Search Results

Search found 21331 results on 854 pages for 'require once'.

Page 207/854 | < Previous Page | 203 204 205 206 207 208 209 210 211 212 213 214  | Next Page >

  • Your Job Search Should be More Than Just a New Year's Resolution

    - by david.talamelli
    I love the beginning of a new year, it is a great chance to refocus and either re-evaluate goals you are working to or even set new ones. I don't have any statistics to measure this but I am sure that one of the more popular new year's resolutions in the general workforce is to either get a new job or work to further develop one's career. I think this is a good idea, in today's competitive work force people should have a plan of what they want to do, what role they are after and how to get there. One common mistake I think many people make though is that a career plan shouldn't be a once a year thought. When people finish with the holiday season with their new year's resolution to find a new job fresh in their mind, you can see the enthusiasm and motivation a person has to make something happen. Emails are sent, calls are made, applications are made, networking is happening, etc..... Finding the right role that you are after however can be difficult, while it would be great if that dream role was available just at the time you happened to be looking for it - in reality this is not always the case. Job Seekers need to keep reminding themselves that while sometimes that dream job they are after is available at the same time they are looking, that also a Job search can be a difficult and long process. Many people who set out with the best of intentions in January to find a new job can soon lose interest in a job search if they do not immediately find a role. Just like the Christmas decorations are put away and the photos from New Year's are stored away - a Job Seeker's motivation may slowly decrease until that person finds themselves 12 months later in the same situation in same role and looking for that new opportunity again. Rather than just "going for it" and looking for a role in the month of January, a person's job search or career plan should be an ongoing activity and thought process that is constantly updated and evaluated over the course of the year. It can be hard to stay motivated over an extended period of time, especially when you are newly motivated and ready for that new role and the results are not immediate. Rather than letting your job search fall down the priority list and into the "too hard basket" a few ideas that may keep your enthusiasm fresh Update your resume every 6 months, even if you are not looking for a job - it is easy to forget what you have accomplished if you don't keep your details updated. Also it is good to be prepared and have a resume ready to go in case you do get an unexpected phone call for that 'dream job' you have been hoping for. Work out what you want out of your next role before you begin your job search - rather than aimlessly searching job ads or talking to people - think of the organisations or type of role you would like before you search. If you know what you are looking for it will be much easier to work out how to get there than if you do not know what you want. Don't expect immediate results once you decide to look for another job, things don't always fall into place. Timing and delivery can be important pieces of being selected for a role, companies don't hire every role in January. Have an open mind - people you meet or talk to may not result in immediate results for your job search but every connection may help you get a bit closer to what you are after . These actions will not guarantee a positive result, but in today's competitive work force every little of extra preparation and planning helps. All the best for 2011 and I hope your career plan whatever it may be is a success.

    Read the article

  • SQL SERVER – Repair a SQL Server Database Using a Transaction Log Explorer

    - by Pinal Dave
    In this blog, I’ll show how to use ApexSQL Log, a SQL Server transaction log viewer. You can download it for free, install, and play along. But first, let’s describe some disaster recovery scenarios where it’s useful. About SQL Server disaster recovery Along with database development and administration, you must work on a good recovery plan. Disasters do happen and no one’s immune. What you can do is take all actions needed to be ready for a disaster and go through it with minimal data loss and downtime. Besides creating a recovery plan, it’s necessary to have a list of steps that will be executed when a disaster occurs and to test them before a disaster. This way, you’ll know that the plan is good and viable. Testing can also be used as training for all team members, so they can all understand and execute it when the time comes. It will show how much time is needed to have your servers fully functional again and how much data you can lose in a real-life situation. If these don’t meet recovery-time and recovery-point objectives, the plan needs to be improved. Keep in mind that all major changes in environment configuration, business strategy, and recovery objectives require a new recovery plan testing, as these changes most probably induce a recovery plan changing and tweaking. What is a good SQL Server disaster recovery plan? A good SQL Server disaster recovery strategy starts with planning SQL Server database backups. An efficient strategy is to create a full database backup periodically. Between two successive full database backups, you can create differential database backups. It is essential is to create transaction log backups regularly between full database backups. Keep in mind that transaction log backups can be created only on databases in the full recovery model. In other words, a simple, but efficient backup strategy would be a full database backup every night, a transaction log backup every hour, or every 15 minutes. The frequency depends on how much data you can afford to lose and how busy the database is. Another option, instead of creating a full database backup every night, is to create a full database backup once a week (e.g. on Friday at midnight) and differential database backup every night until next Friday when you will create a full database backup again. Once you create your SQL Server database backup strategy, schedule the backups. You can do that easily using SQL Server maintenance plans. Why are transaction logs important? Transaction log backups contain transactions executed on a SQL Server database. They provide enough information to undo and redo the transactions and roll back or forward the database to a point in time. In SQL Server disaster recovery situations, transaction logs enable to repair a SQL Server database and bring it to the state before the disaster. Be aware that even with regular backups, there will be some data missing. These are the transactions made between the last transaction log backup and the time of the disaster. In some situations, to repair your SQL Server database it’s not necessary to re-create the database from its last backup. The database might still be online and all you need to do is roll back several transactions, such as wrong update, insert, or delete. The restore to a point in time feature is available in SQL Server, but for large databases, it is very time-consuming, as SQL Server first restores a full database backup, and then restores transaction log backups, one after another, up to the recovery point. During that time, the database is unavailable. This is where a SQL Server transaction log viewer can help. For optimal recovery, besides having a database in the full recovery model, it’s important that you haven’t manually truncated the online transaction log. This ensures that all transactions made after the last transaction log backup are still in the online transaction log. All you have to do is read and replay them. How to read a SQL Server transaction log? SQL Server doesn’t provide an option to read transaction logs. There are several SQL Server commands and functions that read the content of a transaction log file (fn_dblog, fn_dump_dblog, and DBCC PAGE), but they are undocumented. They require T-SQL knowledge, return a large number of not easy to read and understand columns, sometimes in binary or hexadecimal format. Another challenge is reading UPDATE statements, as it’s necessary to match it to a value in the MDF file. When you finally read the transactions executed, you have to create a script for it. How to easily repair a SQL database? The easiest solution is to use a transaction log reader that will not only read the transactions in the transaction log files, but also automatically create scripts for the read transactions. In the following example, I will show how to use ApexSQL Log to repair a SQL database after a crash. If a database has crashed and both MDF and LDF files are lost, you have to rely on the full database backup and all subsequent transaction log backups. In another scenario, the MDF file is lost, but the LDF file is available. First, restore the last full database backup on SQL Server using SQL Server Management Studio. I’ll name it Restored_AW2014. Then, start ApexSQL Log It will automatically detect all local servers. If not, click the icon right to the Server drop-down list, or just type in the SQL Server instance name. Select the Windows or SQL Server authentication type and select the Restored_AW2014 database from the database drop-down list. When all options are set, click Next. ApexSQL Log will show the online transaction log file. Now, click Add and add all transaction log backups created after the full database backup I used to restore the database. In case you don’t have transaction log backups, but the LDF file hasn’t been lost during the SQL Server disaster, add it using Add.   To repair a SQL database to a point in time, ApexSQL Log needs to read and replay all the transactions in the transaction log backups (or the LDF file saved after the disaster). That’s why I selected the Whole transaction log option in the Filter setup. ApexSQL Log offers a range of various filters, which are useful when you need to read just specific transactions. You can filter transactions by the time of the transactions, operation type (e.g. to read only data inserts), table name, SQL Server login that made the transaction, etc. In this scenario, to repair a SQL database, I’ll check all filters and make sure that all transactions are included. In the Operations tab, select all schema operations (DDL). If you omit these, only the data changes will be read so if there were any schema changes, such as a new function created, or an existing table modified, they will be ignored and database will not be properly repaired. The data repair for modified tables will fail. In the Tables tab, I’ll make sure all tables are selected. I will uncheck the Show operations on dropped tables option, to reduce the number of transactions. Click Next. ApexSQL Log offers three options. Select Open results in grid, to get a user-friendly presentation of the transactions. As you can see, details are shown for every transaction, including the old and new values for updated columns, which are clearly highlighted. Now, select them all and then create a redo script by clicking the Create redo script icon in the menu.   For a large number of transactions and in a critical situation, when acting fast is a must, I recommend using the Export results to file option. It will save some time, as the transactions will be directly scripted into a redo file, without showing them in the grid first. Select Generate reconstruction (REDO) script , change the output path if you want, and click Finish. After the redo T-SQL script is created, ApexSQL Log shows the redo script summary: The third option will create a command line statement for a batch file that you can use to schedule execution, which is not really applicable when you repair a SQL database, but quite useful in daily auditing scenarios. To repair your SQL database, all you have to do is execute the generated redo script using an integrated developer environment tool such as SQL Server Management Studio or any other, against the restored database. You can find more information about how to read SQL Server transaction logs and repair a SQL database on ApexSQL Solution center. There are solutions for various situations when data needs to be recovered, restored, or transactions rolled back. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL SERVER – DQS Error – Cannot connect to server – A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions” – SetDataQualitySessionPhaseTwo

    - by pinaldave
    Earlier I wrote a blog post about how to install DQS in SQL Server 2012. Today I decided to write a second part of this series where I explain how to use DQS, however, as soon as I started the DQS client, I encountered an error that will not let me pass through and connect with DQS client. It was a bit strange to me as everything was functioning very well when I left it last time.  The error was very big but here are the first few words of it. Cannot connect to server. A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions”: System.Data.SqlClient.SqlException (0×80131904): A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessionPhaseTwo”: The error continues – here is the quick screenshot of the error. As my initial attempts could not fix the error I decided to search online and I finally received a wonderful solution from Microsoft Site. The error has happened due to latest update I had installed on .NET Framework 4. There was a  mismatch between the Module Version IDs (MVIDs) of the SQL Common Language Runtime (SQLCLR) assemblies in the SQL Server 2012 database and the Global Assembly Cache (GAC). This mismatch was to be resolved for the DQS to work properly. The workaround is specified here in detail. Scroll to subtopic 4.23 Some .NET Framework 4 Updates Might Cause DQS to Fail. The script was very much straight forward. Here are the few things to not to miss while applying workaround. Make sure DQS client is properly closed The NETAssemblies is based on your OS. NETAssemblies for 64 bit machine – which is my machine is “c:\windows\Microsoft.NET\Framework64\v4.0.30319″. If you have Winodws installed on any other drive other than c:\windows do not forget to change that in the above path. Additionally if you have 32 bit version installed on c:\windows you should use path as ”c:\windows\Microsoft.NET\Framework\v4.0.30319″ Make sure that you execute the script specified in 4.23 sections in this article in the database DQS_MAIN. Do not run this in the master database as this will not fix your error. Do not forget to restart your SQL Services once above script has been executed. Once you open the client it will work this time. Here is the script which I have bit modified from original script. I strongly suggest that you use original script mentioned 4.23 sections. However, this one is customized my own machine. /* Original source: http://bit.ly/PXX4NE (Technet) Modifications: -- Added Database context -- Added environment variable @NETAssemblies -- Main script modified to use @NETAssemblies */ USE DQS_MAIN GO BEGIN -- Set your environment variable -- assumption - Windows is installed in c:\windows folder DECLARE @NETAssemblies NVARCHAR(200) -- For 64 bit uncomment following line SET @NETAssemblies = 'c:\windows\Microsoft.NET\Framework64\v4.0.30319\' -- For 32 bit uncomment following line -- SET @NETAssemblies = 'c:\windows\Microsoft.NET\Framework\v4.0.30319\' DECLARE @AssemblyName NVARCHAR(200), @RefreshCmd NVARCHAR(200), @ErrMsg NVARCHAR(200) DECLARE ASSEMBLY_CURSOR CURSOR FOR SELECT name AS NAME FROM sys.assemblies WHERE name NOT LIKE '%ssdqs%' AND name NOT LIKE '%microsoft.sqlserver.types%' AND name NOT LIKE '%practices%' AND name NOT LIKE '%office%' AND name NOT LIKE '%stdole%' AND name NOT LIKE '%Microsoft.Vbe.Interop%' OPEN ASSEMBLY_CURSOR FETCH NEXT FROM ASSEMBLY_CURSOR INTO @AssemblyName WHILE @@FETCH_STATUS = 0 BEGIN BEGIN TRY SET @RefreshCmd = 'ALTER ASSEMBLY [' + @AssemblyName + '] FROM ''' + @NETAssemblies + @AssemblyName + '.dll' + ''' WITH PERMISSION_SET = UNSAFE' EXEC sp_executesql @RefreshCmd PRINT 'Successfully upgraded assembly ''' + @AssemblyName + '''' END TRY BEGIN CATCH IF ERROR_NUMBER() != 6285 BEGIN SET @ErrMsg = ERROR_MESSAGE() PRINT 'Failed refreshing assembly ' + @AssemblyName + '. Error message: ' + @ErrMsg END END CATCH FETCH NEXT FROM ASSEMBLY_CURSOR INTO @AssemblyName END CLOSE ASSEMBLY_CURSOR DEALLOCATE ASSEMBLY_CURSOR END GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Error Messages, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Installing SharePoint 2010 in one machine with built in database

    - by sreejukg
    It is very easy to deploy SharePoint 2010 in a single server using the built-in database. Normally one need to choose such installation for evaluation purposes. When installing with default settings, setup installs Microsoft SQL server 2008 express database along with SharePoint. After installing SharePoint, you need to run SharePoint products and technology configuration wizard which will install central admin website and creates the configuration database and content database for SharePoint sites. Limitations 1. You can not perform this installation on a domain controller 2. The maximum size for express edition database is 4 GB SharePoint 2010 only supports 64 bit operating systems. The installation steps are for windows server r2 64 bit enterprise edition. Installation steps The first screen for the installation is as follows As a first step you need to install the s/w prerequisites. Click on the corresponding link Click next, here you have to agree on the license terms. Select the checkbox and then click next. The installation will starts. The progress will be updated in the screen. This may take some time as during this process, there are some components needs to be downloaded from internet. Make sure you are connected to the internet, then only the installation will become a success. If any error occurs, it will display the error, you need to configure in order to continue. If everything ok you will receive the following success page. Click finish to exit the installation window. Now from the first screen, select Install SharePoint server. This will install SharePoint and SQL server 2008 express edition. First you need to enter the product key for SharePoint. Enter the product key and clicks continue. Now you need to accept the license agreement. Select the checkbox and click on continue. Select the installation type you want.   Now click on the standalone button. In production scenario, you need to select the server farm installation. This article only cover the first option, installing server farm is not in the scope of this article. Once you click on the standalone, the installation starts and you can view the progress as below. If any error occurred during installation, you will get the details and link to the log file. Refer log file and fix the corresponding issue and then start the installation again. If installation completes without any error, you will see the below screen. Make sure you selected the check box “Run the SharePoint products Configuration Wizard now” and click close. The SharePoint products configuration wizard starts. Click next; you will get the following warning Click yes and the configuration steps starts. You can view the progress for each step. Once completed the below screen appears to the user. Click finish to complete the installation. Now SharePoint installation is completed. You can navigate to SharePoint central administration website from the administrative tools and start building your portal. Good luck

    Read the article

  • Post MIX10 Decompression

    - by Dave Campbell
    With a big dose of reality, I walked into this place this morning and found out "yeah, I really do write .NET web apps and MS Access for a living" :( ... but it pays the bills and I've gotten *way* used to eating 3 times a day :) MIX10 was great, although the buzz didn't seem as big as MIX09, and I'm not sure why. It also seemed like a different crowd and other folks I talked to agreed with that. Of course now I can outwardly admit that the "Windows Phone 7 Series" is programmed with Silverlight ... how cool is that? I've been biting my tongue about that info for over a month! I cloistered myself in Ballroom A for the week, not counting the Keynotes. That's where the phone sessions were located. I tried to collect the full set, but ended up bailing on the last one because it was ending at the time that MIX10 was ending, and I hadn't spent a whole lot of time in 'The Commons'. I met a bunch of folks I've blogged about, or exchanged email with, and that's always fun. Renewed associations with folks I only see once or twice a year and way too long a list and don't want to mention some and leave off others... I did have an opportunity to meet Charles Petzold... wow that was interesting... I got into Windows development through Charles' Programming Windows 3.1 book 'back in the day' ... couldn't find anyone at Honeywell wanted to join my journey, so it was just me and 'Chuck' :) ... read every word of that book more than once... all marked up, tags sticking out of it. And now he's writing a WP7 book ... gotta get it: Free ebook: Programming Windows Phone 7 Series (DRAFT Preview) I went through my Big List-o-BlogsTM last night and it took over 2 hours because of all the new content since MIX10. I've got 90 posts tagged as of 9PM on 3/21. If everybody stopped right now, it would take me 9 days to push what I have now, so you'll have to be patient! I had another event on Thursday that was *extremely* tiring, so I ended up staying over another night. I drove back into the strip on Friday morning to try to find a non-cheesy souvenir for my wife, and didn't find much. Then I went to Blueberry Hill restaurant for 3 eggs, 3 strips of bacon, and 3 awesome potato pancakes. Check them out if you have time! And then hit the road. In case anyone is wondering, the 2-1/2 hour drive I took across Hoover Dam on Sunday afternoon only took 30 minutes on Friday afternoon... that was a more normal trip! I thoroughly enjoyed the time I spent with everyone. Thanks to John Papa and his crew for the great Insider's party on Monday night... the Blues Brothers were a fun surprise and they did a good job! And the swag was great... thanks to all the contributors for a fun evening at their expense! All I can say is stay tuned, go to live.visitmix.com/videos and watch everything, get the phone tools, start working... everything's different and everything's fun... jump in, it's all Silverlight! Stay in the 'Light! Technorati Tags: Silverlight    Silverlight 4    Windows Phone     MIX10

    Read the article

  • Slide-decks from recent Adelaide SQL Server UG meetings

    - by Rob Farley
    The UK has been well represented this summer at the Adelaide SQL Server User Group, with presentations from Chris Testa-O’Neill (isn’t that the right link? Maybe try this one) and Martin Cairney. The slides are available here and here. I thought I’d particularly mention Martin’s, and how it’s relevant to this month’s T-SQL Tuesday. Martin spoke about Policy-Based Management and the Enterprise Policy Management Framework – something which is remarkably under-used, and yet which can really impact your ability to look after environments. If you have policies set up, then you can easily test each of your SQL instances to see if they are still satisfying a set of policies as defined. Automation (the topic of this month’s T-SQL Tuesday) should mean that your life is made easier, thereby enabling to you to do more. It shouldn’t remove the human element, but should remove (most of) the human errors. People still need to manage the situation, and work out what needs to be done, etc. We haven’t reached a point where computers can replace people, but they are very good at replace the mundaneness and monotony of our jobs. They’ve made our lives more interesting (although many would rightly argue that they have also made our lives more complex) by letting us focus on the stuff that changes. Martin named his talk Put Your Feet Up, which nicely expresses the fact that managing systems shouldn’t be about running around checking things all the time. It must be about having systems in place which tell you when things aren’t going well. It’s never quite as simple as being able to actually put your feet up, but certainly no system should require constant attention. It’s definitely a policy we at LobsterPot adhere to, whether it’s an alert to let us know that an ETL package has run successfully, or a script that generates some code for a report. If things can be automated, it reduces the chance of error, reduces the repetitive nature of work, and in general, keeps both consultants and clients much happier.

    Read the article

  • How to penetrate the QA industry after layoffs, next steps...

    - by Erik
    Briefly, my background is in manual black box testing of websites and applications within the Agile/waterfall context. Over the past four years I was a member of two web development firms' small QA teams dedicated to testing the deployment of websites for national/international non profits, governmental organizations, and for profit business, to name a few: -Brookings Institution -Senate -Tyco Electronics -Blue Cross/Blue Shield -National Geographic -Discover Channel I have a very strong understanding of the: -SDLC -STLC of bugs and website deployment/development -Use Case & Test Case development In March of this year, my last firm downsized and lost my job as a QA tester. I have been networking and doing a very detailed job search, but have had a very difficult time getting my next job within the QA industry, even with my background as a manual black box QA tester in the website development context. My direct question to all of you: What are some ways I can be more competitive and get hired? Options that could get me competitive: Should I go back to school and learn some more 'hard' skills in website development and client side technologies, e.g.: -HTML -CSS -JavaScript Learn programming: -PHP -C# -Ruby -SQL -Python -Perl -?? Get Certified as a QA Tester, there are a countless numbers of programs to become a Certified Tester. Most, if not all jobs, being advertised now require Automated Testing experience, in: -QTP -Loadrunner -Selenium -ETC. Should I learn, Automated testing skills, via a paid course, or teach myself? --Learn scripting languages to understand the automated testing process better? Become a Certified "Project Management Professional" (PMP) to prove to hiring managers that I 'get' the project development life cycle? At the end of the day I need to be competitive and get hired as a QA tester and want to build upon my skills within the QA web development field. How should I do this, without reinventing the wheel? Any help in this regard would be fabulous. Thanks! .erik

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Amit Jasuja's Session at Gartner IAM with Ranjan Jain of Cisco

    - by Naresh Persaud
    If you did not get a chance to attend Amit Jasuja's session at Gartner IAM this week in Las Vegas, here is a summary of the session and a copy of the slides. The agenda featured an introduction by Ray Wagner, Managing VP at Gartner, followed by Amit discussing the trends in Identity and Access Management shaping Oracle's strategy. Today we are seeing the largest re-architecture in a decade. Every business from manufacturing to retail is transforming the way they do business. Manufacturing companies are becoming manufacturing services companies. Retail organizations are embracing social retail. Healthcare is being delivered on-line around the clock. Identity Management is at the center of the transformation. Whether you are Toyota embracing a social network for cars or launching the next Iphone, the Identity of the user provides context to enable the interaction and secure the experience. All of these require greater attention to the context of the user and externalizing applications for customers and employees.  Ranjan discussed how Cisco is transforming  by integrating 1800 applications to a single access management framework and consolidating 3M users across 4 data centers to support internal and external processes. David Lee demonstrated how to use Oracle Access Manager 11g R2 on a mobile application to sign-on across multiple applications while connecting mobile applications to a single access control policy.

    Read the article

  • Cash Application Work Queue in Oracle Receivables Release 12.1.1

    - by Robert Story
    Upcoming WebcastTitle: Cash Application Work Queue in Oracle Receivables Release 12.1.1Date: March 24, 2010Time: 10:00 am EDT, 7:00 am PDT, 14:00 GMT Product Family: E-Business Suite Receivables 12.1.1 Receipts Summary Understand the setups and processes for the Cash Application Work Queue in Release 12.1.1 and learn how to diagnose basic functional issues. This one-hour session is recommended for technical and functional users. We will be covering topics related to processing receipts efficiently, managing the work load of cash application owners and diagnosing issues. Topics will include: Description of Cash Application Work Queue Setup and Work Queue Process Dependencies and Interactions Basic Troubleshooting Steps A short, live demonstration (only if applicable) and question and answer period will be included. Click here to register for this session....... ....... ....... ....... ....... ....... .......The above webcast is a service of the E-Business Suite Communities in My Oracle Support.For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • New Bundling and Minification Support (ASP.NET 4.5 Series)

    - by ScottGu
    This is the sixth in a series of blog posts I'm doing on ASP.NET 4.5. The next release of .NET and Visual Studio include a ton of great new features and capabilities.  With ASP.NET 4.5 you'll see a bunch of really nice improvements with both Web Forms and MVC - as well as in the core ASP.NET base foundation that both are built upon. Today’s post covers some of the work we are doing to add built-in support for bundling and minification into ASP.NET - which makes it easy to improve the performance of applications.  This feature can be used by all ASP.NET applications, including both ASP.NET MVC and ASP.NET Web Forms solutions. Basics of Bundling and Minification As more and more people use mobile devices to surf the web, it is becoming increasingly important that the websites and apps we build perform well with them. We’ve all tried loading sites on our smartphones – only to eventually give up in frustration as it loads slowly over a slow cellular network.  If your site/app loads slowly like that, you are likely losing potential customers because of bad performance.  Even with powerful desktop machines, the load time of your site and perceived performance can make an enormous customer perception. Most websites today are made up of multiple JavaScript and CSS files to separate the concerns and keep the code base tight. While this is a good practice from a coding point of view, it often has some unfortunate consequences for the overall performance of the website.  Multiple JavaScript and CSS files require multiple HTTP requests from a browser – which in turn can slow down the performance load time.  Simple Example Below I’ve opened a local website in IE9 and recorded the network traffic using IE’s built-in F12 developer tools. As shown below, the website consists of 5 CSS and 4 JavaScript files which the browser has to download. Each file is currently requested separately by the browser and returned by the server, and the process can take a significant amount of time proportional to the number of files in question. Bundling ASP.NET is adding a feature that makes it easy to “bundle” or “combine” multiple CSS and JavaScript files into fewer HTTP requests. This causes the browser to request a lot fewer files and in turn reduces the time it takes to fetch them.   Below is an updated version of the above sample that takes advantage of this new bundling functionality (making only one request for the JavaScript and one request for the CSS): The browser now has to send fewer requests to the server. The content of the individual files have been bundled/combined into the same response, but the content of the files remains the same - so the overall file size is exactly the same as before the bundling.   But notice how even on a local dev machine (where the network latency between the browser and server is minimal), the act of bundling the CSS and JavaScript files together still manages to reduce the overall page load time by almost 20%.  Over a slow network the performance improvement would be even better. Minification The next release of ASP.NET is also adding a new feature that makes it easy to reduce or “minify” the download size of the content as well.  This is a process that removes whitespace, comments and other unneeded characters from both CSS and JavaScript. The result is smaller files, which will download and load in a browser faster.  The graph below shows the performance gain we are seeing when both bundling and minification are used together: Even on my local dev box (where the network latency is minimal), we now have a 40% performance improvement from where we originally started.  On slow networks (and especially with international customers), the gains would be even more significant. Using Bundling and Minification inside ASP.NET The upcoming release of ASP.NET makes it really easy to take advantage of bundling and minification within projects and see performance gains like in the scenario above. The way it does this allows you to avoid having to run custom tools as part of your build process –  instead ASP.NET has added runtime support to perform the bundling/minification for you dynamically (caching the results to make sure perf is great).  This enables a really clean development experience and makes it super easy to start to take advantage of these new features. Let’s assume that we have a simple project that has 4 JavaScript files and 6 CSS files: Bundling and Minifying the .css files Let’s say you wanted to reference all of the stylesheets in the “Styles” folder above on a page.  Today you’d have to add multiple CSS references to get all of them – which would translate into 6 separate HTTP requests: The new bundling/minification feature now allows you to instead bundle and minify all of the .css files in the Styles folder – simply by sending a URL request to the folder (in this case “styles”) with an appended “/css” path after it.  For example:    This will cause ASP.NET to scan the directory, bundle and minify the .css files within it, and send back a single HTTP response with all of the CSS content to the browser.  You don’t need to run any tools or pre-processor to get this behavior.  This enables you to cleanly separate your CSS into separate logical .css files and maintain a very clean development experience – while not taking a performance hit at runtime for doing so.  The Visual Studio designer will also honor the new bundling/minification logic as well – so you’ll still get a WYSWIYG designer experience inside VS as well. Bundling and Minifying the JavaScript files Like the CSS approach above, if we wanted to bundle and minify all of our JavaScript into a single response we could send a URL request to the folder (in this case “scripts”) with an appended “/js” path after it:   This will cause ASP.NET to scan the directory, bundle and minify the .js files within it, and send back a single HTTP response with all of the JavaScript content to the browser.  Again – no custom tools or builds steps were required in order to get this behavior.  And it works with all browsers. Ordering of Files within a Bundle By default, when files are bundled by ASP.NET they are sorted alphabetically first, just like they are shown in Solution Explorer. Then they are automatically shifted around so that known libraries and their custom extensions such as jQuery, MooTools and Dojo are loaded before anything else. So the default order for the merged bundling of the Scripts folder as shown above will be: Jquery-1.6.2.js Jquery-ui.js Jquery.tools.js a.js By default, CSS files are also sorted alphabetically and then shifted around so that reset.css and normalize.css (if they are there) will go before any other file. So the default sorting of the bundling of the Styles folder as shown above will be: reset.css content.css forms.css globals.css menu.css styles.css The sorting is fully customizable, though, and can easily be changed to accommodate most use cases and any common naming pattern you prefer.  The goal with the out of the box experience, though, is to have smart defaults that you can just use and be successful with. Any number of directories/sub-directories supported In the example above we just had a single “Scripts” and “Styles” folder for our application.  This works for some application types (e.g. single page applications).  Often, though, you’ll want to have multiple CSS/JS bundles within your application – for example: a “common” bundle that has core JS and CSS files that all pages use, and then page specific or section specific files that are not used globally. You can use the bundling/minification support across any number of directories or sub-directories in your project – this makes it easy to structure your code so as to maximize the bunding/minification benefits.  Each directory by default can be accessed as a separate URL addressable bundle.  Bundling/Minification Extensibility ASP.NET’s bundling and minification support is built with extensibility in mind and every part of the process can be extended or replaced. Custom Rules In addition to enabling the out of the box - directory-based - bundling approach, ASP.NET also supports the ability to register custom bundles using a new programmatic API we are exposing.  The below code demonstrates how you can register a “customscript” bundle using code within an application’s Global.asax class.  The API allows you to add/remove/filter files that go into the bundle on a very granular level:     The above custom bundle can then be referenced anywhere within the application using the below <script> reference:     Custom Processing You can also override the default CSS and JavaScript bundles to support your own custom processing of the bundled files (for example: custom minification rules, support for Saas, LESS or Coffeescript syntax, etc). In the example below we are indicating that we want to replace the built-in minification transforms with a custom MyJsTransform and MyCssTransform class. They both subclass the CSS and JavaScript minifier respectively and can add extra functionality:     The end result of this extensibility is that you can plug-into the bundling/minification logic at a deep level and do some pretty cool things with it. 2 Minute Video of Bundling and Minification in Action Mads Kristensen has a great 90 second video that shows off using the new Bundling and Minification feature.  You can watch the 90 second video here. Summary The new bundling and minification support within the next release of ASP.NET will make it easier to build fast web applications.  It is really easy to use, and doesn’t require major changes to your existing dev workflow.  It is also supports a rich extensibility API that enables you to customize it however you want. You can easily take advantage of this new support within ASP.NET MVC, ASP.NET Web Forms and ASP.NET Web Pages based applications. Hope this helps, Scott P.S. In addition to blogging, I use Twitter to-do quick posts and share links. My Twitter handle is: @scottgu

    Read the article

  • How to become a Kernel/Systems/Device driver programmer?

    - by accordionfolder
    Hello all! I currently work in a professional capacity as a software engineer working with the Android OS. We work at integrating our platform as a native daemon among other facets of the project. I primarily work in Java developing the SDK and Android applications, but get to help with the platform in C/C++. Anywho, I have a great interest to work professionally developing low level for linux. I am not unhappy in my current position and will hang around as long as the company lets me (as a matter of fact I quite enjoy working there!), but I would like to work my way that direction. I've been working through Linux Kernel Development (Robert Love) and The Linux Programming Interface (Michael Kerrisk) (In addition to strengthening my C skills at every chance I get) and casually browsing Monster and similar sites. The problem I see is, there are no entry level positions. How does one break into this field? Anytime I see "Linux Systems Programmer" or "Linux Device Driver Programmer" they all require at the minimum 5-7 years of relevant experience. They want someone who knows the ropes, not a junior level programmer (I've been working for 7 months now...). So, I'm assuming, that some of you on stackoverflow work in a professional capacity doing just what I would like to do. How did you get there? What platforms did you use to work your way there? Am I going to have a more difficult time because I have my bachelors in CSC as opposed to a computer engineer (where they would experience a bit more embedded, asm, etc)?

    Read the article

  • Jack of all trades, master of none [closed]

    - by Rope
    I've got a question similar to this one: Is looking for code examples constantly a sign of a bad developer? though not entirely. I got off college 2 years ago and I'm currently struggling with a University study. Most likely I'll have to drop out and start working within the next couple of months. Now here's the pickle. I have no speciality what so ever. When I got out of college I had worked with C, C++ and Java. I had had an internship at NEC-Philips and got familiar with C# (.NET) and I taught myself how it worked. After college I started working with PHP, HTML,SQL, MySQL Javascript and Jquery. I'm currently teaching myself Ruby on Rails and thus Ruby. At my university I also got familiar with MATLAB. As you can see I've got a broad scope of languages and frameworks I'm familiar with, but none I know inside-out. So I guess this kinda applies to me: "Jack of all trades, master of none.". I've been looking for jobs and I've noticed that most of them require some years of experience with a certain language and some specifications that apply to that language. My question is: How do I pick a speciality? And how do I know if I'll actually enjoy it? As I've worked with loads of languages how would I be able to tell this is right for me? I don't like being tied down to a specific role and I quite like being a generalist. But in order to make more money I would need a specialisation. How would I pick something that goes against my nature? Thanks in advance, Rope.

    Read the article

  • New whitepaper, “Why Oracle Sun ZFS Storage Appliance for Oracle Databases?” now available.

    - by Cinzia Mascanzoni
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Databases are the backbone of today’s modern business providing transaction integrity for key business systems such as payment engines or providing the core of analytical data for decision-making. These diverse use cases require a flexible, high performance and highly available storage platform. The ZFS Storage Appliance is ideally suited with its architecture providing a platform flexible enough to meet the ever-changing availability, capacity and performance requirements from the business. In this just published white paper the authors provide both business and technical evidence of the suitability of the Oracle ZSF Storage Appliance as primary storage for Oracle Database 11gR2 environments. Click here to download the whitepaper.

    Read the article

  • Slide-decks from recent Adelaide SQL Server UG meetings

    - by Rob Farley
    The UK has been well represented this summer at the Adelaide SQL Server User Group, with presentations from Chris Testa-O’Neill (isn’t that the right link? Maybe try this one) and Martin Cairney. The slides are available here and here. I thought I’d particularly mention Martin’s, and how it’s relevant to this month’s T-SQL Tuesday. Martin spoke about Policy-Based Management and the Enterprise Policy Management Framework – something which is remarkably under-used, and yet which can really impact your ability to look after environments. If you have policies set up, then you can easily test each of your SQL instances to see if they are still satisfying a set of policies as defined. Automation (the topic of this month’s T-SQL Tuesday) should mean that your life is made easier, thereby enabling to you to do more. It shouldn’t remove the human element, but should remove (most of) the human errors. People still need to manage the situation, and work out what needs to be done, etc. We haven’t reached a point where computers can replace people, but they are very good at replace the mundaneness and monotony of our jobs. They’ve made our lives more interesting (although many would rightly argue that they have also made our lives more complex) by letting us focus on the stuff that changes. Martin named his talk Put Your Feet Up, which nicely expresses the fact that managing systems shouldn’t be about running around checking things all the time. It must be about having systems in place which tell you when things aren’t going well. It’s never quite as simple as being able to actually put your feet up, but certainly no system should require constant attention. It’s definitely a policy we at LobsterPot adhere to, whether it’s an alert to let us know that an ETL package has run successfully, or a script that generates some code for a report. If things can be automated, it reduces the chance of error, reduces the repetitive nature of work, and in general, keeps both consultants and clients much happier.

    Read the article

  • PO Communication in PDF

    - by Robert Story
    Upcoming WebcastsDate: March 29, 2010 Time: 2 pm London, 9:00 am EDT, 6:00 am PDT, 13:00 GMT Click here to register for this sessionDate: March 29, 2010 Time: 9 am London, 4:00 am EDT, 1:00 am PDT, 8:00 GMT Click here to register for this session Product Family: ProcurementSummary This one-hour session is recommended for technical and functional users who would like to know about the PO Communication functionality in procurement. Topics will include: Introduction to PO PDF communication - 11.5.10 Key ConceptsPrerequisites, Scope Overview of PDF document generation PDF solution overviewTechnical Overview of PDF generation Setup steps Triggering Points of PDF generation PO Output for communication - Concurrent programEnter PO form: View DocIsupplier portal/Contracts preview Enhancements PDF Generation in Custom LayoutsAttachments in fax communicationR12 Communication Nontext Attachments through Email Customizing templates Advantages of PDF communication Troubleshooting (Tips) A short, live demonstration (only if applicable) and question and answer period will be included........ ....... ....... ....... ....... ....... .......The above webcast is a service of the E-Business Suite Communities in My Oracle Support.For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • Create Custom Windows Key Keyboard Shortcuts in Windows

    - by Asian Angel
    Nearly everyone uses keyboard shortcuts of some sort on their Windows system but what if you could create new ones for your favorite apps or folders? You might just be amazed at how simple it can be with just a few clicks and no programming using WinKey. WinKey in Action During the installation process you will see this window that gives you a good basic idea of just what can be accomplished with this wonderful little app. As soon as the installation process has finished you will see the “Main App Window”. It provides a simple straightforward listing of all the keyboard shortcuts that it is currently managing. Note: WinKey will automatically add an entry to the “Startup Listing” in your “Start Menu” during installation. To see the regular built-in Windows keyboard shortcuts that it is managing click “Standard Shortcuts” to select it and then click on “Properties”. For those who are curious WinKey does have a “System Tray Icon” that can be disabled if desired. Now onto creating those new keyboard shortcuts… For our example we decided to create a keyboard shortcut for an app rather than a folder. To create a shortcut for an app click on the small “Paper Icon” as shown here. Once you have done that browse to the appropriate folder and select the exe file. The second step will be choosing which keyboard shortcut you would like to associate with that particular app. You can use the drop-down list to choose from a listing of available keyboard combinations. For our example we chose “Windows Key + A”. The final step is choosing the “Run Mode”. There are three options available in the drop-down list…choose the one that best suits your needs. Here is what our example looked like once finished. All that is left to do at this point is click “OK” to finish the process. And just like that your new keyboard shortcut is now listed in the “Main App Window”. Time to try out your new keyboard shortcut! One quick use of our new keyboard shortcut and Iron Browser opened right up. WinKey really does make creating new keyboard shortcuts as simple as possible. Conclusion If you have been wanting to create new keyboard shortcuts for your favorite apps and folders then it really does not get any simpler than with WinKey. This is definitely a recommended app for anyone who loves “get it done” software. Links Download WinKey at Softpedia Similar Articles Productive Geek Tips Show Keyboard Shortcut Access Keys in Windows VistaCreate a Keyboard Shortcut to Access Hidden Desktop Icons and FilesKeyboard Ninja: 21 Keyboard Shortcut ArticlesAnother Desktop Cube for Windows XP/VistaHow-To Geek on Lifehacker: Control Your Computer with Shortcuts & Speed Up Vista Setup TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Recycle ! Find That Elusive Icon with FindIcons Looking for Good Windows Media Player 12 Plug-ins? Find Out the Celebrity You Resemble With FaceDouble Whoa ! Use Printflush to Solve Printing Problems

    Read the article

  • Accessing Server-Side Data from Client Script: Accessing JSON Data From an ASP.NET Page Using jQuery

    When building a web application, we must decide how and when the browser will communicate with the web server. The ASP.NET WebForms model greatly simplifies web development by providing a straightforward mechanism for exchanging data between the browser and the server. With WebForms, each ASP.NET page's rendered output includes a <form> element that performs a postback to the same page whenever a Button control within the form is clicked, or whenever the user modifies a control whose AutoPostBack property is set to True. On postback, the server sends the entire contents of the web page back to the browser, which then displays this new content. With WebForms we don't need to spend much time or effort thinking about how or when the browser will communicate with the server or how that returned information will be processed by the browser. It just works. While this approach certainly works and has its advantages, it's not without its drawbacks. The primary concern with postback forms is that they require a large amount of information to be exchanged between the browser and the server. Specifically, the browser sends back all of its form fields (including hidden ones, like view state, which may be quite large) and then the server sends back the entire contents of the web page. Granted, there are scenarios where this large quantity of data needs to be exchanged, but in many cases we can use techniques that exchange much less information. However, these techniques necessitate spending more time and effort thinking about how and when to have the browser communicate with the server and intelligently deciding on what information needs to be exchanged. This article, the first in a multi-part series, examines different techniques for accessing server-side data from a browser using client-side script. Throughout this series we will explore alternative ways to expose data on the server so that it can be accessed from the browser using script; we will also examine various tools for communicating with the server from JavaScript, including jQuery and the ASP.NET AJAX library. Read on to learn more! Read More >

    Read the article

  • A temporary disagreement

    - by Tony Davis
    Last month, Phil Factor caused a furore amongst some MVPs with an article that attempted to offer simple advice to developers regarding the use of table variables, versus local and global temporary tables, in their code. Phil makes clear that the table variables do come with some fairly major limitations.no distribution statistics, no parallel query plans for queries that modify table variables.but goes on to suggest that for reasonably small-scale strategic uses, and with a bit of due care and testing, table variables are a "good thing". Not everyone shares his opinion; in fact, I imagine he was rather aghast to learn that there were those felt his article was akin to pulling the pin out of a grenade and tossing it into the database; table variables should be avoided in almost all cases, according to their advice, in favour of temp tables. In other words, a fairly major feature of SQL Server should be more-or-less 'off limits' to developers. The problem with temp tables is that, because they are scoped either in the procedure or the connection, it is easy to allow them to hang around for too long, eating up precious memory and bulking up the shared tempdb database. Unless they are explicitly dropped, global temporary tables, and local temporary tables created within a connection rather than within a stored procedure, will persist until the connection is closed or, with connection pooling, until the connection is reused. It's also quite common with ASP.NET applications to have connection leaks, as Bill Vaughn explains in his chapter in the "SQL Server Deep Dives" book, meaning that the web page exits without closing the connection object, maybe due to an error condition. This will then hang around in the heap for what might be hours before picked up by the garbage collector. Table variables are much safer in this regard, since they are batch-scoped and so are cleaned up automatically once the batch is complete, which also means that they are intuitive to use for the developer because they conform to scoping rules that are closer to those in procedural code. On the surface then, an ideal way to deal with issues related to tempdb memory hogging. So why did Phil qualify his recommendation to use Table Variables? This is another of those cases where, like scalar UDFs and table-valued multi-statement UDFs, developers can sometimes get into trouble with a relatively benign-looking feature, due to way it's been implemented in SQL Server. Once again the biggest problem is how they are handled internally, by the SQL Server query optimizer, which can make very poor choices for JOIN orders and so on, in the absence of statistics, especially when joining to tables with highly-skewed data. The resulting execution plans can be horrible, as will be the resulting performance. If the JOIN is to a large table, that will hurt. Ideally, Microsoft would simply fix this issue so that developers can't get burned in this way; they've been around since SQL Server 2000, so Microsoft has had a bit of time to get it right. As I commented in regard to UDFs, when developers discover issues like with such standard features, the database becomes an alien planet to them, where death lurks around each corner, and they continue to avoid these "killer" features years after the problems have been eventually resolved. In the meantime, what is the right approach? Is it to say "hammers can kill, don't ever use hammers", or is it to try to explain, as Phil's article and follow-up blog post have tried to do, what the feature was intended for, why care must be applied in its use, and so enable developers to make properly-informed decisions, without requiring them to delve deep into the inner workings of SQL Server? Cheers, Tony.

    Read the article

  • Leaving Microsoft

    - by Stephen Walther
    After two and a half years working with the ASP.NET team, I’ve decided that this is the right time to leave Microsoft and, with the help of some friends, re-launch my ASP.NET training and consulting company. The company has the modest name Superexpert. While working on my Ph.D. at MIT, I was surrounded by professors and students who were passionate about knowledge. During the Internet boom, I was lucky enough to work side-by-side with some very smart and hard-working people to create several successful startups. However, the people I worked with at Microsoft were among the smartest and hardest working. Microsoft hires a small number of people and gives them huge responsibilities. It continues to amaze me that so few people work on the ASP.NET team when you consider how much the team produces. I had the opportunity to work with a number of inspiring people at Microsoft. I’ll miss working with Scott Hunter, Dave Reed, Boris Moore, Eilon Lipton, Scott Guthrie, James Senior, Jim Wang, Phil Haack, Damian Edwards, Vishal Joshi, Mike Pope, Jon Young, Dmitry Robsman, Simon Calvert, Stefan Schackow, and many others. I’m proud of what we accomplished while I was working at Microsoft. We reached out to the jQuery team and changed direction from Microsoft Ajax to jQuery. We successfully contributed several important new features to the open-source jQuery project including jQuery Templates, jQuery Data-Linking, jQuery Globalization, and (as John Resig announced at the last jQuery conference) jQuery Require. I’m looking forward to returning to training and consulting. We want to focus on providing consulting on the “right way” of building ASP.NET websites, which we call Modern ASP.NET applications. By Modern ASP.NET applications, I mean applications built with ASP.NET MVC, jQuery, HTML5, and Visual Studio ALM. Additionally, we want to help companies that have existing ASP.NET Web Forms applications migrate to ASP.NET MVC. If you are interested in having us provide training for your company or you need help building a custom ASP.NET application then please contact us at [email protected] or visit our website at Superexpert.com.

    Read the article

  • Add physical disk to KVM virtual machine

    - by evan
    I'm setting up a file server (nas4free) as a KVM virtual machine on a Ubuntu Server 12.04 system. How do I add physical hard drives directly to the VM so they can be used by the guest (nas4free), but not the host? Specifically the hard drive I'd like to mount is /dev/sda (which is not currently mounted on the server.) So far I've found two solutions but I haven't gotten either to work. The first is from Server Fault where it's suggested to use virt-manager. I haven't gotent this to work because when I try to select an existing drive nothing is being listed. My best guess as to why this is, is because I'm using virt-manager over ssh and not connecting as root, should that make a difference? The second solution I've found here is to just run the command (modified for my system) qm set nas4free -virtio /dev/sda but that seems to require proxmox which I don't have installed and doesn't seem to be in the default repositories? Finally, once the above is sorted out and I can mount the drive directly to the VM, does anyone have an experience with whether the drive should be mounted to the VM as scsi, ide, or virtio? (I know virtio was recommend in the linked ServerFault page, but I hadn't heard of it before now since I mainly use VMWare). Thanks for your help!!!

    Read the article

  • Ignoring Robots - Or Better Yet, Counting Them Separately

    - by [email protected]
    It is quite common to have web sessions that are undesirable from the point of view of analytics. For example, when there are either internal or external robots that check the site's health, index it or just extract information from it. These robotic session do not behave like humans and if their volume is high enough they can sway the statistics and models.One easy way to deal with these sessions is to define a partitioning variable for all the models that is a flag indicating whether the session is "Normal" or "Robot". Then all the reports and the predictions can use the "Normal" partition, while the counts and statistics for Robots are still available.In order for this to work, though, it is necessary to have two conditions:1. It is possible to identify the Robotic sessions.2. No learning happens before the identification of the session as a robot.The first point is obvious, but the second may require some explanation. While the default in RTD is to learn at the end of the session, it is possible to learn in any entry point. This is a setting for each model. There are various reasons to learn in a specific entry point, for example if there is a desire to capture exactly and precisely the data in the session at the time the event happened as opposed to including changes to the end of the session.In any case, if RTD has already learned on the session before the identification of a robot was done there is no way to retract this learning.Identifying the robotic sessions can be done through the use of rules and heuristics. For example we may use some of the following:Maintain a list of known robotic IPs or domainsDetect very long sessions, lasting more than a few hours or visiting more than 500 pagesDetect "robotic" behaviors like a methodic click on all the link of every pageDetect a session with 10 pages clicked at exactly 20 second intervalsDetect extensive non-linear navigationNow, an interesting experiment would be to use the flag above as an output of a model to see if there are more subtle characteristics of robots such that a model can be used to detect robots, even if they fall through the cracks of rules and heuristics.In any case, the basic and simple technique of partitioning the models by the type of session is simple to implement and provides a lot of advantages.

    Read the article

  • How To Setup Email Alerts on Linux Using Gmail or SMTP

    - by Sysadmin Geek
    Linux machines may require administrative intervention in countless ways, but without manually logging into them how would you know about it? Here’s how to setup emails to get notified when your machines want some tender love and attention. Of course, this technique is meant for real servers, but if you’ve got a Linux box sitting in your house acting as a home server, you can use it there as well. In fact, since many home ISPs block regular outbound email, you might find this technique a great way to ensure you still get administration emails, even from your home servers. Latest Features How-To Geek ETC The How-To Geek Guide to Learning Photoshop, Part 8: Filters Get the Complete Android Guide eBook for Only 99 Cents [Update: Expired] Improve Digital Photography by Calibrating Your Monitor The How-To Geek Guide to Learning Photoshop, Part 7: Design and Typography How to Choose What to Back Up on Your Linux Home Server How To Harmonize Your Dual-Boot Setup for Windows and Ubuntu Hang in There Scrat! – Ice Age Wallpaper How Do You Know When You’ve Passed Geek and Headed to Nerd? On The Tip – A Lamborghini Theme for Chrome and Iron What if Wile E. Coyote and the Road Runner were Human? [Video] Peaceful Winter Cabin Wallpaper Store Tabs for Later Viewing in Opera with Tab Vault

    Read the article

  • May I know what python is great at [on hold]

    - by user108437
    I am amazed by python on how tidy the code is, so i decided to learn it, and 2 days pass and I am completely in love with python, but I just code it for hobby thing like chatting robot, uploading to file hosting scripts, etc that small tools for my own daily internet life, and not much for work. I can't find a real life usage of python here. I live in Singapore, when I see in the job skill needed, from those companies hiring, only one asking for python. so I begin to be doubtful whether this skill of mine really worth my time investing it? I also heard about django, and don't know how much popular it is comparing to asp.net. So i ask your help to tell me your country and how popular python there and whether you like python or not? I really like python because of the easy scripting language (not complicated like C++) but the usefulness is almost near C++ where many open source library out there that can run both in windows and linux, so the portability is great! i just want to justify my time for learning python, as because my job does not require python, and I don't have much time at home to learn something new.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

< Previous Page | 203 204 205 206 207 208 209 210 211 212 213 214  | Next Page >