Search Results

Search found 1232 results on 50 pages for 'study'.

Page 24/50 | < Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >

  • What programming language is good for a beginner and for a hobby? [closed]

    - by Lawrence
    Possible Duplicates: What is the easiest language to start with? What programming language should I choose for an independent study language? Well as the title says what language is good for a beginner and for a hobby? I'll probably be making some games or desktop apps with a gui most likely. I'll be working in Windows and Linux. Oh and could you also give some links to tutorials for the language?

    Read the article

  • how to learn a library/framework structure?

    - by fayer
    a lot of people are contributing to open source libraries/frameworks. i wonder how these people learn the structure so that they can contribute? lets take doctrine and symfony as an example. is there a blueprint over these frameworks to give the developers an insight of the structure? or do they just download it and study the code? how does it work? please you contributors, share your learning strategies! thanks

    Read the article

  • can you have a java career without a CS degree ?

    - by eclipsepain
    What is the best way to prepare for a java career ? Could you study on your own, make a few open source projects or work as a freelancer to build credibility ? OR should I sit through my 3 year CS program. I am in heavy student loan debt from my previous degree....so I'm trying to find the fastest way to find a job, or get paid !

    Read the article

  • Spell Checker in Web Application

    - by nani
    Hi, Currently I am developing website in asp.net. I wanted to include spellchecker module into my code. It may not be fare to ask like this, but I don't have enough time to do R&D on that topic, of course I did enough study but I am unable to get the exact way to implement spell checker in my application. Can any one suggest me how to implement spell checker and where to get source code. Thank You.

    Read the article

  • SOAP VS REST PRAGMATIC CASE STUDIES ?

    - by asksuperuser
    I'm not satisfied with the answers given by the SOAP vs REST questions notably here: http://stackoverflow.com/questions/106546/performance-of-soap-vs-xml-rpc-or-rest because it's just general philosophical answers and not pragmatic answers with some study cases. Nobody can give precise cases of when soap would be more suitable than rest, especially as for performance point of view ? For example let's say I have a flash client for a financiall simulation wizard calling legacy code. Should I use SOAP or REST ? Why ?

    Read the article

  • Shall I bother with QT?

    - by smallb
    Guys I study C++ for a second year. Till now I was doing only console app but I think it's a time to start programming in Windows. There are few alternatives and Qt is one of them but I'm also drawn towards pure Windows API - for more power of course. What would you suggest?

    Read the article

  • What version of Visual Studio is this python compiled with?

    - by leon
    I am trying to find out the version of Visual Study that is used to compile the python on my computer It says Python 2.6.2 (r262:71605, Apr 14 2009, 22:40:02) [MSC v.1500 32 bit (Intel)] on win32 What I do not understand is that MSC V.1500. Does it mean it is compiled with 2005? I cannot find this information on `python.org' neither. Any help is appreciated!

    Read the article

  • Transitioning from the web to the desktop

    - by Paul Anderssen
    Can anyone recommend a language, library, framework or book which focuses on GUI programming from the perspective of a web developer? I have experience in web development, for example HTML/AJAX/PHP/MySQL among similar technologies. However, I have never programmed my own back-end, or any kind of standalone program. Does anyone have experience making this transition, and what would I best study to help make the leap from the browser to creating programs with GUIs (primarily for Windows)?

    Read the article

  • algorithm to make easy my job

    - by gcc
    Iwill tell part of study material task but, dont afraid, I dont want write all of them , I will ask just specific question.okey; User will give me a function with three unknown. example: sin(a+b)+ln(5)*(log(ab)-32/sqrt(abc)) another example for function atan(23/a)-exp(a,b)*(123+asin(ac)) and there are some another input with funtion but in all input a,b and c, are doesnot determined, Anyway,I wont tell the other part,I just asking how I should take the fuction such that I can do my job with easy?

    Read the article

  • Best book / content for .NET 3.5

    - by Ram
    Hi, I want to study new .NET 3.5 concepts like WPF, WCF for work as well as for interviews. I am aware of .NET 2 but do not have any detailed knowledge of .NET 3.5 and newly added features in .NET 3.5 and C#. is there any good book/ online resource which would help me?

    Read the article

  • Algorithms after load-balancer?

    - by Vimvq1987
    I need to study about load-balancers, such as Network Load Balancing, Linux Virtual Server, HAProxy,...There're somethings under-the-hood I need to know: What algorithms/technologies are used in these load-balancers? Which is the most popular? most effective? I expect that these algorithms/technologies will not be too complicated. Are there some resources written about them? Thank you very much for your help.

    Read the article

  • Why my laptop sends ARP request to itself ?

    - by user58859
    I have just started to learn about protocols. While studying the packets in wireshark, I came across a ARP request sent by my machine to my own IP. Here is the details of the packet : No. Time Source Destination Protocol Info 15 1.463563 IntelCor_aa:aa:aa Broadcast ARP Who has 192.168.1.34? Tell 0.0.0.0 Frame 15: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) Arrival Time: Jan 7, 2011 18:51:43.886089000 India Standard Time Epoch Time: 1294406503.886089000 seconds [Time delta from previous captured frame: 0.123389000 seconds] [Time delta from previous displayed frame: 0.123389000 seconds] [Time since reference or first frame: 1.463563000 seconds] Frame Number: 15 Frame Length: 42 bytes (336 bits) Capture Length: 42 bytes (336 bits) [Frame is marked: False] [Frame is ignored: False] [Protocols in frame: eth:arp] [Coloring Rule Name: ARP] [Coloring Rule String: arp] Ethernet II, Src: IntelCor_aa:aa:aa (aa:aa:aa:aa:aa:aa), Dst: Broadcast (ff:ff:ff:ff:ff:ff) Destination: Broadcast (ff:ff:ff:ff:ff:ff) Address: Broadcast (ff:ff:ff:ff:ff:ff) .... ...1 .... .... .... .... = IG bit: Group address (multicast/broadcast) .... ..1. .... .... .... .... = LG bit: Locally administered address (this is NOT the factory default) Source: IntelCor_aa:aa:aa (aa:aa:aa:aa:aa:aa) Address: IntelCor_aa:aa:aa (aa:aa:aa:aa:aa:aa) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) Type: ARP (0x0806) Address Resolution Protocol (request) Hardware type: Ethernet (0x0001) Protocol type: IP (0x0800) Hardware size: 6 Protocol size: 4 Opcode: request (0x0001) [Is gratuitous: False] Sender MAC address: IntelCor_aa:aa:aa (aa:aa:aa:aa:aa:aa) Sender IP address: 0.0.0.0 (0.0.0.0) Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00) Target IP address: 192.168.1.34 (192.168.1.34) Here the sender's mac address is mine(Here I have hiden my mac address). target IP is mine. Why my machine is sending ARP request to itself? I found 3 packets of this type. There was no ARP reply for these packets. Can anybody explain me why it is? (My operating system is windows-7. I am directly connected to a wifi modem. I got these packets as soon as I started my connection.) I want one suggestion also. many places I read that RFC's are enough for study about protocols. I studied the RFC 826 on ARP. I personally feel that is not enough at all. Any suggestion regarding this? Is there more then 1 RFC for a protocol? I want to study about the protocols in very detail. Can anybody guide me for this? Thanks in advance.

    Read the article

  • A Guided Tour of Complexity

    - by JoshReuben
    I just re-read Complexity – A Guided Tour by Melanie Mitchell , protégé of Douglas Hofstadter ( author of “Gödel, Escher, Bach”) http://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109/ref=sr_1_1?ie=UTF8&qid=1339744329&sr=8-1 here are some notes and links:   Evolved from Cybernetics, General Systems Theory, Synergetics some interesting transdisciplinary fields to investigate: Chaos Theory - http://en.wikipedia.org/wiki/Chaos_theory – small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction impossible. System Dynamics / Cybernetics - http://en.wikipedia.org/wiki/System_Dynamics – study of how feedback changes system behavior Network Theory - http://en.wikipedia.org/wiki/Network_theory – leverage Graph Theory to analyze symmetric  / asymmetric relations between discrete objects Algebraic Topology - http://en.wikipedia.org/wiki/Algebraic_topology – leverage abstract algebra to analyze topological spaces There are limits to deterministic systems & to computation. Chaos Theory definitely applies to training an ANN (artificial neural network) – different weights will emerge depending upon the random selection of the training set. In recursive Non-Linear systems http://en.wikipedia.org/wiki/Nonlinear_system – output is not directly inferable from input. E.g. a Logistic map: Xt+1 = R Xt(1-Xt) Different types of bifurcations, attractor states and oscillations may occur – e.g. a Lorenz Attractor http://en.wikipedia.org/wiki/Lorenz_system Feigenbaum Constants http://en.wikipedia.org/wiki/Feigenbaum_constants express ratios in a bifurcation diagram for a non-linear map – the convergent limit of R (the rate of period-doubling bifurcations) is 4.6692016 Maxwell’s Demon - http://en.wikipedia.org/wiki/Maxwell%27s_demon - the Second Law of Thermodynamics has only a statistical certainty – the universe (and thus information) tends towards entropy. While any computation can theoretically be done without expending energy, with finite memory, the act of erasing memory is permanent and increases entropy. Life & thought is a counter-example to the universe’s tendency towards entropy. Leo Szilard and later Claude Shannon came up with the Information Theory of Entropy - http://en.wikipedia.org/wiki/Entropy_(information_theory) whereby Shannon entropy quantifies the expected value of a message’s information in bits in order to determine channel capacity and leverage Coding Theory (compression analysis). Ludwig Boltzmann came up with Statistical Mechanics - http://en.wikipedia.org/wiki/Statistical_mechanics – whereby our Newtonian perception of continuous reality is a probabilistic and statistical aggregate of many discrete quantum microstates. This is relevant for Quantum Information Theory http://en.wikipedia.org/wiki/Quantum_information and the Physics of Information - http://en.wikipedia.org/wiki/Physical_information. Hilbert’s Problems http://en.wikipedia.org/wiki/Hilbert's_problems pondered whether mathematics is complete, consistent, and decidable (the Decision Problem – http://en.wikipedia.org/wiki/Entscheidungsproblem – is there always an algorithm that can determine whether a statement is true).  Godel’s Incompleteness Theorems http://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems  proved that mathematics cannot be both complete and consistent (e.g. “This statement is not provable”). Turing through the use of Turing Machines (http://en.wikipedia.org/wiki/Turing_machine symbol processors that can prove mathematical statements) and Universal Turing Machines (http://en.wikipedia.org/wiki/Universal_Turing_machine Turing Machines that can emulate other any Turing Machine via accepting programs as well as data as input symbols) that computation is limited by demonstrating the Halting Problem http://en.wikipedia.org/wiki/Halting_problem (is is not possible to know when a program will complete – you cannot build an infinite loop detector). You may be used to thinking of 1 / 2 / 3 dimensional systems, but Fractal http://en.wikipedia.org/wiki/Fractal systems are defined by self-similarity & have non-integer Hausdorff Dimensions !!!  http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension – the fractal dimension quantifies the number of copies of a self similar object at each level of detail – eg Koch Snowflake - http://en.wikipedia.org/wiki/Koch_snowflake Definitions of complexity: size, Shannon entropy, Algorithmic Information Content (http://en.wikipedia.org/wiki/Algorithmic_information_theory - size of shortest program that can generate a description of an object) Logical depth (amount of info processed), thermodynamic depth (resources required). Complexity is statistical and fractal. John Von Neumann’s other machine was the Self-Reproducing Automaton http://en.wikipedia.org/wiki/Self-replicating_machine  . Cellular Automata http://en.wikipedia.org/wiki/Cellular_automaton are alternative form of Universal Turing machine to traditional Von Neumann machines where grid cells are locally synchronized with their neighbors according to a rule. Conway’s Game of Life http://en.wikipedia.org/wiki/Conway's_Game_of_Life demonstrates various emergent constructs such as “Glider Guns” and “Spaceships”. Cellular Automatons are not practical because logical ops require a large number of cells – wasteful & inefficient. There are no compilers or general program languages available for Cellular Automatons (as far as I am aware). Random Boolean Networks http://en.wikipedia.org/wiki/Boolean_network are extensions of cellular automata where nodes are connected at random (not to spatial neighbors) and each node has its own rule –> they demonstrate the emergence of complex  & self organized behavior. Stephen Wolfram’s (creator of Mathematica, so give him the benefit of the doubt) New Kind of Science http://en.wikipedia.org/wiki/A_New_Kind_of_Science proposes the universe may be a discrete Finite State Automata http://en.wikipedia.org/wiki/Finite-state_machine whereby reality emerges from simple rules. I am 2/3 through this book. It is feasible that the universe is quantum discrete at the plank scale and that it computes itself – Digital Physics: http://en.wikipedia.org/wiki/Digital_physics – a simulated reality? Anyway, all behavior is supposedly derived from simple algorithmic rules & falls into 4 patterns: uniform , nested / cyclical, random (Rule 30 http://en.wikipedia.org/wiki/Rule_30) & mixed (Rule 110 - http://en.wikipedia.org/wiki/Rule_110 localized structures – it is this that is interesting). interaction between colliding propagating signal inputs is then information processing. Wolfram proposes the Principle of Computational Equivalence - http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html - all processes that are not obviously simple can be viewed as computations of equivalent sophistication. Meaning in information may emerge from analogy & conceptual slippages – see the CopyCat program: http://cognitrn.psych.indiana.edu/rgoldsto/courses/concepts/copycat.pdf Scale Free Networks http://en.wikipedia.org/wiki/Scale-free_network have a distribution governed by a Power Law (http://en.wikipedia.org/wiki/Power_law - much more common than Normal Distribution). They are characterized by hubs (resilience to random deletion of nodes), heterogeneity of degree values, self similarity, & small world structure. They grow via preferential attachment http://en.wikipedia.org/wiki/Preferential_attachment – tipping points triggered by positive feedback loops. 2 theories of cascading system failures in complex systems are Self-Organized Criticality http://en.wikipedia.org/wiki/Self-organized_criticality and Highly Optimized Tolerance http://en.wikipedia.org/wiki/Highly_optimized_tolerance. Computational Mechanics http://en.wikipedia.org/wiki/Computational_mechanics – use of computational methods to study phenomena governed by the principles of mechanics. This book is a great intuition pump, but does not cover the more mathematical subject of Computational Complexity Theory – http://en.wikipedia.org/wiki/Computational_complexity_theory I am currently reading this book on this subject: http://www.amazon.com/Computational-Complexity-Christos-H-Papadimitriou/dp/0201530821/ref=pd_sim_b_1   stay tuned for that review!

    Read the article

< Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >