Search Results

Search found 6169 results on 247 pages for 'future proof'.

Page 21/247 | < Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >

  • Java api to get windows Special folders

    - by SvrGuy
    I once found a nifty little library that used JNI to allow java applications on Windows to get the locations of various "special" directories on windows. I can't for the life of me find it again... In particular, I need to get the location of the "All Users" (shared) "Application Data" directory. So, anyone have a bullet proof way in Java to locate the "All Users" "Application Data" folder? It needs to be bullet proof.

    Read the article

  • Development Environment for Testing MySQL Replication

    - by Dave Morris
    Is there an easy way to setup an environment on one machine (or a VM) with MySQL replication? I would like to put together a proof of concept of MySQL replication with one Master write instance and two slave instances for reads. I can see doing it across 2 or 3 VMs running on my computer, but that would really bog down my system. I'd rather have everything running on the same VM. What's the best way to proof out scalability solutions like this in a local dev environment? Thanks for your help, Dave

    Read the article

  • Première sortie pour Android 3, le successeur d'Android 2.3 intégrera une version 3D des Google Maps

    Premières sortie pour Android 3 Le successeur d'Android 2.3 intégrera une version 3D des Google MapsLors de la conférence Dive Into Mobile qui se déroule actuellement, Andy Rubin, en charge du développement d'Android, a fait lors de sa keynote une démonstration de la future version d'Android (3.0, alias Honeycomb) sur une tablette Motorola.Le fait marquant de cette présentation (l'UI pour l'instant épurée n'ayant été qu'entraperçue) fut la démonstration de la future version de Google Maps qui sortira dans les jours avenir.De cette présentation il ressort qu'au menu de la prochaine mise à jour de Google Maps nous aurons : le chargement beaucoup plus rapide des cartes ; la gestion de l'affichage de...

    Read the article

  • Live Debugging

    - by Daniel Moth
    Based on my classification of diagnostics, you should know what live debugging is NOT about - at least according to me :-) and in this post I'll share how I think of live debugging. These are the (outer) steps to live debugging Get the debugger in the picture. Control program execution. Inspect state. Iterate between 2 and 3 as necessary. Stop debugging (and potentially start new iteration going back to step 1). Step 1 has two options: start with the debugger attached, or execute your binary separately and attach the debugger later. You might say there is a 3rd option, where the app notifies you that there is an issue, referred to as JIT debugging. However, that is just a variation of the attach because that is when you start the debugging session: when you attach. I'll be covering in future posts how this step works in Visual Studio. Step 2 is about pausing (or breaking) your app so that it makes no progress and remains "frozen". A sub-variation is to pause only parts of its execution, or in other words to freeze individual threads. I'll be covering in future posts the various ways you can perform this step in Visual Studio. Step 3, is about seeing what the state of your program is when you have paused it. Typically it involves comparing the state you are finding, with a mental picture of what you thought the state would be. Or simply checking invariants about the intended state of the app, with the actual state of the app. I'll be covering in future posts the various ways you can perform this step in Visual Studio. Step 4 is necessary if you need to inspect more state - rinse and repeat. Self-explanatory, and will be covered as part of steps 2 & 3. Step 5 is the most straightforward, with 3 options: Detach the debugger; terminate your binary though the normal way that it terminates (e.g. close the main window); and, terminate the debugging session through your debugger with a result that it terminates the execution of your program too. In a future post I'll cover the ways you can detach or terminate the debugger in Visual Studio. I found an old picture I used to use to map the steps above on Visual Studio 2010. It is basically the Debug menu with colored rectangles around each menu mapping the menu to one of the first 3 steps (step 5 was merged with step 1 for that slide). Here it is in case it helps: Stay tuned for more... Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Best partition Scheme for Ubuntu Server

    - by K.K Patel
    I am going to deploy Ubuntu server having Following servers on it Bind server, dhcp server, LAMP Server, Openssh Server, Ldap server, Monodb database, FTP server,mail server, Samba server, NFS server , in future I want to set Openstack for PAAS. Currently I have Raid 5 with 10TB. How should I make my Partition Scheme So never get problem in future and easily expand Storage size. Suggest me such a partition Scheme with giving specific percentage of Storage to partitions like /, /boot, /var, /etc. Thanks In advance

    Read the article

  • MS Tech Ed 2011 Coming Soon

    - by sonam
    Microsoft Tech ed 2010 was a great success. Infact  Most of such conferences always provide a great place to meet other  technology enthusiasts and ofcourse,whats in the pipeline for future products of a company or field.. And yet again,MS Tech ed India is coming on 23-25 march  in Banglore,India.Well,the place is  ofcourse right suited for any IT/Computing conference.After all,Its Silicon Valley of India.. From Last year.I remember  a session by Harish about  “Building pure client side apps with  Jquery and Microsoft Ajax .” Here’s the video: http://live.viasilverlight.com/TechEdOnDemand/Breakouts/TheWebSimplified1/Session4/AjaxClientSideApps.wmv At that time only,I got to know that jquery is so easy to use for  ajax or client side templating.Though I prefer jquery over  Microsoft Ajax many folds.UpdatePanel  is Dead for sure in my view. I believe,Web forms will be dead sooner or later with ASP.Net  MVC  gaining share many folds.(TODO:Learn MVC). The new standard is surely:JQUERY . Between,Last years videos and ppt’s  are available to browse and download: http://microsoftteched.in/2010/downloads.aspx After going through Tech Ad 2011 session agendas : http://www.microsoft.com/india/teched2011/agenda.aspx Few of my personal choices to watch would be: Day 1: a) Identity And Access Control in the Cloud        b)Windows 7 at  Home:Digitizing your Home.(Sounds cool.)        c) And ofcourse,Jquery and MS ajax(Lets see if MS can do something that’s not already happening with their version Of Ajax).. Day 2:  a) Lap Around Silverlight 5 and Html 5 as I have heard some hot talks that html5 will kill Silverlight,(I don’t see it in near future though).        b) Html 5 more than “Html 5”…Google will be seeing this one. Day3: a) Cross Browser applications in Azure       b)VS 2010 sessions of automated testing azure apps etc. Windows Phone 7 sessions will surely be of more interest now after MS-Nokia Deal. Though,Personally,I would want atleast some worth of  sessions on MS  future in Robotics,AI.Perhaps  I am looking at wrong place..(When is PDC?) And Since,Bill Gates  consider Robotics as the next big thing, Refer  this one : http://www.cs.virginia.edu/robins/A_Robot_in_Every_Home.pdf  I am sure,they wont loose this new hot spot to competitors,  like how google rules in Online  Search now.Robotics and AI will surely provide a big battlefield  for future.See,What IBM is doing with IBM Watson. OR see this, http://www.sciencedaily.com/releases/2011/02/110218083711.htm this is cool only if you can control your mind.Atleast,I’ll prefer regular driving (I would devote my mind seeing  people,places which we see on road).thats what jouney makes “cool”.:P.

    Read the article

  • 6 Facts About GlassFish Announcement

    - by Bruno.Borges
    Since Oracle announced the end of commercial support for future Oracle GlassFish Server versions, the Java EE world has started wondering what will happen to GlassFish Server Open Source Edition. Unfortunately, there's a lot of misleading information going around. So let me clarify some things with facts, not FUD. Fact #1 - GlassFish Open Source Edition is not dead GlassFish Server Open Source Edition will remain the reference implementation of Java EE. The current trunk is where an implementation for Java EE 8 will flourish, and this will become the future GlassFish 5.0. Calling "GlassFish is dead" does no good to the Java EE ecosystem. The GlassFish Community will remain strong towards the future of Java EE. Without revenue-focused mind, this might actually help the GlassFish community to shape the next version, and set free from any ties with commercial decisions. Fact #2 - OGS support is not over As I said before, GlassFish Server Open Source Edition will continue. Main change is that there will be no more future commercial releases of Oracle GlassFish Server. New and existing OGS 2.1.x and 3.1.x commercial customers will continue to be supported according to the Oracle Lifetime Support Policy. In parallel, I believe there's no other company in the Java EE business that offers commercial support to more than one build of a Java EE application server. This new direction can actually help customers and partners, simplifying decision through commercial negotiations. Fact #3 - WebLogic is not always more expensive than OGS Oracle GlassFish Server ("OGS") is a build of GlassFish Server Open Source Edition bundled with a set of commercial features called GlassFish Server Control and license bundles such as Java SE Support. OGS has at the moment of this writing the pricelist of U$ 5,000 / processor. One information that some bloggers are mentioning is that WebLogic is more expensive than this. Fact 3.1: it is not necessarily the case. The initial edition of WebLogic is called "Standard Edition" and falls into a policy where some “Standard Edition” products are licensed on a per socket basis. As of current pricelist, US$ 10,000 / socket. If you do the math, you will realize that WebLogic SE can actually be significantly more cost effective than OGS, and a customer can save money if running on a CPU with 4 cores or more for example. Quote from the price list: “When licensing Oracle programs with Standard Edition One or Standard Edition in the product name (with the exception of Java SE Support, Java SE Advanced, and Java SE Suite), a processor is counted equivalent to an occupied socket; however, in the case of multi-chip modules, each chip in the multi-chip module is counted as one occupied socket.” For more details speak to your Oracle sales representative - this is clearly at list price and every customer typically has a relationship with Oracle (like they do with other vendors) and different contractual details may apply. And although OGS has always been production-ready for Java EE applications, it is no secret that WebLogic has always been more enterprise, mission critical application server than OGS since BEA. Different editions of WLS provide features and upgrade irons like the WebLogic Diagnostic Framework, Work Managers, Side by Side Deployment, ADF and TopLink bundled license, Web Tier (Oracle HTTP Server) bundled licensed, Fusion Middleware stack support, Oracle DB integration features, Oracle RAC features (such as GridLink), Coherence Management capabilities, Advanced HA (Whole Service Migration and Server Migration), Java Mission Control, Flight Recorder, Oracle JDK support, etc. Fact #4 - There’s no major vendor supporting community builds of Java EE app servers There are no major vendors providing support for community builds of any Open Source application server. For example, IBM used to provide community support for builds of Apache Geronimo, not anymore. Red Hat does not commercially support builds of WildFly and if I remember correctly, never supported community builds of former JBoss AS. Oracle has never commercially supported GlassFish Server Open Source Edition builds. Tomitribe appears to be the exception to the rule, offering commercial support for Apache TomEE. Fact #5 - WebLogic and GlassFish share several Java EE implementations It has been no secret that although GlassFish and WebLogic share some JSR implementations (as stated in the The Aquarium announcement: JPA, JSF, WebSockets, CDI, Bean Validation, JAX-WS, JAXB, and WS-AT) and WebLogic understands GlassFish deployment descriptors, they are not from the same codebase. Fact #6 - WebLogic is not for GlassFish what JBoss EAP is for WildFly WebLogic is closed-source offering. It is commercialized through a license-based plus support fee model. OGS although from an Open Source code, has had the same commercial model as WebLogic. Still, one cannot compare GlassFish/WebLogic to WildFly/JBoss EAP. It is simply not the same case, since Oracle has had two different products from different codebases. The comparison should be limited to GlassFish Open Source / Oracle GlassFish Server versus WildFly / JBoss EAP. But the message now is much clear: Oracle will commercially support only the proprietary product WebLogic, and invest on GlassFish Server Open Source Edition as the reference implementation for the Java EE platform and future Java EE 8, as a developer-friendly community distribution, and encourages community participation through Adopt a JSR and contributions to GlassFish. In comparison Oracle's decision has pretty much the same goal as to when IBM killed support for Websphere Community Edition; and to when Red Hat decided to change the name of JBoss Community Edition to WildFly, simplifying and clarifying marketing message and leaving the commercial field wide open to JBoss EAP only. Oracle can now, as any other vendor has already been doing, focus on only one commercial offer. Some users are saying they will now move to WildFly, but it is important to note that Red Hat does not offer commercial support for WildFly builds. Although the future JBoss EAP versions will come from the same codebase as WildFly, the builds will definitely not be the same, nor sharing 100% of their functionalities and bug fixes. This means there will be no company running a WildFly build in production with support from Red Hat. This discussion has also raised an important and interesting information: Oracle offers a free for developers OTN License for WebLogic. For other environments this is different, but please note this is the same policy Red Hat applies to JBoss EAP, as stated in their download page and terms. Oracle had the same policy for OGS. TL;DR; GlassFish Server Open Source Edition isn’t dead. Current and new OGS 2.x/3.x customers will continue to have support (respecting LSP). WebLogic is not necessarily more expensive than OGS. Oracle will focus on one commercially supported Java EE application server, like other vendors also limit themselves to support one build/product only. Community builds are hardly supported. Commercially supported builds of Open Source products are not exactly from the same codebase as community builds. What's next for GlassFish and the Java EE community? There are conversations in place to tackle some of the community desires, most of them stated by Markus Eisele in his blog post. We will keep you posted.

    Read the article

  • 6 Facts About GlassFish Announcement

    - by Bruno.Borges
    To help clarify the message about the recent roadmap for GlassFish, I decided to put together 6 facts about the announcement, future of GlassFish, and the Java EE platform as a whole:  "Since Oracle announced the end of commercial support for future Oracle GlassFish Server versions, the Java EE world has started wondering what will happen to GlassFish Server Open Source Edition. Unfortunately, there's a lot of misleading information going around. So let me clarify some things with facts, not FUD." Read full story here

    Read the article

  • Current State EA: Focus on the Integration!!!

    - by Eric A. Stephens
    A recent project has me at the front end of a large implementation effort covering multiple software components. In addition to the challenges of integrating 15-20 separate and new software components there is the challenge of integrating the portfolio into an existing environment. Like other clients I've worked with and other environments I've worked in for many years, this is typical. The applications are undocumented and under patched leading to a mystery for any architect leading change.  We can boil down most architecture development methodologies (ADM) into first understanding the current/baseline state and then envisioning one or more future states. Many pundits emphasize the need to focus on the future/target states. I agree since enterprise architecture (EA) is about where you are going and not so much where you have been. But to be effective in the future, I contend some focused time needs to be spent on the current state. And specifically on the integration. Integration is always the difficult part of a project (I might put it more coarsely at a cocktail party). While I don't have a case study, my anecdotal experience suggests poorly integrated application portfolios tend to cost more to operate and create entropy when trying to respond to new changes and opportunities. In the aforementioned project, I was able to get one of our EAs assigned to focus on just integration almost immediately. While we're still early in the process, this EA is uncovering all sorts of information that will greatly assist our future state planning for this solution. This information is driving early decision making that we anticipate will accelerate our efforts moving forward. #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }

    Read the article

  • Discover 25 Years of SPARC Innovation

    - by Cinzia Mascanzoni
    Over the last 25 years SPARC technology has led the field in enterprise IT innovation – providing world record performance to data centers across the globe. Discover how the history of SPARC has formed the IT landscape of today, and how upcoming improvements to this industry-leading technology will continue to shape the future. Register Now to hear the story of SPARC from the people who shaped the past, present, and future of this remarkable technology

    Read the article

  • BizTalk Server 2009 - Architecture Options

    - by StuartBrierley
    I recently needed to put forward a proposal for a BizTalk 2009 implementation and as a part of this needed to describe some of the basic architecture options available for consideration.  While I already had an idea of the type of environment that I would be looking to recommend, I felt that presenting a range of options while trying to explain some of the strengths and weaknesses of those options was a good place to start.  These outline architecture options should be equally valid for any version of BizTalk Server from 2004, through 2006 and R2, up to 2009.   The following diagram shows a crude representation of the common implementation options to consider when designing a BizTalk environment.         Each of these options provides differing levels of resilience in the case of failure or disaster, with the later options also providing more scope for performance tuning and scalability.   Some of the options presented above make use of clustering. Clustering may best be described as a technology that automatically allows one physical server to take over the tasks and responsibilities of another physical server that has failed. Given that all computer hardware and software will eventually fail, the goal of clustering is to ensure that mission-critical applications will have little or no downtime when such a failure occurs. Clustering can also be configured to provide load balancing, which should generally lead to performance gains and increased capacity and throughput.   (A) Single Servers   This option is the most basic BizTalk implementation that should be considered. It involves the deployment of a single BizTalk server in conjunction with a single SQL server. This configuration does not provide for any resilience in the case of the failure of either server. It is however the cheapest and easiest to implement option of those available.   Using a single BizTalk server does not provide for the level of performance tuning that is otherwise available when using more than one BizTalk server in a cluster.   The common edition of BizTalk used in single server implementations is the standard edition. It should be noted however that if future demand requires increased capacity for a solution, this BizTalk edition is limited to scaling up the implementation and not scaling out the number of servers in use. Any need to scale out the solution would require an upgrade to the enterprise edition of BizTalk.   (B) Single BizTalk Server with Clustered SQL Servers   This option uses a single BizTalk server with a cluster of SQL servers. By utilising clustered SQL servers we can ensure that there is some resilience to the implementation in respect of the databases that BizTalk relies on to operate. The clustering of two SQL servers is possible with the standard edition but to go beyond this would require the enterprise level edition. While this option offers improved resilience over option (A) it does still present a potential single point of failure at the BizTalk server.   Using a single BizTalk server does not provide for the level of performance tuning that is otherwise available when using more than one BizTalk server in a cluster.   The common edition of BizTalk used in single server implementations is the standard edition. It should be noted however that if future demand requires increased capacity for a solution, this BizTalk edition is limited to scaling up the implementation and not scaling out the number of servers in use. You are also unable to take advantage of multiple message boxes, which would allow us to balance the SQL load in the event of any bottlenecks in this area of the implementation. Any need to scale out the solution would require an upgrade to the enterprise edition of BizTalk.   (C) Clustered BizTalk Servers with Clustered SQL Servers   This option makes use of a cluster of BizTalk servers with a cluster of SQL servers to offer high availability and resilience in the case of failure of either of the server types involved. Clustering of BizTalk is only available with the enterprise edition of the product. Clustering of two SQL servers is possible with the standard edition but to go beyond this would require the enterprise level edition.    The use of a BizTalk cluster also provides for the ability to balance load across the servers and gives more scope for performance tuning any implemented solutions. It is also possible to add more BizTalk servers to an existing cluster, giving scope for scaling out the solution as future demand requires.   This might be seen as the middle cost option, providing a good level of protection in the case of failure, a decent level of future proofing, but at a higher cost than the single BizTalk server implementations.   (D) Clustered BizTalk Servers with Clustered SQL Servers – with disaster recovery/service continuity   This option is similar to that offered by (C) and makes use of a cluster of BizTalk servers with a cluster of SQL servers to offer high availability and resilience in case of failure of either of the server types involved. Clustering of BizTalk is only available with the enterprise edition of the product. Clustering of two SQL servers is possible with the standard edition but to go beyond this would require the enterprise level edition.    As with (C) the use of a BizTalk cluster also provides for the ability to balance load across the servers and gives more scope for performance tuning the implemented solution. It is also possible to add more BizTalk servers to an existing cluster, giving scope for scaling the solution out as future demand requires.   In this scenario however, we would be including some form of disaster recovery or service continuity. An example of this would be making use of multiple sites, with the BizTalk server cluster operating across sites to offer resilience in case of the loss of one or more sites. In this scenario there are options available for the SQL implementation depending on the network implementation; making use of either one cluster per site or a single SQL cluster across the network. A multi-site SQL implementation would require some form of data replication across the sites involved.   This is obviously an expensive and complex option, but does provide an extraordinary amount of protection in the case of failure.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • MySQL InnoDB Corruption after power outage, possible to recover?

    - by Tim Hackett
    Hey Guys, I recently started trying to get Redmine up and running after a power outage that seems to have corrupted our InnoDB database in MySQL. Redmine had an extensive set of documentation that I would like to get even if redmine isn't able to run. The service fails on startup. I have tried inserting innodb_force_recovery = 4 per the documentation from the url in the error log. (also tried 1 thru 6 as I have backed up all directories after the corruption) I have verified through "mysqld-nt --print-defaults" that it is starting with the recovery option in the params. The machine is running Windows Server 2003 SP2, Xeon E5335 with 2GB RAM, MySQL is not mirrored to another machine, nor is the machine a mirror. I do not have any backups because the previous person did not set them up. Here is the error log: InnoDB: The log sequence number in ibdata files does not match InnoDB: the log sequence number in the ib_logfiles! 100308 14:50:01 InnoDB: Database was not shut down normally! InnoDB: Starting crash recovery. InnoDB: Reading tablespace information from the .ibd files... InnoDB: Restoring possible half-written data pages from the doublewrite InnoDB: buffer... 100308 14:50:02 InnoDB: Error: page 7 log sequence number 0 935521175 InnoDB: is in the future! Current system log sequence number 0 933419020. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.0/en/forcing-recovery.html InnoDB: for more information. 100308 14:50:02 InnoDB: Error: page 2 log sequence number 0 935517607 InnoDB: is in the future! Current system log sequence number 0 933419020. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.0/en/forcing-recovery.html InnoDB: for more information. 100308 14:50:02 InnoDB: Error: page 11 log sequence number 0 935517607 InnoDB: is in the future! Current system log sequence number 0 933419020. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.0/en/forcing-recovery.html InnoDB: for more information. 100308 14:50:02 InnoDB: Error: page 5 log sequence number 0 972973045 InnoDB: is in the future! Current system log sequence number 0 933419020. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.0/en/forcing-recovery.html InnoDB: for more information. 100308 14:50:02 InnoDB: Error: page 6 log sequence number 0 972984051 InnoDB: is in the future! Current system log sequence number 0 933419020. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.0/en/forcing-recovery.html InnoDB: for more information. 100308 14:50:02 InnoDB: Error: page 1577 log sequence number 0 972737368 InnoDB: is in the future! Current system log sequence number 0 933419020. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.0/en/forcing-recovery.html InnoDB: for more information. InnoDB: Error: trying to access page number 4294965119 in space 0, InnoDB: space name .\ibdata1, InnoDB: which is outside the tablespace bounds. InnoDB: Byte offset 0, len 16384, i/o type 10. InnoDB: If you get this error at mysqld startup, please check that InnoDB: your my.cnf matches the ibdata files that you have in the InnoDB: MySQL server. 100308 14:50:02InnoDB: Assertion failure in thread 960 in file .\fil\fil0fil.c line 3959 InnoDB: We intentionally generate a memory trap. InnoDB: Submit a detailed bug report to http://bugs.mysql.com. InnoDB: If you get repeated assertion failures or crashes, even InnoDB: immediately after the mysqld startup, there may be InnoDB: corruption in the InnoDB tablespace. Please refer to InnoDB: http://dev.mysql.com/doc/refman/5.0/en/forcing-recovery.html InnoDB: about forcing recovery. 100308 14:50:02 [ERROR] mysqld-nt: Got signal 11. Aborting! 100308 14:50:02 [ERROR] Aborting 100308 14:50:02 [Note] mysqld-nt: Shutdown complete

    Read the article

  • I can't get router and switches configured properly for my home office network

    - by BernicusMaximus
    Networking Gurus, I recently built a new detached garage, with an office above. As such I had it tied into my existing home ethernet wiring. The ethernet signal is coming into the garage just fine, but I can not get my network configured the way I want because of problems trying to link the various router/switch devices. Please see the following links for the network diagrams: Home Network So basically, I can't my future state to work. I'm not sure if I'm using incompatible switches or what, but I tried the future state with some 4 port switches from best buy and had no luck. I resorted to setting up the Current State so I could operate. What I am looking for is help on how best to get my future state to work. Is this possible with my current configuration, and if not, what should I do? Any help is appreciated. Thanks, Bernie

    Read the article

  • DNA and Quantum computing

    - by Jacques
    I recently(A couple of weeks ago) read an article about the future of processing and how quantum-processors and DNA-processors(DNA-computing) are the future competitors of computing since both will completely outperform the computers of this era. In terms of processing speeds, what do we expect from these two different processing techniques ? Personally I believe that DNA-processing will be a major step towards AI. For labs and office work I think quantum-processing which will be more logical. I'm quite excited that i'm still so young - to see what the future of technology holds! Then again my parents will soon find out what the after-life holds... just as bloody exciting, if not more..

    Read the article

  • Helpful advice on developing a professional MS Word add-on

    - by Dan Tao
    A few months back I put together a simple proof-of-concept piece of software for a small firm with an idea for a document editing tool. The company wanted this tool to be integrated into Microsoft Word, understandably, to maximize its accessibility to the average user. I essentially wrote the underlying library with all of the core functionality as a C# project, and then used VSTO to get it running inside of Word. It felt like a bit of a duct tape solution, really; but then, I have (practically) zero experience developing tools for integration with MS Office, and it was only a proof of concept anyway. Well, the firm was quite pleased with my work overall, and they're looking to move from "proof of concept" to the real deal. Fortunately, as I said, the core functionality is all there and will only need to be somewhat tweaked and enhanced. My main concern is figuring out how to put together an application that will integrate with MS Word in a clean and polished way, and which can be deployed easily in accordance with a regular user's expectations (i.e., simply running an install program and voila, it's there in Word). I seem to remember reading somewhere that nobody uses VSTO for real professional projects. Is this true? False? What are the alternatives? And what are the tips and gotchas that I should be aware of before getting started on this issue of MS Word integration?

    Read the article

  • Suggestions for lightweight, thread-safe scheduler

    - by nirvanai
    I am trying to write a round-robin scheduler for lightweight threads (fibers). It must scale to handle as many concurrently-scheduled fibers as possible. I also need to be able to schedule fibers from threads other than the one the run loop is on, and preferably unschedule them from arbitrary threads as well (though I could live with only being able to unschedule them from the run loop). My current idea is to have a circular doubly-linked list, where each fiber is a node and the scheduler holds a reference to the current node. This is what I have so far: using Interlocked = System.Threading.Interlocked; public class Thread { internal Future current_fiber; public void RunLoop () { while (true) { var fiber = current_fiber; if (fiber == null) { // block the thread until a fiber is scheduled continue; } if (fiber.Fulfilled) fiber.Unschedule (); else fiber.Resume (); //if (current_fiber == fiber) current_fiber = fiber.next; Interlocked.CompareExchange<Future> (ref current_fiber, fiber.next, fiber); } } } public abstract class Future { public bool Fulfilled { get; protected set; } internal Future previous, next; // this must be thread-safe // it inserts this node before thread.current_fiber // (getting the exact position doesn't matter, as long as the // chosen nodes haven't been unscheduled) public void Schedule (Thread thread) { next = this; // maintain circularity, even if this is the only node previous = this; try_again: var current = Interlocked.CompareExchange<Future> (ref thread.current_fiber, this, null); if (current == null) return; var target = current.previous; while (target == null) { // current was unscheduled; negotiate for new current_fiber var potential = current.next; var actual = Interlocked.CompareExchange<Future> (ref thread.current_fiber, potential, current); current = (actual == current? potential : actual); if (current == null) goto try_again; target = current.previous; } // I would lock "current" and "target" at this point. // How can I do this w/o risk of deadlock? next = current; previous = target; target.next = this; current.previous = this; } // this would ideally be thread-safe public void Unschedule () { var prev = previous; if (prev == null) { // already unscheduled return; } previous = null; if (next == this) { next = null; return; } // Again, I would lock "prev" and "next" here // How can I do this w/o risk of deadlock? prev.next = next; next.previous = prev; } public abstract void Resume (); } As you can see, my sticking point is that I cannot ensure the order of locking, so I can't lock more than one node without risking deadlock. Or can I? I don't want to have a global lock on the Thread object, since the amount of lock contention would be extreme. Plus, I don't especially care about insertion position, so if I lock each node separately then Schedule() could use something like Monitor.TryEnter and just keep walking the list until it finds an unlocked node. Overall, I'm not invested in any particular implementation, as long as it meets the requirements I've mentioned. Any ideas would be greatly appreciated. Thanks! P.S- For the curious, this is for an open source project I'm starting at http://github.com/nirvanai/Cirrus

    Read the article

  • Optimal partition setup for Windows 7 on SSD

    - by Mike C.
    Hello, I'm setting up my system with Windows 7 right now, with knowledge that I am going to be getting a SSD in the future. What optimizations/setup should I do now to make a smoother transition in the future? Should I created two partitions - one for the OS and one for the data? Assuming this is the case, I would be able to easily ghost my OS partition onto the SSD in the future. If so, what should go on the OS drive besides the OS? Program files? If I install games or Visual Studio, should it go on the OS drive or the data drive? I can see the SSD filling up fast if I install all my program files on there. I've seen a few posts where people talk about leaving a portion of the SSD unformatted - is this something I should do? Thanks!

    Read the article

  • ODBC in SSIS 2012

    - by jamiet
    In August 2011 the SQL Server client team published a blog post entitled Microsoft is Aligning with ODBC for Native Relational Data Access in which they basically said "OLE DB is the past, ODBC is the future. Deal with it.". From that blog post:We encourage you to adopt ODBC in the development of your new and future versions of your application. You don’t need to change your existing applications using OLE DB, as they will continue to be supported on Denali throughout its lifecycle. While this gives you a large window of opportunity for changing your applications before the deprecation goes into effect, you may want to consider migrating those applications to ODBC as a part of your future roadmap.I recently undertook a project using SSIS2012 and heeded that advice by opting to use ODBC Connection Managers rather than OLE DB Connection Managers. Unfortunately my finding was that the ODBC Connection Manager is not yet ready for primetime use in SSIS 2012. The main issue I found was that you can't populate an Object variable with a recordset when using an Execute SQL Task connecting to an ODBC data source; any attempt to do so will result in an error:"Disconnected recordsets are not available from ODBC connections." I have filed a bug on Connect at ODBC Connection Manager does not have same funcitonality as OLE DB. For this reason I strongly recommend that you don't make the move to ODBC Connection Managers in SSIS just yet - best to wait for the next version of SSIS before doing that.I found another couple of issues with the ODBC Connection Manager that are worth keeping in mind:It doesn't recognise System Data Source Names (DSNs), only User DSNs (bug filed at ODBC System DSNs are not available in the ODBC Connection Manager)  UPDATE: According to a comment on that Connect item this may only be a problem on 64bit.In the OLE DB Connection Manager parameter ordinals are 0-based, in the ODBC Connection Manager they are 1-based (oh I just can't wait for the upgrade mess that ensues from this one!!!)You have been warned!@jamiet

    Read the article

  • ASP.NET MVC: MVC Time Planner is available at CodePlex

    - by DigiMortal
    I get almost every week some e-mails where my dear readers ask for source code of my ASP.NET MVC and FullCalendar example. I have some great news, guys! I ported my sample application to Visual Studio 2010 and made it available at CodePlex. Feel free to visit the page of MVC Time Planner. NB! Current release of MVC Time Planner is initial one and it is basically conversion sfrom VS2008 example solution to VS2010. Current source code is not any study material but it gives you idea how to make calendars work together. Future releases will introduce many design and architectural improvements. I have planned also some new features. How MVC Time Planner looks? Image on right shows you how time planner looks like. It uses default design elements of ASP.NET MVC applications and jQueryUI. If I find some artist skills from myself I will improve design too, of course. :) Currently only day view of calendar is available, other views are coming in near future (I hope future will be week or two). Important links And here are some important links you may find useful. MVC Time Planner page @ CodePlex Documentation Release plan Help and support – questions, ideas, other communication Bugs and feature requests If you have any questions or you are interested in new features then please feel free to contact me through MVC Time Planner discussion forums.

    Read the article

  • How can I compare between web development technologies?

    - by Steve
    I would like experts to explain for me how can I compare between web development tools or technologies in order to be able to choose the right one. I'm tired from searching always in the regular way: X Technology vs Y Technology. I'm tired from peoples' biased opinions and usually I don't find a fair comparison. I have decided to put my question here about how can I compare them so you may identify to me the main standards for comparisons so I can compare them by myself and becoming able to choose the technology that is appropriate for the project I will develop. Note: in web development technologies I mean server side languages (e.g. PHP). One important requirement for me that can be defined as major one is cost efficiency and I mean that I don't care about the cost in the near future or the current cost, but what is more important for me is the cost in the future. If, for example, the site becomes one of the most 100 visited sites.   So, how can I compare the cost of different technologies for a future status of a site (such as being very famous site) so I can scale my option easily without missing a good technology like what happened with some sites when they chose not the most effective tool.

    Read the article

  • 50 Years After The Jetsons

    - by Jason Fitzpatrick
    The Jetsons, the future-oriented animated cartoon series from the 1960s, turned 50 this week. The Smithsonian takes a look at what the show meant, then and now. At the Smithsonian blog Paleofuture, Matt Novak looks back at the last 50 years and the impact that The Jetsons had. He writes: It’s important to remember that today’s political, social and business leaders were pretty much watching ”The Jetsons” on repeat during their most impressionable years. People are often shocked to learn that “The Jetsons” lasted just one season during its original run in 1962-63 and wasn’t revived until 1985. Essentially every kid in America (and many internationally) saw the series on constant repeat during Saturday morning cartoons throughout the 1960s, ’70s and ’80s. Everyone (including my own mom) seems to ask me, “How could it have been around for only 24 episodes? Did I really just watch those same episodes over and over again?” Yes, yes you did. But it’s just a cartoon, right? So what if today’s political and social elite saw ”The Jetsons” a lot? Thanks in large part to the Jetsons, there’s a sense of betrayal that is pervasive in American culture today about the future that never arrived. We’re all familiar with the rallying cries of the angry retrofuturist: Where’s my jetpack!?! Where’s my flying car!?! Where’s my robot maid?!? “The Jetsons” and everything they represented were seen by so many not as a possible future, but a promise of one. Hit up the link below for the full article–prepare to be surprised at just how few episodes of the show were ever animated and aired. 8 Deadly Commands You Should Never Run on Linux 14 Special Google Searches That Show Instant Answers How To Create a Customized Windows 7 Installation Disc With Integrated Updates

    Read the article

  • Ubuntu 12.04 slow boot on ASUS, attached with dmesg and bootchart

    - by stanleyhunk
    I heard that Ubuntu can boot up around 30sec, but I take more than 60sec every time my Ubuntu boot. I also read some forum said need to post the dmesg and bootchart to identify which process slowing down the booting time, as I'm not expert in Ubuntu and wish to learn more about it, I humbly ask any pro here to teach me how. My laptop specs: Model : ASUS K45VS RAM : 8MB CPU : Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz x 8 Graphic Card : nVidia GeForce GT 645M HDD : 750GB OS : Single boot Ubuntu 12.04LTS System.uname : Linux 3.8.0-39-generic #58~precise1-Ubuntu SMP Fri May 2 21:33:40 UTC 2014 x86_64 System.release : Ubuntu 12.04.4 LTS System.kernel.options : BOOT_IMAGE=/boot/vmlinuz-3.8.0-39-generic root=UUID=c8a71503-bce8-406c-9a5f-5aa8284f5c7c ro quiet splash My dmesg (which highlighted to the huge time frame gap): [ 30.772656] cgroup: libvirtd (1961) created nested cgroup for controller "memory" which has incomplete hierarchy support. Nested cgroups may change behavior in the future. [ 30.772659] cgroup: "memory" requires setting use_hierarchy to 1 on the root. [ 30.772683] cgroup: libvirtd (1961) created nested cgroup for controller "devices" which has incomplete hierarchy support. Nested cgroups may change behavior in the future. [ 30.772710] cgroup: libvirtd (1961) created nested cgroup for controller "blkio" which has incomplete hierarchy support. Nested cgroups may change behavior in the future. [ 32.140335] nvidia 0000:01:00.0: irq 46 for MSI/MSI-X [ 32.505619] ACPI Error: Field [TMPB] at 1081344 exceeds Buffer [ROM1] size 262144 (bits) (20121018/dsopcode-236) [ 32.505624] ACPI Error: Method parse/execution failed [\_SB_.PCI0.PEG0.PEGP._ROM] (Node ffff880224e91f00), AE_AML_BUFFER_LIMIT (20121018/psparse-537) [ 802.034422] audit_printk_skb: 69 callbacks suppressed [ 802.034428] type=1400 audit(1400914804.392:35): apparmor="DENIED" operation="capable" parent=1 profile="/usr/sbin/cupsd" pid=1683 comm="cupsd" pid=1683 comm="cupsd" capability=36 capname="block_suspend" [ 1581.300901] type=1400 audit(1400915584.816:36): apparmor="DENIED" operation="capable" parent=1 profile="/usr/sbin/cupsd" pid=1683 comm="cupsd" pid=1683 comm="cupsd" capability=36 capname="block_suspend" My Bootchart.png: Looking forward to learn to improve both my booting time and knowledge. Thanks in advance :)

    Read the article

  • Move SQL Server transaction log to another disk

    - by Jim Lahman
    When restoring a database backup, by default, SQL Server places the database files in the master database file directory.  In this example, that location is in L:\MSSQL10.CHTL\MSSQL\DATA as shown by the issuance of sp_helpfile   Hence, the restored files for the database CHTL_L2_DB are in the same directory     Per SQL Server best practices, the log file should be on its own disk drive so that the database and log file can operate in a sequential manner and perform optimally. The steps to move the log file is as follows: Record the location of the database files and the transaction log files Note the future destination of the transaction log file Get exclusive access to the database Detach from the database Move the log file to the new location Attach to the database Verify new location of transaction log Record the location of the database file To view the current location of the database files, use the system stored procedure, sp_helpfile 1: use chtl_l2_db 2: go 3:   4: sp_helpfile 5: go   Note the future destination of the transaction log file The future destination of the transaction log file will be located in K:\MSSQLLog   Get exclusive access to the database To get exclusive access to the database, alter the database access to single_user.  If users are still connected to the database, remove them by using with rollback immediate option.  Note:  If you had a pane connected to the database when the it is placed into single_user mode, then you will be presented with a reconnection dialog box. 1: alter database chtl_l2_db 2: set single_user with rollback immediate 3: go Detach from the database   Now detach from the database so that we can use windows explorer to move the transaction log file 1: use master 2: go 3:   4: sp_detach_db 'chtl_l2_db' 5: go   After copying the transaction log file re-attach to the database 1: use master 2: go 3:   4: sp_attach_db 'chtl_l2_db', 5: 'L:\MSSQL10.CHTL\MSSQL\DATA\CHTL_L2_DB.MDF', 6: 'K:\MSSQLLog\CHTL_L2_DB_4.LDF', 7: 'L:\MSSQL10.CHTL\MSSQL\DATA\CHTL_L2_DB_1.NDF', 8: 'L:\MSSQL10.CHTL\MSSQL\DATA\CHTL_L2_DB_2.NDF', 9: 'L:\MSSQL10.CHTL\MSSQL\DATA\CHTL_L2_DB_3.NDF' 10: GO

    Read the article

  • ODBC in SSIS 2012

    - by jamiet
    In August 2011 the SQL Server client team published a blog post entitled Microsoft is Aligning with ODBC for Native Relational Data Access in which they basically said "OLE DB is the past, ODBC is the future. Deal with it.". From that blog post:We encourage you to adopt ODBC in the development of your new and future versions of your application. You don’t need to change your existing applications using OLE DB, as they will continue to be supported on Denali throughout its lifecycle. While this gives you a large window of opportunity for changing your applications before the deprecation goes into effect, you may want to consider migrating those applications to ODBC as a part of your future roadmap.I recently undertook a project using SSIS2012 and heeded that advice by opting to use ODBC Connection Managers rather than OLE DB Connection Managers. Unfortunately my finding was that the ODBC Connection Manager is not yet ready for primetime use in SSIS 2012. The main issue I found was that you can't populate an Object variable with a recordset when using an Execute SQL Task connecting to an ODBC data source; any attempt to do so will result in an error:"Disconnected recordsets are not available from ODBC connections." I have filed a bug on Connect at ODBC Connection Manager does not have same funcitonality as OLE DB. For this reason I strongly recommend that you don't make the move to ODBC Connection Managers in SSIS just yet - best to wait for the next version of SSIS before doing that.I found another couple of issues with the ODBC Connection Manager that are worth keeping in mind:It doesn't recognise System Data Source Names (DSNs), only User DSNs (bug filed at ODBC System DSNs are not available in the ODBC Connection Manager)  UPDATE: According to a comment on that Connect item this may only be a problem on 64bit.In the OLE DB Connection Manager parameter ordinals are 0-based, in the ODBC Connection Manager they are 1-based (oh I just can't wait for the upgrade mess that ensues from this one!!!)You have been warned!@jamiet

    Read the article

< Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >