Search Results

Search found 6433 results on 258 pages for 'trouble shooting'.

Page 231/258 | < Previous Page | 227 228 229 230 231 232 233 234 235 236 237 238  | Next Page >

  • Actionscript 3.0 - Enemies do not move right in my platformer game

    - by Christian Basar
    I am making a side-scrolling platformer game in Flash (Actionscript 3.0). I have made lots of progress lately, but I have come across a new problem. I will give some background first. My game level's terrain (or 'floor') is referenced by a MovieClip variable called 'floor.' My desire is to have the Player and enemy characters walk along the terrain. I have gotten the Player character to move on the terrain just fine; he walks up/down hills and falls whenever there is no ground beneath him. Here is the code I created to allow the Player to follow the terrain correctly. Much more code is used to control the Player, but only this code deals with the Player character's following of the terrain and gravity. // If the Player's not on the ground (not touching the 'floor' MovieClip)... if (!onGround) { // Disable ducking downKeyPressed = false; // Increase the Player's 'y' position by his 'y' velocity player.y += playerYVel; } // Increase the 'playerYVel' variable so that the Player will fall // progressively faster down the screen. This code technically // runs "all the time" but in reality it only affects the player // when he's off the ground. playerYVel += gravity; // Give the Player a terminal velocity of 15 px/frame if (playerYVel > 15) { playerYVel = 15; } // If the Player has not hit the 'floor,' increase his falling //speed if (! floor.hitTestPoint(player.x, player.y, true)) { player.y += playerYVel; // The Player is not on the ground when he's not touching it onGround = false; } Since getting this code to work for the Player, I have created a 'SkullDemon' class, which is one of the planned enemies for my game. I want the 'SkullDemon' objects to move along the terrain like the Player does. With lots of great help, I have already coded the EventListeners, etc. necessary for the 'SkullDemons' to move. Unfortunately, I am having trouble getting them to move along the terrain. In fact, they do not touch the terrain at all; they move along the top of the boundary of the 'floor' MovieClip! I had a simple text diagram showing what I mean, but unfortunately Stackoverflow does not format it correctly. I hope my problem is clear from my description. Strangely enough, my code for the Player's movement and the 'SkullDemon's' movement is almost exactly the same, yet the 'SkullDemons' do not move like the Player does. Here is my code for the SkullDemon movement: // Move all of the Skull Demons using this method protected function moveSkullDemons():void { // Go through the whole 'skullDemonContainer' for (var skullDi:int = 0; skullDi < skullDemonContainer.numChildren; skullDi++) { // Set the SkullDemon 'instance' variable to equal the current SkullDemon skullDIns = SkullDemon(skullDemonContainer.getChildAt(skullDi)); // For now, just move the Skull Demons left at 5 units per second skullDIns.x -= 5; // If the Skull Demon has not hit the 'floor,' increase his falling //speed if (! floor.hitTestPoint(skullDIns.x, skullDIns.y, true)) { // Increase the Skull Demon's 'y' position by his 'y' velocity skullDIns.y += skullDIns.sdYVel; // The Skull Demon is not on the ground when he's not touching it skullDIns.sdOnGround = false; } // Increase the 'sdYVel' variable so that the Skull Demon will fall // progressively faster down the screen. This code technically // runs "all the time" but in reality it only affects the Skull Demon // when he's off the ground. if (! skullDIns.sdOnGround) { skullDIns.sdYVel += skullDIns.sdGravity; // Give the Skull Demon a terminal velocity of 15 px/frame if (skullDIns.sdYVel > 15) { skullDIns.sdYVel = 15; } } // What happens when the Skull Demon lands on the ground after a fall? // The Skull Demon is only on the ground ('onGround == true') when // the ground is touching the Skull Demon MovieClip's origin point, // which is at the Skull Demon's bottom centre for (var i:int = 0; i < 10; i++) { // The Skull Demon is only on the ground ('onGround == true') when // the ground is touching the Skull Demon MovieClip's origin point, // which is at the Skull Demon's bottom centre if (floor.hitTestPoint(skullDIns.x, skullDIns.y, true)) { skullDIns.y = skullDIns.y; // Set the Skull Demon's y-axis speed to 0 skullDIns.sdYVel = 0; // The Skull Demon is on the ground again skullDIns.sdOnGround = true; } } } } // End of 'moveSkullDemons()' function It is almost like the 'SkullDemons' are interacting with the 'floor' MovieClip using the hitTestObject() function, and not the hitTestPoint() function which is what I want, and which works for the Player character. I am confused about this problem and would appreciate any help you could give me. Thanks!

    Read the article

  • Platformer Starter Kit - Collision Issues

    - by Cyral
    I'm having trouble with my game that is based off the XNA Platformer starter kit. My game uses smaller tiles (16x16) then the original (32x40) which I'm thinking may be having an effect on collision (Being it needs to be more precise). Standing on the edge of a tile and jumping causes the player to move off the the tile when he lands. And 80% of the time, when the player lands, he goes flying though SOLID tiles in a diagonal fashion. This is very annoying as it is almost impossible to test other features, when spawning and jumping will result in the player landing in another part of the level or falling off the edge completely. The code is as follows: /// <summary> /// Updates the player's velocity and position based on input, gravity, etc. /// </summary> public void ApplyPhysics(GameTime gameTime) { float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; Vector2 previousPosition = Position; // Base velocity is a combination of horizontal movement control and // acceleration downward due to gravity. velocity.X += movement * MoveAcceleration * elapsed; velocity.Y = MathHelper.Clamp(velocity.Y + GravityAcceleration * elapsed, -MaxFallSpeed, MaxFallSpeed); velocity.Y = DoJump(velocity.Y, gameTime); // Apply pseudo-drag horizontally. if (IsOnGround) velocity.X *= GroundDragFactor; else velocity.X *= AirDragFactor; // Prevent the player from running faster than his top speed. velocity.X = MathHelper.Clamp(velocity.X, -MaxMoveSpeed, MaxMoveSpeed); // Apply velocity. Position += velocity * elapsed; Position = new Vector2((float)Math.Round(Position.X), (float)Math.Round(Position.Y)); // If the player is now colliding with the level, separate them. HandleCollisions(); // If the collision stopped us from moving, reset the velocity to zero. if (Position.X == previousPosition.X) velocity.X = 0; if (Position.Y == previousPosition.Y) velocity.Y = 0; } /// <summary> /// Detects and resolves all collisions between the player and his neighboring /// tiles. When a collision is detected, the player is pushed away along one /// axis to prevent overlapping. There is some special logic for the Y axis to /// handle platforms which behave differently depending on direction of movement. /// </summary> private void HandleCollisions() { // Get the player's bounding rectangle and find neighboring tiles. Rectangle bounds = BoundingRectangle; int leftTile = (int)Math.Floor((float)bounds.Left / Tile.Width); int rightTile = (int)Math.Ceiling(((float)bounds.Right / Tile.Width)) - 1; int topTile = (int)Math.Floor((float)bounds.Top / Tile.Height); int bottomTile = (int)Math.Ceiling(((float)bounds.Bottom / Tile.Height)) - 1; // Reset flag to search for ground collision. isOnGround = false; // For each potentially colliding tile, for (int y = topTile; y <= bottomTile; ++y) { for (int x = leftTile; x <= rightTile; ++x) { // If this tile is collidable, ItemCollision collision = Level.GetCollision(x, y); if (collision != ItemCollision.Passable) { // Determine collision depth (with direction) and magnitude. Rectangle tileBounds = Level.GetBounds(x, y); Vector2 depth = RectangleExtensions.GetIntersectionDepth(bounds, tileBounds); if (depth != Vector2.Zero) { float absDepthX = Math.Abs(depth.X); float absDepthY = Math.Abs(depth.Y); // Resolve the collision along the shallow axis. if (absDepthY < absDepthX || collision == ItemCollision.Platform) { // If we crossed the top of a tile, we are on the ground. if (previousBottom <= tileBounds.Top) isOnGround = true; // Ignore platforms, unless we are on the ground. if (collision == ItemCollision.Impassable || IsOnGround) { // Resolve the collision along the Y axis. Position = new Vector2(Position.X, Position.Y + depth.Y); // Perform further collisions with the new bounds. bounds = BoundingRectangle; } } else if (collision == ItemCollision.Impassable) // Ignore platforms. { // Resolve the collision along the X axis. Position = new Vector2(Position.X + depth.X, Position.Y); // Perform further collisions with the new bounds. bounds = BoundingRectangle; } } } } } // Save the new bounds bottom. previousBottom = bounds.Bottom; } It also tends to jitter a little bit sometimes, I'm solved some of this with some fixes I found here on stackexchange, But Ive only seen one other case of the flying though blocks problem. This question seems to have a similar problem in the video, but mine is more crazy. Again this is a very annoying bug! Any help would be greatly appreciated! EDIT: Speed stuff // Constants for controling horizontal movement private const float MoveAcceleration = 13000.0f; private const float MaxMoveSpeed = 1750.0f; private const float GroundDragFactor = 0.48f; private const float AirDragFactor = 0.58f; // Constants for controlling vertical movement private const float MaxJumpTime = 0.35f; private const float JumpLaunchVelocity = -3500.0f; private const float GravityAcceleration = 3400.0f; private const float MaxFallSpeed = 550.0f; private const float JumpControlPower = 0.14f;

    Read the article

  • grid layout default on wordpress theme

    - by nathan philpott
    I'm having trouble with a multi-layout option on a wordpress theme sight http://sight.wpshower.com/ the traffic have the option of a grid or a list layout at the click of a button. at present the list layout is default. I am interested in making the grid layout default . this is some of the php, i tried simply swapping the word grid for list but although this does work to an extent , if done on the loop.php page it removes the a:hover functions on the post boxes in the grid format. also if done on the index.php it switches buttons on the main index page. any ideas?? loop.php <div id="loop" class="<?php if ($_COOKIE['mode'] == 'grid') echo 'grid'; else echo 'list'; ?> clear"> <?php while ( have_posts() ) : the_post(); ?> <div <?php post_class('post clear'); ?> id="post_<?php the_ID(); ?>"> <?php if ( has_post_thumbnail() ) :?> <a href="<?php the_permalink() ?>" class="thumb"><?php the_post_thumbnail('thumbnail', array( 'alt' => trim(strip_tags( $post->post_title )), 'title' => trim(strip_tags( $post->post_title )), )); ?></a> <?php endif; ?> <div class="post-category"><?php the_category(' / '); ?></div> <h2><a href="<?php the_permalink() ?>"><?php the_title(); ?></a></h2> <!-- <div class="post-meta">by <span class="post-author"><a href="<?php echo get_author_posts_url(get_the_author_meta('ID')); ?>" title="Posts by <?php the_author(); ?>"><?php the_author(); ?></a></span> on <span class="post-date"><?php the_time(__('M j, Y')) ?></span> <em>&bull; </em><?php comments_popup_link(__('No Comments'), __('1 Comment'), __('% Comments'), '', __('Comments Closed')); ?> <?php edit_post_link( __( 'Edit entry'), '<em>&bull; </em>'); ?> </div> --> <?php edit_post_link( __( 'Edit entry'), '<em>&bull; </em>'); ?> <div class="post-content"><?php if (function_exists('smart_excerpt')) smart_excerpt(get_the_excerpt(), 55); ?></div> </div> <?php endwhile; ?> </div> <?php endif; ?> index.php <?php get_header(); ?> <div class="content-title"> Projects <a href="javascript: void(0);" id="mode"<?php if ($_COOKIE['mode'] == 'grid') echo ' class="flip"'; ?>></a> </div> <?php query_posts(array( 'post__not_in' => $exl_posts, 'paged' => $paged, ) ); ?> <?php get_template_part('loop'); ?> <?php wp_reset_query(); ?> <?php get_template_part('pagination'); ?> <?php get_footer(); ?>

    Read the article

  • What to do after a servicing fails on TFS 2010

    - by Martin Hinshelwood
    What do you do if you run a couple of hotfixes against your TFS 2010 server and you start to see seem odd behaviour? A customer of mine encountered that very problem, but they could not just, or at least not easily, go back a version.   You see, around the time of the TFS 2010 launch this company decided to upgrade their entire 250+ development team from TFS 2008 to TFS 2010. They encountered a few problems, owing mainly to the size of their TFS deployment, and the way they were using TFS. They were not doing anything wrong, but when you have the largest deployment of TFS outside of Microsoft you tend to run into problems that most people will never encounter. We are talking half a terabyte of source control in TFS with over 80 proxy servers. Its certainly the largest deployment I have ever heard of. When they did their upgrade way back in April, they found two major flaws in the product that meant that they had to back out of the upgrade and wait for a couple of hotfixes. KB983504 – Hotfix KB983578 – Patch KB2401992 -Hotfix In the time since they got the hotfixes they have run 6 successful trial migrations, but we are not talking minutes or hours here. When you have 400+ GB of data it takes time to copy it around. It takes time to do the upgrade and it takes time to do a backup. Well, last week it was crunch time with their developers off for Christmas they had a window of opportunity to complete the upgrade. Now these guys are good, but they wanted Northwest Cadence to be available “just in case”. They did not expect any problems as they already had 6 successful trial upgrades. The problems surfaced around 20 hours in after the first set of hotfixes had been applied. The new Team Project Collection, the only thing of importance, had disappeared from the Team Foundation Server Administration console. The collection would not reattach either. It would not even list the new collection as attachable! Figure: We know there is a database there, but it does not This was a dire situation as 20+ hours to repeat would leave the customer over time with 250+ developers sitting around doing nothing. We tried everything, and then we stumbled upon the command of last resort. TFSConfig Recover /ConfigurationDB:SQLServer\InstanceName;TFS_ConfigurationDBName /CollectionDB:SQLServer\instanceName;"Collection Name" -http://msdn.microsoft.com/en-us/library/ff407077.aspx WARNING: Never run this command! Now this command does something a little nasty. It assumes that there really should not be anything wrong and sets about fixing it. It ignores any servicing levels in the Team Project Collection database and forcibly applies the latest version of the schema. I am sure you can imagine the types of problems this may cause when the schema is updated leaving the data behind. That said, as far as we could see this collection looked good, and we were even able to find and attach the team project collection to the Configuration database. Figure: After attaching the TPC it enters a servicing mode After reattaching the team project collection we found the message “Re-Attaching”. Well, fair enough that sounds like something that may need to happen, and after checking that there was disk IO we left it to it. 14+ hours later, it was still not done so the customer raised a priority support call with MSFT and an engineer helped them out. Figure: Everything looks good, it is just offline. Tip: Did you know that these logs are not represented in the ~/Logs/* folder until they are opened once? The engineer dug around a bit and listened to our situation. He knew that we had run the dreaded “tfsconfig restore”, but was not phased. Figure: This message looks suspiciously like the wrong servicing version As it turns out, the servicing version was slightly out of sync with the schema. KB Schema Successful           KB983504 341 Yes   KB983578 344 sort of   KB2401992 360 nope   Figure: KB, Schema table with notation to its success The Schema version above represents the final end of run version for that hotfix or patch. The only way forward The problem was that the version was somewhere between 341 and 344. This is not a nice place to be in and the engineer give us the  only way forward as the removal of the servicing number from the database so that the re-attach process would apply the latest schema. if his sounds a little like the “tfsconfig recover” command then you are exactly right. Figure: Sneakily changing that 3 to a 1 should do the trick Figure: Changing the status and dropping the version should do it Now that we have done that we should be able to safely reattach and enable the Team Project Collection. Figure: The TPC is now all attached and running You may think that this is the end of the story, but it is not. After a while of mulling and seeking expert advice we came to the opinion that the database was, for want of a better term, “hosed”. There could well be orphaned data in there and the likelihood that we would have problems later down the line is pretty high. We contacted the customer back and made them aware that in all likelihood the repaired database was more like a “cut and shut” than anything else, and at the first sign of trouble later down the line was likely to split in two. So with 40+ hours invested in getting this new database ready the customer threw it away and started again. What would you do? Would you take the “cut and shut” to production and hope for the best?

    Read the article

  • Windows in StreamInsight: Hopping vs. Snapshot

    - by Roman Schindlauer
    Three weeks ago, we explained the basic concept of windows in StreamInsight: defining sets of events that serve as arguments for set-based operations, like aggregations. Today, we want to discuss the so-called Hopping Windows and compare them with Snapshot Windows. We will compare these two, because they can serve similar purposes with different behaviors; we will discuss the remaining window type, Count Windows, another time. Hopping (and its syntactic-sugar-sister Tumbling) windows are probably the most straightforward windowing concept in StreamInsight. A hopping window is defined by its length, and the offset from one window to the next. They are aligned with some absolute point on the timeline (which can also be given as a parameter to the window) and create sets of events. The diagram below shows an example of a hopping window with length of 1h and hop size (the offset) of 15 minutes, hence creating overlapping windows:   Two aspects in this diagram are important: Since this window is overlapping, an event can fall into more than one windows. If an (interval) event spans a window boundary, its lifetime will be clipped to the window, before it is passed to the set-based operation. That’s the default and currently only available window input policy. (This should only concern you if you are using a time-sensitive user-defined aggregate or operator.) The set-based operation will be applied to each of these sets, yielding a result. This result is: A single scalar value in case of built-in or user-defined aggregates. A subset of the input payloads, in case of the TopK operator. Arbitrary events, when using a user-defined operator. The timestamps of the result are almost always the ones of the windows. Only the user-defined  operator can create new events with timestamps. (However, even these event lifetimes are subject to the window’s output policy, which is currently always to clip to the window end.) Let’s assume we were calculating the sum over some payload field: var result = from window in source.HoppingWindow( TimeSpan.FromHours(1), TimeSpan.FromMinutes(15), HoppingWindowOutputPolicy.ClipToWindowEnd) select new { avg = window.Avg(e => e.Value) }; Now each window is reflected by one result event:   As you can see, the window definition defines the output frequency. No matter how many or few events we got from the input, this hopping window will produce one result every 15 minutes – except for those windows that do not contain any events at all, because StreamInsight window operations are empty-preserving (more about that another time). The “forced” output for every window can become a performance issue if you have a real-time query with many events in a wide group & apply – let me explain: imagine you have a lot of events that you group by and then aggregate within each group – classical streaming pattern. The hopping window produces a result in each group at exactly the same point in time for all groups, since the window boundaries are aligned with the timeline, not with the event timestamps. This means that the query output will become very bursty, delivering the results of all the groups at the same point in time. This becomes especially obvious if the events are long-lasting, spanning multiple windows each, so that the produced result events do not change their value very often. In such a case, a snapshot window can remedy. Snapshot windows are more difficult to explain than hopping windows: they represent those periods in time, when no event changes occur. In other words, if you mark all event start and and times on your timeline, then you are looking at all snapshot window boundaries:   If your events are never overlapping, the snapshot window will not make much sense. It is commonly used together with timestamp modification, which make it a very powerful tool. Or as Allan Mitchell expressed in in a recent tweet: “I used to look at SnapshotWindow() with disdain. Now she is my mistress, the one I turn to in times of trouble and need”. Let’s look at a simple example: I want to compute the average of some value in my events over the last minute. I don’t want this output be produced at fixed intervals, but at soon as it changes (that’s the true event-driven spirit!). The snapshot window will include all currently active event at each point in time, hence we need to extend our original events’ lifetimes into the future: Applying the Snapshot window on these events, it will appear to be “looking back into the past”: If you look at the result produced in this diagram, you can easily prove that, at each point in time, the current event value represents the average of all original input event within the last minute. Here is the LINQ representation of that query, applying the lifetime extension before the snapshot window: var result = from window in source .AlterEventDuration(e => TimeSpan.FromMinutes(1)) .SnapshotWindow(SnapshotWindowOutputPolicy.Clip) select new { avg = window.Avg(e => e.Value) }; With more complex modifications of the event lifetimes you can achieve many more query patterns. For instance “running totals” by keeping the event start times, but snapping their end times to some fixed time, like the end of the day. Each snapshot then “sees” all events that have happened in the respective time period so far. Regards, The StreamInsight Team

    Read the article

  • Stumbling Through: Visual Studio 2010 (Part II)

    I would now like to expand a little on what I stumbled through in part I of my Visual Studio 2010 post and touch on a few other features of VS 2010.  Specifically, I want to generate some code based off of an Entity Framework model and tie it up to an actual data source.  Im not going to take the easy way and tie to a SQL Server data source, though, I will tie it to an XML data file instead.  Why?  Well, why not?  This is purely for learning, there are probably much better ways to get strongly-typed classes around XML but it will force us to go down a path less travelled and maybe learn a few things along the way.  Once we get this XML data and the means to interact with it, I will revisit data binding to this data in a WPF form and see if I cant get reading, adding, deleting, and updating working smoothly with minimal code.  To begin, I will use what was learned in the first part of this blog topic and draw out a data model for the MFL (My Football League) - I dont want the NFL to come down and sue me for using their name in this totally football-related article.  The data model looks as follows, with Teams having Players, and Players having a position and statistics for each season they played: Note that when making the associations between these entities, I was given the option to create the foreign key but I only chose to select this option for the association between Player and Position.  The reason for this is that I am picturing the XML that will contain this data to look somewhat like this: <MFL> <Position/> <Position/> <Position/> <Team>     <Player>         <Statistic/>     </Player> </Team> </MFL> Statistic will be under its associated Player node, and Player will be under its associated Team node no need to have an Id to reference it if we know it will always fall under its parent.  Position, however, is more of a lookup value that will not have any hierarchical relationship to the player.  In fact, the Position data itself may be in a completely different xml file (something Id like to play around with), so in any case, a player will need to reference the position by its Id. So now that we have a simple data model laid out, I would like to generate two things based on it:  A class for each entity with properties corresponding to each entity property An IO class with methods to get data for each entity, either all instances, by Id or by parent. Now my experience with code generation in the past has consisted of writing up little apps that use the code dom directly to regenerate code on demand (or using tools like CodeSmith).  Surely, there has got to be a more fun way to do this given that we are using the Entity Framework which already has built-in code generation for SQL Server support.  Lets start with that built-in stuff to give us a base to work off of.  Right click anywhere in the canvas of our model and select Add Code Generation Item: So just adding that code item seemed to do quite a bit towards what I was intending: It apparently generated a class for each entity, but also a whole ton more.  I mean a TON more.  Way too much complicated code was generated now that code is likely to be a black box anyway so it shouldnt matter, but we need to understand how to make this work the way we want it to work, so lets get ready to do some stumbling through that text template (tt) file. When I open the .tt file that was generated, right off the bat I realize there is going to be trouble there is no color coding, no intellisense no nothing!  That is going to make stumbling through more like groping blindly in the dark while handcuffed and hopping on one foot, which was one of the alternate titles I was considering for this blog.  Thankfully, the community comes to my rescue and I wont have to cast my mind back to the glory days of coding in VI (look it up, kids).  Using the Extension Manager (Available under the Tools menu), I did a quick search for tt editor in the Online Gallery and quickly found the Tangible T4 Editor: Downloading and installing this was a breeze, and after doing so I got some color coding and intellisense while editing the tt files.  If you will be doing any customizing of tt files, I highly recommend installing this extension.  Next, well see if that is enough help for us to tweak that tt file to do the kind of code generation that we wantDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • jQuery with SharePoint solutions

    - by KunaalKapoor
    For me jQuery is the 'Plan-B' for everything.And most of my projects include the use of jQuery for something or the other, so I decided to write a small note on what works best while using jQuery along with SharePoint.I prefer to use the jQuery JavaScript library, which is far more robust, easier to use, and allows for plugins. Follow the steps below to add jQuery to your master page. For office 365, the prefered location to add jQuery files is the "Site Asserts" library.Deployment Best PracticesThey are only as good as the context it’s being referenced.  In other words, take into account your world before applying it.Script your deployment options.  Folder in SPD. Use the file system.  Make external references.  The JQuery library is on the Microsoft Ajax Content Delivery Network. You may even choose to publish to and from the document library. (pros and cons to this approach)Reference options when referencing the script.ScriptLink will make sure it’s loaded at the top of the page and only loaded once. You need Visual Studio or SPDContent Editor Web Part (CEWP).  Drop it on the page and it’s there.  Easy but dangerousCustom Actions. Great for global deployments of JQuery.  Loads it on every page. It also works in Sandbox installations.Deployment Maintenance Dont’sDon’t add scripts directly to your Master Page. That’s way too much effort because the pages are hard to maintain.Don’t add scripts directly to the CEWP.  Use a content link instead. That will allow for reuse. If you or someone deletes the CEWP you won’t lose code in the web partSecurity.  Any scripts run with the same privileges of the current user.  In other words, you can’t get in trouble.Development Best PracticesDon’t abuse the DOM.  There are better options to load the DOM without hitting it 1,000 times.User other performance boosters.Try other libraries.  Try some custom codeAvoid String conversionMinify your filesUse CAML to reduce number of returns rowsOnly update your JQuery library AFTER RIGOROUS REGRESSION TESTINGCRUD operations can come with some funSP Services wraps SharePoint’s web services for executionThe Bing SDK is pretty easy to use.  You can add it to your page with a script,  put it into a content editor web part and connect it from the address parameters in a list.Steps:1. Go to jquery.com and download the latest jQuery library to your desktop. You want to get the compressed production version, not the development version.2. Open SharePoint Designer (SPD) and connect to the root level of your site's site collection.In SPD, open the "Style Library" folder. Create a folder named "Scripts" inside of the Style Library. Drag the jQuery library JavaScript file from your desktop into the Scripts folder.In the Scripts folder, create a new JavaScript file and name it (e.g. "actions.js").3. If you are using visual studio add a folder for js, you can create a new folder at the root level or if you prefer more cleaner solutions like me, you can use the layouts folder which cleans out on deactivation/uninstall.4. Within the <head> tag of the master page, add a script reference to the jQuery library just above the content place holder named "PlaceHolderAdditonalPageHead" (and above your custom CSS references, if applicable) as follows:<script src="/Style%20Library/Scripts/{jquery library file}.js" type="text/javascript"></script>Immediately after the jQuery library reference add a script reference to your custom scripts file as follows:<script src="/Style%20Library/Scripts/actions.js" type="text/javascript"></script>Inside your script tag, you can test if jQuery is already defined and if not, then add it to the page.<script type='text/javascript'>  if (typeof jQuery == 'undefined')    document.write('<scr'+'ipt type="text/javascript" src="http://code.jquery.com/jquery-1.6.1.min.js"></sc'+'ript>');</script>For the inquisitive few... Read on if you'd like :)Why jQuery on SharePoiny is AwesomeIt’s all about that visual wow factor.  You can get past that, “But it looks like SharePoint”  Take a long list view and put it into JQuery with pagination, etc and you are the hero.  It’s also about new controls you get with JQuery that you couldn’t do before.Why jQuery with SharePoint should be AwfulAlthough it’s fairly easy to get jQuery up and running. Copy/Paste can cause a problem.  If you don’t understand what it’s doing in the Client Object Model and the Document Object Model then it will do things on your site that were completely unexpected. Many blogs will note workarounds they employed on their sites. Why it’s not working: Debugging “sucks”.You need to develop small blocks of functionality, Test it by putting in some alerts  and console.log. Set breakpoints and monitor the DOM via Firebug and some IE development toolsPerformance - It happens all the time. But you should look at the tradeoffs. More time may give you more functionality.Consistency - ”But it works fine on my computer. So test on many browsers.  Take into account client resourcesHarm the Farm -  You need to code wisely and negatively test.  Don’t be the cause of a DoS attack that’s really JQuery asking for a resource over and over and over again.  So code wisely. Do negative testing. Monitor Server Resources.They also did a demo where JQuery did an endless loop to pull data from a list. It’s a poor decision but also an easy mistake.  They spiked their server resources within a couple seconds and had to shut down the call before it brought it down.ConclusionJQuery is now another tool in your tool kit. You don’t have to use it. Use it where it makes sense and where it helps you get your job done.Don’t abuse it, you will pay for it laterIt will add to page bloat so take that into accountIt can slow your performance

    Read the article

  • Collision Error

    - by Manji
    I am having trouble with collision detection part of the game. I am using touch events to fire the gun as you will see in the video. Note, the android icon is a temporary graphic for the bullets When ever the user touches (represented by clicks in the video)the bullet appears and kills random sprites. As you can see it never touches the sprites it kills or kill the sprites it does touch. My Question is How do I fix it, so that the sprite dies when the bullet hits it? Collision Code snippet: //Handles Collision private void CheckCollisions(){ synchronized(mSurfaceHolder){ for (int i = sprites.size() - 1; i >= 0; i--){ Sprite sprite = sprites.get(i); if(sprite.isCollision(bullet)){ sprites.remove(sprite); mScore++; if(sprites.size() == 0){ mLevel = mLevel +1; currentLevel++; initLevel(); } break; } } } } Sprite Class Code Snippet: //bounding box left<right and top>bottom int left ; int right ; int top ; int bottom ; public boolean isCollision(Beam other) { // TODO Auto-generated method stub if(this.left>other.right || other.left<other.right)return false; if(this.bottom>other.top || other.bottom<other.top)return false; return true; } EDIT 1: Sprite Class: public class Sprite { // direction = 0 up, 1 left, 2 down, 3 right, // animation = 3 back, 1 left, 0 front, 2 right int[] DIRECTION_TO_ANIMATION_MAP = { 3, 1, 0, 2 }; private static final int BMP_ROWS = 4; private static final int BMP_COLUMNS = 3; private static final int MAX_SPEED = 5; private HitmanView gameView; private Bitmap bmp; private int x; private int y; private int xSpeed; private int ySpeed; private int currentFrame = 0; private int width; private int height; //bounding box left<right and top>bottom int left ; int right ; int top ; int bottom ; public Sprite(HitmanView gameView, Bitmap bmp) { this.width = bmp.getWidth() / BMP_COLUMNS; this.height = bmp.getHeight() / BMP_ROWS; this.gameView = gameView; this.bmp = bmp; Random rnd = new Random(); x = rnd.nextInt(gameView.getWidth() - width); y = rnd.nextInt(gameView.getHeight() - height); xSpeed = rnd.nextInt(MAX_SPEED * 2) - MAX_SPEED; ySpeed = rnd.nextInt(MAX_SPEED * 2) - MAX_SPEED; } private void update() { if (x >= gameView.getWidth() - width - xSpeed || x + xSpeed <= 0) { xSpeed = -xSpeed; } x = x + xSpeed; if (y >= gameView.getHeight() - height - ySpeed || y + ySpeed <= 0) { ySpeed = -ySpeed; } y = y + ySpeed; currentFrame = ++currentFrame % BMP_COLUMNS; } public void onDraw(Canvas canvas) { update(); int srcX = currentFrame * width; int srcY = getAnimationRow() * height; Rect src = new Rect(srcX, srcY, srcX + width, srcY + height); Rect dst = new Rect(x, y, x + width, y + height); canvas.drawBitmap(bmp, src, dst, null); } private int getAnimationRow() { double dirDouble = (Math.atan2(xSpeed, ySpeed) / (Math.PI / 2) + 2); int direction = (int) Math.round(dirDouble) % BMP_ROWS; return DIRECTION_TO_ANIMATION_MAP[direction]; } public boolean isCollision(float x2, float y2){ return x2 > x && x2 < x + width && y2 > y && y2 < y + height; } public boolean isCollision(Beam other) { // TODO Auto-generated method stub if(this.left>other.right || other.left<other.right)return false; if(this.bottom>other.top || other.bottom<other.top)return false; return true; } } Bullet Class: public class Bullet { int mX; int mY; private Bitmap mBitmap; //bounding box left<right and top>bottom int left ; int right ; int top ; int bottom ; public Bullet (Bitmap mBitmap){ this.mBitmap = mBitmap; } public void draw(Canvas canvas, int mX, int mY) { this.mX = mX; this.mY = mY; canvas.drawBitmap(mBitmap, mX, mY, null); } }

    Read the article

  • Use your own domain email and tired of SPAM? SPAMfighter FTW

    - by Dave Campbell
    I wouldn't post this if I hadn't tried it... and I paid for it myself, so don't anybody be thinking I'm reviewing something someone sent me! Long ago and far away I got very tired of local ISPs and 2nd phone lines and took the plunge and got hooked up to cable... yeah I know the 2nd phone line concept may be hard for everyone to understand, but that's how it was in 'the old days'. To avoid having to change email addresses all the time, I decided to buy a domain name, get minimal hosting, and use that for all email into the house. That way if I changed providers, all the email addresses wouldn't have to change. Of course, about a dozen domains later, I have LOTS of pop email addresses and even an exchange address to my client's server... times have changed. What also has changed is the fact that we get SPAM... 'back in the day' when I was a beta tester for the first ISP in Phoenix, someone tried sending an ad to all of us, and what he got in return for his trouble was a bunch of core dumps that locked up his email... if you don't know what a core dump is, ask your grandfather. But in today's world, we're all much more civilized than that, and as with many things, the criminals seem to have much more rights than we do, so we get inundated with email offering all sorts of wild schemes that you'd have to be brain-dead to accept, but yet... if people weren't accepting them, they'd stop sending them. I keep hoping that survival of the smartest would weed out the mental midgets that respond and then the jumk email stop, but that hasn't happened yet anymore than finding high-quality hearing aids at the checkout line of Safeway because of all the dimwits playing music too loud inside their car... but that's another whole topic and I digress. So what's the solution for all the spam? And I mean *all*... on that old personal email address, I am now getting over 150 spam messages a day! Yes I know that's why God invented the delete key, but I took it on as a challenge, and it's a matter of principle... why should I switch email addresses, or convert from [email protected] to something else, or have all my email filtered through some service just because some A-Hole somewhere has a site up trying to phish Ma & Pa Kettle (ask your grandfather about that too) out of their retirement money? Well... I got an email from my cousin the other day while I was writing yet another email rule, and there was a banner on the bottom of his email that said he was protected by SPAMfighter. SPAMfighter huh.... so I took a look at their site, and found yet one more of the supposed tools to help us. But... I read that they're a Microsoft Gold Partner... and that doesn't come lightly... so I took a gamble and here's what I found: I installed it, and had to do a couple things: 1) SPAMfighter stuffed the SPAMfighter folder into my client's exchange address... I deleted it, made a new SPAMfighter folder where I wanted it to go, then in the SPAMfighter Clients settings for Outlook, I told it to put all spam there. 2) It didn't seem to be doing anything. There's a ribbon button that you can select "Block", and I did that, wondering if I was 'training' it, but it wasn't picking up duplicates 3) I sent email to support, and wrote a post on the forum (not to self: reply to that post). By the time the folks from the home office responded, it was the next day, and first up, SPAMfighter knocked down everything that came through when Outlook opend... two thumbs up! I disabled my 'garbage collection' rule from Outlook, and told Outlook not to use the junk folder thinking it was interfering. 4) Day 2 seemed to go about like Day 1... but I hung in there. 5) Day 3 is now a whole new day... I had left Outlook open and hadn't looked at the PC since sometime late yesterday afternoon, and when I looked this morning, *every bit* of spam was in the SPAMfighter folder!! I'm a new paying customer After watching SPAMfighter work this morning, I've purchased a 1-year license, and I now can sit and watch as emails come in and disappear from my inbox into the SPAMfighter folder. No more continual tweaking of the rules. I've got SPAMfighter set to 'Very Hard' filtering... personally I'd rather pull the few real emails out of the SPAMfighter folder than pull spam out of the real folders. Yes this is simply another way of using the delete key, but you know what? ... it feels good :) Here's a screenshot of the stats after just about 48 hours of being onboard: Note that all the ones blocked by me were during Day 1 and 2... I've blocked none today, and everything is blocked. Stay in the 'Light!

    Read the article

  • Namespaces are obsolete

    - by Bertrand Le Roy
    To those of us who have been around for a while, namespaces have been part of the landscape. One could even say that they have been defining the large-scale features of the landscape in question. However, something happened fairly recently that I think makes this venerable structure obsolete. Before I explain this development and why it’s a superior concept to namespaces, let me recapitulate what namespaces are and why they’ve been so good to us over the years… Namespaces are used for a few different things: Scope: a namespace delimits the portion of code where a name (for a class, sub-namespace, etc.) has the specified meaning. Namespaces are usually the highest-level scoping structures in a software package. Collision prevention: name collisions are a universal problem. Some systems, such as jQuery, wave it away, but the problem remains. Namespaces provide a reasonable approach to global uniqueness (and in some implementations such as XML, enforce it). In .NET, there are ways to relocate a namespace to avoid those rare collision cases. Hierarchy: programmers like neat little boxes, and especially boxes within boxes within boxes. For some reason. Regular human beings on the other hand, tend to think linearly, which is why the Windows explorer for example has tried in a few different ways to flatten the file system hierarchy for the user. 1 is clearly useful because we need to protect our code from bleeding effects from the rest of the application (and vice versa). A language with only global constructs may be what some of us started programming on, but it’s not desirable in any way today. 2 may not be always reasonably worth the trouble (jQuery is doing fine with its global plug-in namespace), but we still need it in many cases. One should note however that globally unique names are not the only possible implementation. In fact, they are a rather extreme solution. What we really care about is collision prevention within our application. What happens outside is irrelevant. 3 is, more than anything, an aesthetical choice. A common convention has been to encode the whole pedigree of the code into the namespace. Come to think about it, we never think we need to import “Microsoft.SqlServer.Management.Smo.Agent” and that would be very hard to remember. What we want to do is bring nHibernate into our app. And this is precisely what you’ll do with modern package managers and module loaders. I want to take the specific example of RequireJS, which is commonly used with Node. Here is how you import a module with RequireJS: var http = require("http"); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This is of course importing a HTTP stack module into the code. There is no noise here. Let’s break this down. Scope (1) is provided by the one scoping mechanism in JavaScript: the closure surrounding the module’s code. Whatever scoping mechanism is provided by the language would be fine here. Collision prevention (2) is very elegantly handled. Whereas relocating is an afterthought, and an exceptional measure with namespaces, it is here on the frontline. You always relocate, using an extremely familiar pattern: variable assignment. We are very much used to managing our local variable names and any possible collision will get solved very easily by picking a different name. Wait a minute, I hear some of you say. This is only taking care of collisions on the client-side, on the left of that assignment. What if I have two libraries with the name “http”? Well, You can better qualify the path to the module, which is what the require parameter really is. As for hierarchical organization, you don’t really want that, do you? RequireJS’ module pattern does elegantly cover the bases that namespaces used to cover, but it also promotes additional good practices. First, it promotes usage of self-contained, single responsibility units of code through the closure-based, stricter scoping mechanism. Namespaces are somewhat more porous, as using/import statements can be used bi-directionally, which leads us to my second point… Sane dependency graphs are easier to achieve and sustain with such a structure. With namespaces, it is easy to construct dependency cycles (that’s bad, mmkay?). With this pattern, the equivalent would be to build mega-components, which are an easier problem to spot than a decay into inter-dependent namespaces, for which you need specialized tools. I really like this pattern very much, and I would like to see more environments implement it. One could argue that dependency injection has some commonalities with this for example. What do you think? This is the half-baked result of some morning shower reflections, and I’d love to read your thoughts about it. What am I missing?

    Read the article

  • Part 8: How to name EBS Customizations

    - by volker.eckardt(at)oracle.com
    You might wonder why I am discussing this here. The reason is simple: nearly every project has a bit different naming conventions, which makes a the life always a bit complicated (for developers, but also setup responsible, and also for consultants).  Although we always create a document to describe the technical object naming conventions, I have rarely seen a dedicated document  with functional naming conventions. To be precisely, from my stand point, there should always be one global naming definition for an implementation! Let me discuss some related questions: What is the best convention for the customization reference? How to name database objects (tables, packages etc.)? How to name functional objects like Value Sets, Concurrent Programs, etc. How to separate customizations from standard objects best? What is the best convention for the customization reference? The customization reference is the key you use to reference your customization from other lists, from the project plan etc. Usually it is something like XXHU_CONV_22 (HU=customer abbreviation, CONV=Conversion object #22) or XXFA_DEPRN_RPT_02 (FA=Fixed Assets, DEPRN=Short object group, here depreciation, RPT=Report, 02=2nd report in this area) As this is just a reference (not an object name yet), I would prefer the second option. XX=Customization, FA=Main EBS Module linked (you may have sometimes more, but FA is the main) DEPRN_RPT=Short name to specify the customization 02=a unique number Important here is that the HU isn’t used, because XX is enough to mark a custom object, and the 3rd+4th char can be used by the EBS module short name. How to name database objects (tables, packages etc.)? I was leading different developer teams, and I know that one common way is it to take the Customization reference and add more chars behind to classify the object (like _V for view and _T1 for triggers etc.). The only concern I have with this approach is the reusability. If you name your view XXFA_DEPRN_RPT_02_V, no one will by choice reuse this nice view, as it seams to be specific for this CEMLI. My suggestion is rather to name the view XXFA_DEPRN_PERIODS_V and allow herewith reusability for other CEMLIs (although the view will be deployed primarily with CEMLI package XXFA_DEPRN_RPT_02). (check also one of the following Blogs where I will talk about deployment.) How to name Value Sets, Concurrent Programs, etc. For Value Sets I would go with the same convention as for database objects, starting with XX<Module> …. For Concurrent Programs the situation is a bit different. This “object” is seen and used by a lot of users, and they will search for. In many projects it is common to start again with the company short name, or with XX. My proposal would differ. If you have created your own report and you name it “XX: Invoice Report”, the user has to remember that this report does not start with “I”, it starts with X. Would you like typing an X if you are looking for an Invoice report? No, you wouldn’t! So my advise would be to name it:   “Invoice Report (XXAP)”. Still we know it is custom (because of the XXAP), but the end user will type the key “i” to get it (and will see similar reports starting also with “i”). I hope that the general schema behind has now become obvious. How to separate customizations from standard objects best? I would not have this section here if the naming would not play an important role. Unfortunately, we can not always link a custom application to our own object, therefore the naming is really important. In the file system structure we use our $XXyy_TOP, in JAVA_TOP it is perhaps also “xx” in front. But in the database itself? Although there are different concepts in place, still many implementations are using the standard “apps” approach, means custom objects are stored in the apps schema (which should not cause any trouble). Final advise: review the naming conventions regularly, once a month. You may have to add more! And, publish them! To summarize: Technical and functional customized objects should always follow a naming convention. This naming convention should be project wide, and only one place shall be used to maintain (like in a Wiki). If the name is for the end user, rather put a customization identifier at the end; if it is an internal name, start with XX…

    Read the article

  • Managing text-maps in a 2D array on to be painted on HTML5 Canvas

    - by weka
    So, I'm making a HTML5 RPG just for fun. The map is a <canvas> (512px width, 352px height | 16 tiles across, 11 tiles top to bottom). I want to know if there's a more efficient way to paint the <canvas>. Here's how I have it right now. How tiles are loaded and painted on map The map is being painted by tiles (32x32) using the Image() piece. The image files are loaded through a simple for loop and put into an array called tiles[] to be PAINTED on using drawImage(). First, we load the tiles... and here's how it's being done: // SET UP THE & DRAW THE MAP TILES tiles = []; var loadedImagesCount = 0; for (x = 0; x <= NUM_OF_TILES; x++) { var imageObj = new Image(); // new instance for each image imageObj.src = "js/tiles/t" + x + ".png"; imageObj.onload = function () { console.log("Added tile ... " + loadedImagesCount); loadedImagesCount++; if (loadedImagesCount == NUM_OF_TILES) { // Onces all tiles are loaded ... // We paint the map for (y = 0; y <= 15; y++) { for (x = 0; x <= 10; x++) { theX = x * 32; theY = y * 32; context.drawImage(tiles[5], theY, theX, 32, 32); } } } }; tiles.push(imageObj); } Naturally, when a player starts a game it loads the map they last left off. But for here, it an all-grass map. Right now, the maps use 2D arrays. Here's an example map. [[4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 1, 1, 1, 1], [1, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 13, 1, 1, 1, 1, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 13, 1, 13, 13, 1, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 13, 1, 13, 13, 1, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 13, 1, 13, 13, 1, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 13, 1, 1, 1, 1, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 13, 13, 13, 13, 1, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 13, 13, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 1], [13, 13, 13, 1, 1, 1, 1, 1, 1, 1, 13, 13, 13, 13, 13, 1], [1, 1, 1, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1, 1, 1]]; I get different maps using a simple if structure. Once the 2d array above is return, the corresponding number in each array will be painted according to Image() stored inside tile[]. Then drawImage() will occur and paint according to the x and y and times it by 32 to paint on the correct x-y coordinate. How multiple map switching occurs With my game, maps have five things to keep track of: currentID, leftID, rightID, upID, and bottomID. currentID: The current ID of the map you are on. leftID: What ID of currentID to load when you exit on the left of current map. rightID: What ID of currentID to load when you exit on the right of current map. downID: What ID of currentID to load when you exit on the bottom of current map. upID: What ID of currentID to load when you exit on the top of current map. Something to note: If either leftID, rightID, upID, or bottomID are NOT specific, that means they are a 0. That means they cannot leave that side of the map. It is merely an invisible blockade. So, once a person exits a side of the map, depending on where they exited... for example if they exited on the bottom, bottomID will the number of the map to load and thus be painted on the map. Here's a representational .GIF to help you better visualize: As you can see, sooner or later, with many maps I will be dealing with many IDs. And that can possibly get a little confusing and hectic. The obvious pros is that it load 176 tiles at a time, refresh a small 512x352 canvas, and handles one map at time. The con is that the MAP ids, when dealing with many maps, may get confusing at times. My question Is this an efficient way to store maps (given the usage of tiles), or is there a better way to handle maps? I was thinking along the lines of a giant map. The map-size is big and it's all one 2D array. The viewport, however, is still 512x352 pixels. Here's another .gif I made (for this question) to help visualize: Sorry if you cannot understand my English. Please ask anything you have trouble understanding. Hopefully, I made it clear. Thanks.

    Read the article

  • Triangle Picking Picking Back faces

    - by Tangeleno
    I'm having a bit of trouble with 3D picking, at first I thought my ray was inaccurate but it turns out that the picking is happening on faces facing the camera and faces facing away from the camera which I'm currently culling. Here's my ray creation code, I'm pretty sure the problem isn't here but I've been wrong before. private uint Pick() { Ray cursorRay = CalculateCursorRay(); Vector3? point = Control.Mesh.RayCast(cursorRay); if (point != null) { Tile hitTile = Control.TileMesh.GetTileAtPoint(point); return hitTile == null ? uint.MaxValue : (uint)(hitTile.X + hitTile.Y * Control.Generator.TilesWide); } return uint.MaxValue; } private Ray CalculateCursorRay() { Vector3 nearPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 0f)); Vector3 farPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 1f)); Vector3 direction = farPoint - nearPoint; direction.Normalize(); return new Ray(nearPoint, direction); } public Vector3 Camera.Unproject(Vector3 source) { Vector4 result; result.X = (source.X - _control.ClientRectangle.X) * 2 / _control.ClientRectangle.Width - 1; result.Y = (source.Y - _control.ClientRectangle.Y) * 2 / _control.ClientRectangle.Height - 1; result.Z = source.Z - 1; if (_farPlane - 1 == 0) result.Z = 0; else result.Z = result.Z / (_farPlane - 1); result.W = 1f; result = Vector4.Transform(result, Matrix4.Invert(ProjectionMatrix)); result = Vector4.Transform(result, Matrix4.Invert(ViewMatrix)); result = Vector4.Transform(result, Matrix4.Invert(_world)); result = Vector4.Divide(result, result.W); return new Vector3(result.X, result.Y, result.Z); } And my triangle intersection code. Ripped mainly from the XNA picking sample. public float? Intersects(Ray ray) { float? closestHit = Bounds.Intersects(ray); if (closestHit != null && Vertices.Length == 3) { Vector3 e1, e2; Vector3.Subtract(ref Vertices[1].Position, ref Vertices[0].Position, out e1); Vector3.Subtract(ref Vertices[2].Position, ref Vertices[0].Position, out e2); Vector3 directionCrossEdge2; Vector3.Cross(ref ray.Direction, ref e2, out directionCrossEdge2); float determinant; Vector3.Dot(ref e1, ref directionCrossEdge2, out determinant); if (determinant > -float.Epsilon && determinant < float.Epsilon) return null; float inverseDeterminant = 1.0f/determinant; Vector3 distanceVector; Vector3.Subtract(ref ray.Position, ref Vertices[0].Position, out distanceVector); float triangleU; Vector3.Dot(ref distanceVector, ref directionCrossEdge2, out triangleU); triangleU *= inverseDeterminant; if (triangleU < 0 || triangleU > 1) return null; Vector3 distanceCrossEdge1; Vector3.Cross(ref distanceVector, ref e1, out distanceCrossEdge1); float triangleV; Vector3.Dot(ref ray.Direction, ref distanceCrossEdge1, out triangleV); triangleV *= inverseDeterminant; if (triangleV < 0 || triangleU + triangleV > 1) return null; float rayDistance; Vector3.Dot(ref e2, ref distanceCrossEdge1, out rayDistance); rayDistance *= inverseDeterminant; if (rayDistance < 0) return null; return rayDistance; } return closestHit; } I'll admit I don't fully understand all of the math behind the intersection and that is something I'm working on, but my understanding was that if rayDistance was less than 0 the face was facing away from the camera, and shouldn't be counted as a hit. So my question is, is there an issue with my intersection or ray creation code, or is there another check I need to perform to tell if the face is facing away from the camera, and if so any hints on what that check might contain would be appreciated.

    Read the article

  • Cloud Computing Forces Better Design Practices

    - by Herve Roggero
    Is cloud computing simply different than on premise development, or is cloud computing actually forcing you to create better applications than you normally would? In other words, is cloud computing merely imposing different design principles, or forcing better design principles?  A little while back I got into a discussion with a developer in which I was arguing that cloud computing, and specifically Windows Azure in his case, was forcing developers to adopt better design principles. His opinion was that cloud computing was not yielding better systems; just different systems. In this blog, I will argue that cloud computing does force developers to use better design practices, and hence better applications. So the first thing to define, of course, is the word “better”, in the context of application development. Looking at a few definitions online, better means “superior quality”. As it relates to this discussion then, I stipulate that cloud computing can yield higher quality applications in terms of scalability, everything else being equal. Before going further I need to also outline the difference between performance and scalability. Performance and scalability are two related concepts, but they don’t mean the same thing. Scalability is the measure of system performance given various loads. So when developers design for performance, they usually give higher priority to a given load and tend to optimize for the given load. When developers design for scalability, the actual performance at a given load is not as important; the ability to ensure reasonable performance regardless of the load becomes the objective. This can lead to very different design choices. For example, if your objective is to obtains the fastest response time possible for a service you are building, you may choose the implement a TCP connection that never closes until the client chooses to close the connection (in other words, a tightly coupled service from a connectivity standpoint), and on which a connection session is established for faster processing on the next request (like SQL Server or other database systems for example). If you objective is to scale, you may implement a service that answers to requests without keeping session state, so that server resources are released as quickly as possible, like a REST service for example. This alternate design would likely have a slower response time than the TCP service for any given load, but would continue to function at very large loads because of its inherently loosely coupled design. An example of a REST service is the NO-SQL implementation in the Microsoft cloud called Azure Tables. Now, back to cloud computing… Cloud computing is designed to help you scale your applications, specifically when you use Platform as a Service (PaaS) offerings. However it’s not automatic. You can design a tightly-coupled TCP service as discussed above, and as you can imagine, it probably won’t scale even if you place the service in the cloud because it isn’t using a connection pattern that will allow it to scale [note: I am not implying that all TCP systems do not scale; I am just illustrating the scalability concepts with an imaginary TCP service that isn’t designed to scale for the purpose of this discussion]. The other service, using REST, will have a better chance to scale because, by design, it minimizes resource consumption for individual requests and doesn’t tie a client connection to a specific endpoint (which means you can easily deploy this service to hundreds of machines without much trouble, as long as your pockets are deep enough). The TCP and REST services discussed above are both valid designs; the TCP service is faster and the REST service scales better. So is it fair to say that one service is fundamentally better than the other? No; not unless you need to scale. And if you don’t need to scale, then you don’t need the cloud in the first place. However, it is interesting to note that if you do need to scale, then a loosely coupled system becomes a better design because it can almost always scale better than a tightly-coupled system. And because most applications grow overtime, with an increasing user base, new functional requirements, increased data and so forth, most applications eventually do need to scale. So in my humble opinion, I conclude that a loosely coupled system is not just different than a tightly coupled system; it is a better design, because it will stand the test of time. And in my book, if a system stands the test of time better than another, it is of superior quality. Because cloud computing demands loosely coupled systems so that its underlying service architecture can be leveraged, developers ultimately have no choice but to design loosely coupled systems for the cloud. And because loosely coupled systems are better… … the cloud forces better design practices. My 2 cents.

    Read the article

  • Waiting for Windows 8: A Long, Hot Summer

    - by andrewbrust
    Microsoft has revealed some things about Windows 8, and revealed a part of the developer story for new Windows 8 “tailored,” “immersive” applications.  In retrospect, very little was shared.  The bit that was revealed to us is that those applications can be developed using a combination of HTML 5 and JavaScript.  Not much else was said, except that additional details would be revealed at Microsoft’s //Build/ conference in Anaheim, California in September. This has left a lot of people in suspense, and it seems that suspended state is going to last all summer.  The problem, of course, is that in the absence of hard information, people fill the void with Speculation, Rumor and Gloom.  That’s a bit like Fear, Uncertainty and Doubt, except that it’s self-imposed by the Microsoft community and not planted by Microsoft’s competitors. This is a less-than-perfect situation.  Not only is it causing developers to worry about the value of their skill sets, but I am already hearing from consulting shops that customers are getting nervous too and, in extreme cases, opting for non-Microsoft tools for their projects as a result.  I’m also hearing from dev tool ISVs that sales have suffered as a result. It’s quite possible that the customers moving off .NET wanted to do so anyway and it’s also possible that dev tool ISVs are suffering slower sales this year due a slowed rate of economic recovery. Without hard information, tend to people interpret things negatively.  Actually, that’s the major point in all of this. While there is multitude of opinions about what the Windows 8 development platform will look like once fully revealed, there is an emerging consensus around one thing: it sure would help if Microsoft revealed more of its strategy…just enough to quash absurd rumors, stabilize the .NET ecosystem and get people to stay calm. We’ve had some reassurances thus far: there will be a Windows desktop mode; we’ll still have Windows Explorer, we’ll still run Office, we’ll still have a task bar, and all the skills and tools we use now will still work there.  But with reassurances like that…people still feel insecure.  Because telling us that Windows 8 will have what is essentially a “classic” mode sure makes it sound like today’s skill sets will soon be “classic” too…and then maybe they’ll just become obsolete. Humans find change scary; it’s natural.  And when left alone with their fears – because no one is saying anything to dispel them – people can go from frightened to paranoid, and can start to viewing things in a downright conspiratorial light.  It would be great if Microsoft stepped into the void now and told us what is coming – especially because whatever they tell us is bound to be at least a little better than what people think they are going to hear. I don’t know what the announcements will be, but I do have it on authority, from a number of sources, that Microsoft isn’t gong to talk until //Build/.  That means no news until September September 13th.  Nothing until after Labor Day.  You get zippo until after the Back-to-School sales are done. What to do?  Try not to let the dark voices of gloom and doom fill your head.  Even in the absence of answers, we still have some important facts: The .NET developer community is huge. Microsoft’s customers have major investments in .NET, and in .NET skills. Political infighting in Redmond might make for irrational decisions, but ultimately public companies can’t just alienate their advocates and piss off their customers.  Spite doesn’t trump fiduciary responsibility. The computing device markets are changing, software is changing, software business models are changing and developers are changing.  Microsoft has to keep up. The HTML + JavaScript community is huge too, and it includes many of the “changed” developers. Public companies can’t ignore new markets nor the popular standards that can help them enter those new markets.  Loyalty doesn’t trump fiduciary responsibility either. If Microsoft can appeal to new developers, then it should. If Microsoft can keep catering to its existing developers and customers -- not just through legacy support, but also through empowering futures -- then it probably will. You don’t have to shove your old friends out into the rain to make room for new ones; you can bring those new constituents in under a bigger tent.  I hope Microsoft will enlarge the tent, and I have trouble imagining why it would not.

    Read the article

  • Styling ASP.NET MVC Error Messages

    - by MightyZot
    Originally posted on: http://geekswithblogs.net/MightyZot/archive/2013/11/11/styling-asp.net-mvc-error-messages.aspxOff the cuff, it may look like you’re stuck with the presentation of your error messages (model errors) in ASP.NET MVC. That’s not the case, though. You actually have quite a number of options with regard to styling those boogers. Like many of the helpers in MVC, the Html.ValidationMessageFor helper has multiple prototypes. One of those prototypes lets you pass a dictionary, or anonymous object, representing attribute values for the resulting markup. @Html.ValidationMessageFor( m => Model.Whatever, null, new { @class = “my-error” }) By passing the htmlAttributes parameter, which is the last parameter in the call to the prototype of Html.ValidationMessageFor shown above, I can style the resulting markup by associating styles to the my-error css class.  When you run your MVC project and view the source, you’ll notice that MVC adds the class field-validation-valid or field-validation-error to a span created by the helper. You could actually just style those classes instead of adding your own…it’s really up to you. Now, what if you wanted to move that error message around? Maybe you want to put that error message in a box or a callout. How do you do that? When I first started using MVC, it didn’t occur to me that the Html.ValidationMessageFor helper just spits out a little bit of markup. I wanted to put the error messages in boxes with white backgrounds, our site originally had a black background, and show a little nib on the side to make them look like callouts or conversation bubbles. Not realizing how much freedom there is in the styling and markup, and after reading someone else’s post, I created my own version of the ValidationMessageFor helper that took out the span and replaced it with divs. I styled the divs to produce the effect of a popup box and had a lot of trouble with sizing and such. That’s a really silly and unnecessary way to solve this problem. If you want to move your error messages around, all you have to do is move the helper. MVC doesn’t appear to care where you put it, which makes total sense when you think about it. Html.ValidationMessageFor is just spitting out a little markup using a little bit of reflection on the name you’re passing it. All you’ve got to do to style it the way you want it is to put it in whatever markup you desire. Take a look at this, for example… <div class=”my-anchor”>@Html.ValidationMessageFor( m => Model.Whatever )</div> @Html.TextBoxFor(m => Model.Whatever) Now, given that bit of HTML, consider the following CSS… <style> .my-anchor { position:relative; } .field-validation-error {    background-color:white;    border-radius:4px;    border: solid 1px #333;    display: block;    position: absolute;    top:0; right:0; left:0;    text-align:right; } </style> The my-anchor class establishes an anchor for the absolutely positioned error message. Now you can move the error message wherever you want it relative to the anchor. Using css3, there are some other tricks. For example, you can use the :not(:empty) selector to select the span and apply styles based upon whether or not the span has text in it. Keep it simple, though. Moving your elements around using absolute positioning may cause you issues on devices with screens smaller than your standard laptop or PC. While looking for something else recently, I saw someone asking how to style the output for Html.ValidationSummary.  Html.ValidationSummery is the helper that will spit out a list of property errors, general model errors, or both. Html.ValidationSummary spits out fairly simple markup as well, so you can use the techniques described above with it also. The resulting markup is a <ul><li></li></ul> unordered list of error messages that carries the class validation-summary-errors In the forum question, the user was asking how to hide the error summary when there are no errors. Their errors were in a red box and they didn’t want to show an empty red box when there aren’t any errors. Obviously, you can use the css3 selectors to apply different styles to the list when it’s empty and when it’s not empty; however, that’s not support in all browsers. Well, it just so happens that the unordered list carries the style validation-summary-valid when the list is empty. While the div rendered by the Html.ValidationSummary helper renders a visible div, containing one invisible listitem, you can always just style the whole div with “display:none” when the validation-summary-valid class is applied and make it visible when the validation-summary-errors class is applied. Or, if you don’t like that solution, which I like quite well, you can also check the model state for errors with something like this… int errors = ViewData.ModelState.Sum(ms => ms.Value.Errors.Count); That’ll give you a count of the errors that have been added to ModelState. You can check that and conditionally include markup in your page if you want to. The choice is yours. Obviously, doing most everything you can with styles increases the flexibility of the presentation of your solution, so I recommend going that route when you can. That picture of the fat guy jumping has nothing to do with the article. That’s just a picture of me on the roof and I thought it was funny. Doesn’t every post need a picture?

    Read the article

  • What Counts for A DBA: Observant

    - by drsql
    When walking up to the building where I work, I can see CCTV cameras placed here and there for monitoring access to the building. We are required to wear authorization badges which could be checked at any time. Do we have enemies?  Of course! No one is 100% safe; even if your life is a fairy tale, there is always a witch with an apple waiting to snack you into a thousand years of slumber (or at least so I recollect from elementary school.) Even Little Bo Peep had to keep a wary lookout.    We nerdy types (or maybe it was just me?) generally learned on the school playground to keep an eye open for unprovoked attack from simpler, but more muscular souls, and take steps to avoid messy confrontations well in advance. After we’d apprehensively negotiated adulthood with varying degrees of success, these skills of watching for danger, and avoiding it,  translated quite well to the technical careers so many of us were destined for. And nowhere else is this talent for watching out for irrational malevolence so appropriate as in a career as a production DBA.   It isn’t always active malevolence that the DBA needs to watch out for, but the even scarier quirks of common humanity.  A large number of the issues that occur in the enterprise happen just randomly or even just one time ever in a spurious manner, like in the case where a person decided to download the entire MSDN library of software, cross join every non-indexed billion row table together, and simultaneously stream the HD feed of 5 different sporting events, making the network access slow while the corporate online sales just started. The decent DBA team, like the going, gets tough under such circumstances. They spring into action, checking all of the sources of active information, observes the issue is no longer happening now, figures that either it wasn’t the database’s fault and that the reboot of the whatever device on the network fixed the problem.  This sort of reactive support is good, and will be the initial reaction of even excellent DBAs, but it is not the end of the story if you really want to know what happened and avoid getting called again when it isn’t even your fault.   When fires start raging within the corporate software forest, the DBA’s instinct is to actively find a way to douse the flames and get back to having no one in the company have any idea who they are.  Even better for them is to find a way of killing a potential problem while the fires are small, long before they can be classified as raging. The observant DBA will have already been monitoring the server environment for months in advance.  Most troubles, such as disk space and security intrusions, can be predicted and dealt with by alerting systems, whereas other trouble can come out of the blue and requires a skill of observing ongoing conditions and noticing inexplicable changes that could signal an emerging problem.  You can’t automate the DBA, because the bankable skill of a DBA is in detecting the early signs of unexpected problems, and working out how to deal with them before anyone else notices them.    To achieve this, the DBA will check the situation as it is currently happening,  and in many cases is likely to have been the person who submitted the problem to the level 1 support person in the first place, just to let the support team know of impending issues (always well received, I tell you what!). Database and host computer settings, configurations, and even critical data might be profiled and captured for later comparisons. He’ll use Monitoring tools, built-in, commercial (Not to be too crassly commercial or anything, but there is one such tool is SQL Monitor) and lots of homebrew monitoring tools to monitor for problems and changes in the server environment.   You will know that you have it right when a support call comes in and you can look at your monitoring tools and quickly respond that “response time is well within the normal range, the query that supports the failing interface works perfectly and has actually only been called 67% as often as normal, so I am more than willing to help diagnose the problem, but it isn’t the database server’s fault and is probably a client or networking slowdown causing the interface to be used less frequently than normal.” And that is the best thing for any DBA to observe…

    Read the article

  • Stumbling Through: Visual Studio 2010 (Part II)

    I would now like to expand a little on what I stumbled through in part I of my Visual Studio 2010 post and touch on a few other features of VS 2010.  Specifically, I want to generate some code based off of an Entity Framework model and tie it up to an actual data source.  Im not going to take the easy way and tie to a SQL Server data source, though, I will tie it to an XML data file instead.  Why?  Well, why not?  This is purely for learning, there are probably much better ways to get strongly-typed classes around XML but it will force us to go down a path less travelled and maybe learn a few things along the way.  Once we get this XML data and the means to interact with it, I will revisit data binding to this data in a WPF form and see if I cant get reading, adding, deleting, and updating working smoothly with minimal code.  To begin, I will use what was learned in the first part of this blog topic and draw out a data model for the MFL (My Football League) - I dont want the NFL to come down and sue me for using their name in this totally football-related article.  The data model looks as follows, with Teams having Players, and Players having a position and statistics for each season they played: Note that when making the associations between these entities, I was given the option to create the foreign key but I only chose to select this option for the association between Player and Position.  The reason for this is that I am picturing the XML that will contain this data to look somewhat like this: <MFL> <Position/> <Position/> <Position/> <Team>     <Player>         <Statistic/>     </Player> </Team> </MFL> Statistic will be under its associated Player node, and Player will be under its associated Team node no need to have an Id to reference it if we know it will always fall under its parent.  Position, however, is more of a lookup value that will not have any hierarchical relationship to the player.  In fact, the Position data itself may be in a completely different xml file (something Id like to play around with), so in any case, a player will need to reference the position by its Id. So now that we have a simple data model laid out, I would like to generate two things based on it:  A class for each entity with properties corresponding to each entity property An IO class with methods to get data for each entity, either all instances, by Id or by parent. Now my experience with code generation in the past has consisted of writing up little apps that use the code dom directly to regenerate code on demand (or using tools like CodeSmith).  Surely, there has got to be a more fun way to do this given that we are using the Entity Framework which already has built-in code generation for SQL Server support.  Lets start with that built-in stuff to give us a base to work off of.  Right click anywhere in the canvas of our model and select Add Code Generation Item: So just adding that code item seemed to do quite a bit towards what I was intending: It apparently generated a class for each entity, but also a whole ton more.  I mean a TON more.  Way too much complicated code was generated now that code is likely to be a black box anyway so it shouldnt matter, but we need to understand how to make this work the way we want it to work, so lets get ready to do some stumbling through that text template (tt) file. When I open the .tt file that was generated, right off the bat I realize there is going to be trouble there is no color coding, no intellisense no nothing!  That is going to make stumbling through more like groping blindly in the dark while handcuffed and hopping on one foot, which was one of the alternate titles I was considering for this blog.  Thankfully, the community comes to my rescue and I wont have to cast my mind back to the glory days of coding in VI (look it up, kids).  Using the Extension Manager (Available under the Tools menu), I did a quick search for tt editor in the Online Gallery and quickly found the Tangible T4 Editor: Downloading and installing this was a breeze, and after doing so I got some color coding and intellisense while editing the tt files.  If you will be doing any customizing of tt files, I highly recommend installing this extension.  Next, well see if that is enough help for us to tweak that tt file to do the kind of code generation that we wantDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Why is my animation getting aborted?

    - by Homer_Simpson
    I have a class named Animation which handles my animations. The animation class can be called from multiple other classes. For example, the class Player.cs can call the animation class like this: Animation Playeranimation; Playeranimation = new Animation(TimeSpan.FromSeconds(2.5f), 80, 40, Animation.Sequences.forwards, 0, 5, false, true); //updating the animation public void Update(GameTime gametime) { Playeranimation.Update(gametime); } //drawing the animation public void Draw(SpriteBatch batch) { playeranimation.Draw(batch, PlayerAnimationSpritesheet, PosX, PosY, 0, SpriteEffects.None); } The class Lion.cs can call the animation class with the same code, only the animation parameters are changing because it's another animation that should be played: Animation Lionanimation; Lionanimation = new Animation(TimeSpan.FromSeconds(2.5f), 100, 60, Animation.Sequences.forwards, 0, 8, false, true); Other classes can call the animation class with the same code like the Player class. But sometimes I have some trouble with the animations. If an animation is running and then shortly afterwards another class calls the animation class too, the second animation starts but the first animation is getting aborted. In this case, the first animation couldn't run until it's end because another class started a new instance of the animation class. Why is an animation sometimes getting aborted when another animation starts? How can I solve this problem? My animation class: public class Animation { private int _animIndex, framewidth, frameheight, start, end; private TimeSpan PassedTime; private List<Rectangle> SourceRects = new List<Rectangle>(); private TimeSpan Duration; private Sequences Sequence; public bool Remove; private bool DeleteAfterOneIteration; public enum Sequences { forwards, backwards, forwards_backwards, backwards_forwards } private void forwards() { for (int i = start; i < end; i++) SourceRects.Add(new Rectangle(i * framewidth, 0, framewidth, frameheight)); } private void backwards() { for (int i = start; i < end; i++) SourceRects.Add(new Rectangle((end - 1 - i) * framewidth, 0, framewidth, frameheight)); } private void forwards_backwards() { for (int i = start; i < end - 1; i++) SourceRects.Add(new Rectangle(i * framewidth, 0, framewidth, frameheight)); for (int i = start; i < end; i++) SourceRects.Add(new Rectangle((end - 1 - i) * framewidth, 0, framewidth, frameheight)); } private void backwards_forwards() { for (int i = start; i < end - 1; i++) SourceRects.Add(new Rectangle((end - 1 - i) * framewidth, 0, framewidth, frameheight)); for (int i = start; i < end; i++) SourceRects.Add(new Rectangle(i * framewidth, 0, framewidth, frameheight)); } public Animation(TimeSpan duration, int frame_width, int frame_height, Sequences sequences, int start_interval, int end_interval, bool remove, bool deleteafteroneiteration) { Remove = remove; DeleteAfterOneIteration = deleteafteroneiteration; framewidth = frame_width; frameheight = frame_height; start = start_interval; end = end_interval; switch (sequences) { case Sequences.forwards: { forwards(); break; } case Sequences.backwards: { backwards(); break; } case Sequences.forwards_backwards: { forwards_backwards(); break; } case Sequences.backwards_forwards: { backwards_forwards(); break; } } Duration = duration; Sequence = sequences; } public void Update(GameTime dt) { PassedTime += dt.ElapsedGameTime; if (PassedTime > Duration) { PassedTime -= Duration; } var percent = PassedTime.TotalSeconds / Duration.TotalSeconds; if (DeleteAfterOneIteration == true) { if (_animIndex >= SourceRects.Count) Remove = true; _animIndex = (int)Math.Round(percent * (SourceRects.Count)); } else { _animIndex = (int)Math.Round(percent * (SourceRects.Count - 1)); } } public void Draw(SpriteBatch batch, Texture2D Textures, float PositionX, float PositionY, float Rotation, SpriteEffects Flip) { if (DeleteAfterOneIteration == true) { if (_animIndex >= SourceRects.Count) return; } batch.Draw(Textures, new Rectangle((int)PositionX, (int)PositionY, framewidth, frameheight), SourceRects[_animIndex], Color.White, Rotation, new Vector2(framewidth / 2.0f, frameheight / 2.0f), Flip, 0f); } }

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • TCP RST Reset Every 5 Minutes on Windows 2003 sp2

    - by Dan
    Hey, Recently I had a web developer come to me and ask why he was receiving connection errors in his app that was accessing a sql database. So, I went through my normal trouble shooting steps to isolate or reproduce the issue. I discovered that if I connected to the database using Query Analyzer and let the connection idle for 5 minutes it would disconnect. Meaning... I would no longer be able to refresh my tables or any other object/node within the object browser in Query Analyzer. I would have to right click on the instance and refresh for it to re-establish the connection. Next I went to wireshark and ran a capture on the client pc's nic card. Sure enough it was receiving a TCP RST reset every 5 min if the connection idled longer than 5 min. I also ran a capture on the SQL Server and noticed the TCP RST reset command as well. Attached below is the capture from the client Machine. If someone could please assist... That would be great. -I checked all settings within SQL Server 2000 against another server and they all seem to be the same. -Issue does not occur if I connect to any other SQL server 2000 server. -Issue does not occur if connecting to SQL on the server itself... so only over the network. -I consulted with network team and this is the response back: There are no firewalls or proxies in between SQL Server and your desktop. The traffic flows like this: Desktop-Access Switch-Distro Switch-Core Switch-Datacenter Switch-SQL Server None of the switches have security ACL’s configured on them. Also they stated that NAT was not turned on. -Issue does not occur with SQL server Enterprise Manager. -Ran SQL Profiler at the same time and did not see anything out of the ordinary during the RST I HAVE SEARCHED HIGH AND LOW ON GOOGLE FOR A RESOLUTION FOR THIS ISSUE. NO LUCK! My questions are: What could be causing this? Wrong Sequence number? setting in a router or switch the network team may have over looked? Setting within Windows? Setting within SQL Server 2000 that I have over looked? Better way to utilize Wireshark to find more answers? RST is about 10 from the bottom. No. Time Source Destination Protocol Info 258 24.390708 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [SYN] Seq=0 Len=0 MSS=1260 259 24.401679 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 260 24.401729 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 261 24.402212 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 262 24.413335 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 285 24.466512 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 286 24.466536 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=437 289 24.478168 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [ACK] Seq=38 Ack=1740 Win=64240 Len=0 290 24.480078 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=38 Ack=1740 Win=64240 Len=385 293 24.493629 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1740 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=60 294 24.504637 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=423 Ack=1800 Win=64180 Len=17 295 24.533197 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1800 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=44 296 24.544098 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=440 Ack=1844 Win=64136 Len=17 297 24.544524 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1844 Ack=457 Win=65079 [TCP CHECKSUM INCORRECT] Len=58 298 24.558033 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=457 Ack=1902 Win=64078 Len=31 299 24.558493 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1902 Ack=488 Win=65048 [TCP CHECKSUM INCORRECT] Len=92 300 24.569984 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=488 Ack=1994 Win=63986 Len=70 301 24.577395 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1994 Ack=558 Win=64978 [TCP CHECKSUM INCORRECT] Len=448 303 24.589834 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=558 Ack=2442 Win=63538 Len=64 304 24.590122 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [FIN, ACK] Seq=2442 Ack=622 Win=64914 [TCP CHECKSUM INCORRECT] Len=0 305 24.601094 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [ACK] Seq=622 Ack=2443 Win=63538 Len=0 306 24.601659 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [FIN, ACK] Seq=622 Ack=2443 Win=63538 Len=0 307 24.601686 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=2443 Ack=623 Win=64914 [TCP CHECKSUM INCORRECT] Len=0 321 25.839371 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [SYN] Seq=0 Len=0 MSS=1260 322 25.850291 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 323 25.850321 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 324 25.850660 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 325 25.861573 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 326 25.863103 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 327 25.863130 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=463 328 25.874417 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [ACK] Seq=38 Ack=1766 Win=64240 Len=0 329 25.876315 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=38 Ack=1766 Win=64240 Len=385 330 25.876905 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1766 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=60 331 25.887773 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=423 Ack=1826 Win=64180 Len=17 332 25.888299 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1826 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=44 333 25.899169 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=440 Ack=1870 Win=64136 Len=17 334 25.899574 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1870 Ack=457 Win=65079 [TCP CHECKSUM INCORRECT] Len=58 335 25.910618 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=457 Ack=1928 Win=64078 Len=31 336 25.911051 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1928 Ack=488 Win=65048 [TCP CHECKSUM INCORRECT] Len=92 337 25.922068 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=488 Ack=2020 Win=63986 Len=70 338 25.922500 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2020 Ack=558 Win=64978 [TCP CHECKSUM INCORRECT] Len=34 339 25.933621 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=558 Ack=2054 Win=63952 Len=29 340 25.941165 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2054 Ack=587 Win=64949 [TCP CHECKSUM INCORRECT] Len=54 341 25.952164 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=587 Ack=2108 Win=63898 Len=17 342 25.952993 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2108 Ack=604 Win=64932 [TCP CHECKSUM INCORRECT] Len=72 343 25.963889 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=604 Ack=2180 Win=63826 Len=17 344 25.964366 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2180 Ack=621 Win=64915 [TCP CHECKSUM INCORRECT] Len=52 345 25.975253 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=621 Ack=2232 Win=63774 Len=17 346 25.975590 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2232 Ack=638 Win=64898 [TCP CHECKSUM INCORRECT] Len=32 347 25.986588 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=638 Ack=2264 Win=63742 Len=167 348 25.987262 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2264 Ack=805 Win=64731 [TCP CHECKSUM INCORRECT] Len=512 349 25.998464 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=805 Ack=2776 Win=63230 Len=89 350 25.998861 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2776 Ack=894 Win=64642 [TCP CHECKSUM INCORRECT] Len=46 351 26.009849 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=894 Ack=2822 Win=63184 Len=17 352 26.010175 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2822 Ack=911 Win=64625 [TCP CHECKSUM INCORRECT] Len=80 353 26.021220 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=911 Ack=2902 Win=63104 Len=33 354 26.022613 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2902 Ack=944 Win=64592 [TCP CHECKSUM INCORRECT] Len=498 355 26.034018 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=944 Ack=3400 Win=64240 Len=89 356 26.046501 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [SYN] Seq=0 Len=0 MSS=1260 357 26.057323 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 358 26.057355 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 359 26.057661 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 361 26.068606 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 362 26.070087 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 363 26.070113 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=485 364 26.081336 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [ACK] Seq=38 Ack=1788 Win=64240 Len=0 365 26.083330 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=38 Ack=1788 Win=64240 Len=385 366 26.083943 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1788 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=46 368 26.094921 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=423 Ack=1834 Win=64194 Len=17 369 26.095317 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1834 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=48 370 26.107553 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=440 Ack=1882 Win=64146 Len=877 371 26.241285 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=3400 Ack=1033 Win=64503 [TCP CHECKSUM INCORRECT] Len=0 372 26.241307 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=1882 Ack=1317 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 653 55.913838 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 > 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 654 55.924547 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 > 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 910 85.887176 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 > 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 911 85.898010 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 > 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1155 115.859520 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1156 115.870285 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1395 145.934403 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1396 145.945938 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1649 175.906767 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1650 175.917741 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1887 205.881080 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1888 205.891818 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2112 235.854408 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2113 235.865482 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2398 265.928342 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2399 265.939242 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2671 295.900714 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2672 295.911590 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2880 315.705029 x.x.x.10 x.x.x.99 TCP 2226 14493 [RST] Seq=1317 Len=0 2973 325.975607 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2974 325.986337 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2975 326.154327 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive] 2226 14492 [ACK] Seq=1032 Ack=3400 Win=64240 Len=1 2976 326.154350 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive ACK] 14492 2226 [ACK] Seq=3400 Ack=1033 Win=64503 [TCP CHECKSUM INCORRECT] Len=0

    Read the article

  • Weird networking problem ( Linksys, Windows 7 )

    - by Rohit Nair
    Okay it's a bit tough to figure out where to start from, but here is the basic summary of the issue: During general internet usage, there are times when any attempt to visit a website stalls at "Waiting for somedomain.com". This problem occurs in Firefox, IE and Chrome. No website will load, INCLUDING the router configuration page at 192.168.1.1. Curiously, ping works fine, and other network apps such as MSN Messenger continue to work and I can send and receive messages. Disconnecting and reconnecting to the wireless network seems to fix the problem for a bit, but there are times when it relapses into not loading after every 2-3 http requests. Restarting the router seems to fix the issue, but it can crop up hours or days later. I have a CCNA cert and I know my way around the Windows family of operating systems, so I'm going to list all the things I've tried here. Other computers on the network seem to suffer the same problem, which makes me think it might be a specific problem with something in Win7. The random nature of this issue makes it a bit difficult to confirm, but I can definitely say that I have experienced this on the following systems: Windows 7 64-bit on my desktop Windows Vista 32-bit on my desktop ( the desktop has 2 wireless NICs and the problem existed on both ) Windows Vista 32-bit on my laptop ( both with wireless and wired ) Windows XP SP3 on another laptop ( both wireless and wired ) Using Wireshark to sniff packets seemed to indicate that although HTTP requests were being SENT out, no packets were coming in to respond to the HTTP request. However, other network apps continued to work i.e I would still receive IMs on Windows Live Messenger. Disabling IPV6 had no effect. Updating router firmware to the latest stock firmware by Linksys had no effect. Switching to dd-wrt firmware had no effect. By "no effect" I mean that although the restart required by firmware updates fixed the problem at the time, it still came back. A couple of weeks back, after a LOT of googling and flipping of various options, I figured it might be a case of router slowdown ( http://www.dd-wrt.com/wiki/index.php/Router%5FSlowdown ) caused by the fact that I occasionally run a torrent client. I tried changing the configuration as suggested in that router slowdown link, and restarted the router. However I have not run the torrent client for 12 days now, and yet I still randomly experience this problem. Currently the computer I am using is running Windows 7 64-bit. I would just like to reiterate some of the reasons that I was confused by the issue. Even the router config page at 192.168.1.1 would not load, indicating that it's not a problem with the WAN link, but probably a router issue or a local computer issue. For some reason, disconnecting and reconnecting to the wireless network immediately seems to fix the problem. Updating the router firmware, even switching to open source firmware did nothing. So it seemed to be a computer issue. On the other hand, I have not seen any mass outrage of people having networking problems with Windows 7 and Linksys routers, especially a problem of this sort, and I have tweaked every network setting I could think of. Although HTTP seems to have trouble, ping works fine, DNS lookups work fine, other networking apps work fine. However if I disconnect from Windows Live Messenger and try to reconnect, it fails to reconnect. So although it could receive data over the existing TCP/IP connection, trying to start a new one failed? Does anyone have any further ideas on debugging or fixing this issue? I am reasonably certain there are no viruses or other malicious apps on my network, and I am also reasonably certain that nobody is accessing my router without my consent. Router: Linksys WRT54G2 1.0 running dd-wrt firmware Wireless Card: Alfa AWUS036H OS: Windows 7 64-bit EDIT: I tried switching to a clean wireless channel free from interference, but the problem still persisted. I tried connecting directly with a cable, but the problem still persisted. Signed A very confused and bewildered geek whose knowledge seems to be useless in the face of this frustrating network issue.

    Read the article

  • Connecting debian and windows via IPsec VPN with Racoon and ipsec-tools

    - by Michi Qne
    I've some trouble with the IPsec configuration on my debian server (6 squeeze). This server should connect via IPsec VPN to an windows server, which is protected by an firewall. I've used racoon and ipsec-tools and this tutorial http://wiki.debian.org/IPsec. However, I am not quite sure, if this tutorial fits to my purpose, because of some differences: my Host and my gateway are the same server. So I don't have two different ip addresses. I guess, that's not a problem the other server is an windows system behind a firewall. Hopefully, not a problem the subnet of the windows system is /32 not /24. So I change it to /32. I worked through the tutorial step by step, but I wasn't able to route the ip. The following command didn't work for me: ip route add to 172.16.128.100/32 via XXX.XXX.XXX.XXX src XXX.XXX.XXX.XXX So I tried the following instead: ip route add to 172.16.128.100 .., which obviously not solved the problem. The next problem is the compression. The windows doesn't use a compression, but 'compression_algorithm none;' doesn't work with my racoon. So the current value is 'compression_algorithm deflate;' So my current result looks like this: When I am trying to ping the windows host (ping 172.16.128.100), I receive the following error message from ping: ping: sendmsg: Operation not permitted And racoon logs: racoon: ERROR: failed to get sainfo. After googling for a while I came to no conclusion, what's the solution. Does this error message mean that the first phase of IPsec works? I am thankful for any advice. I guess my configs might be helpful. My racoon.conf looks like this: path pre_shared_key "/etc/racoon/psk.txt"; remote YYY.YYY.YYY.YYY { exchange_mode main; proposal { lifetime time 8 hour; encryption_algorithm 3des; hash_algorithm sha1; authentication_method pre_shared_key; dh_group 2; } } sainfo address XXX.XXX.XXX.XXX/32 any address 172.16.128.100/32 any { pfs_group 2; lifetime time 8 hour; encryption_algorithm aes 256; authentication_algorithm hmac_sha1; compression_algorithm deflate; } And my ipsec-tools.conf looks like this: flush; spdflush; spdadd XXX.XXX.XXX.XXX/32 172.16.128.100/32 any -P out ipsec esp/tunnel/XXX.XXX.XXX.XXX-YYY.YYY.YYY.YYY/require; spdadd 172.16.128.100/32 XXX.XXX.XXX.XXX/32 any -P in ipsec esp/tunnel/YYY.YYY.YYY.YYY-XXX.XXX.XXX.XXX/require; If anyone has an advice, that would be awesome. Thanks in Advance. Greets, Michael It was a simple copy-and-paste error in an ip address.

    Read the article

  • Delaying NIS & NFS startup till after network interface is fully ready on Fedora 17

    - by obmarg
    I've recently set up a fedora 17 server for our network, and I've been having trouble getting the NIS service to work on startup. Here's some logs from the system: Aug 21 12:57:12 cairnwell ypbind-pre-setdomain[718]: Setting NIS domain: 'indigo-nis' (environment variable) Aug 21 12:57:13 cairnwell ypbind: Binding NIS service Aug 21 12:57:13 cairnwell rpc.statd[730]: Unable to prune capability 0 from bounding set: Operation not permitted Aug 21 12:57:13 cairnwell systemd[1]: nfs-lock.service: control process exited, code=exited status=1 Aug 21 12:57:13 cairnwell systemd[1]: Unit nfs-lock.service entered failed state. Aug 21 12:57:14 cairnwell setroubleshoot: SELinux is preventing /usr/sbin/rpc.statd from using the setpcap capability. For complete SELinux messages. run sealert -l 024bba8a-b0ef-43dc-b195-5c9a2d4c4d41 Aug 21 12:57:15 cairnwell kernel: [ 18.822282] bnx2 0000:02:00.0: em1: NIC Copper Link is Up, 1000 Mbps full duplex Aug 21 12:57:15 cairnwell kernel: [ 18.822925] ADDRCONF(NETDEV_CHANGE): em1: link becomes ready Aug 21 12:57:15 cairnwell NetworkManager[621]: <info> (em1): carrier now ON (device state 20) Aug 21 12:57:15 cairnwell NetworkManager[621]: <info> (em1): device state change: unavailable -> disconnected (reason 'carrier-changed') [20 30 40] Aug 21 12:57:15 cairnwell NetworkManager[621]: <info> Auto-activating connection 'System em1'. Aug 21 12:57:15 cairnwell NetworkManager[621]: <info> Activation (em1) starting connection 'System em1' Aug 21 12:57:15 cairnwell NetworkManager[621]: <info> (em1): device state change: disconnected -> prepare (reason 'none') [30 40 0] ....... Aug 21 12:57:19 cairnwell sendmail[790]: YPBINDPROC_DOMAIN: Domain not bound Aug 21 12:57:26 cairnwell sendmail[790]: YPBINDPROC_DOMAIN: Domain not bound Aug 21 12:57:31 cairnwell sendmail[790]: YPBINDPROC_DOMAIN: Domain not bound Aug 21 12:57:35 cairnwell sendmail[790]: YPBINDPROC_DOMAIN: Domain not bound Aug 21 12:58:00 cairnwell ypbind: Binding took 47 seconds Aug 21 12:58:00 cairnwell ypbind: NIS server for domain indigo-nis is not responding. Aug 21 12:58:01 cairnwell ypbind: Killing ypbind with PID 733. Aug 21 12:58:01 cairnwell ypbind-post-waitbind[734]: /usr/lib/ypbind/ypbind-post-waitbind: line 51: kill: SIGTERM: invalid signal specification Aug 21 12:58:01 cairnwell systemd[1]: ypbind.service: control process exited, code=exited status=1 Aug 21 12:58:01 cairnwell systemd[1]: Unit ypbind.service entered failed state. By the looks of these logs the ypbind service is starting up at 12:57:12 but the network interface isn't coming up till 12:57:15. My guess is that this is causing ypbind to time out when trying to connect. As a knock-on effect the NIS failure is causing problems with NFS which is no longer able to map UIDs properly. This problem doesn't seem to be fixed by actually starting ypbind etc. so I've had to set all my NFS shares to noauto. I have tried manually adding NETWORKDELAY and NETWORKWAIT in /etc/sysconfig/network and also running systemctl enable NetworkManager-wait-online.service as I've seen suggested in some places, but neither of these have had any effect. It is relatively easy to fix manually by restarting ypbind & mounting NFS shares after the network has started up, but it's less than ideal to have to do this every time the server has been rebooted. Does anyone know of an easy (and preferably hack-free) way of delaying the ypbind startup till after the network interface is fully ready?

    Read the article

< Previous Page | 227 228 229 230 231 232 233 234 235 236 237 238  | Next Page >