Search Results

Search found 28443 results on 1138 pages for 'partition table'.

Page 214/1138 | < Previous Page | 210 211 212 213 214 215 216 217 218 219 220 221  | Next Page >

  • Foreign keys and NULL in mySQL

    - by Industrial
    Hi everyone, Can I have a column in my values table (value) referenced as a foreign key to knownValues table, and let it be NULL whenever needed, like in the example: Table: values product type value freevalue 0 1 NULL 100 1 2 NULL 25 3 3 1 NULL Table: types id name prefix 0 length cm 1 weight kg 2 fruit NULL Table: knownValues id Type name 0 2 banana Note: The types in the table values & knownValues are of course referenced into the types table. Thanks!

    Read the article

  • need to read data from oracle database with many conditions

    - by randeepsp
    hi! i have 3 tables A,B and C. table A has column employee_name,id table B is the main table and has columns id,os version. table c has the columns id,package id and package version. i want to query the count of employee_name where the id of table a and c are matched with id of table b(which is the main table). i should also get the names of employees grouped by the os version they have and also the package version.

    Read the article

  • SQL SERVER – SSMS: Memory Usage By Memory Optimized Objects Report

    - by Pinal Dave
    At conferences and at speaking engagements at the local UG, there is one question that keeps on coming which I wish were never asked. The question around, “Why is SQL Server using up all the memory and not releasing even when idle?” Well, the answer can be long and with the release of SQL Server 2014, this got even more complicated. This release of SQL Server 2014 has the option of introducing In-Memory OLTP which is completely new concept and our dependency on memory has increased multifold. In reality, nothing much changes but we have memory optimized objects (Tables and Stored Procedures) additional which are residing completely in memory and improving performance. As a DBA, it is humanly impossible to get a hang of all the innovations and the new features introduced in the next version. So today’s blog is around the report added to SSMS which gives a high level view of this new feature addition. This reports is available only from SQL Server 2014 onwards because the feature was introduced in SQL Server 2014. Earlier versions of SQL Server Management Studio would not show the report in the list. If we try to launch the report on the database which is not having In-Memory File group defined, then we would see the message in report. To demonstrate, I have created new fresh database called MemoryOptimizedDB with no special file group. Here is the query used to identify whether a database has memory-optimized file group or not. SELECT TOP(1) 1 FROM sys.filegroups FG WHERE FG.[type] = 'FX' Once we add filegroup using below command, we would see different version of report. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILEGROUP [IMO_FG] CONTAINS MEMORY_OPTIMIZED_DATA GO The report is still empty because we have not defined any Memory Optimized table in the database.  Total allocated size is shown as 0 MB. Now, let’s add the folder location into the filegroup and also created few in-memory tables. We have used the nomenclature of IMO to denote “InMemory Optimized” objects. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILE ( NAME = N'MemoryOptimizedDB_IMO', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\MemoryOptimizedDB_IMO') TO FILEGROUP [IMO_FG] GO You may have to change the path based on your SQL Server configuration. Below is the script to create the table. USE MemoryOptimizedDB GO --Drop table if it already exists. IF OBJECT_ID('dbo.SQLAuthority','U') IS NOT NULL DROP TABLE dbo.SQLAuthority GO CREATE TABLE dbo.SQLAuthority ( ID INT IDENTITY NOT NULL, Name CHAR(500)  COLLATE Latin1_General_100_BIN2 NOT NULL DEFAULT 'Pinal', CONSTRAINT PK_SQLAuthority_ID PRIMARY KEY NONCLUSTERED (ID), INDEX hash_index_sample_memoryoptimizedtable_c2 HASH (Name) WITH (BUCKET_COUNT = 131072) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO As soon as above script is executed, table and index both are created. If we run the report again, we would see something like below. Notice that table memory is zero but index is using memory. This is due to the fact that hash index needs memory to manage the buckets created. So even if table is empty, index would consume memory. More about the internals of how In-Memory indexes and tables work will be reserved for future posts. Now, use below script to populate the table with 10000 rows INSERT INTO SQLAuthority VALUES (DEFAULT) GO 10000 Here is the same report after inserting 1000 rows into our InMemory table.    There are total three sections in the whole report. Total Memory consumed by In-Memory Objects Pie chart showing memory distribution based on type of consumer – table, index and system. Details of memory usage by each table. The information about all three is taken from one single DMV, sys.dm_db_xtp_table_memory_stats This DMV contains memory usage statistics for both user and system In-Memory tables. If we query the DMV and look at data, we can easily notice that the system tables have negative object IDs.  So, to look at user table memory usage, below is the over-simplified version of query. USE MemoryOptimizedDB GO SELECT OBJECT_NAME(OBJECT_ID), * FROM sys.dm_db_xtp_table_memory_stats WHERE OBJECT_ID > 0 GO This report would help DBA to identify which in-memory object taking lot of memory which can be used as a pointer for designing solution. I am sure in future we will discuss at lengths the whole concept of In-Memory tables in detail over this blog. To read more about In-Memory OLTP, have a look at In-Memory OLTP Series at Balmukund’s Blog. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Memory, SQL Reports

    Read the article

  • EM12c Release 4: New Compliance features including DB STIG Standard

    - by DaveWolf
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Enterprise Manager’s compliance framework is a powerful and robust feature that provides users the ability to continuously validate their target configurations against a specified standard. Enterprise Manager’s compliance library is filled with a wide variety of standards based on Oracle’s recommendations, best practices and security guidelines. These standards can be easily associated to a target to generate a report showing its degree of conformance to that standard. ( To get an overview of  Database compliance management in Enterprise Manager see this screenwatch. ) Starting with release 12.1.0.4 of Enterprise Manager the compliance library will contain a new standard based on the US Defense Information Systems Agency (DISA) Security Technical Implementation Guide (STIG) for Oracle Database 11g. According to the DISA website, “The STIGs contain technical guidance to ‘lock down’ information systems/software that might otherwise be vulnerable to a malicious computer attack.” In essence, a STIG is a technical checklist an administrator can follow to secure a system or software. Many US government entities are required to follow these standards however many non-US government entities and commercial companies base their standards directly or partially on these STIGs. You can find more information about the Oracle Database and other STIGs on the DISA website. The Oracle Database 11g STIG consists of two categories of checks, installation and instance. Installation checks focus primarily on the security of the Oracle Home while the instance checks focus on the configuration of the running database instance itself. If you view the STIG compliance standard in Enterprise Manager, you will see the rules organized into folders corresponding to these categories. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The rule names contain a rule ID ( DG0020 for example ) which directly map to the check name in the STIG checklist along with a helpful brief description. The actual description field contains the text from the STIG documentation to aid in understanding the purpose of the check. All of the rules have also been documented in the Oracle Database Compliance Standards reference documentation. In order to use this standard both the OMS and agent must be at version 12.1.0.4 as it takes advantage of several features new in this release including: Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Agent-Side Compliance Rules Manual Compliance Rules Violation Suppression Additional BI Publisher Compliance Reports /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Agent-Side Compliance Rules Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Agent-side compliance rules are essentially the result of a tighter integration between Configuration Extensions and Compliance Rules. If you ever created customer compliance content in past versions of Enterprise Manager, you likely used Configuration Extensions to collect additional information into the EM repository so it could be used in a Repository compliance rule. This process although powerful, could be confusing to correctly model the SQL in the rule creation wizard. With agent-side rules, the user only needs to choose the Configuration Extension/Alias combination and that’s it. Enterprise Manager will do the rest for you. This tighter integration also means their lifecycle is managed together. When you associate an agent-side compliance standard to a target, the required Configuration Extensions will be deployed automatically for you. The opposite is also true, when you unassociated the compliance standard, the Configuration Extensions will also be undeployed. The Oracle Database STIG compliance standard is implemented as an agent-side standard which is why you simply need to associate the standard to your database targets without previously deploying the associated Configuration Extensions. You can learn more about using Agent-Side compliance rules in the screenwatch Using Agent-Side Compliance Rules on Enterprise Manager's Lifecycle Management page on OTN. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Manual Compliance Rules Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} There are many checks in the Oracle Database STIG as well as other common standards which simply cannot be automated. This could be something as simple as “Ensure the datacenter entrance is secured.” or complex as Oracle Database STIG Rule DG0186 – “The database should not be directly accessible from public or unauthorized networks”. These checks require a human to perform and attest to its successful completion. Enterprise Manager now supports these types of checks in Manual rules. When first associated to a target, each manual rule will generate a single violation. These violations must be manually cleared by a user who is in essence attesting to its successful completion. The user is able to permanently clear the violation or give a future date on which the violation will be regenerated. Setting a future date is useful when policy dictates a periodic re-validation of conformance wherein the user will have to reperform the check. The optional reason field gives the user an opportunity to provide details of the check results. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Violation Suppression There are situations that require the need to permanently or temporarily suppress a legitimate violation or finding. These include approved exceptions and grace periods. Enterprise Manager now supports the ability to temporarily or permanently suppress a violation. Unlike when you clear a manual rule violation, suppression simply removes the violation from the compliance results UI and in turn its negative impact on the score. The violation still remains in the EM repository and can be accounted for in compliance reports. Temporarily suppressing a violation can give users a grace period in which to address an issue. If the issue is not addressed within the specified period, the violation will reappear in the results automatically. Again the user may enter a reason for the suppression which will be permanently saved with the event along with the suppressing user ID. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Additional BI Publisher compliance reports As I am sure you have learned by now, BI Publisher now ships and is integrated with Enterprise Manager 12.1.0.4. This means users can take full advantage of the powerful reporting engine by using the Oracle provided reports or building their own. There are many new compliance related reports available in 12.1.0.4 covering all aspects including the association status, library as well as summary and detailed results reports.  10 New Compliance Reports Compliance Summary Report Example showing STIG results Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Conclusion Together with the Oracle Database 11g STIG compliance standard these features provide a complete solution for easily auditing and reporting the security posture of your Oracle Databases against this well known benchmark. You can view an overview presentation and demo in the screenwatch Using the STIG Compliance Standard on Enterprise Manager's Lifecycle Management page on OTN. Additional EM12c Compliance Management Information Compliance Management - Overview ( Presentation ) Compliance Management - Custom Compliance on Default Data (How To) Compliance Management - Custom Compliance using SQL Configuration Extension (How To) Compliance Management - Customer Compliance using Command Configuration Extension (How To)

    Read the article

  • SQL SERVER – Solution – Puzzle – SELECT * vs SELECT COUNT(*)

    - by pinaldave
    Earlier I have published Puzzle Why SELECT * throws an error but SELECT COUNT(*) does not. This question have received many interesting comments. Let us go over few of the answers, which are valid. Before I start the same, let me acknowledge Rob Farley who has not only answered correctly very first but also started interesting conversation in the same thread. The usual question will be what is the right answer. I would like to point to official Microsoft Connect Items which discusses the same. RGarvao https://connect.microsoft.com/SQLServer/feedback/details/671475/select-test-where-exists-select tiberiu utan http://connect.microsoft.com/SQLServer/feedback/details/338532/count-returns-a-value-1 Rob Farley count(*) is about counting rows, not a particular column. It doesn’t even look to see what columns are available, it’ll just count the rows, which in the case of a missing FROM clause, is 1. “select *” is designed to return columns, and therefore barfs if there are none available. Even more odd is this one: select ‘blah’ where exists (select *) You might be surprised at the results… Koushik The engine performs a “Constant scan” for Count(*) where as in the case of “SELECT *” the engine is trying to perform either Index/Cluster/Table scans. amikolaj When you query ‘select * from sometable’, SQL replaces * with the current schema of that table. With out a source for the schema, SQL throws an error. so when you query ‘select count(*)’, you are counting the one row. * is just a constant to SQL here. Check out the execution plan. Like the description states – ‘Scan an internal table of constants.’ You could do ‘select COUNT(‘my name is adam and this is my answer’)’ and get the same answer. Netra Acharya SELECT * Here, * represents all columns from a table. So it always looks for a table (As we know, there should be FROM clause before specifying table name). So, it throws an error whenever this condition is not satisfied. SELECT COUNT(*) Here, COUNT is a Function. So it is not mandetory to provide a table. Check it out this: DECLARE @cnt INT SET @cnt = COUNT(*) SELECT @cnt SET @cnt = COUNT(‘x’) SELECT @cnt Naveen Select 1 / Select ‘*’ will return 1/* as expected. Select Count(1)/Count(*) will return the count of result set of select statement. Count(1)/Count(*) will have one 1/* for each row in the result set of select statement. Select 1 or Select ‘*’ result set will contain only 1 result. so count is 1. Where as “Select *” is a sysntax which expects the table or equauivalent to table (table functions, etc..). It is like compilation error for that query. Ramesh Hi Friends, Count is an aggregate function and it expects the rows (list of records) for a specified single column or whole rows for *. So, when we use ‘select *’ it definitely give and error because ‘*’ is meant to have all the fields but there is not any table and without table it can only raise an error. So, in the case of ‘Select Count(*)’, there will be an error as a record in the count function so you will get the result as ’1'. Try using : Select COUNT(‘RAMESH’) and think there is an error ‘Must specify table to select from.’ in place of ‘RAMESH’ Pinal : If i am wrong then please clarify this. Sachin Nandanwar Any aggregate function expects a constant or a column name as an expression. DO NOT be confused with * in an aggregate function.The aggregate function does not treat it as a column name or a set of column names but a constant value, as * is a key word in SQL. You can replace any value instead of * for the COUNT function.Ex Select COUNT(5) will result as 1. The error resulting from select * is obvious it expects an object where it can extract the result set. I sincerely thank you all for wonderful conversation, I personally enjoyed it and I am sure all of you have the same feeling. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: CodeProject, Pinal Dave, PostADay, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Seeking on a Heap, and Two Useful DMVs

    - by Paul White
    So far in this mini-series on seeks and scans, we have seen that a simple ‘seek’ operation can be much more complex than it first appears.  A seek can contain one or more seek predicates – each of which can either identify at most one row in a unique index (a singleton lookup) or a range of values (a range scan).  When looking at a query plan, we will often need to look at the details of the seek operator in the Properties window to see how many operations it is performing, and what type of operation each one is.  As you saw in the first post in this series, the number of hidden seeking operations can have an appreciable impact on performance. Measuring Seeks and Scans I mentioned in my last post that there is no way to tell from a graphical query plan whether you are seeing a singleton lookup or a range scan.  You can work it out – if you happen to know that the index is defined as unique and the seek predicate is an equality comparison, but there’s no separate property that says ‘singleton lookup’ or ‘range scan’.  This is a shame, and if I had my way, the query plan would show different icons for range scans and singleton lookups – perhaps also indicating whether the operation was one or more of those operations underneath the covers. In light of all that, you might be wondering if there is another way to measure how many seeks of either type are occurring in your system, or for a particular query.  As is often the case, the answer is yes – we can use a couple of dynamic management views (DMVs): sys.dm_db_index_usage_stats and sys.dm_db_index_operational_stats. Index Usage Stats The index usage stats DMV contains counts of index operations from the perspective of the Query Executor (QE) – the SQL Server component that is responsible for executing the query plan.  It has three columns that are of particular interest to us: user_seeks – the number of times an Index Seek operator appears in an executed plan user_scans – the number of times a Table Scan or Index Scan operator appears in an executed plan user_lookups – the number of times an RID or Key Lookup operator appears in an executed plan An operator is counted once per execution (generating an estimated plan does not affect the totals), so an Index Seek that executes 10,000 times in a single plan execution adds 1 to the count of user seeks.  Even less intuitively, an operator is also counted once per execution even if it is not executed at all.  I will show you a demonstration of each of these things later in this post. Index Operational Stats The index operational stats DMV contains counts of index and table operations from the perspective of the Storage Engine (SE).  It contains a wealth of interesting information, but the two columns of interest to us right now are: range_scan_count – the number of range scans (including unrestricted full scans) on a heap or index structure singleton_lookup_count – the number of singleton lookups in a heap or index structure This DMV counts each SE operation, so 10,000 singleton lookups will add 10,000 to the singleton lookup count column, and a table scan that is executed 5 times will add 5 to the range scan count. The Test Rig To explore the behaviour of seeks and scans in detail, we will need to create a test environment.  The scripts presented here are best run on SQL Server 2008 Developer Edition, but the majority of the tests will work just fine on SQL Server 2005.  A couple of tests use partitioning, but these will be skipped if you are not running an Enterprise-equivalent SKU.  Ok, first up we need a database: USE master; GO IF DB_ID('ScansAndSeeks') IS NOT NULL DROP DATABASE ScansAndSeeks; GO CREATE DATABASE ScansAndSeeks; GO USE ScansAndSeeks; GO ALTER DATABASE ScansAndSeeks SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE ScansAndSeeks SET AUTO_CLOSE OFF, AUTO_SHRINK OFF, AUTO_CREATE_STATISTICS OFF, AUTO_UPDATE_STATISTICS OFF, PARAMETERIZATION SIMPLE, READ_COMMITTED_SNAPSHOT OFF, RESTRICTED_USER ; Notice that several database options are set in particular ways to ensure we get meaningful and reproducible results from the DMVs.  In particular, the options to auto-create and update statistics are disabled.  There are also three stored procedures, the first of which creates a test table (which may or may not be partitioned).  The table is pretty much the same one we used yesterday: The table has 100 rows, and both the key_col and data columns contain the same values – the integers from 1 to 100 inclusive.  The table is a heap, with a non-clustered primary key on key_col, and a non-clustered non-unique index on the data column.  The only reason I have used a heap here, rather than a clustered table, is so I can demonstrate a seek on a heap later on.  The table has an extra column (not shown because I am too lazy to update the diagram from yesterday) called padding – a CHAR(100) column that just contains 100 spaces in every row.  It’s just there to discourage SQL Server from choosing table scan over an index + RID lookup in one of the tests. The first stored procedure is called ResetTest: CREATE PROCEDURE dbo.ResetTest @Partitioned BIT = 'false' AS BEGIN SET NOCOUNT ON ; IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; IF @Partitioned = 'true' BEGIN -- Enterprise, Trial, or Developer -- required for partitioning tests IF SERVERPROPERTY('EngineEdition') = 3 BEGIN EXECUTE (' DROP TABLE dbo.Example ; IF EXISTS ( SELECT 1 FROM sys.partition_schemes WHERE name = N''PS'' ) DROP PARTITION SCHEME PS ; IF EXISTS ( SELECT 1 FROM sys.partition_functions WHERE name = N''PF'' ) DROP PARTITION FUNCTION PF ; CREATE PARTITION FUNCTION PF (INTEGER) AS RANGE RIGHT FOR VALUES (20, 40, 60, 80, 100) ; CREATE PARTITION SCHEME PS AS PARTITION PF ALL TO ([PRIMARY]) ; CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ON PS (key_col); '); END ELSE BEGIN RAISERROR('Invalid SKU for partition test', 16, 1); RETURN; END; END ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; END; GO The second stored procedure, ShowStats, displays information from the Index Usage Stats and Index Operational Stats DMVs: CREATE PROCEDURE dbo.ShowStats @Partitioned BIT = 'false' AS BEGIN -- Index Usage Stats DMV (QE) SELECT index_name = ISNULL(I.name, I.type_desc), scans = IUS.user_scans, seeks = IUS.user_seeks, lookups = IUS.user_lookups FROM sys.dm_db_index_usage_stats AS IUS JOIN sys.indexes AS I ON I.object_id = IUS.object_id AND I.index_id = IUS.index_id WHERE IUS.database_id = DB_ID(N'ScansAndSeeks') AND IUS.object_id = OBJECT_ID(N'dbo.Example', N'U') ORDER BY I.index_id ; -- Index Operational Stats DMV (SE) IF @Partitioned = 'true' SELECT index_name = ISNULL(I.name, I.type_desc), partitions = COUNT(IOS.partition_number), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; ELSE SELECT index_name = ISNULL(I.name, I.type_desc), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; END; The final stored procedure, RunTest, executes a query written against the example table: CREATE PROCEDURE dbo.RunTest @SQL VARCHAR(8000), @Partitioned BIT = 'false' AS BEGIN -- No execution plan yet SET STATISTICS XML OFF ; -- Reset the test environment EXECUTE dbo.ResetTest @Partitioned ; -- Previous call will throw an error if a partitioned -- test was requested, but SKU does not support it IF @@ERROR = 0 BEGIN -- IO statistics and plan on SET STATISTICS XML, IO ON ; -- Test statement EXECUTE (@SQL) ; -- Plan and IO statistics off SET STATISTICS XML, IO OFF ; EXECUTE dbo.ShowStats @Partitioned; END; END; The Tests The first test is a simple scan of the heap table: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example'; The top result set comes from the Index Usage Stats DMV, so it is the Query Executor’s (QE) view.  The lower result is from Index Operational Stats, which shows statistics derived from the actions taken by the Storage Engine (SE).  We see that QE performed 1 scan operation on the heap, and SE performed a single range scan.  Let’s try a single-value equality seek on a unique index next: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 32'; This time we see a single seek on the non-clustered primary key from QE, and one singleton lookup on the same index by the SE.  Now for a single-value seek on the non-unique non-clustered index: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32'; QE shows a single seek on the non-clustered non-unique index, but SE shows a single range scan on that index – not the singleton lookup we saw in the previous test.  That makes sense because we know that only a single-value seek into a unique index is a singleton seek.  A single-value seek into a non-unique index might retrieve any number of rows, if you think about it.  The next query is equivalent to the IN list example seen in the first post in this series, but it is written using OR (just for variety, you understand): EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32 OR data = 33'; The plan looks the same, and there’s no difference in the stats recorded by QE, but the SE shows two range scans.  Again, these are range scans because we are looking for two values in the data column, which is covered by a non-unique index.  I’ve added a snippet from the Properties window to show that the query plan does show two seek predicates, not just one.  Now let’s rewrite the query using BETWEEN: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data BETWEEN 32 AND 33'; Notice the seek operator only has one predicate now – it’s just a single range scan from 32 to 33 in the index – as the SE output shows.  For the next test, we will look up four values in the key_col column: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col IN (2,4,6,8)'; Just a single seek on the PK from the Query Executor, but four singleton lookups reported by the Storage Engine – and four seek predicates in the Properties window.  On to a more complex example: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WITH (INDEX([PK dbo.Example key_col])) WHERE key_col BETWEEN 1 AND 8'; This time we are forcing use of the non-clustered primary key to return eight rows.  The index is not covering for this query, so the query plan includes an RID lookup into the heap to fetch the data and padding columns.  The QE reports a seek on the PK and a lookup on the heap.  The SE reports a single range scan on the PK (to find key_col values between 1 and 8), and eight singleton lookups on the heap.  Remember that a bookmark lookup (RID or Key) is a seek to a single value in a ‘unique index’ – it finds a row in the heap or cluster from a unique RID or clustering key – so that’s why lookups are always singleton lookups, not range scans. Our next example shows what happens when a query plan operator is not executed at all: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 8 AND @@TRANCOUNT < 0'; The Filter has a start-up predicate which is always false (if your @@TRANCOUNT is less than zero, call CSS immediately).  The index seek is never executed, but QE still records a single seek against the PK because the operator appears once in an executed plan.  The SE output shows no activity at all.  This next example is 2008 and above only, I’m afraid: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WHERE key_col BETWEEN 1 AND 30', @Partitioned = 'true'; This is the first example to use a partitioned table.  QE reports a single seek on the heap (yes – a seek on a heap), and the SE reports two range scans on the heap.  SQL Server knows (from the partitioning definition) that it only needs to look at partitions 1 and 2 to find all the rows where key_col is between 1 and 30 – the engine seeks to find the two partitions, and performs a range scan seek on each partition. The final example for today is another seek on a heap – try to work out the output of the query before running it! EXECUTE dbo.RunTest @SQL = 'SELECT TOP (2) WITH TIES * FROM Example WHERE key_col BETWEEN 1 AND 50 ORDER BY $PARTITION.PF(key_col) DESC', @Partitioned = 'true'; Notice the lack of an explicit Sort operator in the query plan to enforce the ORDER BY clause, and the backward range scan. © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • How to Load Oracle Tables From Hadoop Tutorial (Part 5 - Leveraging Parallelism in OSCH)

    - by Bob Hanckel
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Using OSCH: Beyond Hello World In the previous post we discussed a “Hello World” example for OSCH focusing on the mechanics of getting a toy end-to-end example working. In this post we are going to talk about how to make it work for big data loads. We will explain how to optimize an OSCH external table for load, paying particular attention to Oracle’s DOP (degree of parallelism), the number of external table location files we use, and the number of HDFS files that make up the payload. We will provide some rules that serve as best practices when using OSCH. The assumption is that you have read the previous post and have some end to end OSCH external tables working and now you want to ramp up the size of the loads. Using OSCH External Tables for Access and Loading OSCH external tables are no different from any other Oracle external tables.  They can be used to access HDFS content using Oracle SQL: SELECT * FROM my_hdfs_external_table; or use the same SQL access to load a table in Oracle. INSERT INTO my_oracle_table SELECT * FROM my_hdfs_external_table; To speed up the load time, you will want to control the degree of parallelism (i.e. DOP) and add two SQL hints. ALTER SESSION FORCE PARALLEL DML PARALLEL  8; ALTER SESSION FORCE PARALLEL QUERY PARALLEL 8; INSERT /*+ append pq_distribute(my_oracle_table, none) */ INTO my_oracle_table SELECT * FROM my_hdfs_external_table; There are various ways of either hinting at what level of DOP you want to use.  The ALTER SESSION statements above force the issue assuming you (the user of the session) are allowed to assert the DOP (more on that in the next section).  Alternatively you could embed additional parallel hints directly into the INSERT and SELECT clause respectively. /*+ parallel(my_oracle_table,8) *//*+ parallel(my_hdfs_external_table,8) */ Note that the "append" hint lets you load a target table by reserving space above a given "high watermark" in storage and uses Direct Path load.  In other doesn't try to fill blocks that are already allocated and partially filled. It uses unallocated blocks.  It is an optimized way of loading a table without incurring the typical resource overhead associated with run-of-the-mill inserts.  The "pq_distribute" hint in this context unifies the INSERT and SELECT operators to make data flow during a load more efficient. Finally your target Oracle table should be defined with "NOLOGGING" and "PARALLEL" attributes.   The combination of the "NOLOGGING" and use of the "append" hint disables REDO logging, and its overhead.  The "PARALLEL" clause tells Oracle to try to use parallel execution when operating on the target table. Determine Your DOP It might feel natural to build your datasets in Hadoop, then afterwards figure out how to tune the OSCH external table definition, but you should start backwards. You should focus on Oracle database, specifically the DOP you want to use when loading (or accessing) HDFS content using external tables. The DOP in Oracle controls how many PQ slaves are launched in parallel when executing an external table. Typically the DOP is something you want to Oracle to control transparently, but for loading content from Hadoop with OSCH, it's something that you will want to control. Oracle computes the maximum DOP that can be used by an Oracle user. The maximum value that can be assigned is an integer value typically equal to the number of CPUs on your Oracle instances, times the number of cores per CPU, times the number of Oracle instances. For example, suppose you have a RAC environment with 2 Oracle instances. And suppose that each system has 2 CPUs with 32 cores. The maximum DOP would be 128 (i.e. 2*2*32). In point of fact if you are running on a production system, the maximum DOP you are allowed to use will be restricted by the Oracle DBA. This is because using a system maximum DOP can subsume all system resources on Oracle and starve anything else that is executing. Obviously on a production system where resources need to be shared 24x7, this can’t be allowed to happen. The use cases for being able to run OSCH with a maximum DOP are when you have exclusive access to all the resources on an Oracle system. This can be in situations when your are first seeding tables in a new Oracle database, or there is a time where normal activity in the production database can be safely taken off-line for a few hours to free up resources for a big incremental load. Using OSCH on high end machines (specifically Oracle Exadata and Oracle BDA cabled with Infiniband), this mode of operation can load up to 15TB per hour. The bottom line is that you should first figure out what DOP you will be allowed to run with by talking to the DBAs who manage the production system. You then use that number to derive the number of location files, and (optionally) the number of HDFS data files that you want to generate, assuming that is flexible. Rule 1: Find out the maximum DOP you will be allowed to use with OSCH on the target Oracle system Determining the Number of Location Files Let’s assume that the DBA told you that your maximum DOP was 8. You want the number of location files in your external table to be big enough to utilize all 8 PQ slaves, and you want them to represent equally balanced workloads. Remember location files in OSCH are metadata lists of HDFS files and are created using OSCH’s External Table tool. They also represent the workload size given to an individual Oracle PQ slave (i.e. a PQ slave is given one location file to process at a time, and only it will process the contents of the location file.) Rule 2: The size of the workload of a single location file (and the PQ slave that processes it) is the sum of the content size of the HDFS files it lists For example, if a location file lists 5 HDFS files which are each 100GB in size, the workload size for that location file is 500GB. The number of location files that you generate is something you control by providing a number as input to OSCH’s External Table tool. Rule 3: The number of location files chosen should be a small multiple of the DOP Each location file represents one workload for one PQ slave. So the goal is to keep all slaves busy and try to give them equivalent workloads. Obviously if you run with a DOP of 8 but have 5 location files, only five PQ slaves will have something to do and the other three will have nothing to do and will quietly exit. If you run with 9 location files, then the PQ slaves will pick up the first 8 location files, and assuming they have equal work loads, will finish up about the same time. But the first PQ slave to finish its job will then be rescheduled to process the ninth location file, potentially doubling the end to end processing time. So for this DOP using 8, 16, or 32 location files would be a good idea. Determining the Number of HDFS Files Let’s start with the next rule and then explain it: Rule 4: The number of HDFS files should try to be a multiple of the number of location files and try to be relatively the same size In our running example, the DOP is 8. This means that the number of location files should be a small multiple of 8. Remember that each location file represents a list of unique HDFS files to load, and that the sum of the files listed in each location file is a workload for one Oracle PQ slave. The OSCH External Table tool will look in an HDFS directory for a set of HDFS files to load.  It will generate N number of location files (where N is the value you gave to the tool). It will then try to divvy up the HDFS files and do its best to make sure the workload across location files is as balanced as possible. (The tool uses a greedy algorithm that grabs the biggest HDFS file and delegates it to a particular location file. It then looks for the next biggest file and puts in some other location file, and so on). The tools ability to balance is reduced if HDFS file sizes are grossly out of balance or are too few. For example suppose my DOP is 8 and the number of location files is 8. Suppose I have only 8 HDFS files, where one file is 900GB and the others are 100GB. When the tool tries to balance the load it will be forced to put the singleton 900GB into one location file, and put each of the 100GB files in the 7 remaining location files. The load balance skew is 9 to 1. One PQ slave will be working overtime, while the slacker PQ slaves are off enjoying happy hour. If however the total payload (1600 GB) were broken up into smaller HDFS files, the OSCH External Table tool would have an easier time generating a list where each workload for each location file is relatively the same.  Applying Rule 4 above to our DOP of 8, we could divide the workload into160 files that were approximately 10 GB in size.  For this scenario the OSCH External Table tool would populate each location file with 20 HDFS file references, and all location files would have similar workloads (approximately 200GB per location file.) As a rule, when the OSCH External Table tool has to deal with more and smaller files it will be able to create more balanced loads. How small should HDFS files get? Not so small that the HDFS open and close file overhead starts having a substantial impact. For our performance test system (Exadata/BDA with Infiniband), I compared three OSCH loads of 1 TiB. One load had 128 HDFS files living in 64 location files where each HDFS file was about 8GB. I then did the same load with 12800 files where each HDFS file was about 80MB size. The end to end load time was virtually the same. However when I got ridiculously small (i.e. 128000 files at about 8MB per file), it started to make an impact and slow down the load time. What happens if you break rules 3 or 4 above? Nothing draconian, everything will still function. You just won’t be taking full advantage of the generous DOP that was allocated to you by your friendly DBA. The key point of the rules articulated above is this: if you know that HDFS content is ultimately going to be loaded into Oracle using OSCH, it makes sense to chop them up into the right number of files roughly the same size, derived from the DOP that you expect to use for loading. Next Steps So far we have talked about OLH and OSCH as alternative models for loading. That’s not quite the whole story. They can be used together in a way that provides for more efficient OSCH loads and allows one to be more flexible about scheduling on a Hadoop cluster and an Oracle Database to perform load operations. The next lesson will talk about Oracle Data Pump files generated by OLH, and loaded using OSCH. It will also outline the pros and cons of using various load methods.  This will be followed up with a final tutorial lesson focusing on how to optimize OLH and OSCH for use on Oracle's engineered systems: specifically Exadata and the BDA. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • dual boot ubuntu installation mishap

    - by user590849
    I have Windows 7 pc ,where i had 2 partitions, a c drive for my system files and a d drive for my data. I decided to install ubuntu 11.10 a couple of days ago and thought of install it in a separate partition of its own. So i made a separate Linux partition of 30GB. I downloaded ubuntu on my usb stick and installed. During the installation process i was asked where to install ubuntu so i opened up a screen that was similar to this one There were six partitions present ( I had made only 3 partition via windows). Their names were totally different from the ones that i had given in windows. So i selected a drive which had the same size as my Linux partition that i had made in windows ( no other partition had the same size). I clicked on install now and got an error message saying that "There was no root folder set". I set the newly made partition as my root folder and clicked install now. Now out of the 6 partitions that were created 3 were logical ( i had only created 3 partitions in windows). As soon as i clicked install now, the system asked me where i wanted to put my "swap space". I selected one of the logical drives and hit install. Ubuntu successfully installed on my system and at the end it asked me to reboot. I did and got the following error message: "missing operating system". I was shocked. I tried my windows recovery disk ( that i had gotten when i had purchased my laptop) and there i went into startup repair. In the startup repair option i was not able to locate windows. The system asked me to click the "Load drivers" button to load the drivers to my harddrive where windows was installed, but i could not locate any drivers to my harddrive. I tried this several times but to no success. I panicked and installed ubuntu, now this time click "ok" at every step( not worrying about the partition and all). The os installed correctly and i am now able to access my harddrive. NO data within the c drive is lost. All the windows system files are intact. I wish to recover my windows installation. How do i go about it? Thank you in advance. I do not want to format my computer and install windows again.

    Read the article

  • mysql: Cannot load from mysql.proc. The table is probably corrupted

    - by Alex
    Mysql was started: /usr/bin/mysqld_safe --datadir=/srv/mysql/myDB --log-error=/srv/mysql/logs/mysqld-myDB.log --pid-file=/srv/mysql/pids/mysqld-myDB.pid --user=mysql --socket=/srv/mysql/sockets/mysql-myDB.sock --port=3700 but when I'm trying to do something: ERROR 1548 (HY000) at line 1: Cannot load from mysql.proc. The table is probably corrupted How to fix it? $ mysql -V mysql Ver 14.14 Distrib 5.1.58, for debian-linux-gnu (x86_64) using readline 6.2 $ lsb_release -a Distributor ID: Ubuntu Description: Ubuntu 11.10 Release: 11.10 Codename: oneiric $ sudo mysql_upgrade -uroot -p<password> --force Looking for 'mysql' as: mysql Looking for 'mysqlcheck' as: mysqlcheck Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock' Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock' mysql.columns_priv OK mysql.db OK mysql.event OK mysql.func OK mysql.general_log Error : You can't use locks with log tables. status : OK mysql.help_category OK mysql.help_keyword OK mysql.help_relation OK mysql.help_topic OK mysql.host OK mysql.ndb_binlog_index OK mysql.plugin OK mysql.proc OK mysql.procs_priv OK mysql.servers OK mysql.slow_log Error : You can't use locks with log tables. status : OK mysql.tables_priv OK mysql.time_zone OK mysql.time_zone_leap_second OK mysql.time_zone_name OK mysql.time_zone_transition OK mysql.time_zone_transition_type OK mysql.user OK Running 'mysql_fix_privilege_tables'... OK $ mysqlcheck --port=3700 --socket=/srv/mysql/sockets/mysql-my-env.sock -A -udata_owner -pdata_owner <all tables> OK UPD1: for example I'm trying to remove procedure: mysql> DROP PROCEDURE IF EXISTS mysql.myproc; ERROR 1548 (HY000): Cannot load from mysql.proc. The table is probably corrupted mysql> UPD2: mysql> REPAIR TABLE mysql.proc; +------------+--------+----------+-----------------------------------------------------------------------------------------+ | Table | Op | Msg_type | Msg_text | +------------+--------+----------+-----------------------------------------------------------------------------------------+ | mysql.proc | repair | error | 1 when fixing table | | mysql.proc | repair | Error | Can't change permissions of the file '/srv/mysql/myDB/mysql/proc.MYD' (Errcode: 1) | | mysql.proc | repair | status | Operation failed | +------------+--------+----------+-----------------------------------------------------------------------------------------+ 3 rows in set (0.04 sec) This is strange, because: $ ls -l /srv/mysql/myDB/mysql/proc.MYD -rwxrwxrwx 1 mysql root 3983252 2012-02-03 22:51 /srv/mysql/myDB/mysql/proc.MYD UPD3: $ ls -la /srv/mysql/myDB/mysql total 8930 drwxrwxrwx 2 mysql root 2480 2012-02-21 13:13 . drwxrwxrwx 13 mysql root 504 2012-02-21 19:01 .. -rwxrwxrwx 1 mysql root 8820 2012-02-20 15:50 columns_priv.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 columns_priv.MYD -rwxrwxrwx 1 mysql root 4096 2012-02-20 15:50 columns_priv.MYI -rwxrwxrwx 1 mysql root 9582 2012-02-20 15:50 db.frm -rwxrwxrwx 1 mysql root 8360 2011-12-08 02:14 db.MYD -rwxrwxrwx 1 mysql root 5120 2012-02-20 15:50 db.MYI -rwxrwxrwx 1 mysql root 54 2011-11-12 15:42 db.opt -rwxrwxrwx 1 mysql root 10223 2012-02-20 15:50 event.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 event.MYD -rwxrwxrwx 1 mysql root 2048 2012-02-20 15:50 event.MYI -rwxrwxrwx 1 mysql root 8665 2012-02-20 15:50 func.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 func.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 func.MYI -rwxrwxrwx 1 mysql root 8700 2012-02-20 15:50 help_category.frm -rwxrwxrwx 1 mysql root 21497 2011-11-12 15:42 help_category.MYD -rwxrwxrwx 1 mysql root 3072 2012-02-20 15:50 help_category.MYI -rwxrwxrwx 1 mysql root 8612 2012-02-20 15:50 help_keyword.frm -rwxrwxrwx 1 mysql root 88650 2011-11-12 15:42 help_keyword.MYD -rwxrwxrwx 1 mysql root 16384 2012-02-20 15:50 help_keyword.MYI -rwxrwxrwx 1 mysql root 8630 2012-02-20 15:50 help_relation.frm -rwxrwxrwx 1 mysql root 8874 2011-11-12 15:42 help_relation.MYD -rwxrwxrwx 1 mysql root 16384 2012-02-20 15:50 help_relation.MYI -rwxrwxrwx 1 mysql root 8770 2012-02-20 15:50 help_topic.frm -rwxrwxrwx 1 mysql root 414320 2011-11-12 15:42 help_topic.MYD -rwxrwxrwx 1 mysql root 20480 2012-02-20 15:50 help_topic.MYI -rwxrwxrwx 1 mysql root 9510 2012-02-20 15:50 host.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 host.MYD -rwxrwxrwx 1 mysql root 2048 2012-02-20 15:50 host.MYI -rwxrwxrwx 1 mysql root 8554 2011-11-12 15:42 innodb_monitor.frm -rwxrwxrwx 1 mysql root 98304 2011-11-12 15:55 innodb_monitor.ibd -rwxrwxrwx 1 mysql root 8592 2012-02-20 15:50 inventory.frm -rwxrwxrwx 1 mysql root 76 2011-11-12 15:42 inventory.MYD -rwxrwxrwx 1 mysql root 2048 2012-02-20 15:50 inventory.MYI -rwxrwxrwx 1 mysql root 8778 2012-02-20 15:50 ndb_binlog_index.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 ndb_binlog_index.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 ndb_binlog_index.MYI -rwxrwxrwx 1 mysql root 8586 2012-02-20 15:50 plugin.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 plugin.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 plugin.MYI -rwxrwxrwx 1 mysql root 9996 2012-02-20 15:50 proc.frm -rwxrwxrwx 1 mysql root 3983252 2012-02-03 22:51 proc.MYD -rwxrwxrwx 1 mysql root 36864 2012-02-21 13:23 proc.MYI -rwxrwxrwx 1 mysql root 8875 2012-02-20 15:50 procs_priv.frm -rwxrwxrwx 1 mysql root 1700 2011-11-12 15:42 procs_priv.MYD -rwxrwxrwx 1 mysql root 8192 2012-02-20 15:50 procs_priv.MYI -rwxrwxrwx 1 mysql root 3977704 2012-02-21 13:23 proc.TMD -rwxrwxrwx 1 mysql root 8800 2012-02-20 15:50 proxies_priv.frm -rwxrwxrwx 1 mysql root 693 2011-11-12 15:42 proxies_priv.MYD -rwxrwxrwx 1 mysql root 5120 2012-02-20 15:50 proxies_priv.MYI -rwxrwxrwx 1 mysql root 8838 2012-02-20 15:50 servers.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 servers.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 servers.MYI -rwxrwxrwx 1 mysql root 8955 2012-02-20 15:50 tables_priv.frm -rwxrwxrwx 1 mysql root 5957 2011-11-12 15:42 tables_priv.MYD -rwxrwxrwx 1 mysql root 8192 2012-02-20 15:50 tables_priv.MYI -rwxrwxrwx 1 mysql root 8636 2012-02-20 15:50 time_zone.frm -rwxrwxrwx 1 mysql root 8624 2012-02-20 15:50 time_zone_leap_second.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 time_zone_leap_second.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 time_zone_leap_second.MYI -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 time_zone.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 time_zone.MYI -rwxrwxrwx 1 mysql root 8606 2012-02-20 15:50 time_zone_name.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 time_zone_name.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 time_zone_name.MYI -rwxrwxrwx 1 mysql root 8686 2012-02-20 15:50 time_zone_transition.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 time_zone_transition.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 time_zone_transition.MYI -rwxrwxrwx 1 mysql root 8748 2012-02-20 15:50 time_zone_transition_type.frm -rwxrwxrwx 1 mysql root 0 2011-11-12 15:42 time_zone_transition_type.MYD -rwxrwxrwx 1 mysql root 1024 2012-02-20 15:50 time_zone_transition_type.MYI -rwxrwxrwx 1 mysql root 10630 2012-02-20 15:50 user.frm -rwxrwxrwx 1 mysql root 5456 2011-11-12 21:01 user.MYD -rwxrwxrwx 1 mysql root 4096 2012-02-20 15:50 user.MYI

    Read the article

  • How do I create statistics to make ‘small’ objects appear ‘large’ to the Optmizer?

    - by Maria Colgan
    I recently spoke with a customer who has a development environment that is a tiny fraction of the size of their production environment. His team has been tasked with identifying problem SQL statements in this development environment before new code is released into production. The problem is the objects in the development environment are so small, the execution plans selected in the development environment rarely reflects what actually happens in production. To ensure the development environment accurately reflects production, in the eyes of the Optimizer, the statistics used in the development environment must be the same as the statistics used in production. This can be achieved by exporting the statistics from production and import them into the development environment. Even though the underlying objects are a fraction of the size of production, the Optimizer will see them as the same size and treat them the same way as it would in production. Below are the necessary steps to achieve this in their environment. I am using the SH sample schema as the application schema who's statistics we want to move from production to development. Step 1. Create a staging table, in the production environment, where the statistics can be stored Step 2. Export the statistics for the application schema, from the data dictionary in production, into the staging table Step 3. Create an Oracle directory on the production system where the export of the staging table will reside and grant the SH user the necessary privileges on it. Step 4. Export the staging table from production using data pump export Step 5. Copy the dump file containing the stating table from production to development Step 6. Create an Oracle directory on the development system where the export of the staging table resides and grant the SH user the necessary privileges on it.  Step 7. Import the staging table into the development environment using data pump import Step 8. Import the statistics from the staging table into the dictionary in the development environment. You can get a copy of the script I used to generate this post here. +Maria Colgan

    Read the article

  • Count Items in Access 2003

    - by Anna
    I have a table which contains a column with different items which i would like to count by there type. For example the table looks like the following: Id Type 1 Table 2 Table 3 TV 4 TV 5 Table 6 TV 7 TV The result should looks like: Type NumOfItems Table 3 TV 4 I use the following code which doesn't work for my Access 2003: SELECT Table1.Type, Count(Table1.Type) AS NumOfItems FROM Table1

    Read the article

  • Developers are strange

    - by DavidWimbush
    Why do developers always use the GUI tools in SQL Server? I've always found this irritating and just vaguely assumed it's because they aren't familiar with SQL syntax. But when you think about it it, it's a genuine puzzle. Developers type code all day - really heavy code too like generics, lamda functions and extension methods. They (thankfully) scorn the Visual Studio stuff where you drag a table onto the class and it pastes in lots of code to query the table into a DataSet or something. But when they want to add a column to a table, without fail they dive into the graphical table designer. And half the time the script it generates does horrible things like copy the table to another one with the new column, delete the old table, and rename the new table. Which is fine if your users don't care about uptime. Is ALTER TABLE ADD <column definition> really that hard? I just don't get it.

    Read the article

  • Non-standard installation (installing Linux from Linux)

    - by Evan Plaice
    So, here's my setup. I have one partition with the newest version installed, a second partition with an older version installed (as a backup just in case), a swap partition that both share, and a boot partition so the bootloader doesn't need to be setup after each upgrade. Partitions: sda1 ext3 /boot sda2 ext4 / (current version) sda3 ext4 / (old version) sda4 swap /swap sda5 ntfs (contains folders symbolically linked to /home on /) So far it has been a very good setup. I can create new boot loaders without screwing it up and adding my personal files into a new install is as simple as creating some symbolic links (the partition is NTFS in case I need to load windows on the system again). Here's the issue. I'd like to be able to drop the install into /distro on the current version and install a new version on / on the old version effectively replacing/upgrading it. The goal is to be able to just swap out new versions as they are released while maintaining redundancy in case I don't like th update. So far I have: downloaded the install.iso created a folder in /distro copied the install.iso into /distro extracted vmlinuz and initrd.lz into /distro Then I modified /boot/grub/menu.lst with the following entry: title Install Linux root (hd0,1) kernel /distro/vmlinuz initrd /distro/initrd.lz vmlinuz loads perfectly but it says it can't find initrd.lz on boot. I have also tried to uncompress the image with: unlzma < initrd.lz > initrd.img And, updating the menu.lst file to match; but that doesn't work either. I'm assuming that vmlinuz (linux kernel) loads, fires up the virtual filesystem by creating a ramdisk (initrd), mounts the iso, and launches the installer. Am I missing something here? Update: First, I wanted to say that the accepted answer would have been the best option if I was doing a normal Ubuntu install. Unfortunately, I was installing Linux Mint (which lacks the script needed to make debootstrap work. So the problem I with the above approach was, I was missing the command that vmlinuz (linux kernel) needed to execute to start boot into LiveCD mode. By looking in the /boot/grub/grub.cfg file I found what I was missing. Although this method will work, it requires that the installation files reside on their own partition. I took the easy route and used unetbootin to drop the LiveCD on a usb drive and booted from that. Like I said before. Debootstrap would have been the ideal solution here. Even though I couldn't use it I wrote down the steps it would've taken to use it. Step One: Format sda3 (the partition with the old copy of linux that's being overwritten) I used gparted to format it as ext4 from within the current linux install. How this is done varies based on what tools you prefer to use. Step Two: Mount the newly formatted partition (we'll call the mount ubuntu for simplicity) sudo mkdir /mnt/ubuntu sudo mount -o -loop /dev/sda3 /mnt/ubuntu Step Three: Get debootstrap sudo apt-get install debootstrap Step Four: Mount the install disk (replace ubuntu.iso with the name if your install disk) sudo mkdir /media/cdrom sudo mount -o loop ~/ubuntu.iso /media/cdrom Step Five: Install the OS using debootstrap (replace fiesty with the version you're installing and amd64 with your processor's architecture) sudo debootstrap --arch amd64 fiesty /mnt/ubuntu file:/media/cdrom The settings here varies. While I loaded debootstrap using an install iso, you can also have debootstrap automatically download and install if with a repository link (While most of these repositories contain debian versions I'm still not clear as to whether Ubuntu has similar repositories). Here a list of the debian package repositories and their mirrors. This is how you'd deploy debootstrap if you were doing it directly from a repository: sudo debootstrap --arch amd64 squeeze /mnt/debian http://ftp.us.debian.org/debian Here's the link that I primarily used to figure this out.

    Read the article

  • nf_conntrack complaints in dmesg

    - by Alexander Gladysh
    While investigating complains on bad HTTP server performance, I've discovered these lines in dmesg of my Xen XCP host that contains a guest OS with said server: [11458852.811070] net_ratelimit: 321 callbacks suppressed [11458852.811075] nf_conntrack: table full, dropping packet. [11458852.819957] nf_conntrack: table full, dropping packet. [11458852.821083] nf_conntrack: table full, dropping packet. [11458852.822195] nf_conntrack: table full, dropping packet. [11458852.824987] nf_conntrack: table full, dropping packet. [11458852.825298] nf_conntrack: table full, dropping packet. [11458852.825891] nf_conntrack: table full, dropping packet. [11458852.826225] nf_conntrack: table full, dropping packet. [11458852.826234] nf_conntrack: table full, dropping packet. [11458852.826814] nf_conntrack: table full, dropping packet. Complains are repeated every five seconds (number of suppressed callbacks is different each time). What can these sympthoms mean? Is that bad? Any hints? (Note that the question is more narrow than "how to solve specific case of bad HTTP server performance", so I do not give more details on that.) Additional info: $ uname -a Linux MYHOST 3.2.0-24-generic #37-Ubuntu SMP Wed Apr 25 08:43:22 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux $ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 12.04 LTS Release: 12.04 Codename: precise $ cat /proc/sys/net/netfilter/nf_conntrack_max 1548576 The server is under about 10M hits / day load.

    Read the article

  • When importing an Access table into Excel, a look-up column is showing all values as numbers

    - by user3651997
    I have a basic Access to Excel question that has me frustrated. I have two Access 2010 data tables. One is a list of managers. The primary key is a manager ID (which is an autonumber because managers can have the same name), and each row also has manager name, manager email, etc. The second data table is a list of departments. The primary key for each row is a unique department code, and the foreign key is a manager ID (autonumber). I used the Look-up Wizard to create this connection. However, Access does not show the manager ID in the foreign key location. It shows Manager Name like I requested when I used the Look-up Wizard. Now I am trying to import the second table (departments) into Excel 2010. I clicked import from Access, chose the Department table, and everything popped into Excel. BUT, the Manager Name column is showing Manager ID instead. So I have a list of numbers instead of names. How can I make Excel show what I see in Access? Thanks!

    Read the article

  • Spooling in SQL execution plans

    - by Rob Farley
    Sewing has never been my thing. I barely even know the terminology, and when discussing this with American friends, I even found out that half the words that Americans use are different to the words that English and Australian people use. That said – let’s talk about spools! In particular, the Spool operators that you find in some SQL execution plans. This post is for T-SQL Tuesday, hosted this month by me! I’ve chosen to write about spools because they seem to get a bad rap (even in my song I used the line “There’s spooling from a CTE, they’ve got recursion needlessly”). I figured it was worth covering some of what spools are about, and hopefully explain why they are remarkably necessary, and generally very useful. If you have a look at the Books Online page about Plan Operators, at http://msdn.microsoft.com/en-us/library/ms191158.aspx, and do a search for the word ‘spool’, you’ll notice it says there are 46 matches. 46! Yeah, that’s what I thought too... Spooling is mentioned in several operators: Eager Spool, Lazy Spool, Index Spool (sometimes called a Nonclustered Index Spool), Row Count Spool, Spool, Table Spool, and Window Spool (oh, and Cache, which is a special kind of spool for a single row, but as it isn’t used in SQL 2012, I won’t describe it any further here). Spool, Table Spool, Index Spool, Window Spool and Row Count Spool are all physical operators, whereas Eager Spool and Lazy Spool are logical operators, describing the way that the other spools work. For example, you might see a Table Spool which is either Eager or Lazy. A Window Spool can actually act as both, as I’ll mention in a moment. In sewing, cotton is put onto a spool to make it more useful. You might buy it in bulk on a cone, but if you’re going to be using a sewing machine, then you quite probably want to have it on a spool or bobbin, which allows it to be used in a more effective way. This is the picture that I want you to think about in relation to your data. I’m sure you use spools every time you use your sewing machine. I know I do. I can’t think of a time when I’ve got out my sewing machine to do some sewing and haven’t used a spool. However, I often run SQL queries that don’t use spools. You see, the data that is consumed by my query is typically in a useful state without a spool. It’s like I can just sew with my cotton despite it not being on a spool! Many of my favourite features in T-SQL do like to use spools though. This looks like a very similar query to before, but includes an OVER clause to return a column telling me the number of rows in my data set. I’ll describe what’s going on in a few paragraphs’ time. So what does a Spool operator actually do? The spool operator consumes a set of data, and stores it in a temporary structure, in the tempdb database. This structure is typically either a Table (ie, a heap), or an Index (ie, a b-tree). If no data is actually needed from it, then it could also be a Row Count spool, which only stores the number of rows that the spool operator consumes. A Window Spool is another option if the data being consumed is tightly linked to windows of data, such as when the ROWS/RANGE clause of the OVER clause is being used. You could maybe think about the type of spool being like whether the cotton is going onto a small bobbin to fit in the base of the sewing machine, or whether it’s a larger spool for the top. A Table or Index Spool is either Eager or Lazy in nature. Eager and Lazy are Logical operators, which talk more about the behaviour, rather than the physical operation. If I’m sewing, I can either be all enthusiastic and get all my cotton onto the spool before I start, or I can do it as I need it. “Lazy” might not the be the best word to describe a person – in the SQL world it describes the idea of either fetching all the rows to build up the whole spool when the operator is called (Eager), or populating the spool only as it’s needed (Lazy). Window Spools are both physical and logical. They’re eager on a per-window basis, but lazy between windows. And when is it needed? The way I see it, spools are needed for two reasons. 1 – When data is going to be needed AGAIN. 2 – When data needs to be kept away from the original source. If you’re someone that writes long stored procedures, you are probably quite aware of the second scenario. I see plenty of stored procedures being written this way – where the query writer populates a temporary table, so that they can make updates to it without risking the original table. SQL does this too. Imagine I’m updating my contact list, and some of my changes move data to later in the book. If I’m not careful, I might update the same row a second time (or even enter an infinite loop, updating it over and over). A spool can make sure that I don’t, by using a copy of the data. This problem is known as the Halloween Effect (not because it’s spooky, but because it was discovered in late October one year). As I’m sure you can imagine, the kind of spool you’d need to protect against the Halloween Effect would be eager, because if you’re only handling one row at a time, then you’re not providing the protection... An eager spool will block the flow of data, waiting until it has fetched all the data before serving it up to the operator that called it. In the query below I’m forcing the Query Optimizer to use an index which would be upset if the Name column values got changed, and we see that before any data is fetched, a spool is created to load the data into. This doesn’t stop the index being maintained, but it does mean that the index is protected from the changes that are being done. There are plenty of times, though, when you need data repeatedly. Consider the query I put above. A simple join, but then counting the number of rows that came through. The way that this has executed (be it ideal or not), is to ask that a Table Spool be populated. That’s the Table Spool operator on the top row. That spool can produce the same set of rows repeatedly. This is the behaviour that we see in the bottom half of the plan. In the bottom half of the plan, we see that the a join is being done between the rows that are being sourced from the spool – one being aggregated and one not – producing the columns that we need for the query. Table v Index When considering whether to use a Table Spool or an Index Spool, the question that the Query Optimizer needs to answer is whether there is sufficient benefit to storing the data in a b-tree. The idea of having data in indexes is great, but of course there is a cost to maintaining them. Here we’re creating a temporary structure for data, and there is a cost associated with populating each row into its correct position according to a b-tree, as opposed to simply adding it to the end of the list of rows in a heap. Using a b-tree could even result in page-splits as the b-tree is populated, so there had better be a reason to use that kind of structure. That all depends on how the data is going to be used in other parts of the plan. If you’ve ever thought that you could use a temporary index for a particular query, well this is it – and the Query Optimizer can do that if it thinks it’s worthwhile. It’s worth noting that just because a Spool is populated using an Index Spool, it can still be fetched using a Table Spool. The details about whether or not a Spool used as a source shows as a Table Spool or an Index Spool is more about whether a Seek predicate is used, rather than on the underlying structure. Recursive CTE I’ve already shown you an example of spooling when the OVER clause is used. You might see them being used whenever you have data that is needed multiple times, and CTEs are quite common here. With the definition of a set of data described in a CTE, if the query writer is leveraging this by referring to the CTE multiple times, and there’s no simplification to be leveraged, a spool could theoretically be used to avoid reapplying the CTE’s logic. Annoyingly, this doesn’t happen. Consider this query, which really looks like it’s using the same data twice. I’m creating a set of data (which is completely deterministic, by the way), and then joining it back to itself. There seems to be no reason why it shouldn’t use a spool for the set described by the CTE, but it doesn’t. On the other hand, if we don’t pull as many columns back, we might see a very different plan. You see, CTEs, like all sub-queries, are simplified out to figure out the best way of executing the whole query. My example is somewhat contrived, and although there are plenty of cases when it’s nice to give the Query Optimizer hints about how to execute queries, it usually doesn’t do a bad job, even without spooling (and you can always use a temporary table). When recursion is used, though, spooling should be expected. Consider what we’re asking for in a recursive CTE. We’re telling the system to construct a set of data using an initial query, and then use set as a source for another query, piping this back into the same set and back around. It’s very much a spool. The analogy of cotton is long gone here, as the idea of having a continual loop of cotton feeding onto a spool and off again doesn’t quite fit, but that’s what we have here. Data is being fed onto the spool, and getting pulled out a second time when the spool is used as a source. (This query is running on AdventureWorks, which has a ManagerID column in HumanResources.Employee, not AdventureWorks2012) The Index Spool operator is sucking rows into it – lazily. It has to be lazy, because at the start, there’s only one row to be had. However, as rows get populated onto the spool, the Table Spool operator on the right can return rows when asked, ending up with more rows (potentially) getting back onto the spool, ready for the next round. (The Assert operator is merely checking to see if we’ve reached the MAXRECURSION point – it vanishes if you use OPTION (MAXRECURSION 0), which you can try yourself if you like). Spools are useful. Don’t lose sight of that. Every time you use temporary tables or table variables in a stored procedure, you’re essentially doing the same – don’t get upset at the Query Optimizer for doing so, even if you think the spool looks like an expensive part of the query. I hope you’re enjoying this T-SQL Tuesday. Why not head over to my post that is hosting it this month to read about some other plan operators? At some point I’ll write a summary post – once I have you should find a comment below pointing at it. @rob_farley

    Read the article

  • UEFI Dual-Boot - Ubuntu 12.04.3 + Windows 8.1 (One GPT HDD)

    - by swafbrother
    UEFI Dual-Boot - Ubuntu 12.04.3 + Windows 8.1 (One GPT HDD) Hello, I'm having trouble setting up a dual-boot (Ubuntu 12.04 LTS and Windows 8.1) in my ASUS K55VM laptop's hard drive disk (500 GB). I was mostly following tutorials for doing this, but at some point something has gone wrong. Up to now, I have followed these steps: I formatted my HDD into GPT. I clean-installed Windows 8.1. I didn't prevent Windows from choosing the partitions to use and it created these partitions: A Recovery partition (sda1). An EFI System Partition (sda2). A Microsoft Reserved Partition (sda3). A Windows Data Partition or C drive (sda4). I reduced the Windows Data Partition via Windows' Disk Management. I made a bootable USB Stick with Ubuntu 12.04 LTS from ISO, using Universal USB Installer. I created these partitions for Ubuntu: A Boot partition, mounted at /boot (sda5). A Root partition, mounted at / (sda6). A Swap partition (sda7). In Device for boot loader installation I chose: /dev/sda. Then, when I rebooted, it went straight into Ubuntu. So I installed Boot-Repair, and clicked on Recommended Repair. It automatically did its job without asking for anything. I rebooted and Grub showed up, with a lot of options. At this point I had a decent dual-boot setup; Ubuntu and both Windows entries worked fine: Ubuntu. Windows Boot UEFI Loader. Windows UEFI bkpbootmgfw.efi. I executed this command: sudo grub-install --force /dev/sda5. Then I tried to make Windows 8.1's Boot Manager the main boot manager, so that I could choose which OS to boot into from a menu. I downloaded EasyBCD on Windows. It showed 2 Ubuntu entries and 1 Windows entry. I went into BCD Deployment tab and clicked on Write MBR. At this point, I went into BIOS and made Windows Boot Manager the first boot option. When I rebooted, I got a black screen with the message efidisk read error, and then (I guess) it switched to the next boot option, which is Ubuntu, resulting in Grub showing up. From Grub, Ubuntu entry is working and so are both Windows entries. If I choose Ubuntu, it normally boots into Ubuntu. But if I choose Windows, it goes into Windows' boot manager. In Windows' boot manager, a menu shows up: Ubuntu. Ubuntu. Windows 8.1. If I choose Windows, it boots into Windows without any problem. If I choose Ubuntu, it boots into Grub (back to step 14). Here's my BootInfo Summary: http://paste.ubuntu.com/6698171/ Windows Boot Manager is clearly not working as expected; I can't directly boot into it and I can't boot into it from BIOS either (efidisk read error again). If I want to boot into Windows I need to boot into Grub first, which is the opposite of what I wanted. I need help at this point. What is the best thing I can do? Is there a more reliable and/or simpler way of acomplishing a satisfying dual-boot for this situation? Can someone provide a way for going back to step 8, where I had a more efficient dual-boot setup? If only I could undo what I did with Easy BCD and skip Windows' Boot Menu... Can someone provide a way to fix this mess? Thanks in advance and sorry for the length of this, I wanted to be exhaustive.

    Read the article

  • How to filter a mysql database with user input on a website and then spit the filtered table back to the website? [migrated]

    - by Luke
    I've been researching this on google for literally 3 weeks, racking my brain and still not quite finding anything. I can't believe this is so elusive. (I'm a complete beginner so if my terminology sounds stupid then that's why.) I have a database in mysql/phpmyadmin on my web host. I'm trying to create a front end that will allow a user to specify criteria for querying the database in a way that they don't have to know sql, basically just combo boxes and checkboxes on a form. Then have this form 'submit' a query to the database, and show the filtered tables. This is how the SQL looks in Microsoft Access: PARAMETERS TEXTINPUT1 Text ( 255 ), NUMBERINPUT1 IEEEDouble; // pops up a list of parameters for the user to input SELECT DISTINCT Table1.Column1, Table1.Column2, Table1.Column3,* // selects only the unique rows in these three columns FROM Table1 // the table where this query is happening WHERE (((Table1.Column1) Like TEXTINPUT1] AND ((Table1.Column2)<=[NUMBERINPUT1] AND ((Table1.Column3)>=[NUMBERINPUT1])); // the criteria for the filter, it's comparing the user input parameters to the data in the rows and only selecting matches according to the equal sign, or greater than + equal sign, or less than + equal sign What I don't get: WHAT IN THE WORLD AM I SUPPOSED TO USE (that isn't totally hard)!? I've tried google fusion tables - doesn't filter right with numerical data or empty cells in rows, can't relate tables I've tried DataTables.net, can't filter right with numerical data and can't use SQL without a bunch of indepth knowledge, not even sure it can if you have that.. I've looked into using jQuery with google spreadsheets, doesn't work at all either I have no idea how I'm supposed to build a front end with my database. Every place that looks promising (like zohocreator) is asking for money, and is far too simplified to be able to do the LIKE criteria or SELECT DISTINCT stuff.

    Read the article

  • Organising data access for dependency injection

    - by IanAWP
    In our company we have a relatively long history of database backed applications, but have only just begun experimenting with dependency injection. I am looking for advice about how to convert our existing data access pattern into one more suited for dependency injection. Some specific questions: Do you create one access object per table (Given that a table represents an entity collection)? One interface per table? All of these would need the low level Data Access object to be injected, right? What about if there are dozens of tables, wouldn't that make the composition root into a nightmare? Would you instead have a single interface that defines things like GetCustomer(), GetOrder(), etc? If I took the example of EntityFramework, then I would have one Container that exposes an object for each table, but that container doesn't conform to any interface itself, so doesn't seem like it's compatible with DI. What we do now, in case it helps: The way we normally manage data access is through a generic data layer which exposes CRUD/Transaction capabilities and has provider specific subclasses which handle the creation of IDbConnection, IDbCommand, etc. Actual table access uses Table classes that perform the CRUD operations associated with a particular table and accept/return domain objects that the rest of the system deals with. These table classes expose only static methods, and utilise a static DataAccess singleton instantiated from a config file.

    Read the article

  • how to link a c++ object to a local variable in Lua

    - by MahanGM
    I'm completing my scripting interface with Lua, but recently I've stuck at some point. I have several functions for my Entitiy events like Update(). I have a function called create_entitiy() which instantiate a new entity from a given entity index: function Update() local bullet = create_entity(0, 0, "obj_bullet") end create_entity returns a table which is the properties of the created entity. Now how can I make a connection between bullet variable and my newly created object? Right now for previously added objects to the scene, I simply set a global table for each of them and then after every call to Update(), I go through registered names to find object tables and perform new changes. Like the one below: function Update() if keyboard_key_press(vk_right) then obj_player.x += 3 end I can get obj_player table because I know its name from C++, plus I can get it as a global table and simply reach for the first instance named obj_player. Is there any solution for me to make bullet variable act like this? I was thinking to get all local variables in Update() function and check for every one to see if is it table and it has an unique field attached to it like id, this way I can determine that this is an object table and do the rest of the process. By the way, is this interface going to work easier with luaBind if I implement it? Bottom line: How can I make a local variable in Lua that receives a table from create_entity function and track that local variable to capture it from C++. e. g. function Update() local bullet = create_entity(0, 0, "obj_bullet") bullet.x = 10 <== Commit a change in table end Now I want to get variable bullet from C++. And it's not just this variable, there might be a ton of these local variables with different names.

    Read the article

  • Given a database table where multiple rows have the same values and only the most recent record is to be returned

    - by Jim Lahman
    I have a table where there are multiple records with the same value but varying creation dates.  A sample of the database columns is shown here:   1: select lot_num, to_char(creation_dts,'DD-MON-YYYY HH24:MI:SS') as creation_date 2: from coil_setup 3: order by lot_num   LOT_NUM                        CREATION_DATE        ------------------------------ -------------------- 1435718.002                    24-NOV-2010 11:45:54 1440026.002                    17-NOV-2010 06:50:16 1440026.002                    08-NOV-2010 23:28:24 1526564.002                    01-DEC-2010 13:14:04 1526564.002                    08-NOV-2010 22:39:01 1526564.002                    01-NOV-2010 17:04:30 1605920.003                    29-DEC-2010 10:01:24 1945352.003                    14-DEC-2010 01:50:37 1945352.003                    09-DEC-2010 04:44:22 1952718.002                    25-OCT-2010 09:33:19 1953866.002                    20-OCT-2010 18:38:31 1953866.002                    18-OCT-2010 16:15:25   Notice that there are multiple instances of of the same lot number as shown in bold. To only return the most recent instance, issue this SQL statement: 1: select lot_num, to_char(creation_date,'DD-MON-YYYY HH24:MI:SS') as creation_date 2: from 3: ( 4: select rownum r, lot_num, max(creation_dts) as creation_date 5: from coil_setup group by rownum, lot_num 6: order by lot_num 7: ) 8: where r < 100  LOT_NUM                        CREATION_DATE        ------------------------------ -------------------- 2019416.002                    01-JUL-2010 00:01:24 2022336.003                    06-OCT-2010 15:25:01 2067230.002                    01-JUL-2010 00:36:48 2093114.003                    02-JUL-2010 20:10:51 2093982.002                    02-JUL-2010 14:46:11 2093984.002                    02-JUL-2010 14:43:18 2094466.003                    02-JUL-2010 20:04:48 2101074.003                    11-JUL-2010 09:02:16 2103746.002                    02-JUL-2010 15:07:48 2103758.003                    11-JUL-2010 09:02:13 2104636.002                    02-JUL-2010 15:11:25 2106688.003                    02-JUL-2010 13:55:27 2106882.003                    02-JUL-2010 13:48:47 2107258.002                    02-JUL-2010 12:59:48 2109372.003                    02-JUL-2010 20:49:12 2110182.003                    02-JUL-2010 19:59:19 2110184.003                    02-JUL-2010 20:01:03

    Read the article

  • Grub Rescue Unknown Filesystem Error. Grub Corrupted or Filesystem?

    - by nightcrawler
    Now it has happened twice & have been pulling my hairs now... I have installed xubuntu on my external hardisk & have been using it for about 3 months. It has three partitions, one of 500 mb mounted at /boot, 2nd one of 48gb mounted at / & the rest (out of 160gb) is ntfs partition....used as normal external storage. The last storage supposedly acts as a buffer b/w Linux distributions & Win platform, buffer in the sense that it provides a universal channel for data transfers. I have constantly used this external hardisk for data transfers b/w win7 laptop & xubuntu (on this external hd) without any hassle. However, on of my desktops where I have ubuntu I (for the first time) attached this external drive which let me do data transfers where all three partitions properly mounted....but then nasty thing occurred the same that occurred before. I (as usual) tried booting via this external hd (one having xubuntu, one having being formerly used under Ubuntu) I got error Now I am totally devastated because similar thing happened ~6months before when I had fedora 17 in my external hd (instead of xubuntu) & after it was used under ubuntu the same happened...i didn't reported it because I already had planned towards debian instead of rpm! The mystery is that as long as I don't attach this external hd under ubuntu the data never** corrupts whereas under win xp/7 I can use it as a normal usb storage of coarse linux partitions aren’t available under win platforms... **From corrupts I mean hd fails to boot with the error mentioned however cant say whether data within remains untouched? It seems that my grub & or MBR is corrupted. Please sir guide me to solve this issue also why I cant attach & use linux external hds under linux platform Disk /dev/sdc: 160.0 GB, 160041884672 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581806 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0004e7d0 Device Boot Start End Blocks Id System /dev/sdc1 * 2048 976895 487424 83 Linux /dev/sdc2 978942 96874495 47947777 5 Extended /dev/sdc3 96874496 312575999 107850752 7 HPFS/NTFS/exFAT /dev/sdc5 978944 94726143 46873600 83 Linux /dev/sdc6 94728192 96874495 1073152 82 Linux swap / Solaris I can recall for sure that have seen a thread here when a similar problem occurred & in response someone gave solution of how to mount (now invisible) partitions & recover important data in them. I have misplaced that URL so if any can guide me thither because my important documents resides in / partition What I already have done: Without success I have tried this & related solutions What I plan to do: I believe that filesystem has corrupted & would you recommend solution like this provided I cant recall whether my /boot (500mb) partition was ext4 or ext2 though I am sure that my / (48gb) partition was ext4 UPDATE 1 Attached my external hd under Ubuntu ran followinf command as root grub-install /dev/sdc where /dev/sdc was my external hd containing corrupted xubuntu....it reported all done! I re-ran fdisk -l but to my disappointment it reported Disk /dev/sdc: 160.0 GB, 160041884672 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581806 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1b6b9167 Disk /dev/sdc doesn't contain a valid partition table ...& now I can't even access its ntfs partition (former /dev/sdc3) please help? UPDATE 2 TestDisk (by cgsecurity) failed at founding any partition table :( TestDisk 6.13, Data Recovery Utility, November 2011 Christophe GRENIER <[email protected]> http://www.cgsecurity.org Disk /dev/sdc - 160 GB / 149 GiB - CHS 19457 255 63 Partition Start End Size in sectors

    Read the article

  • Reference Data Management

    - by rahulkamath
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableColorfulListAccent2 {mso-style-name:"Colorful List - Accent 2"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:72; mso-style-unhide:no; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-tstyle-shading:#F8EDED; mso-tstyle-shading-themecolor:accent2; mso-tstyle-shading-themetint:25; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; color:black; mso-themecolor:text1;} table.MsoTableColorfulListAccent2FirstRow {mso-style-name:"Colorful List - Accent 2"; mso-table-condition:first-row; mso-style-priority:72; mso-style-unhide:no; mso-tstyle-shading:#9E3A38; mso-tstyle-shading-themecolor:accent2; mso-tstyle-shading-themeshade:204; mso-tstyle-border-bottom:1.5pt solid white; mso-tstyle-border-bottom-themecolor:background1; color:white; mso-themecolor:background1; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableColorfulListAccent2LastRow {mso-style-name:"Colorful List - Accent 2"; mso-table-condition:last-row; mso-style-priority:72; mso-style-unhide:no; mso-tstyle-shading:white; mso-tstyle-shading-themecolor:background1; mso-tstyle-border-top:1.5pt solid black; mso-tstyle-border-top-themecolor:text1; color:#9E3A38; mso-themecolor:accent2; mso-themeshade:204; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableColorfulListAccent2FirstCol {mso-style-name:"Colorful List - Accent 2"; mso-table-condition:first-column; mso-style-priority:72; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableColorfulListAccent2LastCol {mso-style-name:"Colorful List - Accent 2"; mso-table-condition:last-column; mso-style-priority:72; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableColorfulListAccent2OddColumn {mso-style-name:"Colorful List - Accent 2"; mso-table-condition:odd-column; mso-style-priority:72; mso-style-unhide:no; mso-tstyle-shading:#EFD3D2; mso-tstyle-shading-themecolor:accent2; mso-tstyle-shading-themetint:63; mso-tstyle-border-top:cell-none; mso-tstyle-border-left:cell-none; mso-tstyle-border-bottom:cell-none; mso-tstyle-border-right:cell-none; mso-tstyle-border-insideh:cell-none; mso-tstyle-border-insidev:cell-none;} table.MsoTableColorfulListAccent2OddRow {mso-style-name:"Colorful List - Accent 2"; mso-table-condition:odd-row; mso-style-priority:72; mso-style-unhide:no; mso-tstyle-shading:#F2DBDB; mso-tstyle-shading-themecolor:accent2; mso-tstyle-shading-themetint:51;} Reference Data Management Oracle Data Relationship Management (DRM) has always been extremely powerful as an Enterprise MDM solution that can help manage changes to master data in a way that influences enterprise structure, whether it be mastering chart of accounts to enable financial transformation, or revamping organization structures to drive business transformation and operational efficiencies, or mastering sales territories in light of rapid fire acquisitions that require frequent sales territory refinement, equitable distribution of leads and accounts to salespersons, and alignment of budget/forecast with results to optimize sales coverage. Increasingly, DRM is also being utilized by Oracle customers for reference data management, an emerging solution space that deserves some explanation. What is reference data? Reference data is a close cousin of master data. While master data may be more rapidly changing, requires consensus building across stakeholders and lends structure to business transactions, reference data is simpler, more slowly changing, but has semantic content that is used to categorize or group other information assets – including master data – and give them contextual value. The following table contains an illustrative list of examples of reference data by type. Reference data types may include types and codes, business taxonomies, complex relationships & cross-domain mappings or standards. Types & Codes Taxonomies Relationships / Mappings Standards Transaction Codes Industry Classification Categories and Codes, e.g., North America Industry Classification System (NAICS) Product / Segment; Product / Geo Calendars (e.g., Gregorian, Fiscal, Manufacturing, Retail, ISO8601) Lookup Tables (e.g., Gender, Marital Status, etc.) Product Categories City à State à Postal Codes Currency Codes (e.g., ISO) Status Codes Sales Territories (e.g., Geo, Industry Verticals, Named Accounts, Federal/State/Local/Defense) Customer / Market Segment; Business Unit / Channel Country Codes (e.g., ISO 3166, UN) Role Codes Market Segments Country Codes / Currency Codes / Financial Accounts Date/Time, Time Zones (e.g., ISO 8601) Domain Values Universal Standard Products and Services Classification (UNSPSC), eCl@ss International Classification of Diseases (ICD) e.g., ICD9 à IC10 mappings Tax Rates Why manage reference data? Reference data carries contextual value and meaning and therefore its use can drive business logic that helps execute a business process, create a desired application behavior or provide meaningful segmentation to analyze transaction data. Further, mapping reference data often requires human judgment. Sample Use Cases of Reference Data Management Healthcare: Diagnostic Codes The reference data challenges in the healthcare industry offer a case in point. Part of being HIPAA compliant requires medical practitioners to transition diagnosis codes from ICD-9 to ICD-10, a medical coding scheme used to classify diseases, signs and symptoms, causes, etc. The transition to ICD-10 has a significant impact on business processes, procedures, contracts, and IT systems. Since both code sets ICD-9 and ICD-10 offer diagnosis codes of very different levels of granularity, human judgment is required to map ICD-9 codes to ICD-10. The process requires collaboration and consensus building among stakeholders much in the same way as does master data management. Moreover, to build reports to understand utilization, frequency and quality of diagnoses, medical practitioners may need to “cross-walk” mappings -- either forward to ICD-10 or backwards to ICD-9 depending upon the reporting time horizon. Spend Management: Product, Service & Supplier Codes Similarly, as an enterprise looks to rationalize suppliers and leverage their spend, conforming supplier codes, as well as product and service codes requires supporting multiple classification schemes that may include industry standards (e.g., UNSPSC, eCl@ss) or enterprise taxonomies. Aberdeen Group estimates that 90% of companies rely on spreadsheets and manual reviews to aggregate, classify and analyze spend data, and that data management activities account for 12-15% of the sourcing cycle and consume 30-50% of a commodity manager’s time. Creating a common map across the extended enterprise to rationalize codes across procurement, accounts payable, general ledger, credit card, procurement card (P-card) as well as ACH and bank systems can cut sourcing costs, improve compliance, lower inventory stock, and free up talent to focus on value added tasks. Specialty Finance: Point of Sales Transaction Codes and Product Codes In the specialty finance industry, enterprises are confronted with usury laws – governed at the state and local level – that regulate financial product innovation as it relates to consumer loans, check cashing and pawn lending. To comply, it is important to demonstrate that transactions booked at the point of sale are posted against valid product codes that were on offer at the time of booking the sale. Since new products are being released at a steady stream, it is important to ensure timely and accurate mapping of point-of-sale transaction codes with the appropriate product and GL codes to comply with the changing regulations. Multi-National Companies: Industry Classification Schemes As companies grow and expand across geographies, a typical challenge they encounter with reference data represents reconciling various versions of industry classification schemes in use across nations. While the United States, Mexico and Canada conform to the North American Industry Classification System (NAICS) standard, European Union countries choose different variants of the NACE industry classification scheme. Multi-national companies must manage the individual national NACE schemes and reconcile the differences across countries. Enterprises must invest in a reference data change management application to address the challenge of distributing reference data changes to downstream applications and assess which applications were impacted by a given change.

    Read the article

  • SQL Server 2005 Service Pack 3 won’t install.

    - by AngryHacker
    I am trying to install SQL Server 2005 Service Pack 3 and it keeps failing. Comes back with the following: Microsoft SQL Server 2005 - Update 'Service Pack 3 for SQL Server Database Services 2005 ENU (KB955706)' could not be installed. Error code 1603. The detailed dump reveals the following: MSI (s) (90:C8) [13:50:17:776]: Note: 1: 1729 MSI (s) (90:C8) [13:50:17:776]: Transforming table Error. MSI (s) (90:C8) [13:50:17:776]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:792]: Transforming table Error. MSI (s) (90:C8) [13:50:17:792]: Transforming table Error. MSI (s) (90:C8) [13:50:17:792]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:792]: Transforming table Error. MSI (s) (90:C8) [13:50:17:792]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:792]: Transforming table Error. MSI (s) (90:C8) [13:50:17:792]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:792]: Transforming table Error. MSI (s) (90:C8) [13:50:17:792]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:807]: Transforming table Error. MSI (s) (90:C8) [13:50:17:807]: Transforming table Error. MSI (s) (90:C8) [13:50:17:807]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:807]: Transforming table Error. MSI (s) (90:C8) [13:50:17:807]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:807]: Transforming table Error. MSI (s) (90:C8) [13:50:17:807]: Note: 1: 2262 2: Error 3: -2147287038 MSI (s) (90:C8) [13:50:17:807]: Product: Microsoft SQL Server 2005 -- Configuration failed. Does it mean anything to anybody? Btw, this Q originally came from SO (936895)

    Read the article

  • Persisting high score table in flash game without a network. (Featuring: HttpListenerException)

    - by bearcdp
    Hi everyone, this question is very programming-centric, but it's for a game so I figured I might as well post it here. I'm doing polishing work on a GGJ '11 game because it will be shown at an indie arcade tomorrow afternoon, and they're expecting our final build in the morning. We'd like to have a high score table that displays during attract mode, but since it's Flash (Flixel) it would require some networking, Mochi, or something to keep a record of these scores. Only problem is the machine we'd be running on probably won't have network access. As a quick solution, I thought I'd just write up a dinky little high score server in C#/.NET that could take basic GET requests for submitting scores and getting the score list. We're talking REAL basic, like blocking while waiting for an incoming request, run & forget console app, etc. There's no guarantee that our .swf won't get reloaded, and we'd like the scores to persist, so this server would pretty much exists to keep a safe copy of the scores that the game can add to and request, and occasionally the server will write the scores to a flat text file. But, HttpListener is giving me Error Code 87 'The parameter is incorrect.' Have any idea what I'm doing wrong? Or better yet, am I barking up the wrong tree and missing an obviously simpler solution? This is all I've got so far in my Main(): HttpListener listener = new HttpListener(); listener.Prefixes.Add("http://localhost:66666/"); listener.Start(); The exception happens at listener.Start(); and the stack trace is: at System.Net.HttpListener.AddAllPrefixes() at System.Net.HttpListener.Start() at WOSEBCE_ScoreServer.Program.Main(String[] args) in C:\Users\Michael\Documents\Visual Studio 2010\VS2010 Projects\WOSEBCE_ScoreServer\WOSEBCE_ScoreServer\Program.cs:line 24 at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart()

    Read the article

< Previous Page | 210 211 212 213 214 215 216 217 218 219 220 221  | Next Page >