Search Results

Search found 1591 results on 64 pages for 'implementations'.

Page 24/64 | < Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >

  • C++ standard thread class?

    - by srikfreak
    I have come across many ad hoc implementations of thread class in C++, but why is there no standard library thread class like the one in Java? The one that I generally use in C++ is http://www.linuxdocs.org/HOWTOs/C++Programming-HOWTO-24.html

    Read the article

  • Drag and Drop and identify locations with java

    - by out_sider
    I'm trying to do something quite simple, but I'm having a hard time finding good examples on the net to what I want specifically. I'd like to somehing very similer to what it's here: Dao It's a simple game called DAO and I just need to have a background image with 16 squares (4x4) and drag and drop the images (pieces) on each square to the others. I'm developing the interface using swing and I simply want to know a good place to find tutorials for such implementations or a simple suggestion on how to do it. Thanks in advance

    Read the article

  • Port AS3/Flex app to iPhone

    - by John
    I believe Adobe tools like CS5 have ways to output as an iPhone app, but what about a regular AS3 or Flex project? Are there any tools to auto-port, or AS3/Flex iPhone implementations out there? Out of interest, how does the CS5 thing work? Is it a totally different code-path or something less drastic? For instance Flash supports Shapes and Timelines, etc... do they in fact provide an iPhone Flash runtime of some sort?

    Read the article

  • What free space thresholds/limits are advisable for 640 GB and 2 TB hard disk drives with ZEVO ZFS on OS X?

    - by Graham Perrin
    Assuming that free space advice for ZEVO will not differ from advice for other modern implementations of ZFS … Question Please, what percentages or amounts of free space are advisable for hard disk drives of the following sizes? 640 GB 2 TB Thoughts A standard answer for modern implementations of ZFS might be "no more than 96 percent full". However if apply that to (say) a single-disk 640 GB dataset where some of the files most commonly used (by VirtualBox) are larger than 15 GB each, then I guess that blocks for those files will become sub optimally spread across the platters with around 26 GB free. I read that in most cases, fragmentation and defragmentation should not be a concern with ZFS. Sill, I like the mental picture of most fragments of a large .vdi in reasonably close proximity to each other. (Do features of ZFS make that wish for proximity too old-fashioned?) Side note: there might arise the question of how to optimise performance after a threshold is 'broken'. If it arises, I'll keep it separate. Background On a 640 GB StoreJet Transcend (product ID 0x2329) in the past I probably went beyond an advisable threshold. Currently the largest file is around 17 GB –  – and I doubt that any .vdi or other file on this disk will grow beyond 40 GB. (Ignore the purple masses, those are bundles of 8 MB band files.) Without HFS Plus: the thresholds of twenty, ten and five percent that I associate with Mobile Time Machine file system need not apply. I currently use ZEVO Community Edition 1.1.1 with Mountain Lion, OS X 10.8.2, but I'd like answers to be not too version-specific. References, chronological order ZFS Block Allocation (Jeff Bonwick's Blog) (2006-11-04) Space Maps (Jeff Bonwick's Blog) (2007-09-13) Doubling Exchange Performance (Bizarre ! Vous avez dit Bizarre ?) (2010-03-11) … So to solve this problem, what went in 2010/Q1 software release is multifold. The most important thing is: we increased the threshold at which we switched from 'first fit' (go fast) to 'best fit' (pack tight) from 70% full to 96% full. With TB drives, each slab is at least 5GB and 4% is still 200MB plenty of space and no need to do anything radical before that. This gave us the biggest bang. Second, instead of trying to reuse the same primary slabs until it failed an allocation we decided to stop giving the primary slab this preferential threatment as soon as the biggest allocation that could be satisfied by a slab was down to 128K (metaslab_df_alloc_threshold). At that point we were ready to switch to another slab that had more free space. We also decided to reduce the SMO bonus. Before, a slab that was 50% empty was preferred over slabs that had never been used. In order to foster more write aggregation, we reduced the threshold to 33% empty. This means that a random write workload now spread to more slabs where each one will have larger amount of free space leading to more write aggregation. Finally we also saw that slab loading was contributing to lower performance and implemented a slab prefetch mechanism to reduce down time associated with that operation. The conjunction of all these changes lead to 50% improved OLTP and 70% reduced variability from run to run … OLTP Improvements in Sun Storage 7000 2010.Q1 (Performance Profiles) (2010-03-11) Alasdair on Everything » ZFS runs really slowly when free disk usage goes above 80% (2010-07-18) where commentary includes: … OpenSolaris has changed this in onnv revision 11146 … [CFT] Improved ZFS metaslab code (faster write speed) (2010-08-22)

    Read the article

  • simple and reliable centralized logging inside Amazon VPC

    - by Nakedible
    I need to set up centralized logging for a set of servers (10-20) in an Amazon VPC. The logging should be as to not lose any log messages in case any single server goes offline - or in the case that an entire availability zone goes offline. It should also tolerate packet loss and other normal network conditions without losing or duplicating messages. It should store the messages durably, at the minimum on two different EBS volumes in two availability zones, but S3 is a good place as well. It should also be realtime so that the messages arrive within seconds of their generation to two different availability zones. I also need to sync logfiles not generated via syslog, so a syslog-only centralized logging solution would not fulfill all the needs, although I guess that limitation could be worked around. I have already reviewed a few solutions, and I will list them here: Flume to Flume to S3: I could set up two logservers as Flume hosts which would store log messages either locally or in S3, and configure all the servers with Flume to send all messages to both servers, using the end-to-end reliability options. That way the loss of a single server shouldn't cause lost messages and all messages would arrive in two availability zones in realtime. However, there would need to be some way to join the logs of the two servers, deduplicating all the messages delivered to both. This could be done by adding a unique id on the sending side to each message and then write some manual deduplication runs on the logfiles. I haven't found an easy solution to the duplication problem. Logstash to Logstash to ElasticSearch: I could install Logstash on the servers and have them deliver to a central server via AMQP, with the durability options turned on. However, for this to work I would need to use some of the clustering capable AMQP implementations, or fan out the deliver just as in the Flume case. AMQP seems to be a yet another moving part with several implementations and no real guidance on what works best this sort of setup. And I'm not entirely convinced that I could get actual end-to-end durability from logstash to elasticsearch, assuming crashing servers in between. The fan-out solutions run in to the deduplication problem again. The best solution that would seem to handle all the cases, would be Beetle, which seems to provide high availability and deduplication via a redis store. However, I haven't seen any guidance on how to set this up with Logstash and Redis is one more moving part again for something that shouldn't be terribly difficult. Logstash to ElasticSearch: I could run Logstash on all the servers, have all the filtering and processing rules in the servers themselves and just have them log directly to a removet ElasticSearch server. I think this should bring me reliable logging and I can use the ElasticSearch clustering features to share the database transparently. However, I am not sure if the setup actually survives Logstash restarts and intermittent network problems without duplicating messages in a failover case or similar. But this approach sounds pretty promising. rsync: I could just rsync all the relevant log files to two different servers. The reliability aspect should be perfect here, as the files should be identical to the source files after a sync is done. However, doing an rsync several times per second doesn't sound fun. Also, I need the logs to be untamperable after they have been sent, so the rsyncs would need to be in append-only mode. And log rotations mess things up unless I'm careful. rsyslog with RELP: I could set up rsyslog to send messages to two remote hosts via RELP and have a local queue to store the messages. There is the deduplication problem again, and RELP itself might also duplicate some messages. However, this would only handle the things that log via syslog. None of these solutions seem terribly good, and they have many unknowns still, so I am asking for more information here from people who have set up centralized reliable logging as to what are the best tools to achieve that goal.

    Read the article

  • Router 2wire, Slackware desktop in DMZ mode, iptables policy aginst ping, but still pingable

    - by user135501
    I'm in DMZ mode, so I'm firewalling myself, stealthy all ok, but I get faulty test results from Shields Up that there are pings. Yesterday I couldn't make a connection to game servers work, because ping block was enabled (on the router). I disabled it, but this persists even due to my firewall. What is the connection between me and my router in DMZ mode (for my machine, there is bunch of others too behind router firewall)? When it allows router affecting if I'm pingable or not and if router has setting not blocking ping, rules in my iptables for this scenario do not work. Please ignore commented rules, I do uncomment them as I want. These two should do the job right? iptables -A INPUT -p icmp --icmp-type echo-request -j DROP echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all Here are my iptables: #!/bin/sh # Begin /bin/firewall-start # Insert connection-tracking modules (not needed if built into the kernel). #modprobe ip_tables #modprobe iptable_filter #modprobe ip_conntrack #modprobe ip_conntrack_ftp #modprobe ipt_state #modprobe ipt_LOG # allow local-only connections iptables -A INPUT -i lo -j ACCEPT # free output on any interface to any ip for any service # (equal to -P ACCEPT) iptables -A OUTPUT -j ACCEPT # permit answers on already established connections # and permit new connections related to established ones (eg active-ftp) iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT #Gamespy&NWN #iptables -A INPUT -p tcp -m tcp -m multiport --ports 5120:5129 -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 6667 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 28910 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29900 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29901 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29920 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p udp -m udp -m multiport --ports 5120:5129 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 6500 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 27900 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 27901 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 29910 -j ACCEPT # Log everything else: What's Windows' latest exploitable vulnerability? iptables -A INPUT -j LOG --log-prefix "FIREWALL:INPUT" # set a sane policy: everything not accepted > /dev/null iptables -P INPUT DROP iptables -P FORWARD DROP iptables -P OUTPUT DROP iptables -A INPUT -p icmp --icmp-type echo-request -j DROP # be verbose on dynamic ip-addresses (not needed in case of static IP) echo 2 > /proc/sys/net/ipv4/ip_dynaddr # disable ExplicitCongestionNotification - too many routers are still # ignorant echo 0 > /proc/sys/net/ipv4/tcp_ecn #ping death echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all # If you are frequently accessing ftp-servers or enjoy chatting you might # notice certain delays because some implementations of these daemons have # the feature of querying an identd on your box for your username for # logging. Although there's really no harm in this, having an identd # running is not recommended because some implementations are known to be # vulnerable. # To avoid these delays you could reject the requests with a 'tcp-reset': #iptables -A INPUT -p tcp --dport 113 -j REJECT --reject-with tcp-reset #iptables -A OUTPUT -p tcp --sport 113 -m state --state RELATED -j ACCEPT # To log and drop invalid packets, mostly harmless packets that came in # after netfilter's timeout, sometimes scans: #iptables -I INPUT 1 -p tcp -m state --state INVALID -j LOG --log-prefix \ "FIREWALL:INVALID" #iptables -I INPUT 2 -p tcp -m state --state INVALID -j DROP # End /bin/firewall-start

    Read the article

  • Installing EclipseFP on Mac OS X

    - by Dom Kennedy
    I am trying to install EclipseFP. I'm running OS X Mavericks. I've tried following both the official installation instructions and the advice in this answer on SU, but I'm still having the same problem. I can get the plugin itself installed painlessly using Help -> Install New Software..., Bbut when I restart and switch to the Haskell perspective, things start to go wrong. The installation instructions tells me that I should receive a prompt to install BuildWrapper and Scion Browser. I do not receive this prompt. Furthermore, if I create a new Haskell project, my code has no syntax highlighting, and the Hoogle search feature does not appear to do anything. It's clear that the plugin is not set up correctly yet. I've tried running cabal update in Terminal, but this does not change anything. After several attempts going round in circles with this on Eclipse Juno, I uninstalled Eclispe and the Haskell Platform and performed a clean install of Eclipse Luna and the latest Haskell Platform. However, the problems are persisting. I've tried going into Preferences to see if I could sort any of this out manually. I should initially point out that my GHC installation seems to be correctly references under Preferences -> Haskell Implementations Under Haskell -> Helper executables, there are areas for configuring the options of both BuildWrapper and Scion Browser. At present, both are blank. I tried clicking the Install from Hackage... button beside each of them with no success; I receive an error message saying Expected executable <workspace>/.metadata/.plugins/net.sf.eclipsefp.haskell.ui/sandbox/.cabal-sandbox/bin/buildwrapper not found!` (replace buildwrapper for scion-browser and the message is the same) The Eclipse console displays the following exception after doing the above with BuildWrapper: src/Language/Haskell/BuildWrapper/GHCStorage.hs:313:32: Not in scope: data constructor ‘MatchGroup’ cabal.real: Error: some packages failed to install: buildwrapper-0.7.4 failed during the building phase. The exception was: ExitFailure 1 and after doing it for Scion-Browser: zip-archive-0.2.3.4 (reinstall) changes: text-1.1.0.0 -> 0.11.3.1 pandoc-1.12.3.3 (latest: 1.13) -http-conduit (new version) Graphalyze-0.14.1.0 (reinstall) changes: pandoc-1.12.4.2 -> 1.12.3.3, text-1.1.0.0 -> 0.11.3.1 cabal.real: The following packages are likely to be broken by the reinstalls: pandoc-1.12.4.2 unordered-containers-0.2.4.0 aeson-0.7.0.4 scientific-0.2.0.2 case-insensitive-1.1.0.3 HTTP-4000.2.10 Use --force-reinstalls if you want to install anyway. After receiving similar results as the above on previous attempts, I've tried using force-reinstalls and ended up at more dead ends. I am at a loss as to what is wrong and how to solve this. I should point out that my GHC installation appears to be correctly configured under Preferences -> Haskell -> Haskell Implementations. Apologies if any of this information is irrelevant, I'm just not really sure what is important and what isn't at this point. Any help anyone could provide me with would be greatly appreciated.

    Read the article

  • From Binary to Data Structures

    - by Cédric Menzi
    Table of Contents Introduction PE file format and COFF header COFF file header BaseCoffReader Byte4ByteCoffReader UnsafeCoffReader ManagedCoffReader Conclusion History This article is also available on CodeProject Introduction Sometimes, you want to parse well-formed binary data and bring it into your objects to do some dirty stuff with it. In the Windows world most data structures are stored in special binary format. Either we call a WinApi function or we want to read from special files like images, spool files, executables or may be the previously announced Outlook Personal Folders File. Most specifications for these files can be found on the MSDN Libarary: Open Specification In my example, we are going to get the COFF (Common Object File Format) file header from a PE (Portable Executable). The exact specification can be found here: PECOFF PE file format and COFF header Before we start we need to know how this file is formatted. The following figure shows an overview of the Microsoft PE executable format. Source: Microsoft Our goal is to get the PE header. As we can see, the image starts with a MS-DOS 2.0 header with is not important for us. From the documentation we can read "...After the MS DOS stub, at the file offset specified at offset 0x3c, is a 4-byte...". With this information we know our reader has to jump to location 0x3c and read the offset to the signature. The signature is always 4 bytes that ensures that the image is a PE file. The signature is: PE\0\0. To prove this we first seek to the offset 0x3c, read if the file consist the signature. So we need to declare some constants, because we do not want magic numbers.   private const int PeSignatureOffsetLocation = 0x3c; private const int PeSignatureSize = 4; private const string PeSignatureContent = "PE";   Then a method for moving the reader to the correct location to read the offset of signature. With this method we always move the underlining Stream of the BinaryReader to the start location of the PE signature.   private void SeekToPeSignature(BinaryReader br) { // seek to the offset for the PE signagure br.BaseStream.Seek(PeSignatureOffsetLocation, SeekOrigin.Begin); // read the offset int offsetToPeSig = br.ReadInt32(); // seek to the start of the PE signature br.BaseStream.Seek(offsetToPeSig, SeekOrigin.Begin); }   Now, we can check if it is a valid PE image by reading of the next 4 byte contains the content PE.   private bool IsValidPeSignature(BinaryReader br) { // read 4 bytes to get the PE signature byte[] peSigBytes = br.ReadBytes(PeSignatureSize); // convert it to a string and trim \0 at the end of the content string peContent = Encoding.Default.GetString(peSigBytes).TrimEnd('\0'); // check if PE is in the content return peContent.Equals(PeSignatureContent); }   With this basic functionality we have a good base reader class to try the different methods of parsing the COFF file header. COFF file header The COFF header has the following structure: Offset Size Field 0 2 Machine 2 2 NumberOfSections 4 4 TimeDateStamp 8 4 PointerToSymbolTable 12 4 NumberOfSymbols 16 2 SizeOfOptionalHeader 18 2 Characteristics If we translate this table to code, we get something like this:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public MachineType Machine; public ushort NumberOfSections; public uint TimeDateStamp; public uint PointerToSymbolTable; public uint NumberOfSymbols; public ushort SizeOfOptionalHeader; public Characteristic Characteristics; } BaseCoffReader All readers do the same thing, so we go to the patterns library in our head and see that Strategy pattern or Template method pattern is sticked out in the bookshelf. I have decided to take the template method pattern in this case, because the Parse() should handle the IO for all implementations and the concrete parsing should done in its derived classes.   public CoffHeader Parse() { using (var br = new BinaryReader(File.Open(_fileName, FileMode.Open, FileAccess.Read, FileShare.Read))) { SeekToPeSignature(br); if (!IsValidPeSignature(br)) { throw new BadImageFormatException(); } return ParseInternal(br); } } protected abstract CoffHeader ParseInternal(BinaryReader br);   First we open the BinaryReader, seek to the PE signature then we check if it contains a valid PE signature and rest is done by the derived implementations. Byte4ByteCoffReader The first solution is using the BinaryReader. It is the general way to get the data. We only need to know which order, which data-type and its size. If we read byte for byte we could comment out the first line in the CoffHeader structure, because we have control about the order of the member assignment.   protected override CoffHeader ParseInternal(BinaryReader br) { CoffHeader coff = new CoffHeader(); coff.Machine = (MachineType)br.ReadInt16(); coff.NumberOfSections = (ushort)br.ReadInt16(); coff.TimeDateStamp = br.ReadUInt32(); coff.PointerToSymbolTable = br.ReadUInt32(); coff.NumberOfSymbols = br.ReadUInt32(); coff.SizeOfOptionalHeader = (ushort)br.ReadInt16(); coff.Characteristics = (Characteristic)br.ReadInt16(); return coff; }   If the structure is as short as the COFF header here and the specification will never changed, there is probably no reason to change the strategy. But if a data-type will be changed, a new member will be added or ordering of member will be changed the maintenance costs of this method are very high. UnsafeCoffReader Another way to bring the data into this structure is using a "magically" unsafe trick. As above, we know the layout and order of the data structure. Now, we need the StructLayout attribute, because we have to ensure that the .NET Runtime allocates the structure in the same order as it is specified in the source code. We also need to enable "Allow unsafe code (/unsafe)" in the project's build properties. Then we need to add the following constructor to the CoffHeader structure.   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { unsafe { fixed (byte* packet = &data[0]) { this = *(CoffHeader*)packet; } } } }   The "magic" trick is in the statement: this = *(CoffHeader*)packet;. What happens here? We have a fixed size of data somewhere in the memory and because a struct in C# is a value-type, the assignment operator = copies the whole data of the structure and not only the reference. To fill the structure with data, we need to pass the data as bytes into the CoffHeader structure. This can be achieved by reading the exact size of the structure from the PE file.   protected override CoffHeader ParseInternal(BinaryReader br) { return new CoffHeader(br.ReadBytes(Marshal.SizeOf(typeof(CoffHeader)))); }   This solution is the fastest way to parse the data and bring it into the structure, but it is unsafe and it could introduce some security and stability risks. ManagedCoffReader In this solution we are using the same approach of the structure assignment as above. But we need to replace the unsafe part in the constructor with the following managed part:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { IntPtr coffPtr = IntPtr.Zero; try { int size = Marshal.SizeOf(typeof(CoffHeader)); coffPtr = Marshal.AllocHGlobal(size); Marshal.Copy(data, 0, coffPtr, size); this = (CoffHeader)Marshal.PtrToStructure(coffPtr, typeof(CoffHeader)); } finally { Marshal.FreeHGlobal(coffPtr); } } }     Conclusion We saw that we can parse well-formed binary data to our data structures using different approaches. The first is probably the clearest way, because we know each member and its size and ordering and we have control about the reading the data for each member. But if add member or the structure is going change by some reason, we need to change the reader. The two other solutions use the approach of the structure assignment. In the unsafe implementation we need to compile the project with the /unsafe option. We increase the performance, but we get some security risks.

    Read the article

  • Multi-tenant ASP.NET MVC – Introduction

    - by zowens
    I’ve read a few different blogs that talk about multi-tenancy and how to resolve some of the issues surrounding multi-tenancy. What I’ve come to realize is that these implementations overcomplicate the issues and give only a muddy implementation! I’ve seen some really illogical code out there. I have recently been building a multi-tenancy framework for internal use at eagleenvision.net. Through this process, I’ve realized a few different techniques to make building multi-tenant applications actually quite easy. I will be posting a few different entries over the issue and my personal implementation. In this first post, I will discuss what multi-tenancy means and how my implementation will be structured.   So what’s the problem? Here’s the deal. Multi-tenancy is basically a technique of code-reuse of web application code. A multi-tenant application is an application that runs a single instance for multiple clients. Here the “client” is different URL bindings on IIS using ASP.NET MVC. The problem with different instances of the, essentially, same application is that you have to spin up different instances of ASP.NET. As the number of running instances of ASP.NET grows, so does the memory footprint of IIS. Stack Exchange shifted its architecture to multi-tenancy March. As the blog post explains, multi-tenancy saves cost in terms of memory utilization and physical disc storage. If you use the same code base for many applications, multi-tenancy just makes sense. You’ll reduce the amount of work it takes to synchronize the site implementations and you’ll thank your lucky stars later for choosing to use one application for multiple sites. Multi-tenancy allows the freedom of extensibility while relying on some pre-built code.   You’d think this would be simple. I have actually seen a real lack of reference material on the subject in terms of ASP.NET MVC. This is somewhat surprising given the number of users of ASP.NET MVC. However, I will certainly fill the void ;). Implementing a multi-tenant application takes a little thinking. It’s not straight-forward because the possibilities of implementation are endless. I have yet to see a great implementation of a multi-tenant MVC application. The only one that comes close to what I have in mind is Rob Ashton’s implementation (all the entries are listed on this page). There’s some really nasty code in there… something I’d really like to avoid. He has also written a library (MvcEx) that attempts to aid multi-tenant development. This code is even worse, in my honest opinion. Once I start seeing Reflection.Emit, I have to assume the worst :) In all seriousness, if his implementation makes sense to you, use it! It’s a fine implementation that should be given a look. At least look at the code. I will reference MvcEx going forward as a comparison to my implementation. I will explain why my approach differs from MvcEx and how it is better or worse (hopefully better).   Core Goals of my Multi-Tenant Implementation The first, and foremost, goal is to use Inversion of Control containers to my advantage. As you will see throughout this series, I pass around containers quite frequently and rely on their use heavily. I will be using StructureMap in my implementation. However, you could probably use your favorite IoC tool instead. <RANT> However, please don’t be stupid and abstract your IoC tool. Each IoC is powerful and by abstracting the capabilities, you’re doing yourself a real disservice. Who in the world swaps out IoC tools…? No one!</RANT> (It had to be said.) I will outline some of the goodness of StructureMap as we go along. This is really an invaluable tool in my tool belt and simple to use in my multi-tenant implementation. The second core goal is to represent a tenant as easily as possible. Just as a dependency container will be a first-class citizen, so will a tenant. This allows us to easily extend and use tenants. This will also allow different ways of “plugging in” tenants into your application. In my implementation, there will be a single dependency container for a single tenant. This will enable isolation of the dependencies of the tenant. The third goal is to use composition as a means to delegate “core” functions out to the tenant. More on this later.   Features In MvcExt, “Modules” are a code element of the infrastructure. I have simplified this concept and have named this “Features”. A feature is a simple element of an application. Controllers can be specified to have a feature and actions can have “sub features”. Each tenant can select features it needs and the other features will be hidden to the tenant’s users. My implementation doesn’t require something to be a feature. A controller can be common to all tenants. For example, (as you will see) I have a “Content” controller that will return the CSS, Javascript and Images for a tenant. This is common logic to all tenants and shouldn’t be hidden or considered a “feature”; Content is a core component.   Up next My next post will be all about the code. I will reveal some of the foundation to the way I do multi-tenancy. I will have posts dedicated to Foundation, Controllers, Views, Caching, Content and how to setup the tenants. Each post will be in-depth about the issues and implementation details, while adhering to my core goals outlined in this post. As always, comment with questions of DM me on twitter or send me an email.

    Read the article

  • C#: System.Collections.Concurrent.ConcurrentQueue vs. Queue

    - by James Michael Hare
    I love new toys, so of course when .NET 4.0 came out I felt like the proverbial kid in the candy store!  Now, some people get all excited about the IDE and it’s new features or about changes to WPF and Silver Light and yes, those are all very fine and grand.  But me, I get all excited about things that tend to affect my life on the backside of development.  That’s why when I heard there were going to be concurrent container implementations in the latest version of .NET I was salivating like Pavlov’s dog at the dinner bell. They seem so simple, really, that one could easily overlook them.  Essentially they are implementations of containers (many that mirror the generic collections, others are new) that have either been optimized with very efficient, limited, or no locking but are still completely thread safe -- and I just had to see what kind of an improvement that would translate into. Since part of my job as a solutions architect here where I work is to help design, develop, and maintain the systems that process tons of requests each second, the thought of extremely efficient thread-safe containers was extremely appealing.  Of course, they also rolled out a whole parallel development framework which I won’t get into in this post but will cover bits and pieces of as time goes by. This time, I was mainly curious as to how well these new concurrent containers would perform compared to areas in our code where we manually synchronize them using lock or some other mechanism.  So I set about to run a processing test with a series of producers and consumers that would be either processing a traditional System.Collections.Generic.Queue or a System.Collection.Concurrent.ConcurrentQueue. Now, I wanted to keep the code as common as possible to make sure that the only variance was the container, so I created a test Producer and a test Consumer.  The test Producer takes an Action<string> delegate which is responsible for taking a string and placing it on whichever queue we’re testing in a thread-safe manner: 1: internal class Producer 2: { 3: public int Iterations { get; set; } 4: public Action<string> ProduceDelegate { get; set; } 5: 6: public void Produce() 7: { 8: for (int i = 0; i < Iterations; i++) 9: { 10: ProduceDelegate(“Hello”); 11: } 12: } 13: } Then likewise, I created a consumer that took a Func<string> that would read from whichever queue we’re testing and return either the string if data exists or null if not.  Then, if the item doesn’t exist, it will do a 10 ms wait before testing again.  Once all the producers are done and join the main thread, a flag will be set in each of the consumers to tell them once the queue is empty they can shut down since no other data is coming: 1: internal class Consumer 2: { 3: public Func<string> ConsumeDelegate { get; set; } 4: public bool HaltWhenEmpty { get; set; } 5: 6: public void Consume() 7: { 8: bool processing = true; 9: 10: while (processing) 11: { 12: string result = ConsumeDelegate(); 13: 14: if(result == null) 15: { 16: if (HaltWhenEmpty) 17: { 18: processing = false; 19: } 20: else 21: { 22: Thread.Sleep(TimeSpan.FromMilliseconds(10)); 23: } 24: } 25: else 26: { 27: DoWork(); // do something non-trivial so consumers lag behind a bit 28: } 29: } 30: } 31: } Okay, now that we’ve done that, we can launch threads of varying numbers using lambdas for each different method of production/consumption.  First let's look at the lambdas for a typical System.Collections.Generics.Queue with locking: 1: // lambda for putting to typical Queue with locking... 2: var productionDelegate = s => 3: { 4: lock (_mutex) 5: { 6: _mutexQueue.Enqueue(s); 7: } 8: }; 9:  10: // and lambda for typical getting from Queue with locking... 11: var consumptionDelegate = () => 12: { 13: lock (_mutex) 14: { 15: if (_mutexQueue.Count > 0) 16: { 17: return _mutexQueue.Dequeue(); 18: } 19: } 20: return null; 21: }; Nothing new or interesting here.  Just typical locks on an internal object instance.  Now let's look at using a ConcurrentQueue from the System.Collections.Concurrent library: 1: // lambda for putting to a ConcurrentQueue, notice it needs no locking! 2: var productionDelegate = s => 3: { 4: _concurrentQueue.Enqueue(s); 5: }; 6:  7: // lambda for getting from a ConcurrentQueue, once again, no locking required. 8: var consumptionDelegate = () => 9: { 10: string s; 11: return _concurrentQueue.TryDequeue(out s) ? s : null; 12: }; So I pass each of these lambdas and the number of producer and consumers threads to launch and take a look at the timing results.  Basically I’m timing from the time all threads start and begin producing/consuming to the time that all threads rejoin.  I won't bore you with the test code, basically it just launches code that creates the producers and consumers and launches them in their own threads, then waits for them all to rejoin.  The following are the timings from the start of all threads to the Join() on all threads completing.  The producers create 10,000,000 items evenly between themselves and then when all producers are done they trigger the consumers to stop once the queue is empty. These are the results in milliseconds from the ordinary Queue with locking: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 4284 5153 4226 4554.33 4: 10 10 4044 3831 5010 4295.00 5: 100 100 5497 5378 5612 5495.67 6: 1000 1000 24234 25409 27160 25601.00 And the following are the results in milliseconds from the ConcurrentQueue with no locking necessary: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 3647 3643 3718 3669.33 4: 10 10 2311 2136 2142 2196.33 5: 100 100 2480 2416 2190 2362.00 6: 1000 1000 7289 6897 7061 7082.33 Note that even though obviously 2000 threads is quite extreme, the concurrent queue actually scales really well, whereas the traditional queue with simple locking scales much more poorly. I love the new concurrent collections, they look so much simpler without littering your code with the locking logic, and they perform much better.  All in all, a great new toy to add to your arsenal of multi-threaded processing!

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • The Birth of a Method - Where did OUM come from?

    - by user702549
    It seemed fitting to start this blog entry with the OUM vision statement. The vision for the Oracle® Unified Method (OUM) is to support the entire Enterprise IT lifecycle, including support for the successful implementation of every Oracle product.  Well, it’s that time of year again; we just finished testing and packaging OUM 5.6.  It will be released for general availability to qualifying customers and partners this month.  Because of this, I’ve been reflecting back on how the birth of Oracle’s Unified method - OUM came about. As the Release Director of OUM, I’ve been honored to package every method release.  No, maybe you’d say it’s not so special.  Of course, anyone can use packaging software to create an .exe file.  But to me, it is pretty special, because so many people work together to make each release come about.  The rich content that results is what makes OUM’s history worth talking about.   To me, professionally speaking, working on OUM, well it’s been “a labor of love”.  My youngest child was just 8 years old when OUM was born, and she’s now in High School!  Watching her grow and change has been fascinating, if you ask her, she’s grown up hearing about OUM.  My son would often walk into my home office and ask “How is OUM today, Mom?”  I am one of many people that take care of OUM, and have watched the method “mature” over these last 6 years.  Maybe that makes me a "Method Mom" (someone in one of my classes last year actually said this outloud) but there are so many others who collaborate and care about OUM Development. I’ve thought about writing this blog entry for a long time just to reflect on how far the Method has come. Each release, as I prepare the OUM Contributors list, I see how many people’s experience and ideas it has taken to create this wealth of knowledge, process and task guidance as well as templates and examples.  If you’re wondering how many people, just go into OUM select the resources button on the top of most pages of the method, and on that resources page click the ABOUT link. So now back to my nostalgic moment as I finished release 5.6 packaging.  I reflected back, on all the things that happened that cause OUM to become not just a dream but to actually come to fruition.  Here are some key conditions that make it possible for each release of the method: A vision to have one method instead of many methods, thereby focusing on deeper, richer content People within Oracle’s consulting Organization  willing to contribute to OUM providing Subject Matter Experts who are willing to write down and share what they know. Oracle’s continued acquisition of software companies, the need to assimilate high quality existing materials from these companies The need to bring together people from very different backgrounds and provide a common language to support Oracle Product implementations that often involve multiple product families What came first, and then what was the strategy? Initially OUM 4.0 was based on Oracle’s J2EE Custom Development Method (JCDM), it was a good “backbone”  (work breakdown structure) it was Unified Process based, and had good content around UML as well as custom software development.  But it needed to be extended in order to achieve the OUM Vision. What happened after that was to take in the “best of the best”, the legacy and acquired methods were scheduled for assimilation into OUM, one release after another.  We incrementally built OUM.  We didn’t want to lose any of the expertise that was reflected in AIM (Oracle’s legacy Application Implementation Method), Compass (People Soft’s Application implementation method) and so many more. When was OUM born? OUM 4.1 published April 30, 2006.  This release allowed Oracles Advanced Technology groups to begin the very first implementations of Fusion Middleware.  In the early days of the Method we would prepare several releases a year.  Our iterative release development cycle began and continues to be refined with each Method release.  Now we typically see one major release each year. The OUM release development cycle is not unlike many Oracle Implementation projects in that we need to gather requirements, prioritize, prepare the content, test package and then go production.  Typically we develop an OUM release MoSCoW (must have, should have, could have, and won’t have) right after the prior release goes out.   These are the high level requirements.  We break the timeframe into increments, frequent checkpoints that help us assess the content and progress is measured through frequent checkpoints.  We work as a team to prioritize what should be done in each increment. Yes, the team provides the estimates for what can be done within a particular increment.  We sometimes have Method Development workshops (physically or virtually) to accelerate content development on a particular subject area, that is where the best content results. As the written content nears the final stages, it goes through edit and evaluation through peer reviews, and then moves into the release staging environment.  Then content freeze and testing of the method pack take place.  This iterative cycle is run using the OUM artifacts that make sense “fit for purpose”, project plans, MoSCoW lists, Test plans are just a few of the OUM work products we use on a Method Release project. In 2007 OUM 4.3, 4.4 and 4.5 were published.  With the release of 4.5 our Custom BI Method (Data Warehouse Method FastTrack) was assimilated into OUM.  These early releases helped us align Oracle’s Unified method with other industry standards Then in 2008 we made significant changes to the OUM “Backbone” to support Applications Implementation projects with that went to the OUM 5.0 release.  Now things started to get really interesting.  Next we had some major developments in the Envision focus area in the area of Enterprise Architecture.  We acquired some really great content from the former BEA, Liquid Enterprise Method (LEM) along with some SMEs who were willing to work at bringing this content into OUM.  The Service Oriented Architecture content in OUM is extensive and can help support the successful implementation of Fusion Middleware, as well as Fusion Applications. Of course we’ve developed a wealth of OUM training materials that work also helps to improve the method content.  It is one thing to write “how to”, and quite another to be able to teach people how to use the materials to improve the success of their projects.  I’ve learned so much by teaching people how to use OUM. What's next? So here toward the end of 2012, what’s in store in OUM 5.6, well, I’m sure you won’t be surprised the answer is Cloud Computing.   More details to come in the next couple of weeks!  The best part of being involved in the development of OUM is to see how many people have “adopted” OUM over these six years, Clients, Partners, and Oracle Consultants.  The content just gets better with each release.   I’d love to hear your comments on how OUM has evolved, and ideas for new content you’d like to see in the upcoming releases.

    Read the article

  • 6 Facts About GlassFish Announcement

    - by Bruno.Borges
    Since Oracle announced the end of commercial support for future Oracle GlassFish Server versions, the Java EE world has started wondering what will happen to GlassFish Server Open Source Edition. Unfortunately, there's a lot of misleading information going around. So let me clarify some things with facts, not FUD. Fact #1 - GlassFish Open Source Edition is not dead GlassFish Server Open Source Edition will remain the reference implementation of Java EE. The current trunk is where an implementation for Java EE 8 will flourish, and this will become the future GlassFish 5.0. Calling "GlassFish is dead" does no good to the Java EE ecosystem. The GlassFish Community will remain strong towards the future of Java EE. Without revenue-focused mind, this might actually help the GlassFish community to shape the next version, and set free from any ties with commercial decisions. Fact #2 - OGS support is not over As I said before, GlassFish Server Open Source Edition will continue. Main change is that there will be no more future commercial releases of Oracle GlassFish Server. New and existing OGS 2.1.x and 3.1.x commercial customers will continue to be supported according to the Oracle Lifetime Support Policy. In parallel, I believe there's no other company in the Java EE business that offers commercial support to more than one build of a Java EE application server. This new direction can actually help customers and partners, simplifying decision through commercial negotiations. Fact #3 - WebLogic is not always more expensive than OGS Oracle GlassFish Server ("OGS") is a build of GlassFish Server Open Source Edition bundled with a set of commercial features called GlassFish Server Control and license bundles such as Java SE Support. OGS has at the moment of this writing the pricelist of U$ 5,000 / processor. One information that some bloggers are mentioning is that WebLogic is more expensive than this. Fact 3.1: it is not necessarily the case. The initial edition of WebLogic is called "Standard Edition" and falls into a policy where some “Standard Edition” products are licensed on a per socket basis. As of current pricelist, US$ 10,000 / socket. If you do the math, you will realize that WebLogic SE can actually be significantly more cost effective than OGS, and a customer can save money if running on a CPU with 4 cores or more for example. Quote from the price list: “When licensing Oracle programs with Standard Edition One or Standard Edition in the product name (with the exception of Java SE Support, Java SE Advanced, and Java SE Suite), a processor is counted equivalent to an occupied socket; however, in the case of multi-chip modules, each chip in the multi-chip module is counted as one occupied socket.” For more details speak to your Oracle sales representative - this is clearly at list price and every customer typically has a relationship with Oracle (like they do with other vendors) and different contractual details may apply. And although OGS has always been production-ready for Java EE applications, it is no secret that WebLogic has always been more enterprise, mission critical application server than OGS since BEA. Different editions of WLS provide features and upgrade irons like the WebLogic Diagnostic Framework, Work Managers, Side by Side Deployment, ADF and TopLink bundled license, Web Tier (Oracle HTTP Server) bundled licensed, Fusion Middleware stack support, Oracle DB integration features, Oracle RAC features (such as GridLink), Coherence Management capabilities, Advanced HA (Whole Service Migration and Server Migration), Java Mission Control, Flight Recorder, Oracle JDK support, etc. Fact #4 - There’s no major vendor supporting community builds of Java EE app servers There are no major vendors providing support for community builds of any Open Source application server. For example, IBM used to provide community support for builds of Apache Geronimo, not anymore. Red Hat does not commercially support builds of WildFly and if I remember correctly, never supported community builds of former JBoss AS. Oracle has never commercially supported GlassFish Server Open Source Edition builds. Tomitribe appears to be the exception to the rule, offering commercial support for Apache TomEE. Fact #5 - WebLogic and GlassFish share several Java EE implementations It has been no secret that although GlassFish and WebLogic share some JSR implementations (as stated in the The Aquarium announcement: JPA, JSF, WebSockets, CDI, Bean Validation, JAX-WS, JAXB, and WS-AT) and WebLogic understands GlassFish deployment descriptors, they are not from the same codebase. Fact #6 - WebLogic is not for GlassFish what JBoss EAP is for WildFly WebLogic is closed-source offering. It is commercialized through a license-based plus support fee model. OGS although from an Open Source code, has had the same commercial model as WebLogic. Still, one cannot compare GlassFish/WebLogic to WildFly/JBoss EAP. It is simply not the same case, since Oracle has had two different products from different codebases. The comparison should be limited to GlassFish Open Source / Oracle GlassFish Server versus WildFly / JBoss EAP. But the message now is much clear: Oracle will commercially support only the proprietary product WebLogic, and invest on GlassFish Server Open Source Edition as the reference implementation for the Java EE platform and future Java EE 8, as a developer-friendly community distribution, and encourages community participation through Adopt a JSR and contributions to GlassFish. In comparison Oracle's decision has pretty much the same goal as to when IBM killed support for Websphere Community Edition; and to when Red Hat decided to change the name of JBoss Community Edition to WildFly, simplifying and clarifying marketing message and leaving the commercial field wide open to JBoss EAP only. Oracle can now, as any other vendor has already been doing, focus on only one commercial offer. Some users are saying they will now move to WildFly, but it is important to note that Red Hat does not offer commercial support for WildFly builds. Although the future JBoss EAP versions will come from the same codebase as WildFly, the builds will definitely not be the same, nor sharing 100% of their functionalities and bug fixes. This means there will be no company running a WildFly build in production with support from Red Hat. This discussion has also raised an important and interesting information: Oracle offers a free for developers OTN License for WebLogic. For other environments this is different, but please note this is the same policy Red Hat applies to JBoss EAP, as stated in their download page and terms. Oracle had the same policy for OGS. TL;DR; GlassFish Server Open Source Edition isn’t dead. Current and new OGS 2.x/3.x customers will continue to have support (respecting LSP). WebLogic is not necessarily more expensive than OGS. Oracle will focus on one commercially supported Java EE application server, like other vendors also limit themselves to support one build/product only. Community builds are hardly supported. Commercially supported builds of Open Source products are not exactly from the same codebase as community builds. What's next for GlassFish and the Java EE community? There are conversations in place to tackle some of the community desires, most of them stated by Markus Eisele in his blog post. We will keep you posted.

    Read the article

  • URL Rewrite in IIS7 Web Service - WebService.asmx => WebService in the SOAP doc

    - by Robert Kaucher
    I have an IIS7.5 (Server 2008 R2) based web service that I would like to make as independant on the current implementations technology as possible. I am using the URL rewrite module (http://learn.iis.net/page.aspx/734/url-rewrite-module/) to remove the .asmx portion of the URL and that is working fine for the HTTP request portion. However, I still see .asmx in the WSDL file when I access it. I was wondering if anyone has done this and if so, what advice could be offered. It doesn't seem like a hard problem to solve. But I have tries a number of things with "custom tags" and can't seem to get it working to save my life.

    Read the article

  • Can you authenticate into SSAS with AD LDS (ADAM) accounts?

    - by Jaxidian
    I'm very new to AD LDS and experienced but not qualified with SSAS, so my apologies for my ignorances with these. We have a couple implementations where we expose SSAS via an HTTPS proxy (msmdpump.dll) and currently we have a temporary domain setup handling this (where our end-users have a second account+creds to manage because of this = non-ideal). I want to move us towards a more permanent solution which I'm thinking of moving all authentication to AD LDS for our web apps, SSAS, and others. However, SSAS is where I'm concerned about this. I know SSAS requires Windows Authentication and to play nicely, and that this ultimately means Active Directory will be involved. Is there a way to get this done with AD LDS instead of having to use a full AD DS implementation? If so, how? (Note: My question over at StackOverflow had a suggestion that I post this question here on ServerFault instead. My apologies if I'm not asking in the right forum.)

    Read the article

  • Can I trust that ZFS is consistent between Linux and FreeBSD?

    - by iconoclast
    I'm planning to build a FreeNAS box sometime soon, but if ZFS on Linux eventually proves to be reliable, I might want to switch, just to have a more familiar OS. So I'm wondering if I can trust that the different implementations of ZFS are compatible. In other words, if I just swap out the boot disk from FreeNAS to Linux or OpenIndiana, can I trust that nothing bad will happen to my data? This may seem like a stupid question--obviously it ought to be compatible--but I'm guessing that ZFS isn't commonly used in cases where drives are moved between computers, so I'm hoping someone can provide a better answer than just "it ought to be".

    Read the article

  • Hosted version of Yahoo! answers [closed]

    - by Neil
    Hi all. Does anyone know of a hosted version of Yahoo! Answers (or Stackoverflow/Superuser) that I could integrate with my site? I know that there are some open-source implementations (see http://meta.stackoverflow.com/questions/2267/stack-overflow-clones?page=1&tab=votes#tab-top) but I'd rather have some hosted if possible. I know there is http://stackexchange.com/ as well, but I really want some tight integration with the rest of my site. Failing that, has anyone got any experience with the open source versions? Some of them look a little, erm, unfinished... Thanks. Neil.

    Read the article

  • Is there a way to allow administrators to change or reset user passwords?

    - by Jon Seigel
    We have a custom MembershipProvider implementation using form-based authentication (FBA) under Sharepoint 2007. I've searched high and low on Google, but only found: Active directory and FBA implementations to allow users to change their own password Active directory instructions (including video!) for administrators to change other users' passwords Have we missed an option to enable the latter under FBA? Should this work by default and is the MembershipProvider misbehaving? The procedure to do this as under active directory would be ideal, but the "Change Password" link does not appear in the Edit User screen. We verified that the logged-in user is a site collection administrator.

    Read the article

  • Distributed file systems

    - by Neeraj
    I need to implement a distributed storage system for a set of nodes(devices) connected in a mesh network. So what basically my design goals are: The storage system should be capable of handling dynamic entry and exit of nodes. Replication (for fault tolerance). For this i am thinking of using a Distributed file system. Every node could access data in the other nodes in a transparent manner. Are there some simple, easily pluggable opensource implementations? Thanks for your thoughts!

    Read the article

  • What is the correct term for the number of bits used by an operating system

    - by benc
    Recently, some discussions came up about 32 bit vs. 64 bit implementations of operating systems. While I was composing a message about this topic, I realized that I did not know if there was a correct term for the number of bits supported by an operating system. For example, various versions of Solaris and Linux have 32bit and 64bit releases. Is the distinction "architecture"? In my experience, that has referred to chip types (Intel vs. PPC). Is it a "release"? Typically, I think of a release as a version number a consistent feature set, that might run on different architectures. Maybe it is just "architecture", after all, even though a chip family might have used several different bit sizes over time, the chips themselves are different when you jump from 32bit to 64bit.

    Read the article

  • (Open Source) Cloud-Filesystem to run a Database on Top?

    - by jens
    Hello, what are current "technologies and implementations" to get a filesystem with unlimited capacity by using single servers with their harddisk to form a "grid/cloud filesystem"? I need to have unlimited space (by adding further servers) but it must be a filesysem that is capable of running a database on top. I know of Apache Hadoop but that seems not be be Ideal for running a DB on top of it (or am I wrong??) And iSCSI seems to be "remote/networked" but I do not know how and if this is clusterable? thank you very much!! jens

    Read the article

  • (Open Source) Cloud-Filesystem to run a Database on Top?

    - by jens
    Hello, what are current "technologies and implementations" to get a filesystem with unlimited capacity by using single servers with their harddisk to form a "grid/cloud filesystem"? I need to have unlimited space (by adding further servers) but it must be a filesysem that is capable of running a database on top. I know of Apache Hadoop but that seems not be be Ideal for running a DB on top of it (or am I wrong??) And iSCSI seems to be "remote/networked" but I do not know how and if this is clusterable? thank you very much!! jens

    Read the article

  • Router 2wire, Slackware desktop in DMZ mode, iptables policy aginst ping, but still pingable

    - by skriatok
    I'm in DMZ mode, so I'm firewalling myself, stealthy all ok, but I get faulty test results from Shields Up that there are pings. Yesterday I couldn't make a connection to game servers work, because ping block was enabled (on the router). I disabled it, but this persists even due to my firewall. What is the connection between me and my router in DMZ mode (for my machine, there is bunch of others too behind router firewall)? When it allows router affecting if I'm pingable or not and if router has setting not blocking ping, rules in my iptables for this scenario do not work. Please ignore commented rules, I do uncomment them as I want. These two should do the job right? iptables -A INPUT -p icmp --icmp-type echo-request -j DROP echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all Here are my iptables: #!/bin/sh # Begin /bin/firewall-start # Insert connection-tracking modules (not needed if built into the kernel). #modprobe ip_tables #modprobe iptable_filter #modprobe ip_conntrack #modprobe ip_conntrack_ftp #modprobe ipt_state #modprobe ipt_LOG # allow local-only connections iptables -A INPUT -i lo -j ACCEPT # free output on any interface to any ip for any service # (equal to -P ACCEPT) iptables -A OUTPUT -j ACCEPT # permit answers on already established connections # and permit new connections related to established ones (eg active-ftp) iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT #Gamespy&NWN #iptables -A INPUT -p tcp -m tcp -m multiport --ports 5120:5129 -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 6667 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 28910 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29900 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29901 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29920 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p udp -m udp -m multiport --ports 5120:5129 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 6500 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 27900 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 27901 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 29910 -j ACCEPT # Log everything else: What's Windows' latest exploitable vulnerability? iptables -A INPUT -j LOG --log-prefix "FIREWALL:INPUT" # set a sane policy: everything not accepted > /dev/null iptables -P INPUT DROP iptables -P FORWARD DROP iptables -P OUTPUT DROP iptables -A INPUT -p icmp --icmp-type echo-request -j DROP # be verbose on dynamic ip-addresses (not needed in case of static IP) echo 2 > /proc/sys/net/ipv4/ip_dynaddr # disable ExplicitCongestionNotification - too many routers are still # ignorant echo 0 > /proc/sys/net/ipv4/tcp_ecn #ping death echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all # If you are frequently accessing ftp-servers or enjoy chatting you might # notice certain delays because some implementations of these daemons have # the feature of querying an identd on your box for your username for # logging. Although there's really no harm in this, having an identd # running is not recommended because some implementations are known to be # vulnerable. # To avoid these delays you could reject the requests with a 'tcp-reset': #iptables -A INPUT -p tcp --dport 113 -j REJECT --reject-with tcp-reset #iptables -A OUTPUT -p tcp --sport 113 -m state --state RELATED -j ACCEPT # To log and drop invalid packets, mostly harmless packets that came in # after netfilter's timeout, sometimes scans: #iptables -I INPUT 1 -p tcp -m state --state INVALID -j LOG --log-prefix \ "FIREWALL:INVALID" #iptables -I INPUT 2 -p tcp -m state --state INVALID -j DROP # End /bin/firewall-start Active ruleset: bash-4.1# iptables -L -n -v Chain INPUT (policy DROP 38 packets, 2228 bytes) pkts bytes target prot opt in out source destination 0 0 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 844 542K ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 38 2228 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 4 prefix `FIREWALL:INPUT' 0 0 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 38 2228 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 4 prefix `FIREWALL:INPUT' Chain FORWARD (policy DROP 0 packets, 0 bytes) pkts bytes target prot opt in out source destination Chain OUTPUT (policy DROP 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 1158 111K ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 Active ruleset: (after editing iptables into below sugested form) bash-4.1# iptables -L -n -v Chain INPUT (policy DROP 2567 packets, 172K bytes) pkts bytes target prot opt in out source destination 49 4157 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 412K 441M ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 2567 172K LOG all -- * * 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 4 prefix `FIREWALL:INPUT' 0 0 DROP icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmp type 8 Chain FORWARD (policy DROP 0 packets, 0 bytes) pkts bytes target prot opt in out source destination Chain OUTPUT (policy ACCEPT 312K packets, 25M bytes) pkts bytes target prot opt in out source destination ping and syslog simultaneous screenshots from phone (pinger) and from laptop (being pinged) http://dl.dropbox.com/u/4160051/slckwr/pingfrom%20mobile.jpg http://dl.dropbox.com/u/4160051/slckwr/tailsyslog.jpg

    Read the article

  • Increase the compression performance of VPN

    - by Martin
    I am currently switching from a system with HPN-SSH tunnels and enabled compression to something VPN based. I have tried tinc and n2n so far, hamachi requires a library I do not have. In my primitive benchmarks I am not satisfied with the achievable bandwidth compared to the SSH tunnels. In tinc the low LZO setting performed best, but compression is only available in UDP mode. Ideally I would like to have a TCP-based VPN with a multi-threaded compression. Can you suggest me some ideas how to increase the performance? Would it be possible to somehow put a compression filter in front of the tun interface? Or are there any VPN implementations that might be better suited for my needs (fast compression, TCP-based, switch mode, does not have to be super-secure)? I would consider tunnelling Ethernet over SSH, but according to some articles it is not advisable.

    Read the article

< Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >