Search Results

Search found 8354 results on 335 pages for 'welton v3 50'.

Page 225/335 | < Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >

  • Multiplayer / Networking options for a 2D game with physics

    - by lahmas
    Summary: My 50% finished 2D sidescroller with Box2D as physics engine should have multiplayer support in the final version. However, the current code is just a singleplayer game. What should I do now? And more important, how should I implement multiplayer and combine it with singleplayer? Is it a bad idea to code the singleplayer mode separated from multiplayer mode (like Notch did it with Minecraft)? The performance in singleplayer should be as good as possible (Simulating physics with using a loopback server to implement singleplayer mode would be a problem there) Full background / questions: I'm working on a relatively large 2D game project in C++, with physics as a core element of it. (I use Box2D for that) The finished game should have full multiplayer support, however I made the mistake that I didn't plan the networking part properly and basically worked on a singleplayer game until now. I thought that multiplayer support could be added to the almost finished singleplayer game in a relatively easy and clear way, but apparently, from what I have read this is wrong. I even read that a multiplayer game should be programmed as one from the beginning, with the singleplayer mode actually just consisting of hosting an invisible local server and connecting to it via loopback. (I found out that most FPS game engines do it that way, an example would be Source) So here I am, with my half finished 2D sidescroller game, and I don't really know how to go on. Simply continueing to work on the singleplayer / client seems useless to me now, as I'd have to recode and refactor even more later. First, a general question to anybody who possibly found himself in a situation like this: How should I proceed? Then, the more specific one - I have been trying to find out how I can approach the networking part for my game: (Possible solutions:) Invisible / loopback server for singleplayer This would have the advantage that there basically is no difference between singleplayer and multiplayer mode. Not much additional code would be needed. A big disadvantage: Performance and other limitations in singleplayer. There would be two physics simulations running. One for the client and one for the loopback server. Even if you work around by providing a direct path for the data from the loopback server, through direct communcation by the threads for example, the singleplayer would be limited. This is a problem because people should be allowed to play around with masses of objects at once. Separated singleplayer / Multiplayer mode There would be no server involved in singleplayer mode. I'm not really sure how this would work. But at least I think that there would be a lot of additional work, because all of the singleplayer features would have to be re-implemented or glued to multiplayer mode. Multiplayer mode as a module for singleplayer This is merely a quick thought I had. Multiplayer could consist of a singleplayer game, with an additional networking module loaded and connected to a server, which sends and receives data and updates the singleplayer world. In the retrospective, I regret not having planned the multiplayer mode earlier. I'm really stuck at this point and I hope that somebody here is able to help me!

    Read the article

  • Oracle Embedded - Porto (29/Abr/10)

    - by Claudia Costa
    Convidamo-lo a participar num evento que a Oracle irá realizar no próximo dia 29 de Abril no Porto, dedicado a soluções para sistemas Embedded.   A Oracle tem sido desde sempre o líder indisputado - em termos de desempenho, fiabilidade e escalabilidade - em sistemas de gestão de base de dados para aplicações críticas de gestão das grandes organizações. Hoje, no entanto, as aplicações críticas são implementadas não apenas nos data centers, mas cada vez mais em dispositivos móveis, nas infraestruturas de rede e em sistemas de aplicação específica. Por isso, o compromisso da Oracle em desenvolver os melhores produtos de gestão de dados alarga-se hoje do data center às aplicações designadas edge e embedded.   A Oracle oferece hoje a gama mais completa do mercado em tecnologias embedded, tanto para ISVs como para fabricantes de dispositivos e equipamentos, proporcionando-lhe a escolha dos produtos de base de dados e middleware embeddable que melhor se ajustem aos seus requisitos técnicos: ·         Oracle Database 11g ·         Oracle Database Lite 11g ·         Oracle Berkeley DB ·         Oracle TimesTen In-Memory Database ·         Oracle Fusion Middleware 11g ·         Java for Business   Segundo a IDC, a Oracle é hoje o líder mundial no mercado das bases de dados embedded com uma quota de mercado de 28,2% em 2008, estando a crescer a um ritmo 40% superior ao seu concorrente mais próximo e 50% superior à media do mercado.   A par com a riqueza da sua oferta tecnológica, a Oracle oferece igualmente modelos de licenciamento e de preços que se ajustam às necessidades de quem usa esses componentes tecnológicos como peças de uma solução final integrada a se vendida aos seus cliente finais.   Em resumo, as soluções embedded da Oracle proporcionam-lhe:   ·         Melhores produtos ·         Clientes mais satisfeitos ·         Maior rentabilidade das suas soluções   Mais informação sobre produtos embedded Oracle aqui   Agenda: ·         Oracle and Embedded ·         Embedded Market Trends ·         Oracle portfolio Oracle Database 11g o    Oracle Berkeley DB  o    Oracle Database Lite o    Oracle TimesTen o    Oracle Fusion Middleware ·         Demo: Berkeley DB ·         Embedded Software Licensing (ESL) Models --------------------------------------------------------------------------- Clique aqui e registe-se.   Horário e Local: 15h00 - 18h00 Hotel Infante Sagres | Praça D. Filipa De Lencastre, 62 | 4050-259 | Porto   Para mais informações, por favor contacte: Melissa Lopes 214235194

    Read the article

  • simple collision detection with box2dweb

    - by skywalker
    im beginner in box2dweb that version of box2d for javascript i wrote simple gravity system and i want to detect the collision between the box and the ground , when the falling box hit the ground execute simple function like function sucs(){alert("the box on the floor !")}; this is my code var CANVAS_WIDTH = 1024, CANVAS_HEIGHT = 700, SCALE = 30; var b2Vec2 = Box2D.Common.Math.b2Vec2 , b2BodyDef = Box2D.Dynamics.b2BodyDef , b2Body = Box2D.Dynamics.b2Body , b2FixtureDef = Box2D.Dynamics.b2FixtureDef , b2Fixture = Box2D.Dynamics.b2Fixture , b2World = Box2D.Dynamics.b2World , b2MassData = Box2D.Collision.Shapes.b2MassData , b2PolygonShape = Box2D.Collision.Shapes.b2PolygonShape , b2CircleShape = Box2D.Collision.Shapes.b2CircleShape , b2DebugDraw = Box2D.Dynamics.b2DebugDraw; var canvas = document.getElementById("canvas"); var context = canvas.getContext("2d"); var world = new b2World(new b2Vec2(0, 8), true); var fixDef = new b2FixtureDef(); var bodyDef = new b2BodyDef(); fixDef.density = 1.0; fixDef.friction = 0.5; bodyDef.type = b2Body.b2_staticBody; fixDef.shape = new b2PolygonShape; fixDef.shape.SetAsBox(20, 2); bodyDef.position.Set(10, 400 / 30 + 1.8); world.CreateBody(bodyDef).CreateFixture(fixDef); fixDef.density = 1.0; fixDef.friction = 0.5; fixDef.restitution = 0.3; bodyDef.type = b2Body.b2_dynamicBody; bodyDef.position.Set(50 / SCALE, 0 / SCALE); //bodyDef.linearVelocity.Set((Math.random() * 12) + 2, (Math.random() * 12) + 2); fixDef.shape = new b2PolygonShape(); fixDef.shape.SetAsBox(25 / SCALE, 25 / SCALE); world.CreateBody(bodyDef).CreateFixture(fixDef); var debugDraw = new b2DebugDraw(); debugDraw.SetSprite(document.getElementById("canvas").getContext("2d")); debugDraw.SetDrawScale(30.0); debugDraw.SetFillAlpha(0.5); debugDraw.SetLineThickness(1.0); debugDraw.SetFlags(b2DebugDraw.e_shapeBit | b2DebugDraw.e_jointBit); world.SetDebugDraw(debugDraw); var image = new Image(); image.src = "image.png"; window.setInterval(gameLoop, 1000 / 60); function gameLoop() { world.Step(1 / 60, 8, 3); world.ClearForces(); context.clearRect(0, 0, CANVAS_WIDTH, CANVAS_HEIGHT); b = world.GetBodyList() var pos = b.GetPosition(); context.save(); context.translate(pos.x * SCALE, pos.y * SCALE); context.rotate(b.GetAngle()); context.drawImage(image, -25, -25); context.restore(); b = b.GetNext(); pos = b.GetPosition(); context.save(); context.translate(pos.x * SCALE, pos.y * SCALE); //b.GetAngle()++; context.rotate(b.GetAngle()); context.drawImage(image, -25, -25); context.restore(); world.DrawDebugData(); };

    Read the article

  • Is there a low carbon future for the retail industry?

    - by user801960
    Recently Oracle published a report in conjunction with The Future Laboratory and a global panel of experts to highlight the issue of energy use in modern industry and the serious need to reduce carbon emissions radically by 2050.  Emissions must be cut by 80-95% below the levels in 1990 – but what can the retail industry do to keep up with this? There are three key aspects to the retail industry where carbon emissions can be cut:  manufacturing, transport and IT.  Manufacturing Naturally, manufacturing is going to be a big area where businesses across all industries will be forced to make considerable savings in carbon emissions as well as other forms of pollution.  Many retailers of all sizes will use third party factories and will have little control over specific environmental impacts from the factory, but retailers can reduce environmental impact at the factories by managing orders more efficiently – better planning for stock requirements means economies of scale both in terms of finance and the environment. The John Lewis Partnership has made detailed commitments to reducing manufacturing and packaging waste on both its own-brand products and products it sources from third party suppliers. It aims to divert 95 percent of its operational waste from landfill by 2013, which is a huge logistics challenge.  The John Lewis Partnership’s website provides a large amount of information on its responsibilities towards the environment. Transport Similarly to manufacturing, tightening up on logistical planning for stock distribution will make savings on carbon emissions from haulage.  More accurate supply and demand analysis will mean less stock re-allocation after initial distribution, and better warehouse management will mean more efficient stock distribution.  UK grocery retailer Morrisons has introduced double-decked trailers to its haulage fleet and adjusted distribution logistics accordingly to reduce the number of kilometers travelled by the fleet.  Morrisons measures route planning efficiency in terms of cases moved per kilometre and has, over the last two years, increased the number of cases per kilometre by 12.7%.  See Morrisons Corporate Responsibility report for more information. IT IT infrastructure is often initially overlooked by businesses when considering environmental efficiency.  Datacentres and web servers often need to run 24/7 to handle both consumer orders and internal logistics, and this both requires a lot of energy and puts out a lot of heat.  Many businesses are lowering environmental impact by reducing IT system fragmentation in their offices, while an increasing number of businesses are outsourcing their datacenters to cloud-based services.  Using centralised datacenters reduces the power usage at smaller offices, while using cloud based services means the datacenters can be based in a more environmentally friendly location.  For example, Facebook is opening a massive datacentre in Sweden – close to the Arctic Circle – to reduce the need for artificial cooling methods.  In addition, moving to a cloud-based solution makes IT services more easily scaleable, reducing redundant IT systems that would still use energy.  In store, the UK’s Carbon Trust reports that on average, lighting accounts for 25% of a retailer’s electricity costs, and for grocery retailers, up to 50% of their electricity bill comes from refrigeration units.  On a smaller scale, retailers can invest in greener technologies in store and in their offices.  The report concludes that widely shared objectives of energy security, reduced emissions and continued economic growth are dependent on the development of a smart grid capable of delivering energy efficiency and demand response, as well as integrating renewable and variable sources of energy. The report is available to download from http://emeapressoffice.oracle.com/imagelibrary/detail.aspx?MediaDetailsID=1766I’d be interested to hear your thoughts on the report.   

    Read the article

  • Error while installing emacs23 from Software Center

    - by vrcmr
    Trying to install emacs in Software Center Ubuntu 12.04 got this error. installArchives() failed: Selecting previously unselected package emacs23. (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 182385 files and directories currently installed.) Unpacking emacs23 (from .../emacs23_23.3+1-1ubuntu9_i386.deb) ... Processing triggers for desktop-file-utils ... Processing triggers for bamfdaemon ... Rebuilding /usr/share/applications/bamf.index... Processing triggers for gnome-menus ... Processing triggers for man-db ... Setting up emacs23 (23.3+1-1ubuntu9) ... update-alternatives: using /usr/bin/emacs23-x to provide /usr/bin/emacs (emacs) in auto mode. emacs-install emacs23 install/dictionaries-common: Byte-compiling for emacsen flavour emacs23 Warning: Lisp directory `/usr/share/emacs/23.3/site-lisp' does not exist. Warning: Lisp directory `/usr/share/emacs/site-lisp' does not exist. Warning: Lisp directory `/usr/share/emacs/23.3/leim' does not exist. Warning: Lisp directory `/usr/share/emacs/23.3/lisp' does not exist. Warning: Lisp directory `/usr/share/emacs/23.3/leim' does not exist. Error: charsets directory (/usr/share/emacs/23.3/etc/charsets) does not exist. Emacs will not function correctly without the character map files. Please check your installation! Warning: Could not find simple.el nor simple.elc Cannot open load file: bytecomp emacs-install: /usr/lib/emacsen-common/packages/install/dictionaries-common emacs23 failed at /usr/lib/emacsen-common/emacs-install line 28, <TSORT> line 3. dpkg: error processing emacs23 (--configure): subprocess installed post-installation script returned error exit status 255 No apport report written because MaxReports is reached already Errors were encountered while processing: emacs23 Error in function: Setting up emacs23 (23.3+1-1ubuntu9) ... emacs-install emacs23 install/dictionaries-common: Byte-compiling for emacsen flavour emacs23 Warning: Lisp directory `/usr/share/emacs/23.3/site-lisp' does not exist. Warning: Lisp directory `/usr/share/emacs/site-lisp' does not exist. Warning: Lisp directory `/usr/share/emacs/23.3/leim' does not exist. Warning: Lisp directory `/usr/share/emacs/23.3/lisp' does not exist. Warning: Lisp directory `/usr/share/emacs/23.3/leim' does not exist. Error: charsets directory (/usr/share/emacs/23.3/etc/charsets) does not exist. Emacs will not function correctly without the character map files. Please check your installation! Warning: Could not find simple.el nor simple.elc Cannot open load file: bytecomp emacs-install: /usr/lib/emacsen-common/packages/install/dictionaries-common emacs23 failed at /usr/lib/emacsen-common/emacs-install line 28, <TSORT> line 3. dpkg: error processing emacs23 (--configure): subprocess installed post-installation script returned error exit status 255

    Read the article

  • A debugging experience with "highly compatible" ASP.NET 4.5

    - by Jeff
    I have to admit that I will pretty much upgrade software for no reason other than being on the latest version. I won't do it if it's super expensive (Adobe gets money from me about once every three or four years at best), but particularly with frameworks and stuff generally available as part of my MSDN subscription, I'll be bleeding edge. CoasterBuzz was running on the MVC 4 framework pretty much as soon as they did a "go live" license for it. I didn't really jump in head-first with Windows 8 and Visual Studio 2012, in part because I just wasn't interested in doing the reinstalls for each new version. Turns out there weren't that many revisions anyway. But when the final versions were released a week and a half ago, I jumped in. I saw on one of the Microsoft sites that .Net 4.5 was a "highly compatible in-place update" to the framework. Good enough for me. I was obviously running it by default in Windows 8, and installed it on my production server. I suppose it's "highly compatible," except when it isn't. Three of my sites are running with various flavors of the MVC version of POP Forums. All of them stopped working under ASP.NET 4.5. It was not immediately obvious what the problem might be beyond an exception indicating that there were no repository classes registered with Ninject, which I use for dependency injection in the forums. This was made all the more weird by the fact that it ran fine locally in the dev Web host. My first instinct was to spin up a Windows Server VM on my local box and put the remote debugger on it. (Side note: running multiple VM's on a Retina MacBook Pro with 16 gigs of RAM is pretty much the most awesome thing ever. I can't believe this computer is for real, and not a 50-pound tower under my desk.) What might have been going on in IIS that doesn't happen in Visual Studio? In the debugging process, I realized that I might be looking in the wrong place. POP Forums creates a Ninject container using a method called from a PreApplicationStartMethod attribute, and at that time registers a module (what Ninject uses to map interfaces to implementations) that maps all of the core dependencies. It also creates an instance of an HttpModule that originally hosted the "services" (search indexing, mailer, etc.), but now just records errors. That's all well and good, but the actual repository mapping, where data is actually read or persisted, happens in Application_Start() in global.asax. The idea there is that you can swap out the SqlSingleWebServer repos for something tuned for multiple servers, Oracle or something else. Of course, if I used something like StructureMap, which does convention-based mapping for dependency injection (a class implementing ISettingsRepository called SettingsRepository is automagically mapped), I wouldn't have to worry about it. In any case, the HttpModule, being instantiated before Application_Start() gets to run, would throw because there was no repo mapped where it could get settings from the database. This makes total sense. The fix is sort of a hack, where I don't setup the innards of the HttpModule until a call to its BeginRequest is made. I say it's a hack, because its primary function, logging exceptions, won't work until the app has warmed up. Still, this brings up an interesting question about the race condition, and what changed in 4.5 when it's running in IIS. In ASP.NET 4, it would appear that the code called via the PreApplicationStartMethod was either failing silently, and running again later, or it was getting to that code after Application_Start was called. In any case, weird thing. The real pain point I'm experiencing now is a bug in MVC 4 that is extremely serious because it renders the mobile/alternate view functionality very much broken.

    Read the article

  • Friday Fun: Spell Blazer

    - by Asian Angel
    Are you ready for some fun and adventure after a long week back at work? This week’s game combines jewel-matching style game play with an RPG story for an awesome mix of fun and fiction. Your goal is to help a young wizard reach the magic academy in Raven as the forces of darkness are building. Spell Blazer The object of the game is to help young Kaven reach the Lightcaster Academy in Raven alive, but he will encounter many dangers along the way. Are you ready to begin the quest? As soon as you click Start Game the intro will automatically begin. If this is your first time playing the game the intro provides a nice background story for the game and what is happening in the game environment. Once you are past the intro, you will see a map of the region with your starting point in the Farmlands, various towns and the roads connecting them, along with your final destination of Raven. Notice that some of the roads are different colors…those colors indicate the “danger levels” for each part of your journey (green = good, yellow = some danger, etc.). To begin your journey click on the Town of Goose with your mouse. You will encounter your first monster part of the way towards Goose. This first round takes you through the game play process step-by-step. Once you have clicked Okay you will see the details about the monster you have just encountered. It is very important that you do not click on Fight! or Flee! until viewing and noting the types of spells that the monster is resistant to or has a weakness against. Choose your spells wisely based on the information provided about the monster. Keep in mind that the healing spell can be very useful depending on the monster you meet and your current health status. Note: Spells shown in order here are Healing, Fireball, Icebolt, & Lightning. Ready to fight! The first battle will also explain how to fight…click Okay to get started. Once the main window is in full view there are details that you need to look at. Beneath each of the combatants you will see the three attacks that each brings to the battle and at the bottom you will see their respective health points. We got lucky and had an Icebolt attack that we could utilize on the first play! Note: You can exchange two squares without making a match in order to try and line up an attack. While it happened too quickly to capture in our screenshot, there will be cool lightning bolt effects shoot out from matched up squares to the opposite combatant. You will also see the amount of damage inflicted from a particular attack on top of the avatars. Victory! Once you have won a round of combat a window will appear showing the amount of gold coins left behind by the monster. When you reach a town you will have the opportunity to stop over and rest or directly continue on with your journey. On to Halgard after a good rest! Play Spell Blazer Latest Features How-To Geek ETC How To Boot 10 Different Live CDs From 1 USB Flash Drive The 20 Best How-To Geek Linux Articles of 2010 The 50 Best How-To Geek Windows Articles of 2010 The 20 Best How-To Geek Explainer Topics for 2010 How to Disable Caps Lock Key in Windows 7 or Vista How to Use the Avira Rescue CD to Clean Your Infected PC The Deep – Awesome Use of Metal Objects as Deep Sea Creatures [Video] Convert or View Documents Online Easily with Zoho, No Account Required Build a Floor Scrubbing Robot out of Computer Fans and a Frisbee Serene Blue Windows Wallpaper for Your Desktop 2011 International Space Station Calendar Available for Download (Free) Ultimate Elimination – Lego Black Ops [Video]

    Read the article

  • What I Expect From Myself This Year

    - by Lee Brandt
    I am making it a point not to call them resolutions, because the word has become an institution and is beginning to have no meaning. That's why I end up not keeping my resolutions, I think. So in the spirit of holding myself to my own commitments, I will make a plan and some realistic goals. 1.) Lose weight. Everyone has this on their list, but I am going to be conservative and specific. I currently weigh 393lbs. (yeah, I know). So I want to plan to lose 10lbs per month, that's 1lb. every three days, that shouldn't be difficult if I stick to my diet and exercise plan. - How do I do this?     - Diet: vegetarian. Since I already know I have high blood pressure and borderline high cholesterol, a meat-free diet is in order. I was vegan for a little over 2 years in 2006-2008, I think I can handle vegetarian.     - Exercise: at least 3 times (preferably every day) a week for 30 minutes. It has to be something that gets my heart rate up, or burns in my muscles. I can walk for cardio to start and mild calisthenics (girly push-ups, crunches, etc.).         - Move: I spend all my time behind the computer. I have recently started to use a slight variation of the Pomodoro Technique (my Pomodoros are 50 minutes instead of 25). During my 10 minutes every hour to answer emails, chats, etc., I will take a few minutes to stretch. 2.) Get my wife pregnant. We've been talking about it for years. Now that she is done with graduate school and I have a great job, now's the time. We'll be the oldest parents in the PTA most likely, but I don't care. 3.) Blog More. Another favorite among bloggers, but I do have about six drafts for blog posts started. The topics are there all I need to do is flesh out the post. This can be the first hour of any computer time I have after work. As soon as I am done exercising, shower and post. 4.) Speak less. Most people want to speak more. I want to concentrate on the places that I enjoy and that can really use the speakers (like local code camps), rather than trying to be some national speaker. I love speaking at conferences, but I need to spend some more time at home if we're going to get pregnant. 5.) Read more. I got a Kindle for Christmas and I am loving it so far. I have almost finished Treasure Island, and am getting ready to pick my next book. I will probably read a lot of classics for 2 reasons: (1) they teach deep lessons and (2) most are free for the Kindle. 6.) Find my religion. I was raised Southern Baptist, but I want to find my own way. I've been wanting to go to the local Unitarian Church, so I will make a point to go before the end of March. I also want to add a few religious books to my reading list. My boss bought me a copy of Lee Strobel's The Case for Christ: A Journalist's Personal Investigation of the Evidence for Jesus , and I have a copy of Bruce Feiler's Abraham: A Journey to the Heart of Three Faiths (P.S.) . I will start there. Seems like a lot now that I spell it out like this. But these are only starters. I am forty years old. I cannot keep living like I am twenty anymore. So here we go, 2011.

    Read the article

  • Help trying to get two-finger scrolling to work on Asus UL80VT

    - by Dan2k3k4
    Multi-touch works fine on Windows 7 with: two-fingers scroll vertical and horizontally, two-finger tap for middle click, and three-finger tap for right click. However with Ubuntu, I've never been able to get multi-touch to "save" and work, I was able to get it to work a few times but after restarting - it would just reset back. I have the settings for two-finger scrolling on: Mouse and Touchpad Touchpad Two-finger scrolling (selected) Enable horizontal scrolling (ticked) The cursor stops moving when I try to scroll with two fingers, but it doesn't actually scroll the page. When I perform xinput list, I get: Virtual core pointer id=2 [master pointer (3)] ? Virtual core XTEST pointer id=4 [slave pointer (2)] ? ETPS/2 Elantech ETF0401 id=13 [slave pointer (2)] I've tried to install some 'synaptics-dkms' bug-fix (from a few years back) but that didn't work, so I removed that. I've tried installing 'uTouch' but that didn't seem to do anything so removed it. Here's what I have installed now: dpkg --get-selections installed-software grep 'touch\|mouse\|track\|synapt' installed-software libsoundtouch0 --- install libutouch-evemu1 --- install libutouch-frame1 --- install libutouch-geis1 --- install libutouch-grail1 --- install printer-driver-ptouch --- install ptouch-driver --- install xserver-xorg-input-multitouch --- install xserver-xorg-input-mouse --- install xserver-xorg-input-vmmouse --- install libnetfilter-conntrack3 --- install libxatracker1 --- install xserver-xorg-input-synaptics --- install So, I'll start again, what should I do now to get two-finger scrolling to work and ensure it works after restarting? Also doing: synclient TapButton1=1 TapButton2=2 TapButton3=3 ...works but doesn't save after restarting. However doing: synclient VertTwoFingerScroll=1 HorizTwoFingerScroll=1 Does NOT work to fix the two-finger scrolling. Output of: cat /var/log/Xorg.0.log | grep -i synaptics [ 4.576] (II) LoadModule: "synaptics" [ 4.577] (II) Loading /usr/lib/xorg/modules/input/synaptics_drv.so [ 4.577] (II) Module synaptics: vendor="X.Org Foundation" [ 4.577] (II) Using input driver 'synaptics' for 'ETPS/2 Elantech ETF0401' [ 4.577] (II) Loading /usr/lib/xorg/modules/input/synaptics_drv.so [ 4.584] (--) synaptics: ETPS/2 Elantech ETF0401: x-axis range 0 - 1088 [ 4.584] (--) synaptics: ETPS/2 Elantech ETF0401: y-axis range 0 - 704 [ 4.584] (--) synaptics: ETPS/2 Elantech ETF0401: pressure range 0 - 255 [ 4.584] (--) synaptics: ETPS/2 Elantech ETF0401: finger width range 0 - 16 [ 4.584] (--) synaptics: ETPS/2 Elantech ETF0401: buttons: left right middle double triple scroll-buttons [ 4.584] (--) synaptics: ETPS/2 Elantech ETF0401: Vendor 0x2 Product 0xe [ 4.584] (--) synaptics: ETPS/2 Elantech ETF0401: touchpad found [ 4.588] (**) synaptics: ETPS/2 Elantech ETF0401: (accel) MinSpeed is now constant deceleration 2.5 [ 4.588] (**) synaptics: ETPS/2 Elantech ETF0401: MaxSpeed is now 1.75 [ 4.588] (**) synaptics: ETPS/2 Elantech ETF0401: AccelFactor is now 0.154 [ 4.589] (--) synaptics: ETPS/2 Elantech ETF0401: touchpad found Tried installing synaptiks but that didn't seem to work either, so removed it. Temporary Fix (works until I restart) Doing the following commands: modprobe -r psmouse modprobe psmouse proto=imps Works but now xinput list shows up as: Virtual core pointer id=2 [master pointer (3)] ? Virtual core XTEST pointer id=4 [slave pointer (2)] ? ImPS/2 Generic Wheel Mouse id=13 [slave pointer (2)] Instead of Elantech, and it gets reset when I reboot. Solution (not ideal for most people) So, I ended up reinstalling a fresh 12.04 after indirectly playing around with burg and plymouth then removing plymouth which removed 50+ packages (I saw the warnings but was way too tired and assumed I could just 'reinstall' them all after (except that didn't work). Right now xinput list shows up as: ? Virtual core pointer --- id=2 [master pointer (3)] ? ? Virtual core XTEST pointer --- id=4 [slave pointer (2)] ? ? ETPS/2 Elantech Touchpad --- id=13 [slave pointer (2)] grep 'touch\|mouse\|track\|synapt' installed-software libnetfilter-conntrack3 --- install libsoundtouch0 --- install libutouch-evemu1 --- install libutouch-frame1 --- install libutouch-geis1 --- install libutouch-grail1 --- install libxatracker1 --- install mousetweaks --- install printer-driver-ptouch --- install xserver-xorg-input-mouse --- install xserver-xorg-input-synaptics --- install xserver-xorg-input-vmmouse --- install cat /var/log/Xorg.0.log | grep -i synaptics [ 4.890] (II) LoadModule: "synaptics" [ 4.891] (II) Loading /usr/lib/xorg/modules/input/synaptics_drv.so [ 4.892] (II) Module synaptics: vendor="X.Org Foundation" [ 4.892] (II) Using input driver 'synaptics' for 'ETPS/2 Elantech Touchpad' [ 4.892] (II) Loading /usr/lib/xorg/modules/input/synaptics_drv.so [ 4.956] (II) synaptics: ETPS/2 Elantech Touchpad: ignoring touch events for semi-multitouch device [ 4.956] (--) synaptics: ETPS/2 Elantech Touchpad: x-axis range 0 - 1088 [ 4.956] (--) synaptics: ETPS/2 Elantech Touchpad: y-axis range 0 - 704 [ 4.956] (--) synaptics: ETPS/2 Elantech Touchpad: pressure range 0 - 255 [ 4.956] (--) synaptics: ETPS/2 Elantech Touchpad: finger width range 0 - 15 [ 4.956] (--) synaptics: ETPS/2 Elantech Touchpad: buttons: left right double triple [ 4.956] (--) synaptics: ETPS/2 Elantech Touchpad: Vendor 0x2 Product 0xe [ 4.956] (--) synaptics: ETPS/2 Elantech Touchpad: touchpad found [ 4.980] () synaptics: ETPS/2 Elantech Touchpad: (accel) MinSpeed is now constant deceleration 2.5 [ 4.980] () synaptics: ETPS/2 Elantech Touchpad: MaxSpeed is now 1.75 [ 4.980] (**) synaptics: ETPS/2 Elantech Touchpad: AccelFactor is now 0.154 [ 4.980] (--) synaptics: ETPS/2 Elantech Touchpad: touchpad found So, if all else fails, reinstall Linux :/

    Read the article

  • Software index broken

    - by Arvind Gangwar
    When I was installing MTS Mblaz crossplatformui.deb for MTS data connect, its installed partial and shows error, and So I tried to uninstall "crossplatformui" but every time it showed following error. installArchives() failed: perl: warning: Setting locale failed. perl: warning: Please check that your locale settings: LANGUAGE = (unset), LC_ALL = (unset), LANG = "en_IN.ISO8859-1" are supported and installed on your system. perl: warning: Falling back to the standard locale ("C"). locale: Cannot set LC_CTYPE to default locale: No such file or directory locale: Cannot set LC_MESSAGES to default locale: No such file or directory locale: Cannot set LC_ALL to default locale: No such file or directory perl: warning: Setting locale failed. perl: warning: Please check that your locale settings: LANGUAGE = (unset), LC_ALL = (unset), LANG = "en_IN.ISO8859-1" are supported and installed on your system. perl: warning: Falling back to the standard locale ("C"). locale: Cannot set LC_CTYPE to default locale: No such file or directory locale: Cannot set LC_MESSAGES to default locale: No such file or directory locale: Cannot set LC_ALL to default locale: No such file or directory perl: warning: Setting locale failed. perl: warning: Please check that your locale settings: LANGUAGE = (unset), LC_ALL = (unset), LANG = "en_IN.ISO8859-1" are supported and installed on your system. perl: warning: Falling back to the standard locale ("C"). locale: Cannot set LC_CTYPE to default locale: No such file or directory locale: Cannot set LC_MESSAGES to default locale: No such file or directory locale: Cannot set LC_ALL to default locale: No such file or directory (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 205769 files and directories currently installed.) Removing crossplatformui ... ztemtvcdromd: no process found dpkg: error processing crossplatformui (--remove): subprocess installed post-removal script returned error exit status 1 No apport report written because MaxReports is reached already Errors were encountered while processing: crossplatformui Setting up firmware-b43-installer (4.150.10.5-5) ... --2012-06-01 14:11:21-- http://mirror2.openwrt.org/sources/broadcom-wl-4.150.10.5.tar.bz2 Resolving mirror2.openwrt.org... 46.4.11.11 Connecting to mirror2.openwrt.org|46.4.11.11|:80... failed: Connection refused. dpkg: error processing firmware-b43-installer (--configure): subprocess installed post-installation script returned error exit status 4

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

  • Brainless Backups

    - by Jesse
    I’m a software developer by trade which means to my friends and family I’m just a “computer guy”. It’s assumed that I know everything about every facet of computing from removing spyware to replacing hardware. I also can do all of this blindly over the phone or after hearing a five to ten word description of the problem over dinner ;-) In my position as CIO of my friends and families I’ve been in the unfortunate position of trying to recover music, pictures, or documents off of failed hard drives on more than one occasion. It’s not a great situation for anyone, and it’s always at these times that the importance of backups becomes so clear. Several months back a friend of mine found himself in this situation. The hard drive on his 8 year old laptop failed and took a good number of his digital photos with it. I think most folks can deal with losing some of their music and even some of their documents, but it really stings to lose pictures of past events and loved ones. After ordering a new laptop, my friend went out and bought an external hard drive so that he could start keeping a backup of his data. As fate would have it, several months later the drive in his new laptop failed and he learned the hard way that simply buying the external hard drive isn’t enough… you actually have to copy your stuff over every once in awhile! The importance of backup and recovery plans is (hopefully) well known in IT organizations. Well executed backup plans are in place, and hopefully the backup and recovery process is tested regularly. When you’re talking about users at home, however, the need for these backups is often understood far too late. Most typical users can’t be expected to remember to backup their data regularly and also don’t always have the know-how to setup automated backups. For my friends and family members in this situation I recommend tools like Dropbox, Carbonite, and Mozy. Here’s why I like them: They’re affordable: Dropbox and Mozy both have free offerings, though most people with lots of music and/or photos to backup will probably exceed the storage limitations of those free plans pretty quickly. Still, all three offer pretty affordable monthly or yearly plans. In my opinion, Carbonite’s unlimited storage plan for $50-$60 per year is the best value around. They’re easy to setup: Both Dropbox and Carbonite are very easy to get setup and start using. I’ve never used Mozy, but I imagine it’s similarly painless to get up and running. Backups are automatically “off-site”: A backup that is sitting on an external hard drive right next to your computer is great, but might not protect against flood damage, a power surge, or other disasters in that single location. These services exist “in the cloud” so to speak, helping mitigate those concerns. Granted, this kind of backup scheme requires some trust in the 3rd party to protect your data from both malicious people and disastrous events. This truly is a bit of a double edged sword, but I sleep well at night knowing that my data is being backed up and secured by a company made up of engineers that focus on the business of doing backups right. Backups are “brainless”: What I like most about services like these is that they work “automagically” in the background, watching for files to be updated and automatically backing up those changes. There’s no need to remember to plug in that external drive and copy your data over. Since starting to recommend these services to my friends and family I find myself wearing my “data recovery” hat far less often. The only way backups are effective for your standard computer user is if they’re completely automatic. Backups need to be brainless, or they just won’t work.

    Read the article

  • Announcement: Employee Info Starter Kit (v5.0) is Released

    - by Mohammad Ashraful Alam
    Ever wanted to have a simple jQuery menu bound with ASP.NET web site map file? Ever wanted to have cool css design stuffs implemented on your ASP.NET data bound controls? Ever wanted to let Visual Studio generate logical layers for you, which can be easily tested, customized and bound with ASP.NET data controls? If your answers with respect to above questions are ‘yes’, then you will probably happy to try out latest release (v5.0) of Employee Starter Kit, which is intended to address different types of real world challenges faced by web application developers when performing common CRUD operations. Using a single database table ‘Employee’, the current release illustrates how to utilize Microsoft ASP.NET 4.0 Web Form Data Controls, Entity Framework 4.0 and Visual Studio 2010 effectively in that context. Employee Info Starter Kit is an open source ASP.NET project template that is highly influenced by the concept ‘Pareto Principle’ or 80-20 rule, where it is targeted to enable a web developer to gain 80% productivity with 20% of effort with respect to learning curve and production. This project template is titled as “Employee Info Starter Kit”, which was initially hosted on Microsoft Code Gallery and been downloaded 1, 50,000+ of copies afterword.  The latest version of this starter kit is hosted in Codeplex. Release Highlights User End Functional Specification The user end functionalities of this starter kit are pretty simple and straight forward that are focused in to perform CRUD operation on employee records as described below. Creating a new employee record Read existing employee records Update an existing employee record Delete existing employee records Architectural Overview Simple 3 layer architecture (presentation, business logic and data access layer) ASP.NET web form based user interface Built-in code generators for logical layers, implemented in Visual Studio default template engine (T4) Built-in Entity Framework entities as business entities (aka: data containers) Data Mapper design pattern based Data Access Layer, implemented in C# and Entity Framework Domain Model design pattern based Business Logic Layer, implemented in C# Object Model for Cross Cutting Concerns (such as validation, logging, exception management) Minimum System Requirements Visual Studio 2010 (Web Developer Express Edition) or higher Sql Server 2005 (Express Edition) or higher Technology Utilized Programming Languages/Scripts Browser side: JavaScript Web server side: C# Code Generation Template: T-4 Template Frameworks .NET Framework 4.0 JavaScript Framework: jQuery 1.5.1 CSS Framework: 960 grid system .NET Framework Components .NET Entity Framework .NET Optional/Named Parameters (new in .net 4.0) .NET Tuple (new in .net 4.0) .NET Extension Method .NET Lambda Expressions .NET Anonymous Type .NET Query Expressions .NET Automatically Implemented Properties .NET LINQ .NET Partial Classes and Methods .NET Generic Type .NET Nullable Type ASP.NET Meta Description and Keyword Support (new in .net 4.0) ASP.NET Routing (new in .net 4.0) ASP.NET Grid View (CSS support for sorting - (new in .net 4.0)) ASP.NET Repeater ASP.NET Form View ASP.NET Login View ASP.NET Site Map Path ASP.NET Skin ASP.NET Theme ASP.NET Master Page ASP.NET Object Data Source ASP.NET Role Based Security Getting Started Guide To see Employee Info Starter Kit in action is pretty easy! Download the latest version. Extract the file. From the extracted folder click the C# project file (Eisk.Web.csproj) to open it in Visual Studio 2010 Hit Ctrl+F5! The current release (v5.0) of Employee Info Starter Kit is properly packaged, fully documented and well tested. If you want to learn more about it in details, just check the following links: Release Home Page Installation Walkthrough Hand on Coding Walkthrough Technical Reference Enjoy!

    Read the article

  • Employee Info Starter Kit: Project Mission

    - by Mohammad Ashraful Alam
    Employee Info Starter Kit is an open source ASP.NET project template that is intended to address different types of real world challenges faced by web application developers when performing common CRUD operations. Using a single database table ‘Employee’, it illustrates how to utilize Microsoft ASP.NET 4.0, Entity Framework 4.0 and Visual Studio 2010 effectively in that context. Employee Info Starter Kit is highly influenced by the concept ‘Pareto Principle’ or 80-20 rule. where it is targeted to enable a web developer to gain 80% productivity with 20% of effort with respect to learning curve and production. User Stories The user end functionalities of this starter kit are pretty simple and straight forward that are focused in to perform CRUD operation on employee records as described below. Creating a new employee record Read existing employee record Update an existing employee record Delete existing employee records Key Technology Areas ASP.NET 4.0 Entity Framework 4.0 T-4 Template Visual Studio 2010 Architectural Objective There is no universal architecture which can be considered as the best for all sorts of applications around the world. Based on requirements, constraints, environment, application architecture can differ from one to another. Trade-off factors are one of the important considerations while deciding a particular architectural solution. Employee Info Starter Kit is highly influenced by the concept ‘Pareto Principle’ or 80-20 rule, where it is targeted to enable a web developer to gain 80% productivity with 20% of effort with respect to learning curve and production. “Productivity” as the architectural objective typically also includes other trade-off factors as well as, such as testability, flexibility, performance etc. Fortunately Microsoft .NET Framework 4.0 and Visual Studio 2010 includes lots of great features that have been implemented cleverly in this project to reduce these trade-off factors in the minimum level. Why Employee Info Starter Kit is Not a Framework? Application frameworks are really great for productivity, some of which are really unavoidable in this modern age. However relying too many frameworks may overkill a project, as frameworks are typically designed to serve wide range of different usage and are less customizable or editable. On the other hand having implementation patterns can be useful for developers, as it enables them to adjust application on demand. Employee Info Starter Kit provides hundreds of “connected” snippets and implementation patterns to demonstrate problem solutions in actual production environment. It also includes Visual Studio T-4 templates that generate thousands lines of data access and business logic layer repetitive codes in literally few seconds on the fly, which are fully mock testable due to language support for partial methods and latest support for mock testing in Entity Framework. Why Employee Info Starter Kit is Different than Other Open-source Web Applications? Software development is one of the rapid growing industries around the globe, where the technology is being updated very frequently to adapt greater challenges over time. There are literally thousands of community web sites, blogs and forums that are dedicated to provide support to adapt new technologies. While some are really great to enable learning new technologies quickly, in most cases they are either too “simple and brief” to be used in real world scenarios or too “complex and detailed” which are typically focused to achieve a product goal (such as CMS, e-Commerce etc) from "end user" perspective and have a long duration learning curve with respect to the corresponding technology. Employee Info Starter Kit, as a web project, is basically "developer" oriented which actually considers a hybrid approach as “simple and detailed”, where a simple domain has been considered to intentionally illustrate most of the architectural and implementation challenges faced by web application developers so that anyone can dive into deep into the corresponding new technology or concept quickly. Roadmap Since its first release by 2008 in MSDN Code Gallery, Employee Info Starter Kit gained a huge popularity in ASP.NET community and had 1, 50,000+ downloads afterwards. Being encouraged with this great response, we have a strong commitment for the community to provide support for it with respect to latest technologies continuously. Currently hosted in Codeplex, this community driven project is planned to have a wide range of individual editions, each of which will be focused on a selected application architecture, framework or platform, such as ASP.NET Webform, ASP.NET Dynamic Data, ASP.NET MVC, jQuery Ajax (RIA), Silverlight (RIA), Azure Service Platform (Cloud), Visual Studio Automated Test etc. See here for full list of current and future editions.

    Read the article

  • OpenGL slower than Canvas

    - by VanDir
    Up to 3 days ago I used a Canvas in a SurfaceView to do all the graphics operations but now I switched to OpenGL because my game went from 60FPS to 30/45 with the increase of the sprites in some levels. However, I find myself disappointed because OpenGL now reaches around 40/50 FPS at all levels. Surely (I hope) I'm doing something wrong. How can I increase the performance at stable 60FPS? My game is pretty simple and I can not believe that it is impossible to reach them. I use 2D sprite texture applied to a square for all the objects. I use a transparent GLSurfaceView, the real background is applied in a ImageView behind the GLSurfaceView. Some code public MyGLSurfaceView(Context context, AttributeSet attrs) { super(context); setZOrderOnTop(true); setEGLConfigChooser(8, 8, 8, 8, 0, 0); getHolder().setFormat(PixelFormat.RGBA_8888); mRenderer = new ClearRenderer(getContext()); setRenderer(mRenderer); setLongClickable(true); setFocusable(true); } public void onSurfaceCreated(final GL10 gl, EGLConfig config) { gl.glEnable(GL10.GL_TEXTURE_2D); gl.glShadeModel(GL10.GL_SMOOTH); gl.glDisable(GL10.GL_DEPTH_TEST); gl.glDepthMask(false); gl.glEnable(GL10.GL_ALPHA_TEST); gl.glAlphaFunc(GL10.GL_GREATER, 0); gl.glEnable(GL10.GL_BLEND); gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_SRC_ALPHA); gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); } public void onSurfaceChanged(GL10 gl, int width, int height) { gl.glViewport(0, 0, width, height); gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glOrthof(0, width, height, 0, -1f, 1f); gl.glMatrixMode(GL10.GL_MODELVIEW); gl.glLoadIdentity(); } public void onDrawFrame(GL10 gl) { gl.glClear(GL10.GL_COLOR_BUFFER_BIT); gl.glMatrixMode(GL10.GL_MODELVIEW); gl.glLoadIdentity(); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); // Draw all the graphic object. for (byte i = 0; i < mGame.numberOfObjects(); i++){ mGame.getObject(i).draw(gl); } // Disable the client state before leaving gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); } mGame.getObject(i).draw(gl) is for all the objects like this: /* HERE there is always a translatef and scalef transformation and sometimes rotatef */ gl.glBindTexture(GL10.GL_TEXTURE_2D, mTexPointer[0]); // Point to our vertex buffer gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, mTextureBuffer); // Draw the vertices as triangle strip gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, mVertices.length / 3); EDIT: After some test it seems to be due to the transparent GLSurfaceView. If I delete this line of code: setEGLConfigChooser(8, 8, 8, 8, 0, 0); the background becomes all black but I reach 60 fps. What can I do?

    Read the article

  • SQLUG Events - London/Edinburgh/Cardiff/Reading - Masterclass, NoSQL, TSQL Gotcha's, Replication, BI

    - by tonyrogerson
    We have acquired two additional tickets to attend the SQL Server Master Class with Paul Randal and Kimberly Tripp next Thurs (17th June), for a chance to win these coveted tickets email us ([email protected]) before 9pm this Sunday with the subject "MasterClass" - people previously entered need not worry - your still in with a chance. The winners will be announced Monday morning.As ever plenty going on physically, we've got dates for a stack of events in Manchester and Leeds, I'm looking at Birmingham if anybody has ideas? We are growing our online community with the Cuppa Corner section, to participate online remember to use the #sqlfaq twitter tag; for those wanting to get more involved in presenting and fancy trying it out we are always after people to do 1 - 5 minute SQL nuggets or Cuppa Corners (short presentations) at any of these User Group events - just email us [email protected] removing from this email list? Then just reply with remove please on the subject line.Kimberly Tripp and Paul Randal Master Class - Thurs, 17th June - LondonREGISTER NOW AND GET A SECOND REGISTRATION FREE*The top things YOU need to know about managing SQL Server - in one place, on one day - presented by two of the best SQL Server industry trainers!This one-day MasterClass will focus on many of the top issues companies face when implementing and maintaining a SQL Server-based solution. In the case where a company has no dedicated DBA, IT managers sometimes struggle to keep the data tier performing well and the data available. This can be especially troublesome when the development team is unfamiliar with the affect application design choices have on database performance.The Microsoft SQL Server MasterClass 2010 is presented by Paul S. Randal and Kimberly L. Tripp, two of the most experienced and respected people in the SQL Server world. Together they have over 30 years combined experience working with SQL Server in the field, and on the SQL Server product team itself. This is a unique opportunity to hear them present at a UK event which will:>> Debunk many of the ingrained misconceptions around SQL Server's behaviour >> Show you disaster recovery techniques critical to preserving your company's life-blood - the data >> Explain how a common application design pattern can wreak havoc in the database >> Walk through the top-10 points to follow around operations and maintenance for a well-performing and available data tier! Where: Radisson Edwardian Heathrow Hotel, LondonWhen: Thursday 17th June 2010*REGISTER TODAY AT www.regonline.co.uk/kimtrippsql on the registration form simply quote discount code: BOGOF for both yourself and your colleague and you will save 50% off each registration – that’s a 249 GBP saving! This offer is limited, book early to avoid disappointment.Wed, 23 JunREADINGEvening Meeting, More info and registerIntroduction to NoSQL (Not Only SQL) - Gavin Payne; T-SQL Gotcha's and how to avoid them - Ashwani Roy; Introduction to Recency Frequency - Tony Rogerson; Reporting Services - Tim LeungThu, 24 JunCARDIFFEvening Meeting, More info and registerAlex Whittles of Purple Frog Systems talks about Data warehouse design case studies, Other BI related session TBC Mon, 28 JunEDINBURGHEvening Meeting, More info and registerReplication (Components, Adminstration, Performance and Troubleshooting) - Neil Hambly Server Upgrades (Notes and Best practice from the field) - Satya Jayanty Wed, 14 JulLONDONEvening Meeting, More info and registerMeeting is being sponsored by DBSophic (http://www.dbsophic.com/download), database optimisation software. Physical Join Operators in SQL Server - Ami LevinWorkload Tuning - Ami LevinSQL Server and Disk IO (File Groups/Files, SSD's, Fusion-IO, In-RAM DB's, Fragmentation) - Tony RogersonComplex Event Processing - Allan MitchellMany thanks,Tony Rogerson, SQL Server MVPUK SQL Server User Grouphttp://sqlserverfaq.com"

    Read the article

  • Get to Know a Candidate (9 of 25): Gary Johnson&ndash;Libertarian Party

    - by Brian Lanham
    DISCLAIMER: This is not a post about “Romney” or “Obama”. This is not a post for whom I am voting. Information sourced for Wikipedia. Johnson served as the 29th Governor of New Mexico from 1995 to 2003, as a member of the Republican Party, and is known for his low-tax libertarian views and his strong emphasis on personal health and fitness. While a student at the University of New Mexico in 1974, Johnson sustained himself financially by working as a door-to-door handyman. In 1976 he founded Big J Enterprises, which grew from this one-person venture to become one of New Mexico's largest construction companies. He entered politics for the first time by running for Governor of New Mexico in 1994 on a fiscally conservative, low-tax, anti-crime platform. Johnson won the Republican Party of New Mexico's gubernatorial nomination, and defeated incumbent Democratic governor Bruce King by 50% to 40%. He cut the 10% annual growth in the budget: in part, due to his use of the gubernatorial veto 200 times during his first six months in office, which gained him the nickname "Governor Veto". Johnson sought re-election in 1998, winning by 55% to 45%. In his second term, he concentrated on the issue of school voucher reforms, as well as campaigning for marijuana decriminalization and opposition to the War on Drugs. During his tenure as governor, Johnson adhered to a stringent anti-tax and anti-bureaucracy policy driven by a cost–benefit analysis rationale, setting state and national records for his use of veto powers: more than the other 49 contemporary governors put together. Term-limited, Johnson could not run for re-election at the end of his second term. As a fitness enthusiast, Johnson has taken part in several Ironman Triathlons, and he climbed Mount Everest in May 2003. After leaving office, Johnson founded the non-profit Our America Initiative in 2009, a political advocacy committee seeking to promote policies such as free enterprise, foreign non-interventionism, limited government and privatization. The Libertarian Party is the third largest political party in the United States. It is also identified by many as the fastest growing political party in the United States. The political platform of the Libertarian Party reflects the ideas of libertarianism, favoring minimally regulated markets, a less powerful state, strong civil liberties (including support for Same-sex marriage and other LGBT rights), cannabis legalization and regulation, separation of church and state, open immigration, non-interventionism and neutrality in diplomatic relations (i.e., avoiding foreign military or economic entanglements with other nations), freedom of trade and travel to all foreign countries, and a more responsive and direct democracy. Members of the Libertarian Party have also supported the repeal of NAFTA, CAFTA, and similar trade agreements, as well as the United States' exit from the United Nations, WTO, and NATO. Although there is not an officially labeled political position of the party, it is considered by many to be more right-wing than the Democratic Party but more left-wing than the Republican Party when comparing the parties' positions to each other, placing it at or above the center. In the 30 states where voters can register by party, there are over 282,000 voters registered as Libertarians. Hundreds of Libertarian candidates have been elected or appointed to public office, and thousands have run for office under the Libertarian banner. The Libertarian Party has many firsts in its credit, such as being the first party to get an electoral vote for a woman in a United States presidential election. Learn more about Gary Johnson and Libertarian Party on Wikipedia.

    Read the article

  • A problem with conky in Gnome 3.4 [closed]

    - by Pranit Bauva
    Possible Duplicate: Conky not working in Gnome 3.4 My conky in Gnome 3.4 is not working. When I run a conky script nothing appears but the process is running. Please also see the debug code : pungi-man@pungi-man:~$ sh conky_startup.sh Conky: forked to background, pid is 3157 Conky: desktop window (c00023) is subwindow of root window (aa) Conky: window type - override Conky: drawing to created window (0x2200001) Conky: drawing to double buffer My conky script is : background yes update_interval 1 cpu_avg_samples 2 net_avg_samples 2 temperature_unit celsius double_buffer yes no_buffers yes text_buffer_size 2048 gap_x 10 gap_y 30 minimum_size 190 450 maximum_width 190 own_window yes own_window_type override own_window_transparent yes own_window_hints undecorate,sticky,skip_taskbar,skip_pager,below border_inner_margin 0 border_outer_margin 0 alignment tr draw_shades no draw_outline no draw_borders no draw_graph_borders no override_utf8_locale yes use_xft yes xftfont caviar dreams:size=8 xftalpha 0.5 uppercase no default_color FFFFFF color1 DDDDDD color2 AAAAAA color3 888888 color4 666666 lua_load /home/pungi-man/.conky/conky_grey.lua lua_draw_hook_post main TEXT ${voffset 35} ${goto 95}${color4}${font ubuntu:size=22}${time %e}${color1}${offset -50}${font ubuntu:size=10}${time %A} ${goto 85}${color2}${voffset -2}${font ubuntu:size=9}${time %b}${voffset -2} ${color3}${font ubuntu:size=12}${time %Y}${font} ${voffset 80} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}CPU ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${top name 1}${alignr}${top cpu 1}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color2}${top name 2}${alignr}${top cpu 2}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color3}${top name 3}${alignr}${top cpu 3}% ${goto 90}${cpugraph 10,100 666666 666666} ${goto 90}${voffset -10}${font Ubuntu:size=7,weight:normal}${color}${threads} process ${voffset 20} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}MEM ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${top_mem name 1} ${alignr}${top_mem mem 1}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color2}${top_mem name 2} ${alignr}${top_mem mem 2}% ${goto 90}${font Ubuntu:size=7,weight:normal}${color3}${top_mem name 3} ${alignr}${top_mem mem 3}% ${voffset 15} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}DISKS ${goto 90}${diskiograph 30,100 666666 666666}${voffset -30} ${goto 90}${font Ubuntu:size=7,weight:normal}${color}used: ${fs_used /home} /home ${goto 90}${font Ubuntu:size=7,weight:normal}${color}used: ${fs_used /} / ${voffset 10} ${goto 70}${font Ubuntu:size=18,weight:bold}${color3}NET${alignr}${color2}${font Ubuntu:size=7,weight:bold}${color1}${if_up eth0}eth ${addr eth0} ${endif}${if_up wlan0}wifi ${addr wlan0}${endif} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}open ports: ${alignr}${color2}${tcp_portmon 1 65535 count} ${goto 90}${font Ubuntu:size=7,weight:bold}${color}${offset 10}IP${alignr}DPORT ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 0}${alignr 1}${tcp_portmon 1 65535 rport 0} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 1}${alignr 1}${tcp_portmon 1 65535 rport 1} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 2}${alignr 1}${tcp_portmon 1 65535 rport 2} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 3}${alignr 1}${tcp_portmon 1 65535 rport 3} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 4}${alignr 1}${tcp_portmon 1 65535 rport 4} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 5}${alignr 1}${tcp_portmon 1 65535 rport 5} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 6}${alignr 1}${tcp_portmon 1 65535 rport 6} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 7}${alignr 1}${tcp_portmon 1 65535 rport 7} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 8}${alignr 1}${tcp_portmon 1 65535 rport 8} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 9}${alignr 1}${tcp_portmon 1 65535 rport 9} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 10}${alignr 1}${tcp_portmon 1 65535 rport 10} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 11}${alignr 1}${tcp_portmon 1 65535 rport 11} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 12}${alignr 1}${tcp_portmon 1 65535 rport 12} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 13}${alignr 1}${tcp_portmon 1 65535 rport 13} ${goto 90}${font Ubuntu:size=7,weight:normal}${color1}${tcp_portmon 1 65535 rip 14}${alignr 1}${tcp_portmon 1 65535 rport 14} This script works fine with unity but faces problems in gnome 3.4 Can anyone please sort it out?

    Read the article

  • Surface V2.0

    - by Dennis Vroegop
    It’s been quiet around here. And the reason for that is that it’s been quiet around Surface for a while. Now, a lot of people assume that when a product team isn’t making too much noise that must mean they stopped working on their product. Remember the PDC keynote in 2010? Just because they didn’t mention WPF there a lot of people had the idea that WPF was dead and abandoned for Silverlight. Of course, this couldn’t be farther from the truth. The same applies to Surface. While we didn’t hear much from the team in Redmond they were busy putting together the next version of the platform. And at the CES in January the world saw what they have been up to all along: Surface V2.0 as it’s commonly known. Of course, the product is still in development. It’s not here yet, we can’t buy one yet. However, more and more information comes available and I think this is a good time to share with you what it’s all about! The biggest change from an organizational point of view is that Microsoft decided to stop producing the hardware themselves. Instead, they have formed a partnership with Samsung who will manufacture the devices. This means that you as a buyer get the benefits of a large, worldwide supplier with all the services they can offer. Not that Microsoft didn’t do that before but since Surface wasn’t a ‘big’ product it was sometimes hard to get to the right people. The new device is officially called the “Samsung SUR 40 for Microsoft Surface” which is quite a mouthful. The software that runs the device is of course still coming from Microsoft. Let’s dive into the technical specs (note: all of this is preliminary, it’s still in the Alpha phase!): Audio out HDMI / StereoRCA / SPDIF / 2 times 3.5mm audio out jack Brightness 300 CD/m2 Communications 1GB Ethernet/802.11/Bluetooth Contrast Ratio 1:1000 CPU AMD Athlon X2 245e 2.9Ghz Dual Core Display Resolution Full HD 1080p 1920x1080 / 16:9 aspect ratio GPU AMD Radeon HD 6750 1GB GDDRS HDD 320 GB / 7200 RPM HDMI In / HDMI out Yes I/O Ports 4 USB, SD Card reader Operation System Embedded Windows 7 Professional 64 bits Panel Size 40” diagonal Protection Glass Gorilla Glass RAM 4 GB DD3 Weight / with standard legs 70.0 Kg / 154 lbs Weight / standalone 39.5 Kg / 87 lbs Height (without legs) 4 inch Contact points recognized > 50 Cool Factor Extremely   Ok, the last point is not official, but I do think it needs to be there. Let’s talk software. As noted, it runs Windows 7 Professional 64 bit, which means you can run Visual Studio 2010 on it. The software is going to be developed in WPF4.0 with the additional Surface SDK 2.0. It will contain all the things you’ve seen before plus some extra’s. They have taken some steps to align it more with the Surface Toolkit which you can download today, so if you do things right your software should be portable between a WPF4.0 Windows 7 Multi-touch app and the Surface v2 environment. It still uses infrared to detect contacts, so in that respect nothing much has changed conceptually. We still can differentiate between a finger, a tag or a blob. Of course, since the new platform has a much higher resolution (compared to the 1024x768 of the first version) you might need to look at your code again. I’ve seen a lot of applications on Surface that assume the old resolution and moving that to V2 is going to be some work. To be honest: as I am under NDA I cannot disclose much about the new software besides what I have told you here, but trust me: it’s going to blow people away. Now, the biggest question for me is: when can I get one? Until we can, have a look here: Tags van Technorati: surface,samsung,WPF

    Read the article

  • Whether to use UNION or OR in SQL Server Queries

    - by Dinesh Asanka
    Recently I came across with an article on DB2 about using Union instead of OR. So I thought of carrying out a research on SQL Server on what scenarios UNION is optimal in and which scenarios OR would be best. I will analyze this with a few scenarios using samples taken  from the AdventureWorks database Sales.SalesOrderDetail table. Scenario 1: Selecting all columns So we are going to select all columns and you have a non-clustered index on the ProductID column. --Query 1 : OR SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR ProductID =709 OR ProductID =998 OR ProductID =875 OR ProductID =976 OR ProductID =874 --Query 2 : UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 709 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 998 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 875 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 976 UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 874 So query 1 is using OR and the later is using UNION. Let us analyze the execution plans for these queries. Query 1 Query 2 As expected Query 1 will use Clustered Index Scan but Query 2, uses all sorts of things. In this case, since it is using multiple CPUs you might have CX_PACKET waits as well. Let’s look at the profiler results for these two queries: CPU Reads Duration Row Counts OR 78 1252 389 3854 UNION 250 7495 660 3854 You can see from the above table the UNION query is not performing well as the  OR query though both are retuning same no of rows (3854).These results indicate that, for the above scenario UNION should be used. Scenario 2: Non-Clustered and Clustered Index Columns only --Query 1 : OR SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR ProductID =709 OR ProductID =998 OR ProductID =875 OR ProductID =976 OR ProductID =874 GO --Query 2 : UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 709 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 998 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 875 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 976 UNION SELECT ProductID,SalesOrderID, SalesOrderDetailID FROM Sales.SalesOrderDetail WHERE ProductID = 874 GO So this time, we will be selecting only index columns, which means these queries will avoid a data page lookup. As in the previous case we will analyze the execution plans: Query 1 Query 2 Again, Query 2 is more complex than Query 1. Let us look at the profile analysis: CPU Reads Duration Row Counts OR 0 24 208 3854 UNION 0 38 193 3854 In this analyzis, there is only slight difference between OR and UNION. Scenario 3: Selecting all columns for different fields Up to now, we were using only one column (ProductID) in the where clause.  What if we have two columns for where clauses and let us assume both are covered by non-clustered indexes? --Query 1 : OR SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR CarrierTrackingNumber LIKE 'D0B8%' --Query 2 : UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT * FROM Sales.SalesOrderDetail WHERE CarrierTrackingNumber  LIKE 'D0B8%' Query 1 Query 2: As we can see, the query plan for the second query has improved. Let us see the profiler results. CPU Reads Duration Row Counts OR 47 1278 443 1228 UNION 31 1334 400 1228 So in this case too, there is little difference between OR and UNION. Scenario 4: Selecting Clustered index columns for different fields Now let us go only with clustered indexes: --Query 1 : OR SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 OR CarrierTrackingNumber LIKE 'D0B8%' --Query 2 : UNION SELECT * FROM Sales.SalesOrderDetail WHERE ProductID = 714 UNION SELECT * FROM Sales.SalesOrderDetail WHERE CarrierTrackingNumber  LIKE 'D0B8%' Query 1 Query 2 Now both execution plans are almost identical except is an additional Stream Aggregate is used in the first query. This means UNION has advantage over OR in this scenario. Let us see profiler results for these queries again. CPU Reads Duration Row Counts OR 0 319 366 1228 UNION 0 50 193 1228 Now see the differences, in this scenario UNION has somewhat of an advantage over OR. Conclusion Using UNION or OR depends on the scenario you are faced with. So you need to do your analyzing before selecting the appropriate method. Also, above the four scenarios are not all an exhaustive list of scenarios, I selected those for the broad description purposes only.

    Read the article

  • Acr.ExtDirect &ndash; Part 1 &ndash; Method Resolvers

    - by Allan Ritchie
    One of the most important things of any open source libraries in my opinion is to be as open as possible while avoiding having your library become invasive to your code/business model design.  I personally could never stand marking my business and/or data access code with attributes everywhere.  XML also isn’t really a fav with too many people these days since it comes with a startup performance hit and requires runtime compiling.  I find that there is a whole ton of communication libraries out there currently requiring this (ie. WCF, RIA, etc).  Even though Acr.ExtDirect comes with its own set of attributes, you can piggy-back the [ServiceContract] & [OperationContract] attributes from WCF if you choose.  It goes beyond that though, there are 2 others “out-of-the-box” implementations – Convention based & XML Configuration.    Convention – I don’t actually recommend using this one since it opens up all of your public instance methods to remote execution calls. XML Configuration – This isn’t so bad but requires you enter all of your methods and there operation types into the Castle XML configuration & as I said earlier, XML isn’t the fav these days.   So what are your options if you don’t like attributes, convention, or XML Configuration?  Well, Acr.ExtDirect has its own extension base to give the API a list of methods and components to make available for remote execution.  1: public interface IDirectMethodResolver { 2:   3: bool IsServiceType(ComponentModel model, Type type); 4: string GetNamespace(ComponentModel model); 5: string[] GetDirectMethodNames(ComponentModel model); 6: DirectMethodType GetMethodType(ComponentModel model, MethodInfo method); 7: }   Now to implement our own method resolver:   1: public class TestResolver : IDirectMethodResolver { 2:   3: #region IDirectMethodResolver Members 4:   5: /// <summary> 6: /// Determine if you are calling a service 7: /// </summary> 8: /// <param name="model"></param> 9: /// <param name="type"></param> 10: /// <returns></returns> 11: public bool IsServiceType(ComponentModel model, Type type) { 12: return (type.Namespace == "MyBLL.Data"); 13: } 14:   15: /// <summary> 16: /// Return the calling name for the client side 17: /// </summary> 18: /// <param name="model"></param> 19: /// <returns></returns> 20: public string GetNamespace(ComponentModel model) { 21: return model.Name; 22: } 23:   24: public string[] GetDirectMethodNames(ComponentModel model) { 25: switch (model.Name) { 26: case "Products" : 27: return new [] { 28: "GetProducts", 29: "LoadProduct", 30: "Save", 31: "Update" 32: }; 33:   34: case "Categories" : 35: return new [] { 36: "GetProducts" 37: }; 38:   39: default : 40: throw new ArgumentException("Invalid type"); 41: } 42: } 43:   44: public DirectMethodType GetMethodType(ComponentModel model, MethodInfo method) { 45: if (method.Name.StartsWith("Save") || method.Name.StartsWith("Update")) 46: return DirectMethodType.FormSubmit; 47: 48: else if (method.Name.StartsWith("Load")) 49: return DirectMethodType.FormLoad; 50:   51: else 52: return DirectMethodType.Direct; 53: } 54:   55: #endregion 56: }   And there you have it, your own custom method resolver.  Pretty easy and pretty open ended!

    Read the article

  • LSI SAS 9240-8i on Ubuntu 12.04 Hangs on Modprobe

    - by Francois Stark
    I used the LSI 9240-8i card on a smaller Intel motherboard with no problems in Ubuntu, with ZFS. However, we rebuilt the server to allow for more disks, using the ASROCK X79 Extreme 11 motherboard. It has 7 PCIe slots, and a LSI 2008 on-board. At first I thought the LSI 9240, when plugged in to PCIe, clashed with the on-board LSI 2008. Every time I plugged in the LSI 9240, modprobe would hang. Then I completely disabled the on-board LSI 2008, and the problem persisted. Last night it booted perfectly ONCE - all LSI cards and connected disks visible... However, all subsequent reboots failed. Both LSI cards' bios scans appear and they both see the disks connected to them, but Ubuntu modprobe hangs. Some selected dmesg lines, with both LSI cards enabled: [ 190.752100] megasas: [ 0]waiting for 1 commands to complete [ 195.772071] megasas: [ 5]waiting for 1 commands to complete [ 200.792079] megasas: [10]waiting for 1 commands to complete [ 205.812078] megasas: [15]waiting for 1 commands to complete [ 210.832037] megasas: [20]waiting for 1 commands to complete [ 215.852077] megasas: [25]waiting for 1 commands to complete [ 220.872072] megasas: [30]waiting for 1 commands to complete [ 225.892078] megasas: [35]waiting for 1 commands to complete [ 230.912086] megasas: [40]waiting for 1 commands to complete [ 235.932075] megasas: [45]waiting for 1 commands to complete [ 240.306157] usb 2-1.5: USB disconnect, device number 7 [ 240.952076] megasas: [50]waiting for 1 commands to complete [ 240.960034] INFO: task modprobe:233 blocked for more than 120 seconds. [ 240.960055] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 240.960067] modprobe D ffffffff81806200 0 233 146 0x00000004 [ 240.960075] ffff880806ae3b48 0000000000000086 ffff880806ae3ae8 ffffffff8101adf3 [ 240.960083] ffff880806ae3fd8 ffff880806ae3fd8 ffff880806ae3fd8 0000000000013780 [ 240.960090] ffffffff81c0d020 ffff880806acae00 ffff880806ae3b58 ffff880808961720 [ 240.960096] Call Trace: [ 240.960107] [<ffffffff8101adf3>] ? native_sched_clock+0x13/0x80 [ 240.960116] [<ffffffff816579cf>] schedule+0x3f/0x60 [ 240.960137] [<ffffffffa00093f5>] megasas_issue_blocked_cmd+0x75/0xb0 [megaraid_sas] [ 240.960144] [<ffffffff8108aa50>] ? add_wait_queue+0x60/0x60 [ 240.960154] [<ffffffffa000a6c9>] megasas_get_seq_num+0xd9/0x260 [megaraid_sas] [ 240.960164] [<ffffffffa000ab31>] megasas_start_aen+0x31/0x60 [megaraid_sas] [ 240.960174] [<ffffffffa00136f1>] megasas_probe_one+0x69a/0x81c [megaraid_sas] [ 240.960182] [<ffffffff813345bc>] local_pci_probe+0x5c/0xd0 [ 240.960189] [<ffffffff81335e89>] __pci_device_probe+0xf9/0x100 [ 240.960197] [<ffffffff8130ce6a>] ? kobject_get+0x1a/0x30 [ 240.960205] [<ffffffff81335eca>] pci_device_probe+0x3a/0x60 [ 240.960212] [<ffffffff813f5278>] really_probe+0x68/0x190 [ 240.960217] [<ffffffff813f5505>] driver_probe_device+0x45/0x70 [ 240.960223] [<ffffffff813f55db>] __driver_attach+0xab/0xb0 [ 240.960227] [<ffffffff813f5530>] ? driver_probe_device+0x70/0x70 [ 240.960233] [<ffffffff813f5530>] ? driver_probe_device+0x70/0x70 [ 240.960237] [<ffffffff813f436c>] bus_for_each_dev+0x5c/0x90 [ 240.960243] [<ffffffff813f503e>] driver_attach+0x1e/0x20 [ 240.960248] [<ffffffff813f4c90>] bus_add_driver+0x1a0/0x270 [ 240.960255] [<ffffffffa001e000>] ? 0xffffffffa001dfff [ 240.960260] [<ffffffff813f5b46>] driver_register+0x76/0x140 [ 240.960266] [<ffffffffa001e000>] ? 0xffffffffa001dfff [ 240.960271] [<ffffffff81335b66>] __pci_register_driver+0x56/0xd0 [ 240.960277] [<ffffffffa001e000>] ? 0xffffffffa001dfff [ 240.960286] [<ffffffffa001e09e>] megasas_init+0x9e/0x1000 [megaraid_sas] [ 240.960294] [<ffffffff81002040>] do_one_initcall+0x40/0x180 [ 240.960301] [<ffffffff810a82fe>] sys_init_module+0xbe/0x230 [ 240.960307] [<ffffffff81661ec2>] system_call_fastpath+0x16/0x1b [ 240.960314] INFO: task scsi_scan_7:349 blocked for more than 120 seconds.

    Read the article

  • Measuring Code Quality

    - by DotNetBlues
    Several months back, I was tasked with measuring the quality of code in my organization. Foolishly, I said, "No problem." I figured that Visual Studio has a built-in code metrics tool (Analyze -> Calculate Code Metrics) and that would be a fine place to start with. I was right, but also very wrong. The Visual Studio calculates five primary metrics: Maintainability Index, Cyclomatic Complexity, Depth of Inheritance, Class Coupling, and Lines of Code. The first two are figured at the method level, the second at (primarily) the class level, and the last is a simple count. The first question any reasonable person should ask is "Which one do I look at first?" The first question any manager is going to ask is, "What one number tells me about the whole application?" My answer to both, in a way, was "Maintainability Index." Why? Because each of the other numbers represent one element of quality while MI is a composite number that includes Cyclomatic Complexity. I'd be lying if I said no consideration was given to the fact that it was abstract enough that it's harder for some surly developer (I've been known to resemble that remark) to start arguing why a high coupling or inheritance is no big deal or how complex requirements are to blame for complex code. I should also note that I don't think there is one magic bullet metric that will tell you objectively how good a code base is. There are a ton of different metrics out there, and each one was created for a specific purpose in mind and has a pet theory behind it. When you've got a group of developers who aren't accustomed to measuring code quality, picking a 0-100 scale, non-controversial metric that can be easily generated by tools you already own really isn't a bad place to start. That sort of answers the question a developer would ask, but what about the management question; how do you dashboard this stuff when Visual Studio doesn't roll up the numbers to the solution level? Since VS does roll up the MI to the project level, I thought I could just figure out what sort of weighting Microsoft used to roll method scores up to the class level and then to the namespace and project levels. I was a bit surprised by the answer: there is no weighting. That means that a class with one 1300 line method (which will score a 0 MI) and one empty constructor (which will score a 100 MI) will have an overall MI of a respectable 50. Throw in a couple of DTOs that are nothing more than getters and setters (which tend to score 95 or better) and the project ends up looking really, really healthy. The next poor bastard who has to work on the application is probably not going to be singing the praises of its maintainability, though. For the record, that 1300 line method isn't a hypothetical, either. So, what does one do with that? Well, I decided to weight the average by the Lines of Code per method. For our above example, the formula for the class's MI becomes ((1300 * 0) + (1 * 100))/1301 = .077, rounded to 0. Sounds about right. Continue the pattern for namespace, project, solution, and even multi-solution application MI scores. This can be done relatively easily by using the "export to Excel" button and running a quick formula against the data. On the short list of follow-up questions would be, "How do I improve my application's score?" That's an answer for another time, though.

    Read the article

  • JD Edwards Apps in a Box - Update

    - by Hartmut Wiese
    Summary and clarification JD Edwards Apps in a box is a Partner offering to the customer. We as Oracle have a huge interest in getting a successful offering to the market and we help the Partner building their offering. We provide components like JD Edwards EnterpriseOne and the Hardware. The Business Partner adds the installation services and position this as a solution to the market for a single price. As you know JD Edwards EnterpriseOne can run on multiple hardware platforms. Linux/X-86 version As you all know we do have JD Edwards VM Templates available from Oracle for the X-86 architecture. Each Partner should or is already able to install JD Edwards EnterpriseOne using these images from our software delivery cloud. We built a master bill of material for a X3-2 Hardware configuration now. It has been uploaded on the Community Workspace now. This is a SUGGESTION and limited to 50 Users MAX. However I strongly recommend you to do a sizing as usual and verify the configuration for each opportunity individually. T4-1/X3-2 version Oracle is not providing similar images for the T4-1 SPARC / SOLARIS architecture. There is an Optimized Solution Team inside Oracle who has created an Optimized Solution for JD Edwards some time ago. They created a whitepaper which is still available to download. This whitepaper was used as a starting point however we decided to build a new version of it using the latest Software and Hardware available. This has now been finalized and we are happy to provide this to our partners. This image is more a service we provide for each partner which they can reuse and extend based on their individual offerings. It is not an official supported Oracle Product and cannot be used to deploy to customers immediately. You cannot resell “JDE in a box”. You can use these images to save time while building your own Go-to-Market offering. You might want to add functionality like Mobility. It is also not complete as also the Deployment Server needs to be configured individually at the customer site. We will create some documentation about: what this images contains (and what not)? what final installation activities needs to be provided by each VAD/Partner in this process?  I will send an email to the community once we are ready to share it. You find these assets than in the Community Workspace. The Business Model with Oracle Hardware For those who have not done any Hardware business with Oracle yet: Usually a HW reseller orders the hardware through a Value Add Distributors (VAD) and not from Oracle directly. Each Partner needs to have Hardware Resell rights to do so. The VAD is assembling the boxes according to the needs of each customer. It is easily possible for them to prepare the boxes with the images we/you provide. However the final configuration is something a reseller/implementer needs to do at the customer site. This process is not the same in the EMEA region. Sometimes a VAD are taking the order but they do not see the Hardware at all. In those cases a VAD cannot provide any help with the pre-loading of any images and the reseller/implementer needs to do that. In some countries we do not have VADs at all.

    Read the article

< Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >