind the columns of these two products. The door leads to new ideas and perspectives for enterprise architectures that increasingly wink to next-generation applications: simple and dynamic, perhaps towards the mobile and web 2.0.Below, a small and simple demo useful to demonstrate how easily is to integrate these two products using the Coherence REST API. This demo is also intended to imagine new enterprise architectures using this approach.The idea is to create a centralized system of alerting, fed easily from any company’s application, regardless of the technology with which they were built . Then use a representation standard protocol: RSS, using a service exposed by the service bus; So you can browse and search only the alerts that you are interested on, by category, author, title, date, etc etc.. The steps needed to implement this system are very simple and very few. Here they are listed below and described to be easily replicated within your environment. I would remind you that the demo is only meant to demonstrate how easily is to integrate Oracle Coherence and the Oracle Service Bus, and stimulate your imagination to new technological approaches.1) Install the two products: In this demo used (if necessary, consult the installation guides of 2 products)  - Oracle Service Bus ver. 11.1.1.5.0 http://www.oracle.com/technetwork/middleware/service-bus/downloads/index.html - Oracle Coherence ver. 3.7.1 http://www.oracle.com/technetwork/middleware/coherence/downloads/index.html 2) Because you choose to create a centralized alerting system, we need to define a structure type containing some alerting attributes useful to preserve and organize the information of the various alerts sent by the different applications. Here, then it was built a java class named Alert containing the canonical properties of an alarm information:- Title- Description- System- Time- Severity 3) Therefore, we need to create two configuration files for the coherence node, in order to save the Alert objects within the grid, through the rest/http protocol (more than the native API for Java, C + +, C,. Net). Here are the two minimal configuration files for Coherence:coherence-rest-config.xml resty-server-config.xml This minimum configuration allows me to use a distributed cache named "alerts" that can  also be accessed via http - rest on the host "localhost" over port "8080", objects are of type “oracle.cohsb.Alert”. 4) Below  a simple Java class that represents the type of alert messages: 5) At this point we just need to startup our coherence node, able to listen on http protocol to manage the “alerts” cache, which will receive incoming XML or JSON objects of type Alert. Remember to include in the classpath of the coherence node, the Alert java class and the following coherence libraries and configuration files:  At this point, just run the coherence class node “com.tangosol.net.DefaultCacheServer”advising you to set the following parameters:-Dtangosol.coherence.log.level=9 -Dtangosol.coherence.log=stdout -Dtangosol.coherence.cacheconfig=[PATH_TO_THE_FILE]\resty-server-config.xml 6) Let's create a procedure to test our configuration of Coherence and in order to insert some custom alerts in our cache. The technology with which you want to achieve this functionality is fully not considerable: Javascript, Python, Ruby, Scala, C + +, Java.... Because the protocol to communicate with Coherence is simply HTTP / JSON or XML. For this little demo i choose Java: A method to send/put the alert to the cache: A method to query and view the content of the cache: Finally the main method that execute our methods:  No special library added in the classpath for our class (json struct static defined), when it will be executed, it asks some information such as title, description,... in order to compose and send an alert to the cache and then it will perform an inquiry, to the same cache. At this point, a good exercise at this point, may be to create the same procedure using other technologies, such as a simple html page containing some JavaScript code, and then using Python, Ruby, and so on.7) Now we are ready to start configuring the Oracle Service Bus in order to integrate the two products. First integrate the internal alerting system of Oracle Service Bus with our centralized alerting system based on coherence node. This ensures that by monitoring, or directly from within our Proxy Message Flow, we can throw alerts and save them directly into the Coherence node. To do this I choose to use the jms technology, natively present inside the Oracle Weblogic / Service Bus. Access to the Oracle WebLogic Administration console and create and configure a new JMS connection factory and a new jms destination (queue). Now we should create a new resource of type “alert destination” within our Oracle Service Bus project. The new “alert destination” resource should be configured using the newly created connection factory jms and jms destination. Finally, in order to withdraw the message alert enqueued in our JMS destination and send it to our coherence node, we just need to create a new business service and proxy service within our Oracle Service Bus project.Our business service is responsible for sending a message to our REST service Coherence using as a method action: PUT Finally our proxy service have to collect all messages enqueued on the destination, execute an xquery transformation on those messages  in order to translate them into valid XML / alert objects useful to be sent to our coherence service, through the newly created business service. The message flow pipeline containing the xquery transformation: Incredibly,  we just did a basic first integration between the native alerting system of Oracle Service Bus and our centralized alerting system by simply configuring our coherence node without developing anything.It's time to test it out. To do this I create a proxy service able to generate an alert using our "alert destination", whenever the proxy is invoked. After some invocation to our proxy that generates fake alerts, we could open an Internet browser and type the URL  http://localhost: 8080/alerts/  so we could see what has been inserted within the coherence node. 8) We are ready for the final step.  We would create a new message flow, that can be used to search and display the results in standard mode. To do this I choosen the standard representation of RSS, to display a formatted result on a huge variety of devices such as readers for the iPhone and Android. The inquiry may be defined already at the time of the request able to return only feed / items related to our needs. To do this we need to create a new business service, a new proxy service, and finally a new XQuery Transformation to take care of translating the collection of alerts that will be return from our coherence node in a nicely formatted RSS standard document.So we start right from this resource (xquery), which has the task of transforming a collection of alerts / xml returned from the node coherence in a type well-formatted feed RSS 2.0 our new business service that will search the alerts on our coherence node using the Rest API. And finally, our last resource, the proxy service that will be exposed as an RSS / feeds to various mobile devices and traditional web readers, in which we will intercept any search query, and transform the result returned by the business service in an RSS feed 2.0. The message flow with the transformation phase (Alert TO Feed Items): Finally some little tricks to follow during the routing to the business service, - check for any queries present in the url to require a subset of alerts  - the http header "Accept" to help get an answer XML instead of JSON: In our little demo we also static added some coherence parameters to the request:sort=time:desc;start=0;count=100I would like to get from Coherence that the results will be sorted by date, and starting from 1 up to a maximum of 100.Done!!Just incredible, our centralized alerting system is ready. Inheriting all the qualities and capabilities of the two products involved Oracle Coherence & Oracle Service Bus: - RASP (Reliability, Availability, Scalability, Performance)Now try to use your mobile device, or a normal Internet browser by accessing the RSS just published: Some urls you may test: Search for the last 100 alerts : http://localhost:7001/alarmsSearch for alerts that do not have time set to null (time is not null):http://localhost:7001/alarms?q=time+is+not+nullSearch for alerts that the system property is “Web Browser” (system = ‘Web Browser’):http://localhost:7001/alarms?q=system+%3D+%27Web+Browser%27Search for alerts that the system property is “Web Browser” and the severity property is “Fatal” and the title property contain the word “Javascript”  (system = ‘Web Broser’ and severity = ‘Fatal’ and title like ‘%Javascript%’)http://localhost:8080/alerts?q=system+%3D+%27Web+Browser%27+AND+severity+%3D+%27Fatal%27+AND+title+LIKE+%27%25Javascript%25%27 To compose more complex queries about your need I would suggest you to read the chapter in the coherence documentation inherent the Cohl language (Coherence Query Language) http://download.oracle.com/docs/cd/E24290_01/coh.371/e22837/api_cq.htm . Some useful links: - Oracle Coherence REST API Documentation http://download.oracle.com/docs/cd/E24290_01/coh.371/e22839/rest_intro.htm - Oracle Service Bus Documentation http://download.oracle.com/docs/cd/E21764_01/soa.htm#osb - REST explanation from Wikipedia http://en.wikipedia.org/wiki/Representational_state_transfer At this URL could be downloaded the whole materials of this demo http://blogs.oracle.com/slc/resource/cosb/coh-sb-demo.zip Author: Nino Guarnacci.

    Read the article

  • How to build Open JavaFX for Android.

    - by PictureCo
    Here's a short recipe for baking JavaFX for Android dalvik. We will need just a few ingredients but each one requires special care. So let's get down to the business.  SourcesThe first ingredient is an open JavaFX repository. This should be piece of cake. As always there's a catch. You probably know that dalvik is jdk6 compatible  and also that certain APIs are missing comparing to good old java vm from Oracle.  Fortunately there is a repository which is a backport of regular OpenJFX to jdk7 and going from jdk7 to jdk6 is possible. The first thing to do is to clone or download the repository from https://bitbucket.org/narya/jfx78. Main page of the project says "It works in some cases" so we will presume that it will work in most cases As I've said dalvik vm misses some APIs which would lead to a build failures. To get them use another compatibility repository which is available on GitHub https://github.com/robovm/robovm-jfx78-compat. Download the zip and unzip sources into jfx78/modules/base.We need also a javafx binary stubs. Use jfxrt.jar from jdk8.The last thing to download are freetype sources from http://freetype.org. These will be necessary for native font rendering. Toolchain setup I have to point out that these instructions were tested only on linux. I suppose they will work with minimal changes also on Mac OS. I also presume that you were able to build open JavaFX. That means all tools like ant, gradle, gcc and jdk8 have been installed and are working all right. In addition to this you will need to download and install jdk7, Android SDK and Android NDK for native code compilation.  Installing all of them will take some time. Don't forget to put them in your path. export ANDROID_SDK=/opt/android-sdk-linux export ANDROID_NDK=/opt/android-ndk-r9b export JAVA_HOME=/opt/jdk1.7.0 export PATH=$JAVA_HOME/bin:$ANDROID_SDK/tools:$ANDROID_SDK/platform-tools:$ANDROID_NDK FreetypeUnzip freetype release sources first. We will have to cross compile them for arm. Firstly we will create a standalone toolchain for cross compiling installed in ~/work/ndk-standalone-19. $ANDROID_NDK/build/tools/make-standalone-toolchain.sh  --platform=android-19 --install-dir=~/work/ndk-standalone-19 After the standalone toolchain has been created cross compile freetype with following script: export TOOLCHAIN=~/work/freetype/ndk-standalone-19 export PATH=$TOOLCHAIN/bin:$PATH export FREETYPE=`pwd` ./configure --host=arm-linux-androideabi --prefix=$FREETYPE/install --without-png --without-zlib --enable-shared sed -i 's/\-version\-info \$(version_info)/-avoid-version/' builds/unix/unix-cc.mk make make install It will compile and install freetype library into $FREETYPE/install. We will link to this install dir later on. It would be possible also to link openjfx font support dynamically against skia library available on Android which already contains freetype. It creates smaller result but can have compatibility problems. Patching Download patches javafx-android-compat.patch + android-tools.patch and patch jfx78 repository. I recommend to have look at patches. First one android-compat.patch updates openjfx build script, removes dependency on SharedSecret classes and updates LensLogger to remove dependency on jdk specific PlatformLogger. Second one android-tools.patch creates helper script in android-tools. The script helps to setup javaFX Android projects. Building Now is time to try the build. Run following script: JAVA_HOME=/opt/jdk1.7.0 JDK_HOME=/opt/jdk1.7.0 ANDROID_SDK=/opt/android-sdk-linux ANDROID_NDK=/opt/android-ndk-r9b PATH=$JAVA_HOME/bin:$ANDROID_SDK/tools:$ANDROID_SDK/platform-tools:$ANDROID_NDK:$PATH gradle -PDEBUG -PDALVIK_VM=true -PBINARY_STUB=~/work/binary_stub/linux/rt/lib/ext/jfxrt.jar \ -PFREETYPE_DIR=~/work/freetype/install -PCOMPILE_TARGETS=android If everything went all right the output is in build/android-sdk Create first JavaFX Android project Use gradle script int android-tools. The script sets the project structure for you.   Following command creates Android HelloWorld project which links to a freshly built javafx runtime and to a HelloWorld application. NAME is a name of Android project. DIR where to create our first project. PACKAGE is package name required by Android. It has nothing to do with a packaging of javafx application. JFX_SDK points to our recently built runtime. JFX_APP points to dist directory of javafx application. (where all application jars sit) JFX_MAIN is fully qualified name of a main class. gradle -PDEBUG -PDIR=/home/user/work -PNAME=HelloWorld -PPACKAGE=com.helloworld \ -PJFX_SDK=/home/user/work/jfx78/build/android-sdk -PJFX_APP=/home/user/NetBeansProjects/HelloWorld/dist \ -PJFX_MAIN=com.helloworld.HelloWorld createProject Now cd to the created project and use it like any other android project. ant clean, debug, uninstall, installd will work. I haven't tried it from any IDE Eclipse nor Netbeans. Special thanks to Stefan Fuchs and Daniel Zwolenski for the repositories used in this blog post.

    Read the article

< Previous Page | 203 204 205 206 207 208 209 210 211 212 213 214  | Next Page >