Search Results

Search found 16787 results on 672 pages for 'mod disk cache'.

Page 220/672 | < Previous Page | 216 217 218 219 220 221 222 223 224 225 226 227  | Next Page >

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • How do I get my Lexmark x4650 printer working?

    - by Fallen Dohingy
    I think that my printer stopped working with the switch to gnome 3 or unity. Yes I have tried 32 and 64 bit os's. Here is the driver In order to actually install the driver, you need to extract it and then open up terminal and type sudo and then a space. Then drag the script into the terminal window. Here is what it said in the diver install window: Extracting file: printdriver.te Extracting file: lexmark-08z-series-driver-1.0-1.i386.deb Extracting file: launcher.c Extracting file: launcherfallendohingy@Ubuntu-Inspiron-15R:~$ sudo '/home/fallendohingy/Downloads/lexmark-08z-series-driver-1.0-1.i386.deb.sh' [sudo] password for fallendohingy: Verifying archive integrity... All good. Uncompressing nixstaller.............................................................. Collecting info for this system... Operating system: linux CPU Arch: x86_64 Warning: No installer for "x86_64" found, defaulting to x86... TRACKING IDENT = 170209 cpu speed = 2394 MHz ram size = 3762.69921875 MB hd avail = 74348 MB (gtk:17645): GdkPixbuf-WARNING **: Cannot open pixbuf loader module file '/usr/lib/i386-linux-gnu/gdk-pixbuf-2.0/2.10.0/loaders.cache': No such file or directory (gtk:17645): GdkPixbuf-WARNING **: Cannot open pixbuf loader module file '/usr/lib/i386-linux-gnu/gdk-pixbuf-2.0/2.10.0/loaders.cache': No such file or directory (gtk:17645): GdkPixbuf-WARNING **: Cannot open pixbuf loader module file '/usr/lib/i386-linux-gnu/gdk-pixbuf-2.0/2.10.0/loaders.cache': No such file or directory (gtk:17645): GdkPixbuf-WARNING **: Cannot open pixbuf loader module file '/usr/lib/i386-linux-gnu/gdk-pixbuf-2.0/2.10.0/loaders.cache': No such file or directory /usr/lib/gio/modules/libgvfsdbus.so: wrong ELF class: ELFCLASS64 Failed to load module: /usr/lib/gio/modules/libgvfsdbus.so Extracting file: lsbrowser Extracting file: lsusbdevice Using dpkg installation ============================= Execute: dpkg -i --force-architecture lexmark-08z-series-driver-1.0-1.i386.deb > /tmp/selfgz17540/pkg/files/dpkg_msgs ============================= ============================= Execute: rm lexmark-08z-series-driver-1.0-1.i386.deb ============================= ============================= Execute: /sbin/udevadm control --reload-rules ============================= Successfully installed the .deb Lexmark drivers.

    Read the article

  • Ubuntu 12, chromium/chrome facebook not loading

    - by Grant
    this problem started with chrome, tried chromium to fix it. both have this problem, and after installed firefox no longer works with facebook. I found a threas with two fixes that work and what I need to know is how to make these fixes permanent. one is a cache permissions workaround. launching chromium from terminal with a redirect to a new self created cache in the home folder works. how can i repair the permissions issue with the cache or make a permanent change to the cache chromium uses? two, the ifconfig wlan0 mtu set to 1492, this setting doesnt seem to be perpetual after a reboot. this set of issues is I believe specific to my particular install as there isnt a huge issue from anyone else out there, i'm on a toshiba satellite laptop with a 50/50 HDD partition split with windows. This is likely causing the issue or contributing in some way but I wont run linux full time on this machine until I get these kinks a more permanent fix. Thanks in advance for any advice/answers.

    Read the article

  • Tumblr custom domain not redirecting properly

    - by Manic
    I decided to host my blog at Tumblr, using their custom domain setup (http://blog.smokingfishgames.com/ instead of http://smokingfishgames.tumblr.com). However, it's been 72 hours and I'm still getting spotty redirection. It works some of the time--I go and see the page and blog, and it's all fine. However, it occasionally just stops working and redirects back to my web host, which is a directory with nothing but a single file called BUGGER.html (which I stuck in to make sure that it was my web host and not some Tumblr empty directory). Clearing the Chrome DNS cache makes the problem go away--for a while. After a few minutes, or an hour, or however long, I'll start seeing BUGGER.html again. I clear the cache, and poof, the blog shows up. The thing that's curious to me is that when I clear the cache and get BUGGER.html again (which happens occasionally), I can look at my Chrome DNS cache and see assets.tumblr.com UNSPECIFIED blog.smokingfishgames.com UNSPECIFIED www.tumblr.com UNSPECIFIED IP addresses and expiration times omitted for brevity's sake--if they're important I'm sure I can replicate the issue. This implies, to me anyway, that my browser is reaching Tumblr but getting bounced back to my web host. Any reason why this would be happening, or is this a normal symptom of DNS propagation? If it is a problem, should I be bothering Tumblr or my host with it, or is this something I can fix myself?

    Read the article

  • Caching by in-memory dictionaries. Are we doing it all wrong?

    - by user73983
    This approach is pretty much the accepted way to do anything in our company. A simple example : when a piece of data for a customer is requested from a service, we fetch all the data for that customer(relevant part to the service) and save it in a in-memory dictionary then serve it from there on following requests(we run singleton services). Any update goes to DB, then updates the in memory dictionary. It seems all simple and harmless but as we implement more complicated business rules the cache gets out of sync and we have to deal with hard to find bugs. Sometimes we defer writing to database, keeping new data in cache till then. There are cases when we store millions of rows in memory because the table has many relations to other tables and we need to show aggregate data quickly. All this cache handling is a big part of our codebase and I sense this is not the right way to do it. All of this juggling adds too much noise to the code and it makes it hard to understand the actual business logic. However I don't think we can serve data in a reasonable amount of time if we have to hit the database every time. I am unhappy about the current situation but I don't have a better alternative. My only solution would be to use NHibernate 2nd level cache but I have nearly no experience with it. I know many campanies use Redis or MemCached heavily to gain performance but I have no idea how I would integrate them into our system. I also don't know if they can perform better than in-memory data structures and queries. Are there any alternative approaches that I should look into?

    Read the article

  • Proper caching method with .htaccess

    - by mark075
    There are a lot of snippets that enable caching on a website and I don't know which one should I use. The most popular is something like this: <IfModule mod_expires.c> ExpiresActive On ExpiresByType image/jpg "access 1 year" ExpiresByType image/png "access 1 year" ExpiresByType text/css "access 1 month" ExpiresDefault "access 2 days" </IfModule> I also found something similar, but with keyword 'plus'. Like this: ExpiresByType image/png "access plus 2592000 seconds" What does it mean, because I didn't find anything in the documentation. Another snippet I found: <ifModule mod_headers.c> <filesMatch "\.(ico|jpe?g|png|gif|swf)$"> Header set Cache-Control "max-age=2592000, public" </filesMatch> <filesMatch "\.(css)$"> Header set Cache-Control "max-age=604800, public" </filesMatch> <filesMatch "\.(js)$"> Header set Cache-Control "max-age=216000, private" </filesMatch> <filesMatch "\.(x?html?|php)$"> Header set Cache-Control "max-age=600, private, must-revalidate" </filesMatch> </ifModule> What is the best practice?

    Read the article

  • Solutions for "Maintenance Mode"

    - by Ka Lyse
    Given a web application running across 10+ servers, what techniques have you put in place for doing things like altering the state of your website so that you can implement certain features. For instance, you might want to: Restrict Logins/Disable Certain Features Turn Site to "Read Only" Turn Site to Single "Maintenance Mode" page. Doing any of the above is pretty trivial. You can throw a particular "flag" in an .ini file, or add a row/value to a site_options table in your database and just read that value and do the appropriate thing. But these solutions have their problems. Disadvantages/Problems For instance, if you use a file for your application, and you want to switch off a certain feature temporarily, then you need to update this file on all servers. So then you might want to look at running something like ZooKeeper, but you are probably overcomplicating things. So then, you might decide that you want to store these "feature" flags in a database. But then you are obviously adding unncessary queries to each page request. So you think to yourself, that you will throw memcached in to the mix and just cache the query. Then you just retrieve all of your "Features" from memcached and add a 2ms~ latency to your application on every page. So to get around this, you decide to use a two tier-cache system, whereby you use an inmemory cache on each machine, (like Apc/Redis etc). This would work, but then it gets complicated, because you would have to set the key/hash life to perhaps 60 seconds, so that when you purge/invalidate the memcached object storing your "Features" result, your on machine cache is prompt enough to get the the new states. What suggestions might you have? Keeping in mind that optimization/efficiency is the priority here.

    Read the article

  • Somehow Google considers a properly 301'd URL as 200 and is still indexing the new content in old page?

    - by user2178914
    We redirected all the old URL's to new ones properly using htaccess. The problem is Google, somehow is still finding content in the old page(which it shouldn't) and stores it in the cache rather than the new URL. For eg: Old Page- http://www.natures-energies.com/iching.htm New Page- http://www.natures-energies.com/index.php?option=com_content&view=article&id=760 If you type the old URL into the browser it redirects If you fetch the old URL as Googlebot in the webmaster tools the header says 301/permanently redirected. If I try to crawl as any other bot it still says 301 redirected. Even if you click the old link in Google it redirects to the new URL. Only in its cache it shows the old URL and moreover it shows the new content in it! I am stumped on how Google manages to grab the new content and puts in the old URL instead of the new one! One more interesting thing is that if I try a cache for the new page it shows the cache of the new content with old URL! Any help would be appreciated. I am at end of my wits. I think i have tried almost everything. Is there anything that I'm missing to see? You can use this search to find the old url's. Maybe you'll some patterns that i missed. site:www.natures-energies.com inurl:htm -inurl:https|index

    Read the article

  • ????????????3?????

    - by Feng
    ?? ??blog?????oracle????????????,??????????????,??????: ?????????. ???????: ??????????,????????; ????????????,?” ???”??. 1. OS swapping/paging ??????concurrency??????? Oracle?????????, ??latch/mutex???????”?”,??????????????/???(????????????,??????????????????). ????OS??????swapping/paging????,???????????,??latch/mutex???????,????????????hung/slow???. ??swapping/paging??????: a). ???? b). ??????; ?????, ?????????????? c). ?????/????? ????????????????? ???????: Lock SGA, ??SGA(???latch/mutex)???pin???????swapping???. ???SGA??????,????large page(hugepage)??,??latch/mutex??/?????. 2. SGA resizing?????????? ?AMM/ASMM??????????, shared pool?buffer cache?????component????????????,??ora-4031???.??????????,???????resize????????????(?latch/mutex?????)?????, ?????????latch/mutex??. ????shared pool?resize??????,??latch/mutex???????. ?????????:  ?????bug; ???????????,??resize???????????????,???????????. ??bug?fix??????????impact, ???????????. ???????: 1). ??buffer cache?shared pool??(???????????,?????????) 2). ??resize???????16?? alter system set "_memory_broker_stat_interval"=999; Disable AMM/ASMM?????????,?????: ??ora-4031????????????. 3. DDL?????????? ??????????????????. ???????????DDL (??grant, ?????, ????????),???????????SQL?????invalidate?;????????SQL????????????,?????????hard parse ? SQL??????. ??????? “hardparse storm”, latch/mutex????????, ??library cache lock/row cache lock????; ??????????slow/hung. ???????: ???????????DDL ??????????,???????????,?? “????????????3?????"?

    Read the article

  • Problem using Hibernate-Search

    - by KCore
    Hi, I am using hibernate search for my application. It is well configured and running perfectly till some time back, when it stopped working suddenly. The reason according to me being the number of my model (bean) classes. I have some 90 classes, which I add to my configuration, while building my Hibernate Configuration. When, I disable hibernate search (remove the search annotations and use Configuration instead of AnnotationsConfiguration), I try to start my application, it Works fine. But,the same app when I enable search, it just hangs up. I tried debugging and found the exact place where it hangs. After adding all the class to my AnnotationsConfiguration object, when I say cfg.buildSessionfactory(), It never comes out of that statement. (I have waited for hours!!!) Also when I decrease the number of my model classes (like say to half i.e. 50) it comes out of that statement and the application works fine.. Can Someone tell why is this happening?? My versions of hibernate are: hibernate-core-3.3.1.GA.jar hibernate-annotations-3.4.0.GA.jar hibernate-commons-annotations-3.1.0.GA.jar hibernate-search-3.1.0.GA.jar Also if need to avoid using AnnotationsConfiguration, I read that I need to configure the search event listeners explicitly.. can anyone list all the neccessary listeners and their respective classes? (I tried the standard ones given in Hibernate Search books, but they give me ClassNotFound exception and I have all the neccesarty libs in classpath) Here are the last few lines of hibernate trace I managed to pull : 16:09:32,814 INFO AnnotationConfiguration:369 - Hibernate Validator not found: ignoring 16:09:32,892 INFO ConnectionProviderFactory:95 - Initializing connection provider: org.hibernate.connection.C3P0ConnectionProvider 16:09:32,895 INFO C3P0ConnectionProvider:103 - C3P0 using driver: com.mysql.jdbc.Driver at URL: jdbc:mysql://localhost:3306/autolinkcrmcom_data 16:09:32,898 INFO C3P0ConnectionProvider:104 - Connection properties: {user=root, password=****} 16:09:32,900 INFO C3P0ConnectionProvider:107 - autocommit mode: false 16:09:33,694 INFO SettingsFactory:116 - RDBMS: MySQL, version: 5.1.37-1ubuntu5.1 16:09:33,696 INFO SettingsFactory:117 - JDBC driver: MySQL-AB JDBC Driver, version: mysql-connector-java-3.1.10 ( $Date: 2005/05/19 15:52:23 $, $Revision: 1.1.2.2 $ ) 16:09:33,701 INFO Dialect:175 - Using dialect: org.hibernate.dialect.MySQLDialect 16:09:33,707 INFO TransactionFactoryFactory:59 - Using default transaction strategy (direct JDBC transactions) 16:09:33,709 INFO TransactionManagerLookupFactory:80 - No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) 16:09:33,711 INFO SettingsFactory:170 - Automatic flush during beforeCompletion(): disabled 16:09:33,714 INFO SettingsFactory:174 - Automatic session close at end of transaction: disabled 16:09:32,814 INFO AnnotationConfiguration:369 - Hibernate Validator not found: ignoring 16:09:32,892 INFO ConnectionProviderFactory:95 - Initializing connection provider: org.hibernate.connection.C3P0ConnectionProvider 16:09:32,895 INFO C3P0ConnectionProvider:103 - C3P0 using driver: com.mysql.jdbc.Driver at URL: jdbc:mysql://localhost:3306/autolinkcrmcom_data 16:09:32,898 INFO C3P0ConnectionProvider:104 - Connection properties: {user=root, password=****} 16:09:32,900 INFO C3P0ConnectionProvider:107 - autocommit mode: false 16:09:33,694 INFO SettingsFactory:116 - RDBMS: MySQL, version: 5.1.37-1ubuntu5.1 16:09:33,696 INFO SettingsFactory:117 - JDBC driver: MySQL-AB JDBC Driver, version: mysql-connector-java-3.1.10 ( $Date: 2005/05/19 15:52:23 $, $Revision: 1.1.2.2 $ ) 16:09:33,701 INFO Dialect:175 - Using dialect: org.hibernate.dialect.MySQLDialect 16:09:33,707 INFO TransactionFactoryFactory:59 - Using default transaction strategy (direct JDBC transactions) 16:09:33,709 INFO TransactionManagerLookupFactory:80 - No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) 16:09:33,711 INFO SettingsFactory:170 - Automatic flush during beforeCompletion(): disabled 16:09:33,714 INFO SettingsFactory:174 - Automatic session close at end of transaction: disabled 16:09:33,716 INFO SettingsFactory:181 - JDBC batch size: 15 16:09:33,719 INFO SettingsFactory:184 - JDBC batch updates for versioned data: disabled 16:09:33,721 INFO SettingsFactory:189 - Scrollable result sets: enabled 16:09:33,723 DEBUG SettingsFactory:193 - Wrap result sets: disabled 16:09:33,725 INFO SettingsFactory:197 - JDBC3 getGeneratedKeys(): enabled 16:09:33,727 INFO SettingsFactory:205 - Connection release mode: auto 16:09:33,730 INFO SettingsFactory:229 - Maximum outer join fetch depth: 2 16:09:33,732 INFO SettingsFactory:232 - Default batch fetch size: 1000 16:09:33,735 INFO SettingsFactory:236 - Generate SQL with comments: disabled 16:09:33,737 INFO SettingsFactory:240 - Order SQL updates by primary key: disabled 16:09:33,740 INFO SettingsFactory:244 - Order SQL inserts for batching: disabled 16:09:33,742 INFO SettingsFactory:420 - Query translator: org.hibernate.hql.ast.ASTQueryTranslatorFactory 16:09:33,744 INFO ASTQueryTranslatorFactory:47 - Using ASTQueryTranslatorFactory 16:09:33,747 INFO SettingsFactory:252 - Query language substitutions: {} 16:09:33,750 INFO SettingsFactory:257 - JPA-QL strict compliance: disabled 16:09:33,752 INFO SettingsFactory:262 - Second-level cache: enabled 16:09:33,754 INFO SettingsFactory:266 - Query cache: disabled 16:09:33,757 INFO SettingsFactory:405 - Cache region factory : org.hibernate.cache.impl.bridge.RegionFactoryCacheProviderBridge 16:09:33,759 INFO RegionFactoryCacheProviderBridge:61 - Cache provider: net.sf.ehcache.hibernate.EhCacheProvider 16:09:33,762 INFO SettingsFactory:276 - Optimize cache for minimal puts: disabled 16:09:33,764 INFO SettingsFactory:285 - Structured second-level cache entries: disabled 16:09:33,766 INFO SettingsFactory:314 - Statistics: disabled 16:09:33,769 INFO SettingsFactory:318 - Deleted entity synthetic identifier rollback: disabled 16:09:33,771 INFO SettingsFactory:333 - Default entity-mode: pojo 16:09:33,774 INFO SettingsFactory:337 - Named query checking : enabled 16:09:33,869 INFO Version:20 - Hibernate Search 3.1.0.GA 16:09:35,134 DEBUG DocumentBuilderIndexedEntity:157 - Field selection in projections is set to false for entity **com.xyz.abc**. recognized hibernaterecognized hibernaterecognized hibernaterecognized hibernaterecognized hibernaterecognized hibernaterecognized hibernaterecognized hibernaterecognized hibernaterecognized hibernateDocumentBuilderIndexedEntity Donno what the last line indicates ??? (hibernaterecognized....) After the last line it doesnt do anything (no trace too ) and just hangs....

    Read the article

  • Problems with :uniq => true/Distinct option in a has_many_through association w/ named scope (Rails)

    - by MikeH
    I had to make some tweaks to my app to add new functionality, and my changes seem to have broken the :uniq option that was previously working perfectly. Here's the set up: #User.rb has_many :products, :through = :seasons, :uniq = true has_many :varieties, :through = :seasons, :uniq = true #product.rb has_many :seasons has_many :users, :through = :seasons, :uniq = true has_many :varieties #season.rb belongs_to :product belongs_to :variety belongs_to :user named_scope :by_product_name, :joins = :product, :order = 'products.name' #variety.rb belongs_to :product has_many :seasons has_many :users, :through = :seasons, :uniq = true First I want to show you the previous version of the view that is now breaking, so that we have a baseline to compare. The view below is pulling up products and varieties that belong to the user. In both versions below, I've assigned the same products/varieties to the user so the logs will looking at the exact same use case. #user/show <% @user.products.each do |product| %> <%= link_to product.name, product %> <% @user.varieties.find_all_by_product_id(product.id).each do |variety| %> <%=h variety.name.capitalize %></p> <% end %> <% end %> This works. It displays only one of each product, and then displays each product's varieties. In the log below, product ID 1 has 3 associated varieties. And product ID 43 has none. Here's the log output for the code above: Product Load (11.3ms) SELECT DISTINCT `products`.* FROM `products` INNER JOIN `seasons` ON `products`.id = `seasons`.product_id WHERE ((`seasons`.user_id = 1)) ORDER BY name, products.name Product Columns (1.8ms) SHOW FIELDS FROM `products` Variety Columns (1.9ms) SHOW FIELDS FROM `varieties` Variety Load (0.7ms) SELECT DISTINCT `varieties`.* FROM `varieties` INNER JOIN `seasons` ON `varieties`.id = `seasons`.variety_id WHERE (`varieties`.`product_id` = 1) AND ((`seasons`.user_id = 1)) ORDER BY name Variety Load (0.5ms) SELECT DISTINCT `varieties`.* FROM `varieties` INNER JOIN `seasons` ON `varieties`.id = `seasons`.variety_id WHERE (`varieties`.`product_id` = 43) AND ((`seasons`.user_id = 1)) ORDER BY name Ok, so everything above is the previous version which was working great. In the new version, I added some columns to the join table called seasons, and made a bunch of custom methods that query those columns. As a result, I made the following changes to the view code that you saw above so that I could access those methods on the seasons model: <% @user.seasons.by_product_name.each do |season| %> <%= link_to season.product.name, season.product %> #Note: I couldn't get this loop to work at all, so I settled for the following: #<% @user.varieties.find_all_by_product_id(product.id).each do |variety| %> <%=h season.variety.name.capitalize %> <%end%> <%end%> Here's the log output for that: SQL (0.9ms) SELECT count(DISTINCT "products".id) AS count_products_id FROM "products" INNER JOIN "seasons" ON "products".id = "seasons".product_id WHERE (("seasons".user_id = 1)) Season Load (1.8ms) SELECT "seasons".* FROM "seasons" INNER JOIN "products" ON "products".id = "seasons".product_id WHERE ("seasons".user_id = 1) AND ("seasons".user_id = 1) ORDER BY products.name Product Load (0.7ms) SELECT * FROM "products" WHERE ("products"."id" = 43) ORDER BY products.name CACHE (0.0ms) SELECT "seasons".* FROM "seasons" INNER JOIN "products" ON "products".id = "seasons".product_id WHERE ("seasons".user_id = 1) AND ("seasons".user_id = 1) ORDER BY products.name Product Load (0.4ms) SELECT * FROM "products" WHERE ("products"."id" = 1) ORDER BY products.name Variety Load (0.4ms) SELECT * FROM "varieties" WHERE ("varieties"."id" = 2) ORDER BY name CACHE (0.0ms) SELECT * FROM "products" WHERE ("products"."id" = 1) ORDER BY products.name Variety Load (0.4ms) SELECT * FROM "varieties" WHERE ("varieties"."id" = 8) ORDER BY name CACHE (0.0ms) SELECT * FROM "products" WHERE ("products"."id" = 1) ORDER BY products.name Variety Load (0.4ms) SELECT * FROM "varieties" WHERE ("varieties"."id" = 7) ORDER BY name CACHE (0.0ms) SELECT * FROM "products" WHERE ("products"."id" = 43) ORDER BY products.name CACHE (0.0ms) SELECT count(DISTINCT "products".id) AS count_products_id FROM "products" INNER JOIN "seasons" ON "products".id = "seasons".product_id WHERE (("seasons".user_id = 1)) CACHE (0.0ms) SELECT "seasons".* FROM "seasons" INNER JOIN "products" ON "products".id = "seasons".product_id WHERE ("seasons".user_id = 1) AND ("seasons".user_id = 1) ORDER BY products.name CACHE (0.0ms) SELECT * FROM "products" WHERE ("products"."id" = 1) ORDER BY products.name CACHE (0.0ms) SELECT * FROM "products" WHERE ("products"."id" = 1) ORDER BY products.name CACHE (0.0ms) SELECT * FROM "varieties" WHERE ("varieties"."id" = 8) ORDER BY name I'm having two problems: (1) The :uniq option is not working for products. Three distinct versions of the same product are displaying on the page. (2) The :uniq option is not working for varieties. I don't have validation set up on this yet, and if the user enters the same variety twice, it does appear on the page. In the previous working version, this was not the case. The result I need is that only one product for any given ID displays, and all varieties associated with that ID display along with such unique product. One thing that sticks out to me is the sql call in the most recent log output. It's adding 'count' to the distinct call. I'm not sure why it's doing that or whether it might be an indication of an issue. I found this unresolved lighthouse ticket that seems like it could potentially be related, but I'm not sure if it's the same issue: https://rails.lighthouseapp.com/projects/8994/tickets/2189-count-breaks-sqlite-has_many-through-association-collection-with-named-scope I've tried a million variations on this and can't get it working. Any help is much appreciated!

    Read the article

  • Windows 2008 Unknown Disks

    - by Ailbe
    I have a BL460c G7 blade server with OS Windows 2008 R2 SP1. This is a brand new C7000 enclosure, with FlexFabric interconnects. I got my FC switches setup and zoned properly to our Clariion CX4, and can see all the hosts that are assigned FCoE HBAs on both paths in both Navisphere and in HP Virtual Connect Manager. So I went ahead and created a storage group for a test server, assigned the appropriate host, assigned the LUN to the server. So far so good, log onto server and I can see 4 unknown disks.... No problem, I install MS MPIO, no luck, can't initialize the disks, and the multiple disks don't go away. Still no problem, I install PowerPath version 5.5 reboot. Now I see 3 disks. One is initialized and ready to go, but I still have 2 disks that I can't initialize, can't offline, can't delete. If I right click in storage manager and go to properties I can see that the MS MPIO tab, but I can't make a path active. I want to get rid of these phantom disks, but so far nothing is working and google searches are showing up some odd results, so obviously I'm not framing my question right. I thought I'd ask here real quick. Does anyone know a quick way to get rid of these unknown disks. Another question, do I need the MPIO feature installed if I have PowerPath installed? This is my first time installing Windows 2008 R2 in this fashion and I'm not sure if that feature is needed or not right now. So some more information to add to this. It seems I'm dealing with more of a Windows issue than anything else. I removed the LUN from the server, uninstalled PowerPath completely, removed the MPIO feature from the server, and rebooted twice. Now I am back to the original 4 Unknown Disks (plus the local Disk 0 containing the OS partition of course, which is working fine) I went to diskpart, I could see all 4 Unknown disks, I selected each disk, ran clean (just in case i'd somehow brought them online previously as GPT and didn't realize it) After a few minutes I was no longer able to see the disks when I ran list disk. However, the disks are still in Disk Management. When I try and offline the disks from Disk Management I get an error: Virtual Disk Manager - The system cannot find the file specified. Accompanied by an error in System Event Logs: Log Name: System Source: Virtual Disk Service Date: 6/25/2012 4:02:01 PM Event ID: 1 Task Category: None Level: Error Keywords: Classic User: N/A Computer: hostname.local Description: Unexpected failure. Error code: 2@02000018 Event Xml: 1 2 0 0x80000000000000 4239 System hostname.local 2@02000018 I feel sure there is a place I can go in the Registry to get rid of these, I just can't recall where and I am loathe to experiement. So to recap, there are currently no LUNS attached at all, I still have the phantom disks, and I'm getting The system cannot find the file specified from Virtual Disk Manager when I try to take them offline. Thanks!

    Read the article

  • Kernel panic when bringing up DRBD resource

    - by sc.
    I'm trying to set up two machines synchonizing with DRBD. The storage is setup as follows: PV - LVM - DRBD - CLVM - GFS2. DRBD is set up in dual primary mode. The first server is set up and running fine in primary mode. The drives on the first server have data on them. I've set up the second server and I'm trying to bring up the DRBD resources. I created all the base LVM's to match the first server. After initializing the resources with `` drbdadm create-md storage I'm bringing up the resources by issuing drbdadm up storage After issuing that command, I get a kernel panic and the server reboots in 30 seconds. Here's a screen capture. My configuration is as follows: OS: CentOS 6 uname -a Linux host.structuralcomponents.net 2.6.32-279.5.2.el6.x86_64 #1 SMP Fri Aug 24 01:07:11 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux rpm -qa | grep drbd kmod-drbd84-8.4.1-2.el6.elrepo.x86_64 drbd84-utils-8.4.1-2.el6.elrepo.x86_64 cat /etc/drbd.d/global_common.conf global { usage-count yes; # minor-count dialog-refresh disable-ip-verification } common { handlers { pri-on-incon-degr "/usr/lib/drbd/notify-pri-on-incon-degr.sh; /usr/lib/drbd/notify-emergency-reboot.sh; echo b /proc/sysrq-trigger ; reboot -f"; pri-lost-after-sb "/usr/lib/drbd/notify-pri-lost-after-sb.sh; /usr/lib/drbd/notify-emergency-reboot.sh; echo b /proc/sysrq-trigger ; reboot -f"; local-io-error "/usr/lib/drbd/notify-io-error.sh; /usr/lib/drbd/notify-emergency-shutdown.sh; echo o /proc/sysrq-trigger ; halt -f"; # fence-peer "/usr/lib/drbd/crm-fence-peer.sh"; # split-brain "/usr/lib/drbd/notify-split-brain.sh root"; # out-of-sync "/usr/lib/drbd/notify-out-of-sync.sh root"; # before-resync-target "/usr/lib/drbd/snapshot-resync-target-lvm.sh -p 15 -- -c 16k"; # after-resync-target /usr/lib/drbd/unsnapshot-resync-target-lvm.sh; } startup { # wfc-timeout degr-wfc-timeout outdated-wfc-timeout wait-after-sb become-primary-on both; wfc-timeout 30; degr-wfc-timeout 10; outdated-wfc-timeout 10; } options { # cpu-mask on-no-data-accessible } disk { # size max-bio-bvecs on-io-error fencing disk-barrier disk-flushes # disk-drain md-flushes resync-rate resync-after al-extents # c-plan-ahead c-delay-target c-fill-target c-max-rate # c-min-rate disk-timeout } net { # protocol timeout max-epoch-size max-buffers unplug-watermark # connect-int ping-int sndbuf-size rcvbuf-size ko-count # allow-two-primaries cram-hmac-alg shared-secret after-sb-0pri # after-sb-1pri after-sb-2pri always-asbp rr-conflict # ping-timeout data-integrity-alg tcp-cork on-congestion # congestion-fill congestion-extents csums-alg verify-alg # use-rle protocol C; allow-two-primaries yes; after-sb-0pri discard-zero-changes; after-sb-1pri discard-secondary; after-sb-2pri disconnect; } } cat /etc/drbd.d/storage.res resource storage { device /dev/drbd0; meta-disk internal; on host.structuralcomponents.net { address 10.10.1.120:7788; disk /dev/vg_storage/lv_storage; } on host2.structuralcomponents.net { address 10.10.1.121:7788; disk /dev/vg_storage/lv_storage; } /var/log/messages is not logging anything about the crash. I've been trying to find a cause of this but I've come up with nothing. Can anyone help me out? Thanks.

    Read the article

  • Grub 'Read Error' - Only Loads with LiveCD

    - by Ryan Sharp
    Problem After installing Ubuntu to complete my Windows 7/Ubuntu 12.04 dual-boot setup, Grub just wouldn't load at all unless I boot from the LiveCD. Afterwards, everything works completely normal. However, this workaround isn't a solution and I'd like to be able to boot without the aid of a disc. Fdisk -l Using the fdisk -l command, I am given the following: Disk /dev/sda: 64.0 GB, 64023257088 bytes 255 heads, 63 sectors/track, 7783 cylinders, total 125045424 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x324971d1 Device Boot Start End Blocks Id System /dev/sda1 2048 206847 102400 7 HPFS/NTFS/exFAT /dev/sda2 208896 48957439 24374272 7 HPFS/NTFS/exFAT /dev/sda3 * 48959486 124067839 37554177 5 Extended /dev/sda5 48959488 124067839 37554176 83 Linux Disk /dev/sdb: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xc0ee6a69 Device Boot Start End Blocks Id System /dev/sdb1 1024208894 1953523711 464657409 5 Extended /dev/sdb3 * 2048 1024206847 512102400 7 HPFS/NTFS/exFAT /dev/sdb5 1024208896 1937897471 456844288 83 Linux /dev/sdb6 1937899520 1953523711 7812096 82 Linux swap / Solaris Partition table entries are not in disk order Disk /dev/sdc: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x292eee23 Device Boot Start End Blocks Id System /dev/sdc1 2048 625141759 312569856 7 HPFS/NTFS/exFAT Bootinfoscript I've used the BootInfoScript, and received the following output: Boot Info Script 0.61 [1 April 2012] ============================= Boot Info Summary: =============================== => Grub2 (v1.99) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks for (,msdos5)/boot/grub on this drive. => Grub2 (v1.99) is installed in the MBR of /dev/sdb and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks for (,msdos5)/boot/grub on this drive. => Windows is installed in the MBR of /dev/sdc. sda1: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: /bootmgr /Boot/BCD sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe sda3: __________________________________________________________________________ File system: Extended Partition Boot sector type: Unknown Boot sector info: sda5: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.04.1 LTS Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sdb1: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sdb5: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Boot files: sdb6: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: sdb3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sdb3 starts at sector 200744960. But according to the info from fdisk, sdb3 starts at sector 2048. According to the info in the boot sector, sdb3 has 823461887 sectors, but according to the info from fdisk, it has 1024204799 sectors. Operating System: Boot files: sdc1: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 64.0 GB, 64023257088 bytes 255 heads, 63 sectors/track, 7783 cylinders, total 125045424 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 2,048 206,847 204,800 7 NTFS / exFAT / HPFS /dev/sda2 208,896 48,957,439 48,748,544 7 NTFS / exFAT / HPFS /dev/sda3 * 48,959,486 124,067,839 75,108,354 5 Extended /dev/sda5 48,959,488 124,067,839 75,108,352 83 Linux Drive: sdb _____________________________________________________________________ Disk /dev/sdb: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sdb1 1,024,208,894 1,953,523,711 929,314,818 5 Extended /dev/sdb5 1,024,208,896 1,937,897,471 913,688,576 83 Linux /dev/sdb6 1,937,899,520 1,953,523,711 15,624,192 82 Linux swap / Solaris /dev/sdb3 * 2,048 1,024,206,847 1,024,204,800 7 NTFS / exFAT / HPFS Drive: sdc _____________________________________________________________________ Disk /dev/sdc: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sdc1 2,048 625,141,759 625,139,712 7 NTFS / exFAT / HPFS "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/sda1 A48056DF8056B80E ntfs System Reserved /dev/sda2 A8C6D6A4C6D671D4 ntfs Windows /dev/sda5 fd71c537-3715-44e1-b1fe-07537e22b3dd ext4 /dev/sdb3 6373D03D0A3747A8 ntfs Steam /dev/sdb5 6f5a6eb3-a932-45aa-893e-045b57708270 ext4 /dev/sdb6 469848c8-867a-41b7-b0e1-b813a43c64af swap /dev/sdc1 725D7B961CF34B1B ntfs backup ================================ Mount points: ================================= Device Mount_Point Type Options /dev/sda5 / ext4 (rw,noatime,nodiratime,discard,errors=remount-ro) /dev/sdb5 /home ext4 (rw) =========================== sda5/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga insmod video_bochs insmod video_cirrus } insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set=root fd71c537-3715-44e1-b1fe-07537e22b3dd if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set=root fd71c537-3715-44e1-b1fe-07537e22b3dd set locale_dir=($root)/boot/grub/locale set lang=en_GB insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu, with Linux 3.2.0-29-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set=root fd71c537-3715-44e1-b1fe-07537e22b3dd linux /boot/vmlinuz-3.2.0-29-generic root=UUID=fd71c537-3715-44e1-b1fe-07537e22b3dd ro quiet splash $vt_handoff initrd /boot/initrd.img-3.2.0-29-generic } menuentry 'Ubuntu, with Linux 3.2.0-29-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod gzio insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set=root fd71c537-3715-44e1-b1fe-07537e22b3dd echo 'Loading Linux 3.2.0-29-generic ...' linux /boot/vmlinuz-3.2.0-29-generic root=UUID=fd71c537-3715-44e1-b1fe-07537e22b3dd ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.2.0-29-generic } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set=root fd71c537-3715-44e1-b1fe-07537e22b3dd linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(hd0,msdos5)' search --no-floppy --fs-uuid --set=root fd71c537-3715-44e1-b1fe-07537e22b3dd linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sda1)" --class windows --class os { insmod part_msdos insmod ntfs set root='(hd0,msdos1)' search --no-floppy --fs-uuid --set=root A48056DF8056B80E chainloader +1 } menuentry "Windows 7 (loader) (on /dev/sda2)" --class windows --class os { insmod part_msdos insmod ntfs set root='(hd0,msdos2)' search --no-floppy --fs-uuid --set=root A8C6D6A4C6D671D4 chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda5/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sda5 during installation UUID=fd71c537-3715-44e1-b1fe-07537e22b3dd / ext4 noatime,nodiratime,discard,errors=remount-ro 0 1 # /home was on /dev/sdb5 during installation UUID=6f5a6eb3-a932-45aa-893e-045b57708270 /home ext4 defaults 0 2 # swap was on /dev/sdb6 during installation UUID=469848c8-867a-41b7-b0e1-b813a43c64af none swap sw 0 0 tmpfs /tmp tmpfs defaults,noatime,mode=1777 0 0 -------------------------------------------------------------------------------- =================== sda5: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) = boot/grub/core.img 1 = boot/grub/grub.cfg 1 = boot/initrd.img-3.2.0-29-generic 2 = boot/vmlinuz-3.2.0-29-generic 1 = initrd.img 2 = vmlinuz 1 ======================== Unknown MBRs/Boot Sectors/etc: ======================== Unknown BootLoader on sda3 00000000 63 6f 70 69 61 20 65 20 63 6f 6c 61 41 63 65 64 |copia e colaAced| 00000010 65 72 20 61 20 74 6f 64 6f 20 6f 20 74 65 78 74 |er a todo o text| 00000020 6f 20 66 61 6c 61 64 6f 20 75 74 69 6c 69 7a 61 |o falado utiliza| 00000030 6e 64 6f 20 61 20 63 6f 6e 76 65 72 73 c3 a3 6f |ndo a convers..o| 00000040 20 64 65 20 74 65 78 74 6f 20 70 61 72 61 20 76 | de texto para v| 00000050 6f 7a 4d 61 6e 69 70 75 6c 61 72 20 61 73 20 64 |ozManipular as d| 00000060 65 66 69 6e 69 c3 a7 c3 b5 65 73 20 71 75 65 20 |efini....es que | 00000070 63 6f 6e 74 72 6f 6c 61 6d 20 6f 20 61 63 65 73 |controlam o aces| 00000080 73 6f 20 64 65 20 57 65 62 73 69 74 65 73 20 61 |so de Websites a| 00000090 20 63 6f 6f 6b 69 65 73 2c 20 4a 61 76 61 53 63 | cookies, JavaSc| 000000a0 72 69 70 74 20 65 20 70 6c 75 67 2d 69 6e 73 4d |ript e plug-insM| 000000b0 61 6e 69 70 75 6c 61 72 20 61 73 20 64 65 66 69 |anipular as defi| 000000c0 6e 69 c3 a7 c3 b5 65 73 20 72 65 6c 61 63 69 6f |ni....es relacio| 000000d0 6e 61 64 61 73 20 63 6f 6d 20 70 72 69 76 61 63 |nadas com privac| 000000e0 69 64 61 64 65 41 63 65 64 65 72 20 61 6f 73 20 |idadeAceder aos | 000000f0 73 65 75 73 20 70 65 72 69 66 c3 a9 72 69 63 6f |seus perif..rico| 00000100 73 20 55 53 42 55 74 69 6c 69 7a 61 72 20 6f 20 |s USBUtilizar o | 00000110 73 65 75 20 6d 69 63 72 6f 66 6f 6e 65 55 74 69 |seu microfoneUti| 00000120 6c 69 7a 61 72 20 61 20 73 75 61 20 63 c3 a2 6d |lizar a sua c..m| 00000130 61 72 61 55 74 69 6c 69 7a 61 72 20 6f 20 73 65 |araUtilizar o se| 00000140 75 20 6d 69 63 72 6f 66 6f 6e 65 20 65 20 61 20 |u microfone e a | 00000150 63 c3 a2 6d 61 72 61 4e c3 a3 6f 20 66 6f 69 20 |c..maraN..o foi | 00000160 70 6f 73 73 c3 ad 76 65 6c 20 65 6e 63 6f 6e 74 |poss..vel encont| 00000170 72 61 72 20 6f 20 63 61 6d 69 6e 68 6f 20 61 62 |rar o caminho ab| 00000180 73 6f 6c 75 74 6f 20 70 61 72 61 20 6f 20 64 69 |soluto para o di| 00000190 72 65 63 74 c3 b3 72 69 6f 20 61 20 65 6d 70 61 |rect..rio a empa| 000001a0 63 6f 74 61 72 2e 4f 20 64 69 72 65 63 74 c3 b3 |cotar.O direct..| 000001b0 72 69 6f 20 64 65 20 65 6e 74 72 61 64 61 00 fe |rio de entrada..| 000001c0 ff ff 83 fe ff ff 02 00 00 00 00 10 7a 04 00 00 |............z...| 000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| * 000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.| 00000200 =============================== StdErr Messages: =============================== xz: (stdin): Compressed data is corrupt xz: (stdin): Compressed data is corrupt awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in awk: cmd. line:36: Math support is not compiled in Begging / Appreciation ;) If anything else is required to solve my problem, please ask. My only hopes are that I can solve this, and that doing so won't require re-installation of Grub due to how complicated the procedures are, or that I would be needed to reinstall the OS', as I have done so about six times already since friday due to several other issues I've encountered. Thank you, and good day. System Ubuntu 12.04 64-bit / Windows 7 SP1 64-bit 64GB SSD as boot/OS drive, 1TB HDD as /Home Swap and Steam drive.

    Read the article

  • How to disable Mac OS X from using swap when there still is "Inactive" memory?

    - by Motin
    A common phenomena in my day to day usage (and several other's according to various posts throughout the internet) of OS X, the system seems to become slow whenever there is no more "Free" memory available. Supposedly, this is due to swapping, since heavy disk activity is apparent and that vm_stat reports many pageouts. (Correct me from wrong) However, the amount of "Inactive" ram is typically around 12.5%-25% of all available memory (^1.) when swapping starts/occurs/ends. According to http://support.apple.com/kb/ht1342 : Inactive memory This information in memory is not actively being used, but was recently used. For example, if you've been using Mail and then quit it, the RAM that Mail was using is marked as Inactive memory. This Inactive memory is available for use by another application, just like Free memory. However, if you open Mail before its Inactive memory is used by a different application, Mail will open quicker because its Inactive memory is converted to Active memory, instead of loading Mail from the slower hard disk. And according to http://developer.apple.com/library/mac/#documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html : The inactive list contains pages that are currently resident in physical memory but have not been accessed recently. These pages contain valid data but may be released from memory at any time. So, basically: When a program has quit, it's memory becomes marked as Inactive and should be claimable at any time. Still, OS X will prefer to start swapping out memory to the Swap file instead of just claiming this memory, whenever the "Free" memory gets to low. Why? What is the advantage of this behavior over, say, instantly releasing Inactive memory and not even touch the swap file? Some sources (^2.) indicate that OS X would page out the "Inactive" memory to swap before releasing it, but that doesn't make sense now does it if the memory may be released from memory at any time? Swapping is expensive, releasing is cheap, right? Can this behavior be changed using some preference or known hack? (Preferably one that doesn't include disabling swap/dynamic_pager altogether and restarting...) I do appreciate the purge command, as well as the concept of Repairing disk permissions to force some Free memory, but those are ways to painfully force more Free memory than to actually fixing the swap/release decision logic... Btw a similar question was asked here: http://forums.macnn.com/90/mac-os-x/434650/why-does-os-x-swap-when/ and here: http://hintsforums.macworld.com/showthread.php?t=87688 but even though the OPs re-asked the core question, none of the replies addresses an answer to it... ^1. UPDATE 17-mar-2012 Since I first posted this question, I have gone from 4gb to 8gb of installed ram, and the problem remains. The amount of "Inactive" ram was 0.5gb-1.0gb before and is now typically around 1.0-2.0GB when swapping starts/occurs/ends, ie it seems that around 12.5%-25% of the ram is preserved as Inactive by osx kernel logic. ^2. For instance http://apple.stackexchange.com/questions/4288/what-does-it-mean-if-i-have-lots-of-inactive-memory-at-the-end-of-a-work-day : Once all your memory is used (free memory is 0), the OS will write out inactive memory to the swapfile to make more room in active memory. UPDATE 17-mar-2012 Here is a round-up of the methods that have been suggested to help so far: The purge command "Used to approximate initial boot conditions with a cold disk buffer cache for performance analysis. It does not affect anonymous memory that has been allocated through malloc, vm_allocate, etc". This is useful to prevent osx to swap-out the disk cache (which is ridiculous that osx actually does so in the first place), but with the downside that the disk cache is released, meaning that if the disk cache was not about to be swapped out, one would simply end up with a cold disk buffer cache, probably affecting performance negatively. The FreeMemory app and/or Repairing disk permissions to force some Free memory Doesn't help releasing any memory, only moving some gigabytes of memory contents from ram to the hd. In the end, this causes lots of swap-ins when I attempt to use the applications that were open while freeing memory, as a lot of its vm is now on swap. Speeding up swap-allocation using dynamicpagerwrapper Seems a good thing to do in order to speed up swap-usage, but does not address the problem of osx swapping in the first place while there is still inactive memory. Disabling swap by disabling dynamicpager and restarting This will force osx not to use swap to the price of the system hanging when all memory is used. Not a viable alternative... Disabling swap using a hacked dynamicpager Similar to disabling dynamicpager above, some excerpts from the comments to the blog post indicate that this is not a viable solution: "The Inactive Memory is high as usual". "when your system is running out of memory, the whole os hangs...", "if you consume the whole amount of memory of the mac, the machine will likely hang" To sum up, I am still unaware of a way of disabling Mac OS X from using swap when there still is "Inactive" memory. If it isn't possible, maybe at least there is an explanation somewhere of why osx prefers to swap out memory that may be released from memory at any time?

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • Commit in SQL

    - by PRajkumar
    SQL Transaction Control Language Commands (TCL)                                           (COMMIT) Commit Transaction As a SQL language we use transaction control language very frequently. Committing a transaction means making permanent the changes performed by the SQL statements within the transaction. A transaction is a sequence of SQL statements that Oracle Database treats as a single unit. This statement also erases all save points in the transaction and releases transaction locks. Oracle Database issues an implicit COMMIT before and after any data definition language (DDL) statement. Oracle recommends that you explicitly end every transaction in your application programs with a COMMIT or ROLLBACK statement, including the last transaction, before disconnecting from Oracle Database. If you do not explicitly commit the transaction and the program terminates abnormally, then the last uncommitted transaction is automatically rolled back.   Until you commit a transaction: ·         You can see any changes you have made during the transaction by querying the modified tables, but other users cannot see the changes. After you commit the transaction, the changes are visible to other users' statements that execute after the commit ·         You can roll back (undo) any changes made during the transaction with the ROLLBACK statement   Note: Most of the people think that when we type commit data or changes of what you have made has been written to data files, but this is wrong when you type commit it means that you are saying that your job has been completed and respective verification will be done by oracle engine that means it checks whether your transaction achieved consistency when it finds ok it sends a commit message to the user from log buffer but not from data buffer, so after writing data in log buffer it insists data buffer to write data in to data files, this is how it works.   Before a transaction that modifies data is committed, the following has occurred: ·         Oracle has generated undo information. The undo information contains the old data values changed by the SQL statements of the transaction ·         Oracle has generated redo log entries in the redo log buffer of the System Global Area (SGA). The redo log record contains the change to the data block and the change to the rollback block. These changes may go to disk before a transaction is committed ·         The changes have been made to the database buffers of the SGA. These changes may go to disk before a transaction is committed   Note:   The data changes for a committed transaction, stored in the database buffers of the SGA, are not necessarily written immediately to the data files by the database writer (DBWn) background process. This writing takes place when it is most efficient for the database to do so. It can happen before the transaction commits or, alternatively, it can happen some times after the transaction commits.   When a transaction is committed, the following occurs: 1.      The internal transaction table for the associated undo table space records that the transaction has committed, and the corresponding unique system change number (SCN) of the transaction is assigned and recorded in the table 2.      The log writer process (LGWR) writes redo log entries in the SGA's redo log buffers to the redo log file. It also writes the transaction's SCN to the redo log file. This atomic event constitutes the commit of the transaction 3.      Oracle releases locks held on rows and tables 4.      Oracle marks the transaction complete   Note:   The default behavior is for LGWR to write redo to the online redo log files synchronously and for transactions to wait for the redo to go to disk before returning a commit to the user. However, for lower transaction commit latency application developers can specify that redo be written asynchronously and that transaction do not need to wait for the redo to be on disk.   The syntax of Commit Statement is   COMMIT [WORK] [COMMENT ‘your comment’]; ·         WORK is optional. The WORK keyword is supported for compliance with standard SQL. The statements COMMIT and COMMIT WORK are equivalent. Examples Committing an Insert INSERT INTO table_name VALUES (val1, val2); COMMIT WORK; ·         COMMENT Comment is also optional. This clause is supported for backward compatibility. Oracle recommends that you used named transactions instead of commit comments. Specify a comment to be associated with the current transaction. The 'text' is a quoted literal of up to 255 bytes that Oracle Database stores in the data dictionary view DBA_2PC_PENDING along with the transaction ID if a distributed transaction becomes in doubt. This comment can help you diagnose the failure of a distributed transaction. Examples The following statement commits the current transaction and associates a comment with it: COMMIT     COMMENT 'In-doubt transaction Code 36, Call (415) 555-2637'; ·         WRITE Clause Use this clause to specify the priority with which the redo information generated by the commit operation is written to the redo log. This clause can improve performance by reducing latency, thus eliminating the wait for an I/O to the redo log. Use this clause to improve response time in environments with stringent response time requirements where the following conditions apply: The volume of update transactions is large, requiring that the redo log be written to disk frequently. The application can tolerate the loss of an asynchronously committed transaction. The latency contributed by waiting for the redo log write to occur contributes significantly to overall response time. You can specify the WAIT | NOWAIT and IMMEDIATE | BATCH clauses in any order. Examples To commit the same insert operation and instruct the database to buffer the change to the redo log, without initiating disk I/O, use the following COMMIT statement: COMMIT WRITE BATCH; Note: If you omit this clause, then the behavior of the commit operation is controlled by the COMMIT_WRITE initialization parameter, if it has been set. The default value of the parameter is the same as the default for this clause. Therefore, if the parameter has not been set and you omit this clause, then commit records are written to disk before control is returned to the user. WAIT | NOWAIT Use these clauses to specify when control returns to the user. The WAIT parameter ensures that the commit will return only after the corresponding redo is persistent in the online redo log. Whether in BATCH or IMMEDIATE mode, when the client receives a successful return from this COMMIT statement, the transaction has been committed to durable media. A crash occurring after a successful write to the log can prevent the success message from returning to the client. In this case the client cannot tell whether or not the transaction committed. The NOWAIT parameter causes the commit to return to the client whether or not the write to the redo log has completed. This behavior can increase transaction throughput. With the WAIT parameter, if the commit message is received, then you can be sure that no data has been lost. Caution: With NOWAIT, a crash occurring after the commit message is received, but before the redo log record(s) are written, can falsely indicate to a transaction that its changes are persistent. If you omit this clause, then the transaction commits with the WAIT behavior. IMMEDIATE | BATCH Use these clauses to specify when the redo is written to the log. The IMMEDIATE parameter causes the log writer process (LGWR) to write the transaction's redo information to the log. This operation option forces a disk I/O, so it can reduce transaction throughput. The BATCH parameter causes the redo to be buffered to the redo log, along with other concurrently executing transactions. When sufficient redo information is collected, a disk write of the redo log is initiated. This behavior is called "group commit", as redo for multiple transactions is written to the log in a single I/O operation. If you omit this clause, then the transaction commits with the IMMEDIATE behavior. ·         FORCE Clause Use this clause to manually commit an in-doubt distributed transaction or a corrupt transaction. ·         In a distributed database system, the FORCE string [, integer] clause lets you manually commit an in-doubt distributed transaction. The transaction is identified by the 'string' containing its local or global transaction ID. To find the IDs of such transactions, query the data dictionary view DBA_2PC_PENDING. You can use integer to specifically assign the transaction a system change number (SCN). If you omit integer, then the transaction is committed using the current SCN. ·         The FORCE CORRUPT_XID 'string' clause lets you manually commit a single corrupt transaction, where string is the ID of the corrupt transaction. Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction IDs of corrupt transactions. You must have DBA privileges to view the V$CORRUPT_XID_LIST and to specify this clause. ·         Specify FORCE CORRUPT_XID_ALL to manually commit all corrupt transactions. You must have DBA privileges to specify this clause. Examples Forcing an in doubt transaction. Example The following statement manually commits a hypothetical in-doubt distributed transaction. Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction IDs of corrupt transactions. You must have DBA privileges to view the V$CORRUPT_XID_LIST and to issue this statement. COMMIT FORCE '22.57.53';

    Read the article

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • Finding nuggets in ARC discussions

    - by alanc
    A bit over twenty years ago, Sun formed an Architecture Review Committee (ARC) that evaluates proposals to change interfaces between components in Sun software products. During the OpenSolaris days, we opened many of these discussions to the community. While they’re back behind closed doors, and at a different company now, we still continue to hold these reviews for the software from what’s now the Sun Systems Group division of Oracle. Recently one of these reviews was held (via e-mail discussion) to review a proposal to update our GNU findutils package to the latest upstream release. One of the upstream changes discussed was the addition of an “oldfind” program. In findutils 4.3, find was modified to use the fts() function to walk the directory tree, and oldfind was created to provide the old mechanism in case there were bugs in the new implementation that users needed to workaround. In Solaris 11 though, we still ship the find descended from SVR4 as /usr/bin/find and the GNU find is available as either /usr/bin/gfind or /usr/gnu/bin/find. This raised the discussion of if we should add oldfind, and if so what should we call it. Normally our policy is to only add the g* names for GNU commands that conflict with an existing Solaris command – for instance, we ship /usr/bin/emacs, not /usr/bin/gemacs. In this case however, that seemed like it would be more confusing to have /usr/bin/oldfind be the older version of /usr/bin/gfind not of /usr/bin/find. Thus if we shipped it, it would make more sense to call it /usr/bin/goldfind, which several ARC members noted read more naturally as “gold find” than as “g old find”. One of the concerns we often discuss in ARC is if a change is likely to be understood by users or if it will result in more calls to support. As we hit this part of the discussion on a Friday at the end of a long week, I couldn’t resist putting forth a hypothetical support call for this command: “Hello, Oracle Solaris Support, how may I help you?” “My admin is out sick, but he sent an email that he put the findutils package on our server, and I can run goldfind now. I tried it, but goldfind didn’t find gold.” “Did he get the binutils package too?” “No he just said findutils, do we need binutils?” “Well, gold comes in the binutils package, so goldfind would be able to find gold if you got that package.” “How much does Oracle charge for that package?” “It’s free for Solaris users.” “You mean Oracle ships packages of gold to customers for free?” “Yes, if you get the binutils package, it includes GNU gold.” “New gold? Is that some sort of alchemy, turning stuff into gold?” “Not new gold, gold from the GNU project.” “Oracle’s taking gold from the GNU project and shipping it to me?” “Yes, if you get binutils, that package includes gold along with the other tools from the GNU project.” “And GNU doesn’t mind Oracle taking their gold and giving it to customers?” “No, GNU is a non-profit whose goal is to share their software.” “Sharing software sure, but gold? Where does a non-profit like GNU get gold anyway?” “Oh, Google donated it to them.” “Ah! So Oracle will give me the gold that GNU got from Google!” “Yes, if you get the package from us.” “How do I get the package with the gold?” “Just run pkg install binutils and it will put it on your disk.” “We’ve got multiple disks here - which one will it put it on?” “The one with the system image - do you know which one that is? “Well the note from the admin says the system is on the first disk and the users are on the second disk.” “Okay, so it should go on the first disk then.” “And where will I find the gold?” “It will be in the /usr/bin directory.” “In the user’s bin? So thats on the second disk?” “No, it would be on the system disk, with the other development tools, like make, as, and what.” “So what’s on the first disk?” “Well if the system image is there the commands should all be there.” “All the commands? Not just what?” “Right, all the commands that come with the OS, like the shell, ps, and who.” “So who’s on the first disk too?” “Yes. Did your admin say when he’d be back?” “No, just that he had a massive headache and was going home after I tried to get him to explain this stuff to me.” “I can’t imagine why.” “Oh, is why a command too?” “No, _why was a Ruby programmer.” “Ruby? Do you give those away with the gold too?” “Yes, but it comes in the ruby package, not binutils.” “Oh, I’ll have to have my admin get that package too! Thanks!” Needless to say, we decided this might not be the best idea. Since the GNU package hasn’t had to release a serious bug fix in the new find in the past few years, the new GNU find seems pretty stable, and we always have the SVR4 find to use as a fallback in Solaris, so it didn’t seem that adding oldfind was really necessary, so we passed on including it when we update to the new findutils release. [Apologies to Abbott, Costello, their fans, and everyone who read this far. The Gold (linker) page on Wikipedia may explain some of the above, but can’t explain why goldfind is the old GNU find, but gold is the new GNU ld.]

    Read the article

  • Is there a way to route all traffic from Android through a proxy/tunnel to my Tomato router?

    - by endolith
    I'd like to be able to connect my Android phone to public Wi-Fi points with unencrypted connections, but People can see what I'm doing by intercepting my radio transmissions People who own the access point can see what I'm doing. There are tools like WeFi and probably others to automatically connect to access points, but I don't trust random APs. I'd like all my traffic to go through an encrypted tunnel to my home router, and from there out to the Internet. I've done such tunnels from other computers with SSH/SOCKS and PPTP before. Is there any way to do this with Android? I've asked the same question on Force Close, so I'll change this question to be about both sides of the tunnel. More specifically: My phone now has CyanogenMod 4.2.3 My router currently has Tomato Version 1.25 I'm willing to change the router firmware, but I was having issues with DD-WRT disconnecting, which is why I'm using Tomato. Some possible solutions: SSH with dynamic SOCKS proxy: Android supposedly supports this through ConnectBot, but I don't know how to get it to route all traffic. Tomato supports this natively. I've been using this with MyEntunnel for my web browsing at work. Requires setting up each app to go through the proxy, though. PPTP: Android supports this natively. Tomato does not support this, unless you get the jyavenard mod and compile it? I previously used PPTP for web browsing at work and in China because it's native in Windows and DD-WRT. After a while I started having problems with it, then I started having problems with DD-WRT, so I switched to the SSH tunnel instead. Also it supposedly has security flaws, but I don't understand how big of a problem it is. IPSec L2TP: Android (phone) and Windows (work/China) both support this natively I don't know of a router that does. I could run it on my computer using openswan, but then there are two points of failure. OpenVPN: CyanogenMod apparently includes this, and now has an entry to create a new OpenVPN in the normal VPN interface, but I have no idea how to configure it. TunnelDroid apparently handles some of this. Future versions will have native support in the VPN settings? Tomato does not support this, but there are mods that do? I don't know how to configure this, either. TomatoVPN roadkill mod SgtPepperKSU mod Thor mod I could also run a VPN server on my desktop, I guess, though that's less reliable and presumably slower than running it in the router itself. I could change the router firmware, but I'm wary of more fundamental things breaking. Tomato has been problem-free for the regular stuff. Related: Anyone set up a SSH tunnel to their (rooted) G1 for browsing?

    Read the article

  • PHP 5.2 to 5.3 not upgrading, no errors

    - by Webnet
    I'm following this guide: http://atik97.wordpress.com/2010/06/12/how-to-upgrade-to-php-5-3-in-ubuntu-9-10/ I've done all the steps, but it's still showing php 5.2.6 - any ideas? I have also tried -cgi instead of -cli, neither have any effect. update I've tried rebooting the server to see if that would have any effect and unfortunately it didn't update Output of dpkg -l *php*: Desired=Unknown/Install/Remove/Purge/Hold | Status=Not/Inst/Cfg-files/Unpacked/Failed-cfg/Half-inst/trig-aWait/Trig-pend |/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad) ||/ Name Version Description +++-=============================================-=============================================-========================================================================================================== un libapache2-mod-php4 <none> (no description available) ii libapache2-mod-php5 5.2.6.dfsg.1-3ubuntu4.6 server-side, HTML-embedded scripting language (Apache 2 module) un libapache2-mod-php5filter <none> (no description available) ii php-pear 5.2.6.dfsg.1-3ubuntu4.6 PEAR - PHP Extension and Application Repository un php4-cli <none> (no description available) un php4-dev <none> (no description available) un php4-mysql <none> (no description available) un php4-pear <none> (no description available) ii php5 5.2.6.dfsg.1-3ubuntu4.6 server-side, HTML-embedded scripting language (metapackage) ii php5-cgi 5.2.6.dfsg.1-3ubuntu4.6 server-side, HTML-embedded scripting language (CGI binary) ii php5-cli 5.2.6.dfsg.1-3ubuntu4.6 command-line interpreter for the php5 scripting language ii php5-common 5.2.6.dfsg.1-3ubuntu4.6 Common files for packages built from the php5 source ii php5-curl 5.2.6.dfsg.1-3ubuntu4.6 CURL module for php5 un php5-dev <none> (no description available) ii php5-gd 5.2.6.dfsg.1-3ubuntu4.6 GD module for php5 ii php5-imap 5.2.6-0ubuntu5.1 IMAP module for php5 un php5-json <none> (no description available) ii php5-mcrypt 5.2.6-0ubuntu2 MCrypt module for php5 ii php5-mysql 5.2.6.dfsg.1-3ubuntu4.6 MySQL module for php5 un php5-mysqli <none> (no description available) ii php5-xsl 5.2.6.dfsg.1-3ubuntu4.6 XSL module for php5 un phpapi-20060613+lfs <none> (no description available) ii phpmyadmin 4:3.1.2-1ubuntu0.2 MySQL web administration tool update The following commands and their outputs: grep php53 /etc/apt/sources.list deb http://php53.dotdeb.org stable all deb-src http://php53.dotdeb.org stable all apt-cache search -f "libapache2-mod-php5" http://pastebin.com/XNXdsXYC update I've updated the question with more details on installed packages.

    Read the article

  • Apache mod_proxy dynamic filter

    - by jrhicks
    How can I configure Apache to ProxyBlock content based on something dynamic such as time-of-day or max-use. Basicly I'm curious about the scriptability of Apache. My web-stumbling leads me to believe I can combine mod-proxy and mod-perl in interesting ways to do dynamic filtering. But I'm pretty lost. What are some general instructions, tutorials, books, technologies to begin scripting Apache (or any suitable proxy).

    Read the article

  • AMD-V is not enable in virtualbox in amd APU

    - by shantanu
    I am running Dual core AMD E450 APU. When i tried to run a 64-bit OS that requires hardware virtualization using virtual-box it showed me an error "AMD-V is not enable". My AMD processor should provide AMD-V support. And i can find no option for AMD-V in BIOS. How can i solve this problem? How could i enable AMD-V for my APU? Thanks in advance lscpu :- Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Thread(s) per core: 1 Core(s) per socket: 2 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 20 Model: 2 Stepping: 0 CPU MHz: 1650.000 BogoMIPS: 3291.72 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K NUMA node0 CPU(s): 0,1 EDITED:- Error of virtualBOX:- Failed to open a session for the virtual machine XXX. AMD-V is disabled in the BIOS. (VERR_SVM_DISABLED). Result Code: NS_ERROR_FAILURE (0x80004005) Component: Console Interface: IConsole {1968b7d3-e3bf-4ceb-99e0-cb7c913317bb}

    Read the article

  • Framework 4 Features: Summary of Security enhancements

    - by Anthony Shorten
    In the last log entry I mentioned one of the new security features in Oracle Utilities Application Framework 4.0.1. Security is one of the major "tent poles" (to borrow a phrase from Steve Jobs) in this release of the framework. There are a number of security related enhancements requested by customers and as a result of internal reviews that we have introduced. Here is a summary of some of the security enchancements we have added in this release: Security Cache Changes - Security authorization information is automatically cached on the server for performance reasons (security is checked for every single call the product makes for all modes of access). Prior to this release the cache auto-refreshed every 30 minutes (or so). This has beem made more nimble by supporting a cache refresh every minute (or so). This means authorization changes are reflected quicker than before. Business Level security - Business Services are configurable services that are based upon Application Services. Typically, the business service inherited its security profile from its parent service. Whilst this is sufficient for most needs, it is now required to further specify security on the Business Service definition itself. This will allow granular security and allow the same application service to be exposed as different Business Services with their own security. This is particularly useful when you base a Business Service on a query zone. User Propogation - As with other client server applications, the database connections are pooled and shared as needed. This means that a common database user is used to access the database from the pool to allow sharing. Unfortunently, this means that tracability at the database level is that much harder. In Oracle Utilities Application Framework V4 the end userid is now propogated to the database using the CLIENT_IDENTIFIER as part of the Oracle JDBC connection API. This not only means that the common database userid is still used but the end user is indentifiable for the duration of the database call. This can be used for monitoring or to hook into Oracle's database security products. This enhancement is only available to Oracle Database customers. Enhanced Security Definitions - Security Administrators use the product browser front end to control access rights of defined users. While this is sufficient for most sites, a new security portal has been introduced to speed up the maintenance of security information. Oracle Identity Manager Integration - With the popularity of Oracle's Identity Management Suite, the Framework now provides an integration adapter and Identity Manager Generic Transport Connector (GTC) to allow users and group membership to be provisioned to any Oracle Utilities Application Framework based product from Oracle's Identity Manager. This is also available for Oracle Utilties Application Framework V2.2 customers. Refer to My Oracle Support KBid 970785.1 - Oracle Identity Manager Integration Overview. Audit On Inquiry - Typically the configurable audit facility in the Oracle Utilities Application Framework is used to audit changes to records. In Oracle Utilities Application Framework the Business Services and Service Scripts could be configured to audit inquiries as well. Now it is possible to attach auditing capabilities to zones on the product (including base package ones). Time Zone Support - In some of the Oracle Utilities Application Framework based products, the timezone of the end user is a factor in the processing. The user object has been extended to allow the recording of time zone information for use in product functionality. JAAS Suport - Internally the Oracle Utilities Application Framework uses a number of techniques to validate and transmit security information across the architecture. These various methods have been reconciled into using Java Authentication and Authorization Services for standardized security. This is strictly an internal change with no direct on how security operates externally. JMX Based Cache Management - In the last bullet point, I mentioned extra security applied to cache management from the browser. Alternatively a JMX based interface is now provided to allow IT operations to control the cache without the browser interface. This JMX capability can be initiated from a JSR120 compliant JMX console or JMX browser. I will be writing another more detailed blog entry on the JMX enhancements as it is quite a change and an exciting direction for the product line. Data Patch Permissions - The database installer provided with the product required lower levels of security for some operations. At some sites they wanted the ability for non-DBA's to execute the utilities in a controlled fashion. The framework now allows feature configuration to allow delegation for patch execution. User Enable Support - At some sites, the use of temporary staff such as contractors is commonplace. In this scenario, temporary security setups were required and used. A potential issue has arisen when the contractor left the company. Typically the IT group would remove the contractor from the security repository to prevent login using that contractors userid but the userid could NOT be removed from the authorization model becuase of audit requirements (if any user in the product updates financials or key data their userid is recorded for audit purposes). It is now possible to effectively diable the user from the security model to prevent any use of the useridwhilst retaining audit information. These are a subset of the security changes in Oracle Utilities Application Framework. More details about the security capabilities of the product is contained in My Oracle Support KB Id 773473.1 - Oracle Utilities Application Framework Security Overview.

    Read the article

  • CakePHP Missing Database Table Error

    - by BRADINO
    I am baking a new project management application at work and added a couple new tables to the database today. When I went into the console to bake the new models, they were not in the list... php /path/cake/console/cake.php bake all -app /path/app/ So I manually typed in the model name and I got a missing database table for model error. I checked and double-checked and the database table was named properly. Turns out that some files inside the /app/tmp/cache/ folder were causing Cake not to recognize that I had added new tables to my database. Once I deleted the cache files cake instantly recognized my new database tables and I was baking away! rm -Rf /path/app/tmp/cache/cake*

    Read the article

< Previous Page | 216 217 218 219 220 221 222 223 224 225 226 227  | Next Page >