Search Results

Search found 26126 results on 1046 pages for 'generic service contract'.

Page 236/1046 | < Previous Page | 232 233 234 235 236 237 238 239 240 241 242 243  | Next Page >

  • No grub selection after installing kernel Ubuntu 14.04

    - by CPJ
    I have installed a new kernel on my system which can be found by grub but when I restart I can only select the old kernel. Things I tried in other threds with similar problems didn't help. sudo update-grub gives Generating grub configuration file ... Found linux image: /boot/vmlinuz-3.15.0-031500rc2-lowlatency Found initrd image: /boot/initrd.img-3.15.0-031500rc2-lowlatency Found linux image: /boot/vmlinuz-3.15.0-031500rc2-generic Found initrd image: /boot/initrd.img-3.15.0-031500rc2-generic Found linux image: /boot/vmlinuz-3.13.0-24-generic Found initrd image: /boot/initrd.img-3.13.0-24-generic Found memtest86+ image: /boot/memtest86+.elf Found memtest86+ image: /boot/memtest86+.bin done However, afer a reboot I can only choose the 3.13 kernel. Any ideas what happened? I I have a full encrypted hard drive so maybe I have overseen something while installing the new kernel to get this work? The grub config file is GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT_QUIET=false GRUB_TIMEOUT=5 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="" GRUB_ENABLE_CRYPTODISK=1 Any ideas? Thanks.

    Read the article

  • Code Contracts with Interfaces: "Method Invocation skipped. Compiler will generate method invocation

    - by Jörg Battermann
    Good evening, I just started playing with Microsoft.Contracts (latest version) and plugging it on top of a sample interface and right now it looks like this: namespace iRMA2.Core.Interfaces { using System; using System.Collections.Generic; using System.ComponentModel.Composition; using System.Diagnostics.Contracts; /// <summary> /// Base Interface declarations for iRMA2 Extensions /// </summary> [InheritedExport] [ContractClass(typeof(IiRMA2ExtensionContract))] public interface IiRMA2Extension { /// <summary> /// Gets the name. /// </summary> /// <value>The name of the Extension.</value> string Name { get; } /// <summary> /// Gets the description. /// </summary> /// <value>The description.</value> string Description { get; } /// <summary> /// Gets the author of the extension. Please provide complete information to get in touch with author(s) and the corresponding department /// </summary> /// <value>The author of the extensions.</value> string Author { get; } /// <summary> /// Gets the major version. /// </summary> /// <value>The major version of the extension.</value> int MajorVersion { get; } /// <summary> /// Gets the minor version. /// </summary> /// <value>The minor version.</value> int MinorVersion { get; } /// <summary> /// Gets the build number. /// </summary> /// <value>The build number.</value> int BuildNumber { get; } /// <summary> /// Gets the revision. /// </summary> /// <value>The revision.</value> int Revision { get; } /// <summary> /// Gets the depends on. /// </summary> /// <value>The dependencies to other <c>IiRMA2Extension</c> this one has.</value> IList<IiRMA2Extension> DependsOn { get; } } /// <summary> /// Contract class for <c>IiRMA2Extension</c> /// </summary> [ContractClassFor(typeof(IiRMA2Extension))] internal sealed class IiRMA2ExtensionContract : IiRMA2Extension { #region Implementation of IiRMA2Extension /// <summary> /// Gets or sets the name. /// </summary> /// <value>The name of the Extension.</value> public string Name { get { Contract.Ensures(!String.IsNullOrEmpty(Contract.Result<string>())); return default(string); } set { Contract.Requires(value != null); } } /// <summary> /// Gets the description. /// </summary> /// <value>The description.</value> public string Description { get { throw new NotImplementedException(); } } /// <summary> /// Gets the author of the extension. Please provide complete information to get in touch with author(s) and the corresponding department /// </summary> /// <value>The author of the extensions.</value> public string Author { get { throw new NotImplementedException(); } } /// <summary> /// Gets the major version. /// </summary> /// <value>The major version of the extension.</value> public int MajorVersion { get { throw new NotImplementedException(); } } /// <summary> /// Gets the minor version. /// </summary> /// <value>The minor version.</value> public int MinorVersion { get { throw new NotImplementedException(); } } /// <summary> /// Gets the build number. /// </summary> /// <value>The build number.</value> public int BuildNumber { get { throw new NotImplementedException(); } } /// <summary> /// Gets the revision. /// </summary> /// <value>The revision.</value> public int Revision { get { throw new NotImplementedException(); } } /// <summary> /// Gets the Extensions this one depends on. /// </summary> /// <value>The dependencies to other <c>IiRMA2Extension</c> this one has.</value> public IList<IiRMA2Extension> DependsOn { get { Contract.Ensures(Contract.Result<IList<IiRMA2Extension>>() != null); return default(IList<IiRMA2Extension>); } } #endregion } } Now why are the two Contract.Ensures(...) 'blured' out visually with the tooltip saying "Method Invocation skipped. Compiler will generate method invocation because the method is conditional or it is partial method without implementation" and in fact the CodeContracts output does not count/show them... What am I missing & doing wrong here? -J

    Read the article

  • 405: Method Not Allowed WCF

    - by luiscarlosch
    I can perfectly call a WCF web method from localhost. I published to this server: http://luiscarlosch.com/WebFormClean.aspx (only firefox or chrome) with the Visual Studio publishing tool and it works fine. The problem is when a try to access it from another computer. I get the 405: Method Not Allowed. But It doest make sense because It works fine when i access it remotely from the publisher computer as I said. Any idea? [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class ContactProxy { [WebGet()] [OperationContract] public Contact getByID(int IDContact) { Contact contact = new Contact(IDContact); return contact; } [OperationContract] public EntityData insertEntityData(int IDEntityDataFieldType, int IDContact, String value) { //Contact contact = new Contact(); // contact.insertEntityData(IDEntityDataFieldType, IDContact, value); EntityData entityData = new EntityData(); entityData.save(IDEntityDataFieldType, IDContact, value); return entityData; } } Neither method seems to work. I just noticed some user were able to access http://luiscarlosch.com/WebFormClean.aspx because they change the values. So. some clients can read the methods but some cant. This should be happening. Web Config <?xml version="1.0"?> <configuration> <configSections> </configSections> <connectionStrings> <add name="ApplicationServices" connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\aspnetdb.mdf;User Instance=true" providerName="System.Data.SqlClient" /> </connectionStrings> <system.web> <compilation debug="true" targetFramework="4.0" /> <customErrors mode="Off"/> <authentication mode="Forms"> <forms loginUrl="~/Account/Login.aspx" timeout="2880" /> </authentication> <membership> <providers> <clear/> <add name="AspNetSqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider" connectionStringName="ApplicationServices" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" applicationName="/" /> </providers> </membership> <profile> <providers> <clear/> <add name="AspNetSqlProfileProvider" type="System.Web.Profile.SqlProfileProvider" connectionStringName="ApplicationServices" applicationName="/"/> </providers> </profile> <roleManager enabled="false"> <providers> <clear/> <add name="AspNetSqlRoleProvider" type="System.Web.Security.SqlRoleProvider" connectionStringName="ApplicationServices" applicationName="/" /> <add name="AspNetWindowsTokenRoleProvider" type="System.Web.Security.WindowsTokenRoleProvider" applicationName="/" /> </providers> </roleManager> </system.web> <system.webServer> <modules runAllManagedModulesForAllRequests="true"/> </system.webServer> <system.serviceModel> <behaviors> <serviceBehaviors> <behavior name="MyServiceTypeBehaviors" > <serviceMetadata httpGetEnabled="true" /> </behavior> </serviceBehaviors> <endpointBehaviors> <behavior name="WebApplicationTest.WCFProxy.EmployeeProxyAspNetAjaxBehavior"> <enableWebScript /> </behavior> <behavior name="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxyAspNetAjaxBehavior"> <enableWebScript /> </behavior> <behavior name="WebApplicationTest.WCFProxy.Service1AspNetAjaxBehavior"> <enableWebScript /> </behavior> <behavior name="WebApplicationTest.WCFProxy.ContactProxyAspNetAjaxBehavior"> <enableWebScript /> </behavior> </endpointBehaviors> </behaviors> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> <services> <service name="WebApplicationTest.WCFProxy.EmployeeProxy" behaviorConfiguration="MyServiceTypeBehaviors" > <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.EmployeeProxyAspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.EmployeeProxy" /> <endpoint contract="IMetadataExchange" binding="mexHttpBinding" address="mex" /> </service> <service name="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxy" behaviorConfiguration="MyServiceTypeBehaviors" > <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxyAspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxy" /> <endpoint contract="IMetadataExchange" binding="mexHttpBinding" address="mex" /> </service> <service name="WebApplicationTest.WCFProxy.Service1"> <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.Service1AspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.Service1" /> </service> <service name="WebApplicationTest.WCFProxy.ContactProxy" behaviorConfiguration="MyServiceTypeBehaviors" ><!--new--> <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.ContactProxyAspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.ContactProxy" /> <endpoint contract="IMetadataExchange" binding="mexHttpBinding" address="mex" /> </service> </services> <bindings /> <client /> </system.serviceModel> </configuration>

    Read the article

  • Tips on installing Visual Studio 2010 SP1

    - by Jon Galloway
    Visual Studio SP1 went up on MSDN downloads (here) on March 8, and will be released publicly on March 10 here. Release announcements: Soma: Visual Studio 2010 enhancements Jason Zander: Announcing Visual Studio 2010 Service Pack 1 I started on this post with tips on installing VS2010 SP1 when I realized I’ve been writing these up for Visual Studio and .NET framework SP releases for a while (e.g. VS2008 / .NET 3.5 SP1 post, VS2005 SP1 post). Looking back the years of Visual Studio SP installs (and remembering when we’d get up to SP6 for a Visual Studio release), I’m happy to see that it just keeps getting easier. Service Packs are a lot less finicky about requiring beta software to be uninstalled, install more quickly, and are just generally a lot less scary. If I can’t have a jetpack, at least my future provided me faster, easier service packs. Disclaimer: These tips are just general things I've picked up over the years. I don't have any inside knowledge here. If you see anything wrong, be sure to let me know in the comments. You may want to check the readme file before installing - it's short, and it's in that new-fangled HTML format. On with the tips! Before starting, uninstall Visual Studio features you don't use Visual Studio service packs (and other Microsoft service packs as well) install patches for the specific features you’ve got installed. This is a big reason to always do a custom install when you first install Visual Studio, but it’s not difficult to update your existing installation. Here’s the quick way to do that: Tap the windows key and type “add or remove programs” and press enter (or click on the “Add or remove programs” link if you must).   Type “Visual Studio 2010” in the search box in the upper right corner, click on the Visual Studio program (the one with the VS infinity looking logo) and click on Uninstall/Change. Click on Add or Remove Features The next part’s up to you – what features do you actually use? I’ve been doing primarily ASP.NET MVC development in C# lately, so I selected Visual C# and Visual Web Developer. Remember that you can install features later if needed, and can also install the express versions if you want. Selecting everything just because it’s there - or you paid for it – means that you install updates for everything, every time. When you’ve made your changes, click on the Update button to uninstall unused features. Shut down all instances of Visual Studio It probably goes without saying that you should close a program down before installing it, partly to avoid the file-in-use-reboot-after-install horror. Additional "hunch / works on my machine" quality tip: On one computer I saw a note in the setup log about Visual Studio a prompt for user input to close Visual Studio, although I never saw the prompt. Just to  be sure, I'd personally open up Task Manager and kill any devenv.exe processes I saw running, as it couldn't hurt. Use the web installer I use the Web Installers whenever possible. There’s no point in downloading the DVD unless you’re doing multiple installs or won’t have internet access. The DVD IS is 1.5GB, since it needs to be able to service every possible supported installation option on both x86 and x64. The web installer is 776 KB (smaller than calc.exe), so you can start the installation right away. Like other web installers, the real benefit is that it only installs the updates you need (hence the reason for step 1 – uninstalling unused components). Instead of 1.5GB, my download was roughly 530MB. If you’re installing from MSDN (this link takes you right to the Visual Studio installs), select the first one on the list: The first step in the installation process is to analyze the machine configuration and tell you what needs to be installed. Since I've trimmed down my features, that's a pretty short list. The time's not far off where I may not install SQL Server on my dev machines, just using SQL Server Compact - that would shorten the list further. When I hit next, you can see that the download size has shrunk considerably. When I start the install, note that the installation begins while other components are downloading - another benefit of the web install. On my mid-range desktop machine, the install took 25 minutes. What if it takes longer? According to Heath Stewart (Visual Studio installer guru), average SP1 installs take roughly 45 minutes. An installation which takes hours to complete may be a sign of a problem: see his post Visual Studio 2010 Service Pack 1 installing for over 2 hours could be a sign of a problem. Why so long? Yes, even 25 minutes is a while. Heath's got another blog post explaining why the update can take longer than the initial install (see: A patch may take as long or longer to install than the target product) which explains all the additional steps and complexities a patch needs to deal with, as well as some mitigation steps that deployment authors can take to mitigate the impact. Other things to know about Visual Studio 2010 SP1 Installs over Visual Studio 2010 SP1 Beta That's nice. Previous Visual Studio versions did a number of annoying things when you installed SP's over beta's - fail with weird errors, get part way through and tell you needed to cancel and uninstall first, etc. I've installed this on two machines that had random beta stuff installed without tears. That Readme file you didn't read I mentioned the readme file earlier (http://go.microsoft.com/fwlink/?LinkId=210711 ). Some interesting things I picked up in there: 2.1.3. Visual Studio 2010 Service Pack 1 installation may fail when a USB drive or other removeable drive is connected 2.1.4. Visual Studio must be restarted after Visual Studio 2010 SP1 tooling for SQL Server Compact (Compact) 4.0 is installed 2.2.1. If Visual Studio 2010 Service Pack 1 is uninstalled, Visual Studio 2010 must be reinstalled to restore certain components 2.2.2. If Visual Studio 2010 Service Pack 1 is uninstalled, Visual Studio 2010 must be reinstalled before SP1 can be installed again 2.4.3.1. Async CTP If you installed the pre-SP1 version of Async CTP but did not uninstall it before you installed Visual Studio 2010 SP1, then your computer will be in a state in which the version of the C# compiler in the .NET Framework does not match the C# compiler in Visual Studio. To resolve this issue: After you install Visual Studio 2010 SP1, reinstall the SP1 version of the Async CTP from here. Hardware acceleration for Visual Studio is disabled on Windows XP Visual Studio 2010 SP1 disables hardware acceleration when running on Windows XP (only on XP). You can turn it back on in the Visual Studio options, under Environment / General, as shown below. See Jason Zander's post titled Performance Troubleshooting Article and VS2010 SP1 Change.

    Read the article

  • Cryptographic Validation Explained

    - by MarkPearl
    We have been using LogicNP’s CryptoLicensing for some of our software and I was battling to understand how exactly the whole process worked. I was sent the following document which really helped explain it – so if you ever use the same tool it is well worth a read. Licensing Basics LogicNP CryptoLicensing For .Net is the most advanced and state-of-the art licensing and copy protection system you can use for your software. LogicNP CryptoLicensing System uses the latest cryptographic technology to generate and validate licenses. The cryptographic algorithm used is the RSA algorithm which consists of a pair of keys called as the generation key and the validation key. Data encrypted using the generation key can only be decrypted using the corresponding validation key. How does cryptographic validation work? When a new license project is created, a unique validation-generation key pair is created for the project. When LogicNP CryptoLicensing For .Net generates licenses, it encrypts the license settings using the generation key. The validation key can be safely distributed with your software and is used during validation. During license validation, LogicNP CryptoLicensing For .Net attempts to decrypt the encrypted license code using the validation key. If the decryption is successful, this means that the data was encrypted using the generation key, since only the corresponding validation key can decrypt data encrypted with the generation key. This further means that not only is the license valid but that it was generated by you and only you since nobody else has access to the generation key. Generation Key This key is used by CryptoLicensing Generator to generate encrypted license codes. This key is stored in the license project file, so the license project file must be kept secure and confidential and must be accorded the same care as any other critical asset such as source code. Validation Key This key is used for validating generated license codes. It is the same key displayed in the 'Get Validation Key And Code' dialog (Ctrl+K) and is used by your software when validating license codes (using LogicNP.CryptoLicensing.dll). Unlike the generation key, it is not necessary to keep this key secure and confidential. Note that the generation key pair is stored in the project file created by LogicNP CryptoLicensing For .Net, so it is very important to backup this file and to keep it secure. Once the file is lost, it is not possible to retrieve the key pair. FAQ Do I use the same validation key to validate all license codes? Yes, the validation key (and generation key) for the project remains the same; you use the same key to validate all license codes generated using the project. You can retrieve the validation key using the "Project" menu --> "Get Validation Key & Code" menu item. Can license codes generated using generation key from one project be validated using validation key of another project? No! Q. Is every generated license code unique? A. Yes, every license code generated by CryptoLicensing is guaranteed to be unique, even if you generate thousands of codes at a time. Q. What makes CryptoLicensing so secure? A. CryptoLicensing uses the latest cryptographic technology to generate and validate licenses. The cryptographic algorithm used is the RSA asymmetric key algorithm which can use upto 3072-bit keys. Given current computing power, it takes years to break a 3072-bit key. Q. Is is possible for a hacker to develop a keygen for my software? A. Impossible. The cryptographic algorithm used by CryptoLicensing consists of a pair of keys called as the generation key and the validation key. Data encrypted with one key can only be decrypted by the other key and vice versa. Licenses are generated using the generation key and validated using the validation key. Without the generation key, it is impossible to generate valid licenses. Q. What is the difference between validation key and generation key? Generation Key This key is used by CryptoLicensing Generator to generate encrypted license codes. This key is stored in the license project file, so the license project file must be kept secure and confidential and must be accorded the same care as any other critical asset such as source code. Validation Key This key is used for validating generated license codes. It is the same key displayed in the 'Get Validation Key And Code' dialog (Ctrl+K) and is used by your software when validating license codes (using LogicNP.CryptoLicensing.dll). Unlike the generation key, it is not necessary to keep this key secure and confidential. Q. Do I have to include the license project file (.licproj) with my software? A. No!!! This goes against the very essence of the security of the asymmetric cryptographic scheme because the project file contains both the validation and generation key. With your software, you only need to include the validation key which will be used to validate licenses generated by CryptoLicensing using the generation key. The license project file should be treated as any other valuable and confidential asset such as your source code. Q. Does the license service need the license project file? A. Yes. The license project file is needed whenever new licenses are generated (via the UI, via the API or via the license service). As just one example, the license service generates new machine-locked licenses when activated licenses are presented to it for activation, therefore the license service needs the license project file. Q. Is it possible to embed my own data in the generated licenses? A. Yes. You can embed any amount of additional data in the licenses. This data will have the same amount of security as the license code itself and will be tamper-proof. The embedded user data can be retrieved from your software. Q. What additional steps can I take to ensure that my software does not get cracked? A. There are many methods and techniques which can make it extremely difficult for a hacker to crack your software. See Writing Effective License Checking Code And Designing Effective Licenses for more information. Q. Why is the license service not working? A. The most common cause is not setting the CryptoLicense.LicenseServiceURL property before trying to validate a license. Make sure that this property is set to the correct URL where your license service is hosted. The most common cause after this is that the license project file on the web server where your license service is hosted is not the latest. This happens if you make changes to the license project (for example, set the 'Enable With Serials' setting for a profile), but don't upload the updated project file to your web server. Q. Why are my serials not working? Serial codes require the user of a license service. See Using Serial Codes for more details. Also see the earlier question 'Why is the license service not working?' Q. Is the same validation key used to validate license codes generated from different profiles. A. Yes. Profiles are just pre specified license settings for quickly generating licenses having those settings. The actual license code is still generated using the license project's cryptographic generation key and thus, can be validated using the project's validation key. Q. Why are changes made to a profile not getting saved? A. Simply changing license settings via UI and saving the license project does not save those license settings to the active profile. You must first save the license settings to a profile using the Save/Save As command from the Profiles menu (see above). Q. Why is validation of activated licenses failing from CryptoLicensing Generator, but works from my software? A. Make sure that you have specified the URL of the license service using the Project Properties Dialog. Also see the earlier question 'Why is the license service not working?' Q. How can I extend the trial period of my customer? A. To extend the evaluation period of the customer, simply send him a new license code specifying the desired evaluation limits. Evaluation information such as the current used days, executions, etc are stored in garbled form in a registry location which is derived from the license code. Therefore, when a new license code is used, the old evaluation information will not be used and a new evaluation period will be started.

    Read the article

  • Thinktecture.IdentityModel: WIF Support for WCF REST Services and OData

    - by Your DisplayName here!
    The latest drop of Thinktecture.IdentityModel includes plumbing and support for WIF, claims and tokens for WCF REST services and Data Services (aka OData). Cibrax has an alternative implementation that uses the WCF Rest Starter Kit. His recent post reminded me that I should finally “document” that part of our library. Features include: generic plumbing for all WebServiceHost derived WCF services support for SAML and SWT tokens support for ClaimsAuthenticationManager and ClaimsAuthorizationManager based solely on native WCF extensibility points (and WIF) This post walks you through the setup of an OData / WCF DataServices endpoint with token authentication and claims support. This sample is also included in the codeplex download along a similar sample for plain WCF REST services. Setting up the Data Service To prove the point I have created a simple WCF Data Service that renders the claims of the current client as an OData set. public class ClaimsData {     public IQueryable<ViewClaim> Claims     {         get { return GetClaims().AsQueryable(); }     }       private List<ViewClaim> GetClaims()     {         var claims = new List<ViewClaim>();         var identity = Thread.CurrentPrincipal.Identity as IClaimsIdentity;           int id = 0;         identity.Claims.ToList().ForEach(claim =>             {                 claims.Add(new ViewClaim                 {                    Id = ++id,                    ClaimType = claim.ClaimType,                    Value = claim.Value,                    Issuer = claim.Issuer                 });             });           return claims;     } } …and hooked that up with a read only data service: public class ClaimsDataService : DataService<ClaimsData> {     public static void InitializeService(IDataServiceConfiguration config)     {         config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);     } } Enabling WIF Before you enable WIF, you should generate your client proxies. Afterwards the service will only accept requests with an access token – and svcutil does not support that. All the WIF magic is done in a special service authorization manager called the FederatedWebServiceAuthorizationManager. This code checks incoming calls to see if the Authorization HTTP header (or X-Authorization for environments where you are not allowed to set the authorization header) contains a token. This header must either start with SAML access_token= or WRAP access_token= (for SAML or SWT tokens respectively). For SAML validation, the plumbing uses the normal WIF configuration. For SWT you can either pass in a SimpleWebTokenRequirement or the SwtIssuer, SwtAudience and SwtSigningKey app settings are checked.If the token can be successfully validated, ClaimsAuthenticationManager and ClaimsAuthorizationManager are invoked and the IClaimsPrincipal gets established. The service authorization manager gets wired up by the FederatedWebServiceHostFactory: public class FederatedWebServiceHostFactory : WebServiceHostFactory {     protected override ServiceHost CreateServiceHost(       Type serviceType, Uri[] baseAddresses)     {         var host = base.CreateServiceHost(serviceType, baseAddresses);           host.Authorization.ServiceAuthorizationManager =           new FederatedWebServiceAuthorizationManager();         host.Authorization.PrincipalPermissionMode = PrincipalPermissionMode.Custom;           return host;     } } The last step is to set up the .svc file to use the service host factory (see the sample download). Calling the Service To call the service you need to somehow get a token. This is up to you. You can either use WSTrustChannelFactory (for the full CLR), WSTrustClient (Silverlight) or some other way to obtain a token. The sample also includes code to generate SWT tokens for testing – but the whole WRAP/SWT support will be subject of a separate post. I created some extensions methods for the most common web clients (WebClient, HttpWebRequest, DataServiceContext) that allow easy setting of the token, e.g.: public static void SetAccessToken(this DataServiceContext context,   string token, string type, string headerName) {     context.SendingRequest += (s, e) =>     {         e.RequestHeaders[headerName] = GetHeader(token, type);     }; } Making a query against the Data Service could look like this: static void CallService(string token, string type) {     var data = new ClaimsData(new Uri("https://server/odata.svc/"));     data.SetAccessToken(token, type);       data.Claims.ToList().ForEach(c =>         Console.WriteLine("{0}\n {1}\n ({2})\n", c.ClaimType, c.Value, c.Issuer)); } HTH

    Read the article

  • Life Technologies: Making Life Easier to Manage

    - by Michael Snow
    12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} When we’re thinking about customer engagement, we’re acutely aware of all the forces at play competing for our customer’s attention. Solutions that make life easier for our customers draw attention to themselves. We tend to engage more when there is a distinct benefit and we can take a deep breath and accept that there is hope in the world and everything isn’t designed to frustrate us and make our lives miserable. (sigh…) When products are designed to automate processes that were consuming hours of our time with no relief in sight, they deserve to be recognized. One of our recent Oracle Fusion Middleware Innovation Award Winners in the WebCenter category, Life Technologies, has recently posted a video promoting their “award winning” solution. The Oracle Innovation Awards are part of the overall Oracle Excellence awards given to customers for innovation with Oracle products. More info here. Their award nomination included this description: Life Technologies delivered the My Life Service Portal as part of a larger Digital Hub strategy. This Portal is the first of its kind in the biotechnology service providing industry. The Portal provides access to Life Technologies cloud based service monitoring system where all customer deployed instruments can be remotely monitored and proactively repaired. The portal provides alerts from these cloud based monitoring services directly to the customer and to Life Technologies Field Engineers. The Portal provides insight into the instruments and services customers purchased for the purpose of analyzing and anticipating future customer needs and creating targeted sales and service programs. This portal not only provides benefits for Life Technologies internal sales and service teams but provides customers a central place to track all pertinent instrument information including: instrument service history instrument status and previous activities instrument performance analytics planned service visits warranty/contract information discussion forums social networks for lab management and collaboration alerts and notifications on all of the above team scheduling for instrument usage promote optional reagents required to keep instruments performing From their website The Life Technologies Instruments & Services Portal Helps You Save Time and Gain Peace of Mind Introducing the new, award-winning, free online tool that enables easier management of your instrument use and care, faster response to requests for service or service quotes, and instant sharing of key instrument and service information with your colleagues. Now – this unto itself is obviously beneficial for their customers who were previously burdened with having to do all of these tasks separately, manually and inconsistently by nature. Now – all in one place and free to their customers – a portal that ties it all together. They now have built the platform to give their customers yet another reason to do business with them – Their headline on their product page says it all: “Life is now easier to manage - All your instrument use and care in one place – the no-cost, no-hassle Instruments and Services Portal.” Of course – it’s very convenient that the company name includes “Life” and now can also promote to their clients and prospects that doing business with them is easy and their sophisticated lab equipment is easy to manage. In an industry full of PhD’s – “Easy” isn’t usually the first word that comes to mind, but Life Technologies has now tied the word to their brand in a very eloquent way. Between our work lives and family or personal lives, getting any mono-focused minutes of dedicated attention has become such a rare occurrence in our current era of multi-tasking that those moments of focus are highly prized. So – when something is done really well – so well that it becomes captivating and urges sharing impulses – I take notice and dig deeper and most of the time I discover other gems not so hidden below the surface. And then I share with those I know would enjoy and understand. In the spirit of full disclosure, I must admit here that the first person I shared the videos below with was my daughter. She’s in her senior year of high school in the midst of her college search. She’s passionate about her academics and has already decided that she wants to study Neuroscience in college and like her mother will be in for the long haul to a PhD eventually. In a summer science program at Smith College 2 summers ago – she sent the family famous text to me – “I just dissected a sheep’s brain – wicked cool!” – This was followed by an equally memorable text this past summer in a research mentorship in Neuroscience at UConn – “Just sliced up some rat brain. Reminded me of a deli slicer at the supermarket… sorry I forgot to call last night…” So… needless to say – I knew I had an audience that would enjoy and understand these videos below and are now being shared among her science classmates and faculty. And evidently - so does Life Technologies! They’ve done a great job on these making them fun and something that will easily be shared among their customers social networks. They’ve created a neuro-archetypal character, “Ph.Diddy” and know that their world of clients in academics, research, and other institutions would understand and enjoy the “edutainment” value in this series of videos on their YouTube channel that pokes fun at the stereotypes while also promoting their products at the same time. They use their Facebook page for additional engagement with their clients and as another venue to promote these videos. Enjoy this one as well! More to be found here: http://www.youtube.com/lifetechnologies Stay tuned to this Oracle WebCenter blog channel. Tomorrow we'll be taking a look at another winner of the Innovation Awards, LADWP - helping to keep the citizens of Los Angeles engaged with their Water and Power provider.

    Read the article

  • Windows Azure Evolution - Web Sites (aka Antares) Part 1

    - by Shaun
    This is the 3rd post of my Windows Azure Evolution series, focus on the new features and enhancement which was alone with the Windows Azure Platform Upgrade June 2012, announced at the MEET Windows Azure event on 7th June. In the first post I introduced the new preview developer portal and how to works for the existing features such as cloud services, storages and SQL databases. In the second one I talked about the Windows Azure .NET SDK 1.7 on the latest Visual Studio 2012 RC on Windows 8. From this one I will begin to introduce some new features. Now let’s have a look on the first one of them, Windows Azure Web Sites.   Overview Windows Azure Web Sites (WAWS), as known as Antares, was a new feature still in preview stage in this upgrade. It allows people to quickly and easily deploy websites to a highly scalable cloud environment, uses the languages and open source apps of the choice then deploy such as FTP, Git and TFS. It also can be integrated with Windows Azure services like SQL Database, Caching, CDN and Storage easily. After read its introduction we may have a question: since we can deploy a website from both cloud service web role and web site, what’s the different between them? So, let’s have a quick compare.   CLOUD SERVICE WEB SITE OS Windows Server Windows Server Virtualization Windows Azure Virtual Machine Windows Azure Virtual Machine Host IIS IIS Platform ASP.NET WebForm, ASP.NET MVC, WCF ASP.NET WebForm, ASP.NET MVC, PHP Language C#, VB.NET C#, VB.NET, PHP Database SQL Database SQL Database, MySQL Architecture Multi layered, background worker, message queuing, etc.. Simple website with backend database. VS Project Windows Azure Cloud Service ASP.NET Web Form, ASP.NET MVC, etc.. Out-of-box Gallery (none) Drupal, DotNetNuke, WordPress, etc.. Deployment Package upload, Visual Studio publish FTP, Git, TFS, WebMatrix Compute Mode Dedicate VM Shared Across VMs, Dedicate VM Scale Scale up, scale out Scale up, scale out As you can see, there are many difference between the cloud service and web site, but the main point is that, the cloud service focus on those complex architecture web application. For example, if you want to build a website with frontend layer, middle business layer and data access layer, with some background worker process connected through the message queue, then you should better use cloud service, since it provides full control of your code and application. But if you just want to build a personal blog or a  business portal, then you can use the web site. Since the web site have many galleries, you can create them even without any coding and configuration. David Pallmann have an awesome figure explains the benefits between the could service, web site and virtual machine.   Create a Personal Blog in Web Site from Gallery As I mentioned above, one of the big feature in WAWS is to build a website from an existing gallery, which means we don’t need to coding and configure. What we need to do is open the windows azure developer portal and click the NEW button, select WEB SITE and FROM GALLERY. In the popping up windows there are many websites we can choose to use. For example, for personal blog there are Orchard CMS, WordPress; for CMS there are DotNetNuke, Drupal 7, mojoPortal. Let’s select WordPress and click the next button. The next step is to configure the web site. We will need to specify the DNS name and select the subscription and region. Since the WordPress uses MySQL as its backend database, we also need to create a MySQL database as well. Windows Azure Web Sites utilize ClearDB to host the MySQL databases. You cannot create a MySQL database directly from SQL Databases section. Finally, since we selected to create a new MySQL database we need to specify the database name and region in the last step. Also we need to accept the ClearDB’s terms as well. Then windows azure platform will download the WordPress codes and deploy the MySQL database and website. Then it will be ready to use. Select the website and click the BROWSE button, the WordPress administration page will be shown. After configured the WordPress here is my personal web blog on the cloud. It took me no more than 10 minutes to establish without any coding.   Monitor, Configure, Scale and Linked Resources Let’s click into the website I had just created in the portal and have a look on what we can do. In the website details page where are five sections. - Dashboard The overall information about this website, such as the basic usage status, public URL, compute mode, FTP address, subscription and links that we can specify the deployment credentials, TFS and Git publish setting, etc.. - Monitor Some status information such as the CPU usage, memory usage etc., errors, etc.. We can add more metrics by clicking the ADD METRICS button and the bottom as well. - Configure Here we can set the configurations of our website such as the .NET and PHP runtime version, diagnostics settings, application settings and the IIS default documents. - Scale This is something interesting. In WAWS there are two compute mode or called web site mode. One is “shared”, which means our website will be shared with other web sites in a group of windows azure virtual machines. Each web site have its own process (w3wp.exe) with some sandbox technology to isolate from others. When we need to scaling-out our web site in shared mode, we actually increased the working process count. Hence in shared mode we cannot specify the virtual machine size since they are shared across all web sites. This is a little bit different than the scaling mode of the cloud service (hosted service web role and worker role). The other mode called “dedicate”, which means our web site will use the whole windows azure virtual machine. This is the same hosting behavior as cloud service web role. In web role it will be deployed on the virtual machines we specified and all of them are only used by us. In web sites dedicate mode, it’s the same. In this mode when we scaling-out our web site we will use more virtual machines, and each of them will only host our own website. And we can specify the virtual machine size in this mode. In the developer portal we can select which mode we are using from the scale section. In shared mode we can only specify the instance count, but in dedicate mode we can specify the instance size as well as the instance count. - Linked Resource The MySQL database created alone with the creation of our WordPress web site is a linked resource. We can add more linked resources in this section.   Pricing For the web site itself, since this feature is in preview period if you are using shared mode, then you will get free up to 10 web sites. But if you are using dedicate mode, the price would be the virtual machines you are using. For example, if you are using dedicate and configured two middle size virtual machines then you will pay $230.40 per month. If there is SQL Database linked to your web site then they will be charged separately based on the Pay-As-You-Go price. For example a 1GB web edition database costs $9.99 per month. And the bandwidth will be charged as well. For example 10GB outbound data transfer costs $1.20 per month. For more information about the pricing please have a look at the windows azure pricing page.   Summary Windows Azure Web Sites gives us easier and quicker way to create, develop and deploy website to window azure platform. Comparing with the cloud service web role, the WAWS have many out-of-box gallery we can use directly. So if you just want to build a blog, CMS or business portal you don’t need to learn ASP.NET, you don’t need to learn how to configure DotNetNuke, you don’t need to learn how to prepare PHP and MySQL. By using WAWS gallery you can establish a website within 10 minutes without any lines of code. But in some cases we do need to code by ourselves. We may need to tweak the layout of our pages, or we may have a traditional ASP.NET or PHP web application which needed to migrated to the cloud. Besides the gallery WAWS also provides many features to download, upload code. It also provides the feature to integrate with some version control services such as TFS and Git. And it also provides the deploy approaches through FTP and Web Deploy. In the next post I will demonstrate how to use WebMatrix to download and modify the website, and how to use TFS and Git to deploy automatically one our code changes committed.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • HTML5-MVC application using VS2010 SP1

    - by nmarun
    This is my first attempt at creating HTML5 pages. VS 2010 allows working with HTML5 now (you just need to make a small change after installing SP1). So my Razor view is now a HTML5 page. I call this application - 5Commerce – (an over-simplified) HTML5 ECommerce site. So here’s the flow of the application: home page renders user enters first and last name, chooses a product and the quantity can enter additional instructions for the order place the order user is then taken to another page showing the order details Off to the details. This is what my page looks in Google Chrome 10 beta (or later) soon after it renders. Here are some of the things to observe on this. Look a little closer and you’ll see a border around the first name textbox – this is ‘autofocus’ in action. I’ve set the autofocus attribute on this textbox. So as soon as the page loads, this control gets focus. 1: <input type="text" autofocus id="firstName" class="inputWidth" data_minlength="" 2: data_maxlength="" placeholder="first name" /> See a partially grayed out ‘last name’ text in the second textbox. This is set using a placeholder attribute (see above). It gets wiped out on-focus and improves the UI visuals in general. The quantity textbox is actually a numerical-only textbox. 1: <input type="number" id="quantity" data_mincount="" class="inputWidth" /> The last line is for additional instructions. This looks like a label but it’s content is editable. Just adding the ‘contenteditable’ attribute to the span allow the user to edit the text inside. 1: <span contenteditable id="additionalInstructions" data_texttype="" class="editableContent">select text and edit </span> All of the above is just plain HTML (no lurking javascript acting in here). Makes it real clean and simple. Going more into the HTML, I see that the _Layout.cshtml already is using some HTML5 content. I created my project before installing SP1, so that was the reason for my surprise. 1: <!DOCTYPE html> This is the doctype declaration in HTML5 and this is supported even by IE6 (just take my word on IE6 now, don’t go install it to test it, especially when MS is doing an IE6 countdown). That’s just amazing and extremely easy to read remember and talk about a few less bytes on every call! I modified the rest of my _Layout.cshtml to the below: 1: <!DOCTYPE html> 2: <html> 3: <head> 4: <title>5Commerce - HTML 5 Ecommerce site</title> 5: <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> 6: <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript"></script> 7: <script src="@Url.Content("~/Scripts/CustomScripts.js")" type="text/javascript"></script> 8: <script type="text/javascript"> 9: $(document).ready(function () { 10: WireupEvents(); 11: }); 12:</script> 13:  14: </head> 15:  16: <body role="document" class="bodybackground"> 17: <header role="heading"> 18: <h2>5Commerce - HTML 5 Ecommerce site!</h2> 19: </header> 20: <section id="mainForm"> 21: @RenderBody() 22: </section> 23: <footer id="page_footer" role="siteBaseInfo"> 24: <p>&copy; 2011 5Commerce Inc!</p> 25: </footer> 26: </body> 27: </html> I’m sure you’re seeing some of the new tags here. To give a brief intro about them: <header>, <footer>: Marks the header/footer region of a page or section. <section>: A logical grouping of content role attribute: Identifies the responsibility of an element. This attribute can be used by screen readers and can also be filtered through jQuery. SP1 also allows for some intellisense in HTML5. You see the other types of input fields – email, date, datetime, month, url and there are others as well. So once my page loads, i.e., ‘on document ready’, I’m wiring up the events following the principles of unobtrusive javascript. In the snippet below, I’m controlling the behavior of the input controls for specific events. 1: $("#productList").bind('change blur', function () { 2: IsSelectedProductValid(); 3: }); 4:  5: $("#quantity").bind('blur', function () { 6: IsQuantityValid(); 7: }); 8:  9: $("#placeOrderButton").click( 10: function () { 11: if (IsPageValid()) { 12: LoadProducts(); 13: } 14: }); This enables some client-side validation to occur before the data is sent to the server. These validation constraints are obtained through a JSON call to the WCF service and are set to the ‘data_’ attributes of the input controls. Have a look at the ‘GetValidators()’ function below: 1: function GetValidators() { 2: // the post to your webservice or page 3: $.ajax({ 4: type: "GET", //GET or POST or PUT or DELETE verb 5: url: "http://localhost:14805/OrderService.svc/GetValidators", // Location of the service 6: data: "{}", //Data sent to server 7: contentType: "application/json; charset=utf-8", // content type sent to server 8: dataType: "json", //Expected data format from server 9: processdata: true, //True or False 10: success: function (result) {//On Successfull service call 11: if (result.length > 0) { 12: for (i = 0; i < result.length; i++) { 13: if (result[i].PropertyName == "FirstName") { 14: if (result[i].MinLength > 0) { 15: $("#firstName").attr("data_minLength", result[i].MinLength); 16: } 17: if (result[i].MaxLength > 0) { 18: $("#firstName").attr("data_maxLength", result[i].MaxLength); 19: } 20: } 21: else if (result[i].PropertyName == "LastName") { 22: if (result[i].MinLength > 0) { 23: $("#lastName").attr("data_minLength", result[i].MinLength); 24: } 25: if (result[i].MaxLength > 0) { 26: $("#lastName").attr("data_maxLength", result[i].MaxLength); 27: } 28: } 29: else if (result[i].PropertyName == "Quantity") { 30: if (result[i].MinCount > 0) { 31: $("#quantity").attr("data_minCount", result[i].MinCount); 32: } 33: } 34: else if (result[i].PropertyName == "AdditionalInstructions") { 35: if (result[i].TextType.length > 0) { 36: $("#additionalInstructions").attr("data_textType", result[i].TextType); 37: } 38: } 39: } 40: } 41: }, 42: error: function (result) {// When Service call fails 43: alert('Service call failed: ' + result.status + ' ' + result.statusText); 44: } 45: }); 46:  47: //.... 48: } Just before the GetValidators() function runs and sets the validation constraints, this is what the html looks like (seen through the Dev tools of Chrome): After the function executes, you see the values in the ‘data_’  attributes. As and when we enter valid data into these fields, the error messages disappear, since the validation is bound to the blur event of the control. There you see… no error messages (well, the catch here is that once you enter THAT name, all errors disappear automatically). Clicking on ‘Place Order!’ runs the SaveOrder function. You can see the JSON for the order object that is getting constructed and passed to the WCF Service. 1: function SaveOrder() { 2: var addlInstructionsDefaultText = "select text and edit"; 3: var addlInstructions = $("span:first").text(); 4: if(addlInstructions == addlInstructionsDefaultText) 5: { 6: addlInstructions = ''; 7: } 8: var orderJson = { 9: AdditionalInstructions: addlInstructions, 10: Customer: { 11: FirstName: $("#firstName").val(), 12: LastName: $("#lastName").val() 13: }, 14: OrderedProduct: { 15: Id: $("#productList").val(), 16: Quantity: $("#quantity").val() 17: } 18: }; 19:  20: // the post to your webservice or page 21: $.ajax({ 22: type: "POST", //GET or POST or PUT or DELETE verb 23: url: "http://localhost:14805/OrderService.svc/SaveOrder", // Location of the service 24: data: JSON.stringify(orderJson), //Data sent to server 25: contentType: "application/json; charset=utf-8", // content type sent to server 26: dataType: "json", //Expected data format from server 27: processdata: false, //True or False 28: success: function (result) {//On Successfull service call 29: window.location.href = "http://localhost:14805/home/ShowOrderDetail/" + result; 30: }, 31: error: function (request, error) {// When Service call fails 32: alert('Service call failed: ' + request.status + ' ' + request.statusText); 33: } 34: }); 35: } The service saves this order into an XML file and returns the order id (a guid). On success, I redirect to the ShowOrderDetail action method passing the guid. This page will show all the details of the order. Although the back-end weightlifting is done by WCF, I did not show any of that plumbing-work as I wanted to concentrate more on the HTML5 and its associates. However, you can see it all in the source here. I do have one issue with HTML5 and this is an existing issue with HTML4 as well. If you see the snippet above where I’ve declared a textbox for first name, you’ll see the autofocus attribute just dangling by itself. It doesn’t follow the xml syntax of ‘key="value"’ allowing users to continue writing badly-formatted html even in the new version. You’ll see the same issue with the ‘contenteditable’ attribute as well. The work-around is that you can do ‘autofocus=”true”’ and it’ll work fine plus make it well-formatted. But unless the standards enforce this, there will be people (me included) who’ll get by, by just typing the bare minimum! Hoping this will get fixed in the coming version-updates. Source code here. Verdict: I think it’s time for us to embrace the new HTML5. Thank you HTML4 and Welcome HTML5.

    Read the article

  • People, Process & Engagement: WebCenter Partner Keste

    - by Michael Snow
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Within the WebCenter group here at Oracle, discussions about people, process and engagement cross over many vertical industries and products. Amidst our growing partner ecosystem, the community provides us insight into great customer use cases every day. Such is the case with our partner, Keste, who provides us a guest post on our blog today with an overview of their innovative solution for a customer in the transportation industry. Keste is an Oracle software solutions and development company headquartered in Dallas, Texas. As a Platinum member of the Oracle® PartnerNetwork, Keste designs, develops and deploys custom solutions that automate complex business processes. Seamless Customer Self-Service Experience in the Trucking Industry with Oracle WebCenter Portal  Keste, Oracle Platinum Partner Customer Overview Omnitracs, Inc., a Qualcomm company provides mobility solutions for trucking fleets to companies in the transportation industry. Omnitracs’ mobility services include basic communications such as text as well as advanced monitoring services such as GPS tracking, temperature tracking of perishable goods, load tracking and weighting distribution, and many others. Customer Business Needs Already the leading provider of mobility solutions for large trucking fleets, they chose to target smaller trucking fleets as new customers. However their existing high-touch customer support method would not be a cost effective or scalable method to manage and service these smaller customers. Omnitracs needed to provide several self-service features to make customer support more scalable while keeping customer satisfaction levels high and the costs manageable. The solution also had to be very intuitive and easy to use. The systems that Omnitracs sells to these trucking customers require professional installation and smaller customers need to track and schedule the installation. Information captured in Oracle eBusiness Suite needed to be readily available for new customers to track these purchases and delivery details. Omnitracs wanted a high impact User Interface to significantly improve customer experience with the ability to integrate with EBS, provisioning systems as well as CRM systems that were already implemented. Omnitracs also wanted to build an architecture platform that could potentially be extended to other Portals. Omnitracs’ stated goal was to deliver an “eBay-like” or “Amazon-like” experience for all of their customers so that they could reach a much broader market beyond their large company customer base. Solution Overview In order to manage the increased complexity, the growing support needs of global customers and improve overall product time-to-market in a cost-effective manner, IT began to deliver a self-service model. This self service model not only transformed numerous business processes but is also allowing the business to keep up with the growing demands of the (internal and external) customers. This solution was a customer service Portal that provided self service capabilities for large and small customers alike for Activation of mobility products, managing add-on applications for the devices (much like the Apple App Store), transferring services when trucks are sold to other companies as well as deactivation all without the involvement of a call service agent or sending multiple emails to different Omnitracs contacts. This is a conceptual view of the Customer Portal showing the details of the components that make up the solution. 12.00 The portal application for transactions was entirely built using ADF 11g R2. Omnitracs’ business had a pressing requirement to have a portal available 24/7 for its customers. Since there were interactions with EBS in the back-end, the downtimes on the EBS would negate this availability. Omnitracs devised a decoupling strategy at the database side for the EBS data. The decoupling of the database was done using Oracle Data Guard and completely insulated the solution from any eBusiness Suite down time. The customer has no knowledge whether eBS is running or not. Here are two sample screenshots of the portal application built in Oracle ADF. Customer Benefits The Customer Portal not only provided the scalability to grow the business but also provided the seamless integration with other disparate applications. Some of the key benefits are: Improved Customer Experience: With a modern look and feel and a Portal that has the aspects of an App Store, the customer experience was significantly improved. Page response times went from several seconds to sub-second for all of the pages. Enabled new product launches: After successfully dominating the large fleet market, Omnitracs now has a scalable solution to sell and manage smaller fleet customers giving them a huge advantage over their nearest competitors. Dozens of new customers have been acquired via this portal through an onboarding process that now takes minutes Seamless Integrations Improves Customer Support: ADF 11gR2 allowed Omnitracs to bring a diverse list of applications into one integrated solution. This provided a seamless experience for customers to route them from Marketing focused application to a customer-oriented portal. Internally, it also allowed Sales Representatives to have an integrated flow for taking a prospect through the various steps to onboard them as a customer. Key integrations included: Unity Core Salesforce.com Merchant e-Solution for credit card Custom Omnitracs Applications like CUPS and AUTO Security utilizing OID and OVD Back end integration with EBS (Data Guard) and iQ Database Business Impact Significant business impacts were realized through the launch of customer portal. It not only allows the business to push through in underserved segments, but also reduces the time it needs to spend on customer support—allowing the business to focus more on sales and identifying the market for new products. Some of the Immediate Benefits are The entire onboarding process is now completely automated and now completes in minutes. This represents an 85% productivity improvement over their previous processes. And it was 160 times faster! With the success of this self-service solution, the business is now targeting about 3X customer growth in the next five years. This represents a tripling of their overall customer base and significant downstream revenue for the ongoing services. 90%+ improvement of customer onboarding and management process by utilizing, single sign on integration using OID/OAM solution, performance improvements and new self-service functionality Unified login for all Customers, Partners and Internal Users enables login to a common portal and seamless access to all other integrated applications targeted at the respective audience Significantly improved customer experience with a better look and feel with a more user experience focused Portal screens. Helped sales of the new product by having an easy way of ordering and activating the product. Data Guard helped increase availability of the Portal to 99%+ and make it independent of EBS downtime. This gave customers the feel of high availability of the portal application. Some of the anticipated longer term Benefits are: Platform that can be leveraged to launch any new product introduction and enable all product teams to reach new customers and new markets Easy integration with content management to allow business owners more control of the product catalog Overall reduced TCO with standardization of the Oracle platform Managed IT support cost savings through optimization of technology skills needed to support and modify this solution ------------------------------------------------------------ 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif";}

    Read the article

  • BizTalk: History of one project architecture

    - by Leonid Ganeline
    "In the beginning God made heaven and earth. Then he started to integrate." At the very start was the requirement: integrate two working systems. Small digging up: It was one system. It was good but IT guys want to change it to the new one, much better, chipper, more flexible, and more progressive in technologies, more suitable for the future, for the faster world and hungry competitors. One thing. One small, little thing. We cannot turn off the old system (call it A, because it was the first), turn on the new one (call it B, because it is second but not the last one). The A has a hundreds users all across a country, they must study B. A still has a lot nice custom features, home-made features that cannot disappear. These features have to be moved to the B and it is a long process, months and months of redevelopment. So, the decision was simple. Let’s move not jump, let’s both systems working side-by-side several months. In this time we could teach the users and move all custom A’s special functionality to B. That automatically means both systems should work side-by-side all these months and use the same data. Data in A and B must be in sync. That’s how the integration projects get birth. Moreover, the specific of the user tasks requires the both systems must be in sync in real-time. Nightly synchronization is not working, absolutely.   First draft The first draft seems simple. Both systems keep data in SQL databases. When data changes, the Create, Update, Delete operations performed on the data, and the sync process could be started. The obvious decision is to use triggers on tables. When we are talking about data, we are talking about several entities. For example, Orders and Items [in Orders]. We decided to use the BizTalk Server to synchronize systems. Why it was chosen is another story. Second draft   Let’s take an example how it works in more details. 1.       User creates a new entity in the A system. This fires an insert trigger on the entity table. Trigger has to pass the message “Entity created”. This message includes all attributes of the new entity, but I focused on the Id of this entity in the A system. Notation for this message is id.A. System A sends id.A to the BizTalk Server. 2.       BizTalk transforms id.A to the format of the system B. This is easiest part and I will not focus on this kind of transformations in the following text. The message on the picture is still id.A but it is in slightly different format, that’s why it is changing in color. BizTalk sends id.A to the system B. 3.       The system B creates the entity on its side. But it uses different id-s for entities, these id-s are id.B. System B saves id.A+id.B. System B sends the message id.A+id.B back to the BizTalk. 4.       BizTalk sends the message id.A+id.B to the system A. 5.       System A saves id.A+id.B. Why both id-s should be saved on both systems? It was one of the next requirements. Users of both systems have to know the systems are in sync or not in sync. Users working with the entity on the system A can see the id.B and use it to switch to the system B and work there with the copy of the same entity. The decision was to store the pairs of entity id-s on both sides. If there is only one id, the entities are not in sync yet (for the Create operation). Third draft Next problem was the reliability of the synchronization. The synchronizing process can be interrupted on each step, when message goes through the wires. It can be communication problem, timeout, temporary shutdown one of the systems, the second system cannot be synchronized by some internal reason. There were several potential problems that prevented from enclosing the whole synchronization process in one transaction. Decision was to restart the whole sync process if it was not finished (in case of the error). For this purpose was created an additional service. Let’s call it the Resync service. We still keep the id pairs in both systems, but only for the fast access not for the synchronization process. For the synchronizing these id-s now are kept in one main place, in the Resync service database. The Resync service keeps record as: ·       Id.A ·       Id.B ·       Entity.Type ·       Operation (Create, Update, Delete) ·       IsSyncStarted (true/false) ·       IsSyncFinished (true/false0 The example now looks like: 1.       System A creates id.A. id.A is saved on the A. Id.A is sent to the BizTalk. 2.       BizTalk sends id.A to the Resync and to the B. id.A is saved on the Resync. 3.       System B creates id.B. id.A+id.B are saved on the B. id.A+id.B are sent to the BizTalk. 4.       BizTalk sends id.A+id.B to the Resync and to the A. id.A+id.B are saved on the Resync. 5.       id.A+id.B are saved on the B. Resync changes the IsSyncStarted and IsSyncFinished flags accordingly. The Resync service implements three main methods: ·       Save (id.A, Entity.Type, Operation) ·       Save (id.A, id.B, Entity.Type, Operation) ·       Resync () Two Save() are used to save id-s to the service storage. See in the above example, in 2 and 4 steps. What about the Resync()? It is the method that finishes the interrupted synchronization processes. If Save() is started by the trigger event, the Resync() is working as an independent process. It periodically scans the Resync storage to find out “unfinished” records. Then it restarts the synchronization processes. It tries to synchronize them several times then gives up.     One more thing, both systems A and B must tolerate duplicates of one synchronizing process. Say on the step 3 the system B was not able to send id.A+id.B back. The Resync service must restart the synchronization process that will send the id.A to B second time. In this case system B must just send back again also created id.A+id.B pair without errors. That means “tolerate duplicates”. Fourth draft Next draft was created only because of the aesthetics. As it always happens, aesthetics gave significant performance gain to the whole system. First was the stupid question. Why do we need this additional service with special database? Can we just master the BizTalk to do something like this Resync() does? So the Resync orchestration is doing the same thing as the Resync service. It is started by the Id.A and finished by the id.A+id.B message. The first works as a Start message, the second works as a Finish message.     Here is a diagram the whole process without errors. It is pretty straightforward. The Resync orchestration is waiting for the Finish message specific period of time then resubmits the Id.A message. It resubmits the Id.A message specific number of times then gives up and gets suspended. It can be resubmitted then it starts the whole process again: waiting [, resubmitting [, get suspended]], finishing. Tuning up The Resync orchestration resubmits the id.A message with special “Resubmitted” flag. The subscription filter on the Resync orchestration includes predicate as (Resubmit_Flag != “Resubmitted”). That means only the first Sync orchestration starts the Resync orchestration. Other Sync orchestration instantiated by the resubmitting can finish this Resync orchestration but cannot start another instance of the Resync   Here is a diagram where system B was inaccessible for some period of time. The Resync orchestration resubmitted the id.A two times. Then system B got the response the id.A+id.B and this finished the Resync service execution. What is interesting about this, there were submitted several identical id.A messages and only one id.A+id.B message. Because of this, the system B and the Resync must tolerate the duplicate messages. We also told about this requirement for the system B. Now the same requirement is for the Resunc. Let’s assume the system B was very slow in the first response and the Resync service had time to resubmit two id.A messages. System B responded not, as it was in previous case, with one id.A+id.B but with two id.A+id.B messages. First of them finished the Resync execution for the id.A. What about the second id.A+id.B? Where it goes? So, we have to add one more internal requirement. The whole solution must tolerate many identical id.A+id.B messages. It is easy task with the BizTalk. I added the “SinkExtraMessages” subscriber (orchestration with one receive shape), that just get these messages and do nothing. Real design Real architecture is much more complex and interesting. In reality each system can submit several id.A almost simultaneously and completely unordered. There are not only the “Create entity” operation but the Update and Delete operations. And these operations relate each other. Say the Update operation after Delete means not the same as Update after Create. In reality there are entities related each other. Say the Order and Order Items. Change on one of it could start the series of the operations on another. Moreover, the system internals are the “black boxes” and we cannot predict the exact content and order of the operation series. It worth to say, I had to spend a time to manage the zombie message problems. The zombies are still here, but this is not a problem now. And this is another story. What is interesting in the last design? One orchestration works to help another to be more reliable. Why two orchestration design is more reliable, isn’t it something strange? The Synch orchestration takes all the message exchange between systems, here is the area where most of the errors could happen. The Resync orchestration sends and receives messages only within the BizTalk server. Is there another design? Sure. All Resync functionality could be implemented inside the Sync orchestration. Hey guys, some other ideas?

    Read the article

  • Azure Task Scheduling Options

    - by charlie.mott
    Currently, the Azure PaaS does not offer a distributed\resilient task scheduling service.  If you do want to host a task scheduling product\solution off-premise (and ideally use Azure), what are your options? PaaS Option 1: Worker Roles Use a worker role to schedule and execute actions at specific time periods.  There are a few frameworks available to assist with this: http://azuretoolkit.codeplex.com https://github.com/Lokad/lokad-cloud/wiki/TaskScheduler http://blog.smarx.com/posts/building-a-task-scheduler-in-windows-azure - This addresses a slightly different set of requirements. It’s a more dynamic approach for queuing up tasks, but not repeatable tasks (e.g. daily). I found the Azure Toolkit option the most simple to implement.  Step 1 : Create a domain entity implementing IJob for each job to schedule.  In this sample, I asynchronously call a WCF service method. 1: namespace Acme.WorkerRole.Jobs 2: { 3: using AzureToolkit; 4: using ScheduledTasksService; 5: 6: public class UploadEmployeesJob : IJob 7: { 8: public void Run() 9: { 10: // Call Tasks Service 11: var client = new ScheduledTasksServiceClient("BasicHttpBinding_IScheduledTasksService"); 12: client.UploadEmployees(); 13: client.Close(); 14: } 15: } 16: } Step 2 : In the worker role run method, add the jobs to the toolkit engine. 1: namespace Acme.WorkerRole 2: { 3: using AzureToolkit.Engine; 4: using Jobs; 5:   6: public class WorkerRole : WorkerRoleEntryPoint 7: { 8: public override void Run() 9: { 10: var engine = new CloudEngine(); 11:   12: // Add Scheduled Jobs (using CronJob syntax - see http://www.adminschoice.com/crontab-quick-reference). 13:   14: // 1. Upload Employee job - 8.00 PM every weekday (Mon-Fri) 15: engine.WithJobScheduler().ScheduleJob<UploadEmployeesJob>(c => { c.CronSchedule = "0 20 * * 1-5"; }); 16: // 2. Purge Data job - 10 AM every Saturday 17: engine.WithJobScheduler().ScheduleJob<PurgeDataJob>(c => { c.CronSchedule = "0 10 * * 6"; }); 18: // 3. Process Exceptions job - Every 5 minutes 19: engine.WithJobScheduler().ScheduleJob<ProcessExceptionsJob>(c => { c.CronSchedule = "*/5 * * * *"; }); 20:   21: engine.Run(); 22: base.Run(); 23: } 24: } 25: } Pros Cons Azure Toolkit option is simple to implement. For the AzureToolkit option, you are limited to a single worker role.  Otherwise, the jobs will be executed multiple times, once for each worker role instance.   Paying for a continuously running worker role, even if it just processes a single job once a week.  If you only have a few scheduled tasks to run calling asynchronous services hosted in different web roles, an extra small worker role likely to be sufficient.  However, for an extra small worker role this still costs $14.40/month (03/09/2012). Option 2: Use Scheduled Task on Azure Web Role calling a console app Setup a Windows Scheduled Task on the Azure Web Role. This calls a console application that calls the WCF service methods that run the task actions. This design is described here: http://www.ronaldwidha.net/2011/02/23/cron-job-on-azure-using-scheduled-task-on-a-web-role-to-replace-azure-worker-role-for-background-job/ http://www.voiceoftech.com/swhitley/index.php/2011/07/windows-azure-task-scheduler/ http://devlicio.us/blogs/vinull/archive/2011/10/23/moving-to-azure-worker-roles-for-nothing-and-tasks-for-free.aspx Pros Cons Fairly easy to implement. Supportability - I RDC’ed onto the Azure server and stopped the scheduled task. I then rebooted the machine and the task was re-started. I also tried deleting the task and rebooting, the same thing occurred. The only way to permanently guarantee that a task is disabled is to do a fresh deployment. I think this is a major supportability concern.   Saleability - multiple instances would trigger multiple tasks. You can only have one instance for the scheduled task web role. The guidance implements setup of the scheduled task as part of a web role instance. But if you have more than one instance in a web role, the task will be triggered multiple times for each scheduled action (once per machine). Workaround: If we wanted to use scheduled tasks for another client with a saleable WCF service, then we could include the console & tasks scripts in a separate web role (e.g. a empty WCF service with no real purpose to it). SaaS Option 3: Azure Marketplace I thought that someone might be offering this type of service via the Azure marketplace. At the point of writing this blog post, I did not find anyone doing so. https://datamarket.azure.com/ Pros Cons   Nobody currently offers this on the Azure Marketplace. Option 4: Online Job Scheduling Service Provider There are plenty of online providers that offer this type of service on a pay-as-you-go approach.  Some of these are free for small usage.   Many of these providers are listed here: http://en.wikipedia.org/wiki/Webcron Pros Cons No bespoke development for scheduler. Reliance on third party. IaaS Option 5: Setup Scheduling Software on Azure IaaS VM’s One of job scheduling software offerings could be installed and configured on Azure VM’s.  A list of software options is listed here: http://en.wikipedia.org/wiki/List_of_job_scheduler_software Pros Cons Enterprise distributed\resilient task scheduling service VM Setup and maintenance   Software Licence Costs Option 6: VM Gallery A the time of writing this blog post, I did not spot a VM in the gallery that included pre-installation of any of the above software options. Pros Cons   No current VM template. Summary For my current project that had a small handful of tasks to schedule with a limited project budget I chose option 1 (a worker role using the Azure Toolkit to schedule tasks).  If I was building an enterprise scale solution for the future, options 4 and 5 are currently worthy of consideration. Hopefully, Microsoft will include tasks scheduling in the future as part of their PaaS offerings.

    Read the article

  • What's up with LDoms: Part 5 - A few Words about Consoles

    - by Stefan Hinker
    Back again to look at a detail of LDom configuration that is often forgotten - the virtual console server. Remember, LDoms are SPARC systems.  As such, each guest will have it's own OBP running.  And to connect to that OBP, the administrator will need a console connection.  Since it's OBP, and not some x86 BIOS, this console will be very serial in nature ;-)  It's really very much like in the good old days, where we had a terminal concentrator where all those serial cables ended up in.  Just like with other components in LDoms, the virtualized solution looks very similar. Every LDom guest requires exactly one console connection.  Envision this similar to the RS-232 port on older SPARC systems.  The LDom framework provides one or more console services that provide access to these connections.  This would be the virtual equivalent of a network terminal server (NTS), where all those serial cables are plugged in.  In the physical world, we'd have a list somewhere, that would tell us which TCP-Port of the NTS was connected to which server.  "ldm list" does just that: root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 16 7680M 0.4% 27d 8h 22m jupiter bound ------ 5002 20 8G mars active -n---- 5000 2 8G 0.5% 55d 14h 10m venus active -n---- 5001 2 8G 0.5% 56d 40m pluto inactive ------ 4 4G The column marked "CONS" tells us, where to reach the console of each domain. In the case of the primary domain, this is actually a (more) physical connection - it's the console connection of the physical system, which is either reachable via the ILOM of that system, or directly via the serial console port on the chassis. All the other guests are reachable through the console service which we created during the inital setup of the system.  Note that pluto does not have a port assigned.  This is because pluto is not yet bound.  (Binding can be viewed very much as the assembly of computer parts - CPU, Memory, disks, network adapters and a serial console cable are all put together when binding the domain.)  Unless we set the port number explicitly, LDoms Manager will do this on a first come, first serve basis.  For just a few domains, this is fine.  For larger deployments, it might be a good idea to assign these port numbers manually using the "ldm set-vcons" command.  However, there is even better magic associated with virtual consoles. You can group several domains into one console group, reachable through one TCP port of the console service.  This can be useful when several groups of administrators are to be given access to different domains, or for other grouping reasons.  Here's an example: root@sun # ldm set-vcons group=planets service=console jupiter root@sun # ldm set-vcons group=planets service=console pluto root@sun # ldm bind jupiter root@sun # ldm bind pluto root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 16 7680M 6.1% 27d 8h 24m jupiter bound ------ 5002 200 8G mars active -n---- 5000 2 8G 0.6% 55d 14h 12m pluto bound ------ 5002 4 4G venus active -n---- 5001 2 8G 0.5% 56d 42m root@sun # telnet localhost 5002 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. sun-vnts-planets: h, l, c{id}, n{name}, q:l DOMAIN ID DOMAIN NAME DOMAIN STATE 2 jupiter online 3 pluto online sun-vnts-planets: h, l, c{id}, n{name}, q:npluto Connecting to console "pluto" in group "planets" .... Press ~? for control options .. What I did here was add the two domains pluto and jupiter to a new console group called "planets" on the service "console" running in the primary domain.  Simply using a group name will create such a group, if it doesn't already exist.  By default, each domain has its own group, using the domain name as the group name.  The group will be available on port 5002, chosen by LDoms Manager because I didn't specify it.  If I connect to that console group, I will now first be prompted to choose the domain I want to connect to from a little menu. Finally, here's an example how to assign port numbers explicitly: root@sun # ldm set-vcons port=5044 group=pluto service=console pluto root@sun # ldm bind pluto root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 16 7680M 3.8% 27d 8h 54m jupiter active -t---- 5002 200 8G 0.5% 30m mars active -n---- 5000 2 8G 0.6% 55d 14h 43m pluto bound ------ 5044 4 4G venus active -n---- 5001 2 8G 0.4% 56d 1h 13m With this, pluto would always be reachable on port 5044 in its own exclusive console group, no matter in which order other domains are bound. Now, you might be wondering why we always have to mention the console service name, "console" in all the examples here.  The simple answer is because there could be more than one such console service.  For all "normal" use, a single console service is absolutely sufficient.  But the system is flexible enough to allow more than that single one, should you need them.  In fact, you could even configure such a console service on a domain other than the primary (or control domain), which would make that domain a real console server.  I actually have a customer who does just that - they want to separate console access from the control domain functionality.  But this is definately a rather sophisticated setup. Something I don't want to go into in this post is access control.  vntsd, which is the daemon providing all these console services, is fully RBAC-aware, and you can configure authorizations for individual users to connect to console groups or individual domain's consoles.  If you can't wait until I get around to security, check out the man page of vntsd. Further reading: The Admin Guide is rather reserved on this subject.  I do recommend to check out the Reference Manual. The manpage for vntsd will discuss all the control sequences as well as the grouping and authorizations mentioned here.

    Read the article

  • WCF .svc Accessible Over HTTP But Accessing WSDL Causes "Connection Was Reset"

    - by Wolfwyrd
    I have a WCF service which is hosted on IIS6 on a Win2003 SP2 machine. The WCF service is hosting correctly and is visible over HTTP giving the usual "To test this service, you will need to create a client and use it to call the service" message. However accessing the .svc?WSDL link causes the connection to be reset. The server itself is returning a 200 in the logs for the WSDL request, an example of which is shown here, the first call gets a connection reset, the second is a successful call for the .svc file. 2010-04-09 11:00:21 W3SVC6 MACHINENAME 10.79.42.115 GET /IntegrationService.svc wsdl 80 - 10.75.33.71 HTTP/1.1 Mozilla/4.0+(compatible;+MSIE+7.0;+Windows+NT+5.1;+.NET+CLR+2.0.50727;+.NET+CLR+1.1.4322;+.NET+CLR+1.0.3705;+InfoPath.1;+.NET+CLR+3.0.04506.30;+MS-RTC+LM+8;+.NET+CLR+3.0.4506.2152;+.NET+CLR+3.5.30729;) - - devsitename.mydevdomain.com 200 0 0 0 696 3827 2010-04-09 11:04:10 W3SVC6 MACHINENAME 10.79.42.115 GET /IntegrationService.svc - 80 - 10.75.33.71 HTTP/1.1 Mozilla/5.0+(Windows;+U;+Windows+NT+5.1;+en-GB;+rv:1.9.1.9)+Gecko/20100315+Firefox/3.5.9+(.NET+CLR+3.5.30729) - - devsitename.mydevdomain.com 200 0 0 3144 457 265 My Web.Config looks like: <system.serviceModel> <serviceHostingEnvironment > <baseAddressPrefixFilters> <add prefix="http://devsitename.mydevdomain.com" /> </baseAddressPrefixFilters> </serviceHostingEnvironment> <behaviors> <serviceBehaviors> <behavior name="My.Service.IntegrationServiceBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <services> <service behaviorConfiguration="My.Service.IntegrationServiceBehavior" name="My.Service.IntegrationService"> <endpoint address="" binding="wsHttpBinding" contract="My.Service.Interfaces.IIntegrationService" bindingConfiguration="NoSecurityConfig" /> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> <bindings> <wsHttpBinding> <binding name="NoSecurityConfig"> <security mode="None" /> </binding> </wsHttpBinding> </bindings> </system.serviceModel> I'm pretty much stumped by this one. It works fine through the local dev server in VS2008 but fails after deployment. For further information, the targeted machine does not have a firewall (it's on the internal network) and the logs show the site thinks it's fine with 200 OK responses. I've also tried updating the endpoint with the full URL to my service however it still makes no difference. I have looked into some of the other options - creating a separate WSDL manually and exposing it through the metadata properties (really don't want to do that due to the maintenance issues). If anyone can offer any thoughts on this or any other workarounds it would be greatly appreciated.

    Read the article

  • How to do validation on both client and server side for a service which is a store procedure(return a complex type)

    - by Tai
    Hi I am doing Silverlight 4 In my database, I have a store procedure(having two parameters) which returns rows (with extra fields). So i have to make a complex type for those rows on my Models. And Making a service to call that function import store procedure. The RIA will automatically create a matching Entity(to the complex type) and an operation for me. However, I don't know how to validation the parameters of the operation on both client and server side. For example, the parameter must be an integer only (and greater than 10) or datetime only. below is my xaml code. I am using DomainDataSource control and don't know how to validate the two field parameter.It has two TextBox to let the user types in the value of parameters. Plz help me, thank you <riaControls:DomainDataSource AutoLoad="False" d:DesignData="{d:DesignInstance my1:USPFinancialAccountHistory, CreateList=true}" Height="0" LoadedData="uSPFinancialAccountHistoryDomainDataSource_LoadedData" Name="uSPFinancialAccountHistoryDomainDataSource" QueryName="GetFinancialAccountHistoryQuery" Width="0" Margin="0,0,705,32"> <riaControls:DomainDataSource.DomainContext> <my:USPFinancialAccountHistoryContext /> </riaControls:DomainDataSource.DomainContext> <riaControls:DomainDataSource.QueryParameters> <riaControls:Parameter ParameterName="fiscalYear" Value="{Binding ElementName=fiscalYearTextBox, Path=Text}" /> <riaControls:Parameter ParameterName="fiscalPeriod" Value="{Binding ElementName=fiscalPeriodTextBox, Path=Text}" /> </riaControls:DomainDataSource.QueryParameters> </riaControls:DomainDataSource> <StackPanel Height="30" HorizontalAlignment="Left" Orientation="Horizontal" VerticalAlignment="Top"> <sdk:Label Content="Fiscal Year:" Margin="3" VerticalAlignment="Center" /> <TextBox Name="fiscalYearTextBox" Width="60" /> <sdk:Label Content="Fiscal Period:" Margin="3" VerticalAlignment="Center" /> <TextBox Name="fiscalPeriodTextBox" Width="60" /> <Button Command="{Binding Path=LoadCommand, ElementName=uSPFinancialAccountHistoryDomainDataSource}" Content="Load" Margin="3" Name="uSPFinancialAccountHistoryDomainDataSourceLoadButton" /> </StackPanel> <telerik:RadGridView ItemsSource="{Binding ElementName=uSPFinancialAccountHistoryDomainDataSource, Path=Data}" Name="uSPFinancialAccountHistoryRadGridView" Grid.Row="1" IsReadOnly="True" DataLoadMode="Asynchronous" AutoGenerateColumns="False" ShowGroupPanel="False"> <telerik:RadGridView.Columns> <telerik:GridViewDataColumn Header="Account Number" DataMemberBinding="{Binding AccountNumber}"/> <telerik:GridViewDataColumn Header="Department Number" DataMemberBinding="{Binding DepartmentNumber}"/> <telerik:GridViewDataColumn Header="Period code" DataMemberBinding="{Binding PeriodCode}" /> <telerik:GridViewDataColumn Header="Total Debit" DataMemberBinding="{Binding TotalDebit}" DataFormatString="{}{0:C2}"/> <telerik:GridViewDataColumn Header="Total Credit" DataMemberBinding="{Binding TotalCredit}" DataFormatString="{}{0:C2}"/> <telerik:GridViewDataColumn Header="Period Total" DataMemberBinding="{Binding PeriodTotal}" DataFormatString="{}{0:C2}"/> <telerik:GridViewDataColumn Header="Year To Date" DataMemberBinding="{Binding YearToDate}" DataFormatString="{}{0:C2}"/> </telerik:RadGridView.Columns> </telerik:RadGridView>

    Read the article

  • WCF REST Question, Binding, Configuration

    - by Ethan McGee
    I am working on a WCF rest interface using json. I have wrapped the service in a windows service to host the service but I am now having trouble getting the service to be callable. I am not sure exactly what is wrong. The basic idea is that I want to host the service on a remote server so I want the service mapped to port localhost:7600 so that it can be invoked by posting data to [server_ip]:7600. The problem is most likely in the configuration file, since I am new to WCF and Rest I wasn't really sure what to type for the configuration so sorry if it's a total mess. I removed several chunks of code and comments to make it a little easier to read. These functions should have no bearing on the service since they call only C# functions. WCF Service Code using System; using System.Collections.Generic; using System.Linq; using System.ServiceModel; using System.ServiceModel.Activation; using System.ServiceModel.Web; using System.Text; namespace PCMiler_Connect { public class ZIP_List_Container { public string[] ZIP_List { get; set; } public string Optimized { get; set; } public string Calc_Type { get; set; } public string Cross_International_Borders { get; set; } public string Use_Kilometers { get; set; } public string Hazard_Level { get; set; } public string OK_To_Change_Destination { get; set; } } [ServiceContract] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)] public class PCMiler_Webservice { [WebInvoke(Method = "POST", UriTemplate = "", ResponseFormat = WebMessageFormat.Json, RequestFormat = WebMessageFormat.Json), OperationContract] public List<string> Calculate_Distance(ZIP_List_Container container) { return new List<string>(){ distance.ToString(), time.ToString() }; } } } XML Config File <?xml version="1.0" encoding="utf-8"?> <configuration> <system.serviceModel> <services> <service name="PCMiler_Connect.PCMiler_Webservice"> <endpoint address="" behaviorConfiguration="jsonBehavior" binding="webHttpBinding" bindingConfiguration="" contract="PCMiler_Connect.PCMiler_Webservice" /> <host> <baseAddresses> <add baseAddress="http://localhost:7600/" /> </baseAddresses> </host> </service> </services> <behaviors> <endpointBehaviors> <behavior name="jsonBehavior"> <enableWebScript/> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel> </configuration> Service Wrapper using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Diagnostics; using System.Linq; using System.ServiceProcess; using System.ServiceModel; using System.Text; using System.Threading; namespace PCMiler_WIN_Service { public partial class Service1 : ServiceBase { ServiceHost host; public Service1() { InitializeComponent(); } protected override void OnStart(string[] args) { host = new ServiceHost(typeof(PCMiler_Connect.PCMiler_Webservice)); Thread thread = new Thread(new ThreadStart(host.Open)); } protected override void OnStop() { if (host != null) { host.Close(); host = null; } } } }

    Read the article

  • How to send a array as a parameter to a web service using SOAP and objective C.

    - by Alejandra Meraz
    I'm working in a iPhone app that needs to send a array as a parameter using SOAP. this is the current request and connection: NSString *soapMessage = [NSString stringWithFormat: @"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" "<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\" xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">\n" "<soap:Body>\n" "<function xmlns=\"http://tempuri.org/\" />\n" "</soap:Body>\n" "</soap:Envelope>\n"]; NSURL *url = [NSURL URLWithString:@"http://myHost.com/myWebService/service.asmx"]; //the url to the WSDL NsMutableURLRequest theRequest = [[NSMutableURLRequest alloc] initWithURL:url]; NSString *msgLength = [NSString stringWithFormat:@"%d",[soapMessage length]]; [theRequest addValue:@"text/xml; charset=utf-8" forHTTPHeaderField:@"Content-Type"]; [theRequest addValue:msgLength forHTTPHeaderField:@"Content-Lenght"]; [theRequest setHTTPMethod:@"POST"]; [theRequest addValue:@"myhost.com" forHTTPHeaderField:@"Host"]; [theRequest addValue:@"http://tempuri.org/function" forHTTPHeaderField:@"SOAPAction"]; [theRequest setHTTPBody:[soapMessage dataUsingEncoding:NSUTF8StringEncoding]]; theConnection = [[NSURLConnection alloc] initWithRequest:theRequest delegate:self]; Now, to send parameters I looked at the WSDL of the function description for the input is like this: <s:complexType name="ArrayOfDictionaryEntry"> <s:sequence> <s:element minOccurs="0" maxOccurs="unbounded" name="DictionaryEntry" type="tns:DictionaryEntry" /> </s:sequence> </s:complexType> <s:complexType name="DictionaryEntry"> <s:sequence> <s:element minOccurs="0" maxOccurs="1" name="Key" /> <s:element minOccurs="0" maxOccurs="1" name="Value" /> </s:sequence> </s:complexType> <s:element name="functionInput"> <s:complexType /> </s:element> I guess then that I need to make a array of dictionary entries. what I would like to send is something like this [ location => USA, module => DEVELOPMENT] But I'm kind of confused. the array is created outside the SOAP, like an NSArray or inside the SoapMessage? if so... How is it done? and the DictionaryEntry, should I make a class? thanks for your time n.n

    Read the article

  • Include weather information in ASP.Net site from weather.com services

    - by sreejukg
    In this article, I am going to demonstrate how you can use the XMLOAP services (referred as XOAP from here onwards) provided by weather.com to display the weather information in your website. The XOAP services are available to be used for free of charge, provided you are comply with requirements from weather.com. I am writing this article from a technical point of view. If you are planning to use weather.com XOAP services in your application, please refer to the terms and conditions from weather.com website. In order to start using the XOAP services, you need to sign up the XOAP datafeed. The signing process is simple, you simply browse the url http://www.weather.com/services/xmloap.html. The URL looks similar to the following. Click on the sign up button, you will reach the registration page. Here you need to specify the site name you need to use this feed for. The form looks similar to the following. Once you fill all the mandatory information, click on save and continue button. That’s it. The registration is over. You will receive an email that contains your partner id, license key and SDK. The SDK available in a zipped format, contains the terms of use and documentation about the services available. Other than this the SDK includes the logos and icons required to display the weather information. As per the SDK, currently there are 2 types of information available through XOAP. These services are Current Conditions for over 30,000 U.S. and over 7,900 international Location IDs Updated at least Hourly Five-Day Forecast (today + 4 additional forecast days in consecutive order beginning with tomorrow) for over 30,000 U.S. and over 7,900 international Location IDs Updated at least Three Times Daily The SDK provides detailed information about the fields included in response of each service. Additionally there is a refresh rate that you need to comply with. As per the SDK, the refresh rate means the following “Refresh Rate” shall mean the maximum frequency with which you may call the XML Feed for a given LocID requesting a data set for that LocID. During the time period in between refresh periods the data must be cached by you either in the memory on your servers or in Your Desktop Application. About the Services Weather.com will provide you with access to the XML Feed over the Internet through the hostname xoap.weather.com. The weather data from the XML feed must be requested for a specific location. So you need a location ID (LOC ID). The XML feed work with 2 types of location IDs. First one is with City Identifiers and second one is using 5 Digit US postal codes. If you do not know your location ID, don’t worry, there is a location id search service available for you to retrieve the location id from city name. Since I am a resident in the Kingdom of Bahrain, I am going to retrieve the weather information for Manama(the capital of Bahrain) . In order to get the location ID for Manama, type the following URL in your address bar. http://xoap.weather.com/search/search?where=manama I got the following XML output. <?xml version="1.0" encoding="UTF-8"?> <!-- This document is intended only for use by authorized licensees of The –> <!-- Weather Channel. Unauthorized use is prohibited. Copyright 1995-2011, –> <!-- The Weather Channel Interactive, Inc. All Rights Reserved. –> <search ver="3.0">       <loc id="BAXX0001" type="1">Al Manama, Bahrain</loc> </search> You can try this with any city name, if the city is available, it will return the location id, and otherwise, it will return nothing. In order to get the weather information, from XOAP,  you need to pass certain parameters to the XOAP service. A brief about the parameters are as follows. Please refer SDK for more details. Parameter name Possible Value cc Optional, if you include this, the current condition will be returned. Value can be anything, as it will be ignored e.g. cc=* dayf If you want the forecast for 5 days, specify dayf=5 This is optional iink Value should be XOAP par Your partner id. You can find this in your registration email from weather.com prod Value should be XOAP key The license key assigned to you. This will be available in the registration email unit s or m (standard or matric or you can think of Celsius/Fahrenheit) this is optional field, if not specified the unit will be standard(s) The URL host for the XOAP service is http://xoap.weather.com. So for my purpose, I need the following request to be made to access the XOAP services. http://xoap.weather.com/weather/local/BAXX0001?cc=*&link=xoap&prod=xoap&par=*********&key=************** (The ***** to be replaced with the corresponding alternatives) The response XML have a root element “weather”. Under the root element, it has the following sections <head> - the meta data information about the weather results returned. <loc> - the location data block that provides, the information about the location for which the wheather data is retrieved. <lnks> - the 4 promotional links you need to place along with the weather display. Additional to these 4 links, there should be another link with weather channel logo to the home page of weather.com. <cc> - the current condition data. This element will be there only if you specify the cc element in the request. <dayf> - the forcast data as you specified. This element will be there only if you specify the dayf in the request. In this walkthrough, I am going to capture the weather information for Manama (Location ID: BAXX0001). You need 2 applications to display weather information in your website. A Console application that retrieves data from the XMLOAP and store in the SQL Server database (or any data store as you prefer).This application will be scheduled to execute in every 25 minutes using windows task scheduler, so that we can comply with the refresh rate. A web application that display data from the SQL Server database Retrieve the Weather from XOAP I have created a console application named, Weather Service. I created a SQL server database, with the following columns. I named the table as tblweather. You are free to choose any name. Column name Description lastUpdated Datetime, this is the last time when the weather data is updated. This is the time of the service running TemparatureDateTime The date and time returned by XML feed Temparature The temperature returned by the XML feed. TemparatureUnit The unit of the temperature returned by the XML feed iconId The id of the icon to be used. Currently 48 icons from 0 to 47 are available. WeatherDescription The Weather Description Phrase returned by the feed. Link1url The url to the first promo link Link1Text The text for the first promo link Link2url The url to the second promo link Link2Text The text for the second promo link Link3url The url to the third promo link Link3Text The text for the third promo link Link4url The url to the fourth promo link Link4Text The text for the fourth promo link Every time when the service runs, the application will update the database columns from the XOAP data feed. When the application starts, It is going to get the data as XML from the url. This demonstration uses LINQ to extract the necessary data from the fetched XML. The following are the code segment for extracting data from the weather XML using LINQ. // first, create an instance of the XDocument class with the XOAP URL. replace **** with the corresponding values. XDocument weather = XDocument.Load("http://xoap.weather.com/weather/local/BAXX0001?cc=*&link=xoap&prod=xoap&par=***********&key=c*********"); // construct a query using LINQ var feedResult = from item in weather.Descendants() select new { unit = item.Element("head").Element("ut").Value, temp = item.Element("cc").Element("tmp").Value, tempDate = item.Element("cc").Element("lsup").Value, iconId = item.Element("cc").Element("icon").Value, description = item.Element("cc").Element("t").Value, links = from link in item.Elements("lnks").Elements("link") select new { url = link.Element("l").Value, text = link.Element("t").Value } }; // Load the root node to a variable, you may use foreach construct instead. var item1 = feedResult.First(); *If you want to learn more about LINQ and XML, read this nice blog from Scott GU. http://weblogs.asp.net/scottgu/archive/2007/08/07/using-linq-to-xml-and-how-to-build-a-custom-rss-feed-reader-with-it.aspx Now you have all the required values in item1. For e.g. if you want to get the temperature, use item1.temp; Now I just need to execute an SQL query against the database. See the connection part. using (SqlConnection conn = new SqlConnection(@"Data Source=sreeju\sqlexpress;Initial Catalog=Sample;Integrated Security=True")) { string strSql = @"update tblweather set lastupdated=getdate(), temparatureDateTime = @temparatureDateTime, temparature=@temparature, temparatureUnit=@temparatureUnit, iconId = @iconId, description=@description, link1url=@link1url, link1text=@link1text, link2url=@link2url, link2text=@link2text,link3url=@link3url, link3text=@link3text,link4url=@link4url, link4text=@link4text"; SqlCommand comm = new SqlCommand(strSql, conn); comm.Parameters.AddWithValue("temparatureDateTime", item1.tempDate); comm.Parameters.AddWithValue("temparature", item1.temp); comm.Parameters.AddWithValue("temparatureUnit", item1.unit); comm.Parameters.AddWithValue("description", item1.description); comm.Parameters.AddWithValue("iconId", item1.iconId); var lstLinks = item1.links; comm.Parameters.AddWithValue("link1url", lstLinks.ElementAt(0).url); comm.Parameters.AddWithValue("link1text", lstLinks.ElementAt(0).text); comm.Parameters.AddWithValue("link2url", lstLinks.ElementAt(1).url); comm.Parameters.AddWithValue("link2text", lstLinks.ElementAt(1).text); comm.Parameters.AddWithValue("link3url", lstLinks.ElementAt(2).url); comm.Parameters.AddWithValue("link3text", lstLinks.ElementAt(2).text); comm.Parameters.AddWithValue("link4url", lstLinks.ElementAt(3).url); comm.Parameters.AddWithValue("link4text", lstLinks.ElementAt(3).text); conn.Open(); comm.ExecuteNonQuery(); conn.Close(); Console.WriteLine("database updated"); } Now click ctrl + f5 to run the service. I got the following output Check your database and make sure, the data is updated with the latest information from the service. (Make sure you inserted one row in the database by entering some values before executing the service. Otherwise you need to modify your application code to count the rows and conditionally perform insert/update query) Display the Weather information in ASP.Net page Now you got all the data in the database. You just need to create a web application and display the data from the database. I created a new ASP.Net web application with a default.aspx page. In order to comply with the terms of weather.com, You need to use Weather.com logo along with the weather display. You can find the necessary logos to use under the folder “logos” in the SDK. Additionally copy any of the icon set from the folder “icons” to your web application. I used the 93x93 icon set. You are free to use any other sizes available. The design view of the page in VS2010 looks similar to the following. The page contains a heading, an image control (for displaying the weather icon), 2 label controls (for displaying temperature and weather description), 4 hyperlinks (for displaying the 4 promo links returned by the XOAP service) and weather.com logo with hyperlink to the weather.com home page. I am going to write code that will update the values of these controls from the values stored in the database by the service application as mentioned in the previous step. Go to the code behind file for the webpage, enter the following code under Page_Load event handler. using (SqlConnection conn = new SqlConnection(@"Data Source=sreeju\sqlexpress;Initial Catalog=Sample;Integrated Security=True")) { SqlCommand comm = new SqlCommand("select top 1 * from tblweather", conn); conn.Open(); SqlDataReader reader = comm.ExecuteReader(); if (reader.Read()) { lblTemparature.Text = reader["temparature"].ToString() + "&deg;" + reader["temparatureUnit"].ToString(); lblWeatherDescription.Text = reader["description"].ToString(); imgWeather.ImageUrl = "icons/" + reader["iconId"].ToString() + ".png"; lnk1.Text = reader["link1text"].ToString(); lnk1.NavigateUrl = reader["link1url"].ToString(); lnk2.Text = reader["link2text"].ToString(); lnk2.NavigateUrl = reader["link2url"].ToString(); lnk3.Text = reader["link3text"].ToString(); lnk3.NavigateUrl = reader["link3url"].ToString(); lnk4.Text = reader["link4text"].ToString(); lnk4.NavigateUrl = reader["link4url"].ToString(); } conn.Close(); } Press ctrl + f5 to run the page. You will see the following output. That’s it. You need to configure the console application to run every 25 minutes so that the database is updated. Also you can fetch the forecast information and store those in the database, and then retrieve it later in your web page. Since the data resides in your database, you have the full control over your display. You need to make sure your website comply with weather.com license requirements. If you want to get the source code of this walkthrough through the application, post your email address below. Hope you enjoy the reading.

    Read the article

  • From Bluehost to WP Engine, My WordPress Story

    - by thatjeffsmith
    This is probably the longest blog post I’ve written in a LONG time. And if you’re used to coming here for the Oracle stuff, this post is not about that. It’s about my blog, and the stuff under the hood that makes it run, AKA WordPress. If you want to skip to the juicy stuff, then use these shortcuts: My Site Slowed Down How I Moved to WP Engine How WP Engine ‘Hooked’ Me Why WP Engine? I started thatJeffSmith.com on May 28th, 2010. I had been already been blogging for several years, but a couple of really smart people I respected (Andy, Brent – thanks again!) suggested that I take ownership of my content and begin building my personal brand. I thought that was a good idea, and so I signed up for service with bluehost. Bluehost makes setting up a WordPress site very, very easy. And, they continued to be easy to work with for the past 2 years. I would even recommend them to anyone looking to host their own WordPress install/site. For $83.40, I purchased a year’s worth of service and my domain name registration – a very good value. And then last year I paid $107.40 for another year’s services. And when that year expired I paid another $190.80 for an additional two year’s service in advance. I had been up to that point, getting my money’s worth. And then, just a few weeks ago… My Site Slowed to a Crawl That spike was from an April Fool's Day Post, I think Why? Well, when I first started blogging, I had the same problem that most beginner bloggers have – not many readers. In my first year of blogging, I think the highest number of readers on a single day was about 125. I remember that day as I was very excited to break 100! Bluehost was very reliable, serving up my content with maybe a total of 3-4 outages in the past 2 years. Support was usually very prompt with answers and solutions, and I love their ‘Chat now’ technology – much nicer than message boards only or pay-to-talk phone support. In the past 6 months however, I noticed a couple of things: daily traffic was increasing – woohoo! my service was experiencing severe CPU throttling – doh! To be honest, I wasn’t aware the throttling was occuring, but I did know that the response time of my blog was starting to lag. Average load times were approaching 20-30 seconds. Not good when good sites are loading in 5 seconds or less. And just this past week, in getting ready to launch a new website for work that sucked in an RSS feed from my blog, the new page was left waiting for more than a minute. Not good! In fact my boss asked, why aren’t you blogging on Blogger? Ugh. I tried a few things to fix the problem: I paid for a premium WordPress theme – Themify’s Grido (thanks to @SQLRockstar for the heads-up) I installed a couple of WP caching plugins I read every WP optimization blog post I could get my greedy little eyes on However, at the same time I was also getting addicted to WordPress bloggers talking about all the cool things you could do with your blog. As a result I had at one point about 30 different plugins installed. WordPress runs on MySQL, and certain queries running via these plugins were starving for CPU. Plugins that would be called every page load meant that as more people clicked on my site, the more CPU I needed. I’m not stupid, so I eventually figured out that maybe less plugins was better, and was able to go down to just 20. But still, the site was running like a dog. CPU Throttling, makes MySQL wait to run a query Bluehost runs shared servers. Your site runs on the same box that several hundred (or thousand?) other services are running on. If you take more CPU than they think you should have, they will limit your service by making you stand in line for CPU, AKA ‘throttling.’ This is not bad. This business model allows them to serve many, many users for a very fair price. It works great until, well, until it doesn’t. I noticed in the last week that for every minute of service, I was being throttled between 60 and 300 seconds. If there were 5 MySQL processes running, then every single one of them were being held in check. The blog visitor notice this as their page requests would take a minute or more to be answered. Bluehost unfortunately doesn’t offer dedicated server hosting, so there was no real upgrade path for me follow and remain one of their customers. So what was I to do? Uninstall every plugin and hope the site sped up? Ask for people to take turns on my blog? I decided to spend my way out of the problem. I signed up for service with WP Engine and moved ThatJeffSmith.com The first 2 months are free, and after that it’s about $29/month to run my site on their system. My math tells me that’s a good bit more expensive than what Bluehost was charging me – to the tune of about 300% more a month. Oh, and I should just say that my blog is a personal blog even though I talk about work stuff here. I don’t get paid for blogging, I don’t sell ads, and I don’t expense the service fees – this is my personal passion. So is it worth it? In the first 4 days, it seems to be totally worth it. Load times have gone from 20-30 seconds to less than 5 seconds. A few folks have told me via Twitter that they notice faster page loads. I anticipate this will indirectly lead to more traffic as Google penalizes you in search results if your site is too slow, and of course some folks won’t even bother waiting more than 5-10 seconds. I noticed right away that writing posts, uploading pictures, and just using the WordPress dashboard in general was much more responsive. So writing is less of a chore now, which means I won’t have a good reason not to write How I Moved to WP Engine I signed up for the service and registered my domain. I then took a full export of my ‘old’ site by doing a FTP GET of all my files, then did a MySQL database backup, exported my WordPress Theme settings to a .zip file, and then finally used the WordPress ‘Export’ feature. I then used the WordPress ‘Import’ on the new site to load up my posts. Then I uploaded the theme .zip package from Themify. Then I FTP’d the ‘wp-content’ directory up to my new server using SFTP (WP Engine only supports secure FTP – good on them!) Using a temporary URL to see my new site, I was able to confirm that everything looked mostly OK – I’ll detail the challenges and issues of fixing the content next – but then it was time to ‘flip the switch.’ I updated the IP address that the DNS lookup tables use to route traffic to my new server. In a matter of minutes the DNS servers around the world were updated and it was time to see the new site! But It Was ‘Broken’ I had never moved a website before, and in my rush to update the DNS, I had changed the records without really finding out what I was supposed to do first. After re-reading the directions provided by WP Engine and following the guidance of their support engineer, I realized I had needed to set the CNAME (Alias) ‘www’ record to point to a different URL than the ‘www.thatjeffsmith.com’ entry I had set. Once corrected the site was up and running in less than a minute. Then It Was Only Mostly Broken Many of my plugins weren’t working. Apparently just ftp’ing the wp-content directory up wasn’t the proper way to re-install the plugin. I suspect file permissions or file ownership wasn’t proper. Some plug-ins were working, many had their settings wiped to the defaults, and a few just didn’t work again. I had to delete the directory of the plug-in manually via SFTP, and then use the WP Dashboard to install it from scratch. And here was my first ‘lesson’ – don’t switch the DNS records until you’ve completely tested your new site. I wasn’t able to navigate the old WP console to review my plug-in settings. Thankfully I was able to use the Wayback Machine to reverse engineer some things, and of course most plug-ins aren’t that complicated to setup to begin with. An example of one that I had to redo from scratch is the ‘Twitter @Anywhere Plus’ plugin that I use to create the form that allows folks to tweet a post they enjoyed at the end of each story. How WP Engine ‘Hooked’ Me I actually signed up with another provider first. They ranked highly in Google searches and a few Tweeps recommended them to me. But hours after signing up and I still didn’t have sever reyady, I was ready to give up on them. They offered no chat or phone support – only mail and message boards. And the message boards were rife with posts about how the service had gone downhill in the past 6 months. To their credit, they did make it easy to cancel, although I did have to do so via email as their website ‘cancel’ button was non-existent. Within minutes of activating my WP Engine account I had received my welcome message and directions on how to get started. I was able to see my staged website right away. They also did something very cool before I even got started – they looked at my existing site and told me by how much they could improve its performance. The proof is in the web pudding. I like this for a few reasons, but primarily I liked their business model. It told me they knew what they were doing, and that they were willing to put their money where their mouth was. This was further evident by their 60-day money back guarantee. And if I understand it correctly, they don’t even take your money until after that 60 day period is over. After a day, I was welcomed by the WP Engine social media team, and was given the opportunity to subscribe to their newsletter and follow their account on Twitter. I noticed their Twitter team is sure to post regular WordPress tips several times a day. It’s not just an account that’s setup for the sake of having a Twitter presence. These little things add up and give me confidence in my decision to choose them as my hosting partner. ‘Partner’ – that’s a lot nicer word than just ‘service provider,’ isn’t it? Oh, and they offered me a t-shirt. Don’t ever doubt the power of a ‘free’ t-shirt! How awesome is this e-mail, from a customer perspective? I wasn’t really expecting any of this. Exceeding expectations before I have even handed over a single dollar seems like a pretty good business plan. This is how you treat customers. Love them to death, and they reward you with loyalty. But Jeff, You Skipped a Piece Here, Why WP Engine? I found them on one of those ‘Top 10′ list posts, and pulled up their webpage. I noticed they offered a specialized service – they host WordPress installs, and that’s it. Their servers are tuned specifically for running WordPress. They had in bolded text, things like ‘INSANELY FAST. INFINITELY SCALABLE.’ and ‘LIGHTNING SPEED.’ And then they offered insurance against hackers and they took care of automatic backups and restores. The only drawbacks I have noticed so far relate to plugins I used that have been ‘blacklisted.’ In order to guarantee that ‘lightning’ speed, they have banned the use of the CPU-suckiest plugins. One of those is the ‘Related Posts’ plugin. So if you are a subscriber and are reading this in your email, you’ll notice there’s no links back to my blog to continue reading other related stories. Since that referral traffic is very small single-digit for my site, I decided that I’m OK with that. I’d rather have the warp-speed page loads. Again, I think that will lead to higher traffic down the road. In 50+ days I will need to decide if WP Engine is a permanent solution. I’ll be sure to update this post when that time comes and let y’all know how it turns out.

    Read the article

  • Unable to connect to Wireless after installing Ubuntu 12.10

    - by Moulik
    I am using Asus U56E laptop and after installing Ubuntu 12.10 alongside Windows 8, I am unable to connect to the Wireless. I have been trying to solve this problem since two weeks and couldn't solve it. Please help. Any answer would be appreciated. Here are some command-line results. lspci -v | grep -iA 7 network ubuntu@ubuntu:~$ lspci -v | grep -iA 7 network 02:00.0 Network controller: Intel Corporation Centrino Wireless-N + WiMAX 6150 (rev 67) Subsystem: Intel Corporation Centrino Wireless-N + WiMAX 6150 BGN Flags: bus master, fast devsel, latency 0, IRQ 52 Memory at de800000 (64-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: iwlwifi Kernel modules: iwlwifi lsmod | grep iwlwifi ubuntu@ubuntu:~$ lsmod | grep iwlwifi iwlwifi 386826 0 mac80211 539908 1 iwlwifi cfg80211 206566 2 iwlwifi,mac80211 ubuntu@ubuntu:~$ dmesg | grep iwlwifi [ 57.846261] iwlwifi: Intel(R) Wireless WiFi Link AGN driver for Linux, in-tree: [ 57.846264] iwlwifi: Copyright(c) 2003-2012 Intel Corporation [ 57.846336] iwlwifi 0000:02:00.0: >pci_resource_len = 0x00002000 [ 57.846338] iwlwifi 0000:02:00.0: >pci_resource_base = ffffc90000c7c000 [ 57.846341] iwlwifi 0000:02:00.0: >HW Revision ID = 0x67 [ 57.846438] iwlwifi 0000:02:00.0: >irq 52 for MSI/MSI-X [ 59.558335] iwlwifi 0000:02:00.0: >loaded firmware version 41.28.5.1 build 33926 [ 59.558514] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEBUG disabled [ 59.558516] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEBUGFS enabled [ 59.558517] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEVICE_TRACING enabled [ 59.558519] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEVICE_TESTMODE enabled [ 59.558520] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_P2P disabled [ 59.558522] iwlwifi 0000:02:00.0: >Detected Intel(R) Centrino(R) Wireless-N + WiMAX 6150 BGN, REV=0x84 [ 59.558583] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 59.569083] iwlwifi 0000:02:00.0: >device EEPROM VER=0x557, CALIB=0x6 [ 59.569085] iwlwifi 0000:02:00.0: >Device SKU: 0x150 [ 59.569087] iwlwifi 0000:02:00.0: >Valid Tx ant: 0x1, Valid Rx ant: 0x3 [ 59.569100] iwlwifi 0000:02:00.0: >Tunable channels: 13 802.11bg, 0 802.11a channels [ 70.208469] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 70.208648] iwlwifi 0000:02:00.0: >Radio type=0x1-0x2-0x0 [ 70.366319] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 70.366470] iwlwifi 0000:02:00.0: >Radio type=0x1-0x2-0x0 sudo lshw -c network ubuntu@ubuntu:~$ sudo lshw -c network *-network description: Wireless interface product: Centrino Wireless-N + WiMAX 6150 vendor: Intel Corporation physical id: 0 bus info: pci@0000:02:00.0 logical name: wlan0 version: 67 serial: 40:25:c2:84:99:c4 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.5.0-17-generic firmware=41.28.5.1 build 33926 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:52 memory:de800000-de801fff *-network description: Ethernet interface product: AR8151 v2.0 Gigabit Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c0 serial: 54:04:a6:2b:6a:ef capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI latency=0 link=no multicast=yes port=twisted pair resources: irq:54 memory:dd400000-dd43ffff ioport:a000(size=128) ifconfig ubuntu@ubuntu:~$ ifconfig eth0 Link encap:Ethernet HWaddr 54:04:a6:2b:6a:ef UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:176 errors:0 dropped:0 overruns:0 frame:0 TX packets:176 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:14368 (14.3 KB) TX bytes:14368 (14.3 KB) wlan0 Link encap:Ethernet HWaddr 40:25:c2:84:99:c4 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) iwconfig ubuntu@ubuntu:~$ iwconfig eth0 no wireless extensions. lo no wireless extensions. wlan0 IEEE 802.11bgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=15 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off iwlist scan ubuntu@ubuntu:~$ iwlist scan eth0 Interface doesn't support scanning. lo Interface doesn't support scanning. wlan0 No scan results nm-tool ubuntu@ubuntu:~$ nm-tool NetworkManager Tool State: disconnected - Device: eth0 ----------------------------------------------------------------- Type: Wired Driver: atl1c State: unavailable Default: no HW Address: 54:04:A6:2B:6A:EF Capabilities: Carrier Detect: yes Wired Properties Carrier: off - Device: wlan0 ---------------------------------------------------------------- Type: 802.11 WiFi Driver: iwlwifi State: disconnected Default: no HW Address: 40:25:C2:84:99:C4 Capabilities: Wireless Properties WEP Encryption: yes WPA Encryption: yes WPA2 Encryption: yes Wireless Access Points hypeness2: Infra, 00:21:29:DA:08:4F, Freq 2462 MHz, Rate 54 Mb/s, Strength 42 WPA love: Infra, 68:7F:74:17:02:66, Freq 2412 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 DIRECT-MwSCX-3400Pamela: Infra, 02:15:99:A3:3F:AC, Freq 2412 MHz, Rate 54 Mb/s, Strength 22 WPA2 router: Infra, 1C:AF:F7:D6:76:F3, Freq 2417 MHz, Rate 54 Mb/s, Strength 20 WPA2 wing: Infra, E8:40:F2:34:E4:F7, Freq 2437 MHz, Rate 54 Mb/s, Strength 20 WPA WPA2 132LINKSYS: Infra, 00:1A:70:80:1F:E9, Freq 2437 MHz, Rate 54 Mb/s, Strength 57 WEP VMITTAL: Infra, E0:46:9A:3C:F0:C4, Freq 2412 MHz, Rate 54 Mb/s, Strength 27 WEP HP-Print-10-LaserJet 1025: Infra, 7C:E9:D3:7E:F8:10, Freq 2437 MHz, Rate 54 Mb/s, Strength 59 ACNBB: Infra, 00:26:75:22:A6:2F, Freq 2437 MHz, Rate 54 Mb/s, Strength 20 SATKAIVAL: Infra, 00:18:E7:CE:69:A6, Freq 2412 MHz, Rate 54 Mb/s, Strength 69 WPA WPA2 hypeness: Infra, B8:E6:25:24:C3:B1, Freq 2437 MHz, Rate 54 Mb/s, Strength 54 WPA WPA2 CSNetwork: Infra, BC:14:01:58:C5:88, Freq 2437 MHz, Rate 54 Mb/s, Strength 25 WPA WPA2 tharma: Infra, BC:14:01:E2:06:18, Freq 2412 MHz, Rate 54 Mb/s, Strength 15 WPA WPA2 Active2.4: Infra, 10:6F:3F:0E:F3:8E, Freq 2462 MHz, Rate 54 Mb/s, Strength 17 WPA WPA2 ACNBB: Infra, 00:26:75:58:4E:7A, Freq 2437 MHz, Rate 54 Mb/s, Strength 85 KO: Infra, BC:14:01:2E:AF:A8, Freq 2452 MHz, Rate 54 Mb/s, Strength 22 WPA WPA2 FEAR: Infra, 00:18:4D:C0:BC:58, Freq 2462 MHz, Rate 54 Mb/s, Strength 17 WPA Pamela: Infra, BC:14:01:52:F6:F8, Freq 2412 MHz, Rate 54 Mb/s, Strength 24 WPA WPA2 bvrk2: Infra, 78:CD:8E:7B:3C:79, Freq 2457 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 BELL030: Infra, D8:6C:E9:17:AF:09, Freq 2462 MHz, Rate 54 Mb/s, Strength 22 WPA2 Desai: Infra, 00:1D:7E:52:FB:C5, Freq 2437 MHz, Rate 54 Mb/s, Strength 14 WEP Sritharan: Infra, BC:14:01:E5:59:78, Freq 2462 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 PFN: Infra, 00:13:10:8B:CF:45, Freq 2437 MHz, Rate 54 Mb/s, Strength 19 WEP rfkill list all ubuntu@ubuntu:~$ rfkill list all 0: asus-wlan: Wireless LAN Soft blocked: no Hard blocked: no 1: asus-wimax: WiMAX Soft blocked: yes Hard blocked: no 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no so these are some more results sudo modprobe -r iwlwifi ubuntu@ubuntu:~$ sudo modprobe -r iwlwifi sudo modprobe iwlwifi 11n_disable=1 ubuntu@ubuntu:~$ sudo modprobe iwlwifi 11n_disable=1 echo "blacklist asus_wmi" | sudo tee -a /etcmodprobe.d/blacklist.conf ubuntu@ubuntu:~$ echo "blacklist asus_wmi" | sudo tee -a /etc/modprobe.d/blacklist.conf blacklist asus_wmi echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf ubuntu@ubuntu:~$ echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf options iwlwifi 11n_disable=1 sudo modprobe -rfv iwlwifi ubuntu@ubuntu:~$ sudo modprobe -rfv iwlwifi rmmod /lib/modules/3.5.0-17-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko rmmod /lib/modules/3.5.0-17-generic/kernel/net/mac80211/mac80211.ko rmmod /lib/modules/3.5.0-17-generic/kernel/net/wireless/cfg80211.ko sudo modprobe -v iwlwifi ubuntu@ubuntu:~$ sudo modprobe -v iwlwifi insmod /lib/modules/3.5.0-17-generic/kernel/net/wireless/cfg80211.ko insmod /lib/modules/3.5.0-17-generic/kernel/net/mac80211/mac80211.ko insmod /lib/modules/3.5.0-17-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko 11n_disable=1

    Read the article

  • How To? Use an Expression Tree to call a Generic Method when the Type is only known at runtime.

    - by David Williams
    Please bear with me; I am very new to expression trees and lambda expressions, but trying to learn. This is something that I solved using reflection, but would like to see how to do it using expression trees. I have a generic function: private void DoSomeThing<T>( param object[] args ) { // Some work is done here. } that I need to call from else where in my class. Now, normally, this would be be simple: DoSomeThing<int>( blah ); but only if I know, at design time that I am working with an int. When I do not know the type until runtime is where I need the help. Like I said, I know how to do it via reflection, but I would like to do it via expression trees, as my (very limited) understanding is that I can do so. Any suggestions or points to sites where I can get this understanding, preferably with sample code?

    Read the article

  • mexTcpBinding in WCF - IMetadataExchange errors

    - by David
    I'm wanting to get a WCF-over-TCP service working. I was having some problems with modifying my own project, so I thought I'd start with the "base" WCF template included in VS2008. Here is the initial WCF App.config and when I run the service the WCF Test Client can work with it fine: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.web> <compilation debug="true" /> </system.web> <system.serviceModel> <services> <service name="WcfTcpTest.Service1" behaviorConfiguration="WcfTcpTest.Service1Behavior"> <host> <baseAddresses> <add baseAddress="http://localhost:8731/Design_Time_Addresses/WcfTcpTest/Service1/" /> </baseAddresses> </host> <endpoint address="" binding="wsHttpBinding" contract="WcfTcpTest.IService1"> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="WcfTcpTest.Service1Behavior"> <serviceMetadata httpGetEnabled="True"/> <serviceDebug includeExceptionDetailInFaults="True" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> This works perfectly, no issues at all. I figured changing it from HTTP to TCP would be trivial: change the bindings to their TCP equivalents and remove the httpGetEnabled serviceMetadata element: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.web> <compilation debug="true" /> </system.web> <system.serviceModel> <services> <service name="WcfTcpTest.Service1" behaviorConfiguration="WcfTcpTest.Service1Behavior"> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1337/Service1/" /> </baseAddresses> </host> <endpoint address="" binding="netTcpBinding" contract="WcfTcpTest.IService1"> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexTcpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="WcfTcpTest.Service1Behavior"> <serviceDebug includeExceptionDetailInFaults="True" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> But when I run this I get this error in the WCF Service Host: System.InvalidOperationException: The contract name 'IMetadataExchange' could not be found in the list of contracts implemented by the service Service1. Add a ServiceMetadataBehavior to the configuration file or to the ServiceHost directly to enable support for this contract. I get the feeling that you can't send metadata using TCP, but that's the case why is there a mexTcpBinding option?

    Read the article

  • WCF and Firewalls

    - by Amitd
    Hi guys, As a part of learning WCF, I was trying to use a simple WCF client-server code . http://weblogs.asp.net/ralfw/archive/2007/04/14/a-truely-simple-example-to-get-started-with-wcf.aspx but I'm facing strange issues.I was trying out the following. Client(My) IP address is : 192.168.2.5 (internal behind firewall) Server IP address is : 192.168.50.30 port : 9050 (internal behind firewall) Servers LIVE/External IP (on internet ) : 121.225.xx.xx (accessible from internet) When I specify the above I.P address of server(192.168.50.30), the client connects successfully and can call servers methods. Now suppose if I want to give my friend (outside network/on internet) the client with server's live I.P, i get an ENDPOINTNOTFOUND exceptions. Surprisingly if I run the above client specifying LIVE IP(121.225.xx.xx) of server i also get the same exception. I tried to debug the problem but haven't found anything. Is it a problem with the company firewall not forwarding my request? or is it a problem with the server or client . Is something needed to be added to the server/client to overcome the same problem? Or are there any settings on the firewall that need to be changed like port forwarding? (our network admin has configured the port to be accessible from the internet.) is it a authentication issue? Code is available at . http://www.ralfw.de/weblog/wcfsimple.txt http://weblogs.asp.net/ralfw/archive/2007/04/14/a-truely-simple-example-to-get-started-with-wcf.aspx i have just separated the client and server part in separate assemblies.rest is same. using System; using System.Collections.Generic; using System.Text; using System.ServiceModel; namespace WCFSimple.Contract { [ServiceContract] public interface IService { [OperationContract] string Ping(string name); } } namespace WCFSimple.Server { [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)] class ServiceImplementation : WCFSimple.Contract.IService { #region IService Members public string Ping(string name) { Console.WriteLine("SERVER - Processing Ping('{0}')", name); return "Hello, " + name; } #endregion } public class Program { private static System.Threading.AutoResetEvent stopFlag = new System.Threading.AutoResetEvent(false); public static void Main() { ServiceHost svh = new ServiceHost(typeof(ServiceImplementation)); svh.AddServiceEndpoint( typeof(WCFSimple.Contract.IService), new NetTcpBinding(), "net.tcp://localhost:8000"); svh.Open(); Console.WriteLine("SERVER - Running..."); stopFlag.WaitOne(); Console.WriteLine("SERVER - Shutting down..."); svh.Close(); Console.WriteLine("SERVER - Shut down!"); } public static void Stop() { stopFlag.Set(); } } } namespace WCFSimple { class Program { static void Main(string[] args) { Console.WriteLine("WCF Simple Demo"); // start server System.Threading.Thread thServer = new System.Threading.Thread(WCFSimple.Server.Program.Main); thServer.IsBackground = true; thServer.Start(); System.Threading.Thread.Sleep(1000); // wait for server to start up // run client ChannelFactory<WCFSimple.Contract.IService> scf; scf = new ChannelFactory<WCFSimple.Contract.IService>( new NetTcpBinding(), "net.tcp://localhost:8000"); WCFSimple.Contract.IService s; s = scf.CreateChannel(); while (true) { Console.Write("CLIENT - Name: "); string name = Console.ReadLine(); if (name == "") break; string response = s.Ping(name); Console.WriteLine("CLIENT - Response from service: " + response); } (s as ICommunicationObject).Close(); // shutdown server WCFSimple.Server.Program.Stop(); thServer.Join(); } } } Any help?

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Debug.Assert replacement for Phone and Store apps

    - by Daniel Moth
    I don’t know about you, but all my code is, and always has been, littered with Debug.Assert statements. I think it all started way back in my (short-lived, but impactful to me) Eiffel days, when I was applying Design by Contract. Anyway, I can’t live without Debug.Assert. Imagine my dismay when I upgraded my Windows Phone 7.x app (Translator By Moth) to Windows Phone 8 and discovered that my Debug.Assert statements would not display anything on the target and would not break in the debugger any longer! Luckily, the solution was simple and in this post I share it with you – feel free to teak it to meet your needs. Steps to use Add a new code file to your project, delete all its contents, and paste in the code from MyDebug.cs Perform a global search in your solution replacing Debug.Assert with MyDebug.Assert Build solution and test Now, I do not know why this functionality was broken, but I do know that it exhibits the same broken characteristics for Windows Store apps. There is a simple workaround there to use Contract.Assert which does display a message and offers an option to break in the debugger (although it doesn’t output the message to the Output window). Because I plan on code sharing between Phone and Windows 8 projects, I prefer to have the conditional compilation centralized, so I added the Contract.Assert workaround directly in MyDebug class, so that you can use this class for both platforms – enjoy and enhance! Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

< Previous Page | 232 233 234 235 236 237 238 239 240 241 242 243  | Next Page >