Search Results

Search found 12472 results on 499 pages for 'game cables'.

Page 241/499 | < Previous Page | 237 238 239 240 241 242 243 244 245 246 247 248  | Next Page >

  • Why do my LWJGL fonts have dots and lines around them?

    - by Jordan
    When we render fonts there are weird dots and lines around the text. I have no idea why this would happen. Here is an image of what it looks like: Our font class looks like this: package me.NJ.ComputerTycoon.Font; import me.NJ.ComputerTycoon.BaseObjects.UDim2; import org.lwjgl.opengl.Display; import org.newdawn.slick.Color; import org.newdawn.slick.TrueTypeFont; public class Font { public TrueTypeFont font; private int fontSize = 18; private String fontName = "Calibri"; private int fontStyle = java.awt.Font.BOLD; public Font(String fontName, int fontStyle, int fontSize) { font = new TrueTypeFont(new java.awt.Font(fontName, fontStyle, fontSize), true); //font. } public Font(int fontStyle, int fontSize) { font = new TrueTypeFont(new java.awt.Font(fontName, fontStyle, fontSize), true); } public Font(int fontSize) { font = new TrueTypeFont(new java.awt.Font(fontName, fontStyle, fontSize), true); } public Font() { font = new TrueTypeFont(new java.awt.Font(fontName, fontStyle, fontSize), true); } public void drawString(int x, int y, String s, Color color){ this.font.drawString(x, y, s, color); } public void drawString(int x, int y, String s){ this.font.drawString(x, y, s); } public void drawString(float x, float y, String s, Color color){ this.font.drawString(x, y, s, color); } public void drawString(float x, float y, String s){ this.font.drawString(x, y, s); } public void drawString(UDim2 udim, String s){ this.font.drawString((Display.getWidth() * udim.getX().getScale()) + udim.getX().getOffset(), (Display.getHeight() * udim.getY().getScale()) + udim.getY().getOffset(), s); } public String getFontName(){ return this.fontName; } public int getFontSize(){ return this.fontSize; } public TrueTypeFont getFont(){ return this.font; } } What could be causing this?

    Read the article

  • what does AngleVectors method in quake 3 source code does

    - by kypronite
    I just downloaded quake 3 for learning purposes. I know some of some linear algebra(basic vector math ie: dot,cross product). However I can't decipher what below method does, I know what is yaw,pitch and roll. But I can't connect these with vector. Worse, I'm not sure this fall under what math 'category', so I don't really know how to google. Hence the question here. Anyone? void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; } if (up) { up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } } ddddd

    Read the article

  • OpenGL - Cascaded shadow mapping - Texture lookup

    - by Silverlan
    I'm trying to implement cascaded shadow mapping in my engine, but I'm somewhat stuck at the last step. For testing purposes I've made sure all cascades encompass my entire scene. The result is currently this: The different intensity of the cascades is not on purpose, it's actually the problem. This is how I do the texture lookup for the shadow maps inside the fragment shader: layout(std140) uniform CSM { vec4 csmFard; // far distances for each cascade mat4 csmVP[4]; // View-Projection Matrix int numCascades; // Number of cascades to use. In this example it's 4. }; uniform sampler2DArrayShadow csmTextureArray; // The 4 shadow maps in vec4 csmPos[4]; // Vertex position in shadow MVP space float GetShadowCoefficient() { int index = numCascades -1; vec4 shadowCoord; for(int i=0;i<numCascades;i++) { if(gl_FragCoord.z < csmFard[i]) { shadowCoord = csmPos[i]; index = i; break; } } shadowCoord.w = shadowCoord.z; shadowCoord.z = float(index); shadowCoord.x = shadowCoord.x *0.5f +0.5f; shadowCoord.y = shadowCoord.y *0.5f +0.5f; return shadow2DArray(csmTextureArray,shadowCoord).x; } I then use the return value and simply multiply it with the diffuse color. That explains the different intensity of the cascades, since I'm grabbing the depth value directly from the texture. I've tried to do a depth comparison instead, but with limited success: [...] // Same code as above shadowCoord.w = shadowCoord.z; shadowCoord.z = float(index); shadowCoord.x = shadowCoord.x *0.5f +0.5f; shadowCoord.y = shadowCoord.y *0.5f +0.5f; float z = shadow2DArray(csmTextureArray,shadowCoord).x; if(z < shadowCoord.w) return 0.25f; return 1.f; } While this does give me the same shadow value everywhere, it only works for the first cascade, all others are blank: (I colored the cascades because otherwise the transitions wouldn't be visible in this case) What am I missing here?

    Read the article

  • How can I author objects with perspective that fit into a tile-based map but span multiple tiles?

    - by Growler
    I'm creating a tilemap city and trying to figure out the most efficient way to create unique building scenes. The trick is, I need to maintain a sort of 2D, almost-top-down perspective, which is hard to do with buildings or large objects that span multiple tiles. I've tried doing three buildings at a time, and mixing and matching the base layer and colors, like this: This creates a weird overlapping effect, and also doesn't seem that efficient from a production standpoint. But it was the best way to have shadows appear correctly on the neighboring buildings. I'm wondering if modular buildings would be the way to go? That way I can mix and match any set of buildings together as tiles: I guess I would have to risk some perspective and shadowing to get the buildings to align correctly. What sort of authoring process could I use to allow me to create a variety of buildings (or other objects) that maintain this perspective while spanning multiple tiles worth of screen space? Would you recommend creating blank buildings, and then affixing art overlays as necessary to make the buildings unique? Or should they be directly part of the building tile (for example, create a separate tileset of buildings signs and colorings)?

    Read the article

  • Texture mapping on gluDisk

    - by Marnix
    I'm trying to map a brick texture on the edge of a fountain and I'm using gluDisk for that. How can I make the right coordinates for the disk? My code looks like this and I have only found a function that takes the texture along with the camera. I want the cubic texture to be alongside of the fountain, but gluDisk does a linear mapping. How do I get a circular mapping? void Fountain::Draw() { glPushMatrix(); // push 1 this->ApplyWorldMatrixGL(); glEnable(GL_TEXTURE_2D); // enable texturing glPushMatrix(); // push 2 glRotatef(90,-1,0,0); // rotate 90 for the quadric // also drawing more here... // stone texture glBindTexture(GL_TEXTURE_2D, texIDs[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glPushMatrix(); // push 3 glTranslatef(0,0,height); // spherical texture generation // this piece of code doesn't work as I intended glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T); GLUquadric *tub = gluNewQuadric(); gluQuadricTexture(tub, GL_TRUE); gluDisk(tub, radius, outerR, nrVertices, nrVertices); gluDeleteQuadric(tub); glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); glPopMatrix(); // pop 3 // more drawing here... glPopMatrix(); // pop 2 // more drawing here... glPopMatrix(); // pop 1 } To refine my question a bit. This is an image of what it is at default (left) and of what I want (right). The texture should fit in the border of the disk, a lot of times. If this is possible with the texture matrix, than that's fine with me as well.

    Read the article

  • View matrix in opengl

    - by user5584
    Hi! Sorry for my clumsy question. But I don't know where I am wrong at creating view matrix. I have the following code: createMatrix(vec4f(xAxis.x, xAxis.y, xAxis.z, dot(xAxis,eye)), vec4f( yAxis.x_, yAxis.y_, yAxis.z_, dot(yAxis,eye)), vec4f(-zAxis.x_, -zAxis.y_, -zAxis.z_, -dot(zAxis,eye)), vec4f(0, 0, 0, 1)); //column1, column2,... I have tried to transpose it, but with no success. I have also tried to use gluLookAt(...) with success. At the reference page, I watched the remarks about the to-be-created matrix, and it seems the same as mine. Where I am wrong?

    Read the article

  • Objective-C Moving UIView along a curved path

    - by PruitIgoe
    I'm not sure if I am approaching this the correct way. In my app, when a user touches the screen I capture the point and create an arc from a fixed point to that touch point. I then want to move a UIView along that arc. Here's my code: ViewController.m //method to "shoot" object - KIP_Projectile creates the arc, KIP_Character creates the object I want to move along the arc ... //get arc for trajectory KIP_Projectile* vThisProjectile = [[KIP_Projectile alloc] initWithFrame:CGRectMake(51.0, fatElvisCenterPoint-30.0, touchPoint.x, 60.0)]; vThisProjectile.backgroundColor = [UIColor clearColor]; [self.view addSubview:vThisProjectile]; ... KIP_Character* thisChar = [[KIP_Character alloc] initWithFrame:CGRectMake(51, objCenterPoint-5, imgThisChar.size.width, imgThisChar.size.height)]; thisChar.backgroundColor = [UIColor clearColor]; thisChar.charID = charID; thisChar.charType = 2; thisChar.strCharType = @"Projectile"; thisChar.imgMyImage = imgThisChar; thisChar.myArc = vThisProjectile; [thisChar buildImage]; [thisChar traceArc]; in KIP_Projectile I build the arc using this code: - (CGMutablePathRef) createArcPathFromBottomOfRect : (CGRect) rect : (CGFloat) arcHeight { CGRect arcRect = CGRectMake(rect.origin.x, rect.origin.y + rect.size.height - arcHeight, rect.size.width, arcHeight); CGFloat arcRadius = (arcRect.size.height/2) + (pow(arcRect.size.width, 2) / (8*arcRect.size.height)); CGPoint arcCenter = CGPointMake(arcRect.origin.x + arcRect.size.width/2, arcRect.origin.y + arcRadius); CGFloat angle = acos(arcRect.size.width / (2*arcRadius)); CGFloat startAngle = radians(180) + angle; CGFloat endAngle = radians(360) - angle; CGMutablePathRef path = CGPathCreateMutable(); CGPathAddArc(path, NULL, arcCenter.x, arcCenter.y, arcRadius, startAngle, endAngle, 0); return path; } - (void)drawRect:(CGRect)rect { CGContextRef currentContext = UIGraphicsGetCurrentContext(); _myArcPath = [self createArcPathFromBottomOfRect:self.bounds:30.0]; CGContextSetLineWidth(currentContext, 1); CGFloat red[4] = {1.0f, 0.0f, 0.0f, 1.0f}; CGContextSetStrokeColor(currentContext, red); CGContextAddPath(currentContext, _myArcPath); CGContextStrokePath(currentContext); } Works fine. The arc is displayed with a red stroke on the screen. In KIP_Character, which has been passed it's relevant arc, I am using this code but getting no results. - (void) traceArc { CGMutablePathRef myArc = _myArc.myArcPath; // Set up path movement CAKeyframeAnimation *pathAnimation = [CAKeyframeAnimation animationWithKeyPath:@"position"]; pathAnimation.calculationMode = kCAAnimationPaced; pathAnimation.fillMode = kCAFillModeForwards; pathAnimation.removedOnCompletion = NO; pathAnimation.path = myArc; CGPathRelease(myArc); [self.layer addAnimation:pathAnimation forKey:@"savingAnimation"]; } Any help here would be appreciated.

    Read the article

  • Voxel Face Crawling (Mesh simplification, possibly using greedy)

    - by Tim Winter
    This is in regards to a Minecraft-like terrain engine. I store blocks in chunks (16x256x16 blocks in a chunk). When I generate a chunk, I use multiple procedural techniques to set the terrain and to place objects. While generating, I keep one 1D array for the full chunk (solid or not) and a separate 1D array of solid blocks. After generation, I iterate through the solid blocks checking their neighbors so I only generate block faces that don't have solid neighbors. I store which faces to generate in their own list (that's 6 lists, one per possible face). When rendering a chunk, I render all lists in the camera's current chunk and only the lists facing the camera in all other chunks. Using a 2D atlas with this little shader trick Andrew Russell suggested, I want to merge similar faces together completely. That is, if they are in the same list (same normal), are adjacent to each other, have the same light level, etc. My assumption would be to have each of the 6 lists sorted by the axis they rest on, then by the other two axes (the list for the top of a block would be sorted by it's Y value, then X, then Z). With this alone, I could quite easily merge strips of faces, but I'm looking to merge more than just strips together when possible. I've read up on this greedy meshing algorithm, but I am having a lot of trouble understanding it. To even use it, I would think I'd need to perform a type of flood-fill per sorted list to get the groups of merge-able faces. Then, per group, perform the greedy algorithm. It all sounds awfully expensive if I would ever want dynamic terrain/lighting after initial generation. So, my question: To perform merging of faces as described (ignoring whether it's a bad idea for dynamic terrain/lighting), is there perhaps an algorithm that is simpler to implement? I would also quite happily accept an answer that walks me through the greedy algorithm in a much simpler way (a link or explanation). I don't mind a slight performance decrease if it's easier to implement or even if it's only a little better than just doing strips. I worry that most algorithms focus on triangles rather than quads and using a 2D atlas the way I am, I don't know that I could implement something triangle based with my current skills. PS: I already frustum cull per chunk and as described, I also cull faces between solid blocks. I don't occlusion cull yet and may never.

    Read the article

  • Swept AABB vs Line Segment 2D

    - by Larolaro
    I've really exhausted as much as Google has to give, I've spent a solid week googling every combination of words for an "AABBvsLine sweep", downloaded countless collision demos, dissected SAT intersection examples and an AABBvsAABB sweep trying to figure out how to approach this. I've not found a single thing covering this specific pairing. Can anyone shed any light on how to get the hit time of a swept AABB vs a Line segment in 2D? I'm still getting familiar with the SAT but I do know how to implement it to a degree, I'm just not sure how to extract the hit time from the velocity in the non axis aligned separating axes for the sweep. I really would appreciate anything at the moment, some code or even some helpful links, I'm at my wits end!

    Read the article

  • ASSIMP in my program is much slower to import than ASSIMP view program

    - by Marco
    The problem is really simple: if I try to load with the function aiImportFileExWithProperties a big model in my software (around 200.000 vertices), it takes more than one minute. If I try to load the very same model with ASSIMP view, it takes 2 seconds. For this comparison, both my software and Assimp view are using the dll version of the library at 64 bit, compiled by myself (Assimp64.dll). This is the relevant piece of code in my software // default pp steps unsigned int ppsteps = aiProcess_CalcTangentSpace | // calculate tangents and bitangents if possible aiProcess_JoinIdenticalVertices | // join identical vertices/ optimize indexing aiProcess_ValidateDataStructure | // perform a full validation of the loader's output aiProcess_ImproveCacheLocality | // improve the cache locality of the output vertices aiProcess_RemoveRedundantMaterials | // remove redundant materials aiProcess_FindDegenerates | // remove degenerated polygons from the import aiProcess_FindInvalidData | // detect invalid model data, such as invalid normal vectors aiProcess_GenUVCoords | // convert spherical, cylindrical, box and planar mapping to proper UVs aiProcess_TransformUVCoords | // preprocess UV transformations (scaling, translation ...) aiProcess_FindInstances | // search for instanced meshes and remove them by references to one master aiProcess_LimitBoneWeights | // limit bone weights to 4 per vertex aiProcess_OptimizeMeshes | // join small meshes, if possible; aiProcess_SplitByBoneCount | // split meshes with too many bones. Necessary for our (limited) hardware skinning shader 0; cout << "Loading " << pFile << "... "; aiPropertyStore* props = aiCreatePropertyStore(); aiSetImportPropertyInteger(props,AI_CONFIG_IMPORT_TER_MAKE_UVS,1); aiSetImportPropertyFloat(props,AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,80.f); aiSetImportPropertyInteger(props,AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT); aiSetImportPropertyInteger(props,AI_CONFIG_GLOB_MEASURE_TIME,1); //aiSetImportPropertyInteger(props,AI_CONFIG_PP_PTV_KEEP_HIERARCHY,1); // Call ASSIMPs C-API to load the file scene = (aiScene*)aiImportFileExWithProperties(pFile.c_str(), ppsteps | /* default pp steps */ aiProcess_GenSmoothNormals | // generate smooth normal vectors if not existing aiProcess_SplitLargeMeshes | // split large, unrenderable meshes into submeshes aiProcess_Triangulate | // triangulate polygons with more than 3 edges //aiProcess_ConvertToLeftHanded | // convert everything to D3D left handed space aiProcess_SortByPType | // make 'clean' meshes which consist of a single typ of primitives 0, NULL, props); aiReleasePropertyStore(props); if(!scene){ cout << aiGetErrorString() << endl; return 0; } this is the relevant piece of code in assimp view code // default pp steps unsigned int ppsteps = aiProcess_CalcTangentSpace | // calculate tangents and bitangents if possible aiProcess_JoinIdenticalVertices | // join identical vertices/ optimize indexing aiProcess_ValidateDataStructure | // perform a full validation of the loader's output aiProcess_ImproveCacheLocality | // improve the cache locality of the output vertices aiProcess_RemoveRedundantMaterials | // remove redundant materials aiProcess_FindDegenerates | // remove degenerated polygons from the import aiProcess_FindInvalidData | // detect invalid model data, such as invalid normal vectors aiProcess_GenUVCoords | // convert spherical, cylindrical, box and planar mapping to proper UVs aiProcess_TransformUVCoords | // preprocess UV transformations (scaling, translation ...) aiProcess_FindInstances | // search for instanced meshes and remove them by references to one master aiProcess_LimitBoneWeights | // limit bone weights to 4 per vertex aiProcess_OptimizeMeshes | // join small meshes, if possible; aiProcess_SplitByBoneCount | // split meshes with too many bones. Necessary for our (limited) hardware skinning shader 0; aiPropertyStore* props = aiCreatePropertyStore(); aiSetImportPropertyInteger(props,AI_CONFIG_IMPORT_TER_MAKE_UVS,1); aiSetImportPropertyFloat(props,AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,g_smoothAngle); aiSetImportPropertyInteger(props,AI_CONFIG_PP_SBP_REMOVE,nopointslines ? aiPrimitiveType_LINE | aiPrimitiveType_POINT : 0 ); aiSetImportPropertyInteger(props,AI_CONFIG_GLOB_MEASURE_TIME,1); //aiSetImportPropertyInteger(props,AI_CONFIG_PP_PTV_KEEP_HIERARCHY,1); // Call ASSIMPs C-API to load the file g_pcAsset->pcScene = (aiScene*)aiImportFileExWithProperties(g_szFileName, ppsteps | /* configurable pp steps */ aiProcess_GenSmoothNormals | // generate smooth normal vectors if not existing aiProcess_SplitLargeMeshes | // split large, unrenderable meshes into submeshes aiProcess_Triangulate | // triangulate polygons with more than 3 edges aiProcess_ConvertToLeftHanded | // convert everything to D3D left handed space aiProcess_SortByPType | // make 'clean' meshes which consist of a single typ of primitives 0, NULL, props); aiReleasePropertyStore(props); As you can see the code is nearly identical because I copied from assimp view. What could be the reason for such a difference in performance? The two software are using the same dll Assimp64.dll (compiled in my computer with vc++ 2010 express) and the same function aiImportFileExWithProperties to load the model, so I assume that the actual code employed is the same. How is it possible that the function aiImportFileExWithProperties is 100 times slower when called by my sotware than when called by assimp view? What am I missing? I am not good with dll, dynamic and static libraries so I might be missing something obvious. ------------------------------ UPDATE I found out the reason why the code is going slower. Basically I was running my software with "Start debugging" in VC++ 2010 Express. If I run the code outside VC++ 2010 I get same performance of assimp view. However now I have a new question. Why does the dll perform slower in VC++ debugging? I compiled it in release mode without debugging information. Is there any way to have the dll go fast in debugmode i.e. not debugging the dll? Because I am interested in debugging only my own code, not the dll that I assume is already working fine. I do not want to wait 2 minutes every time I want to load my software to debug. Does this request make sense?

    Read the article

  • Developing a long pannable, sprite-animated Windows Store app

    - by Groo
    I am creating my first Windows Store app in XAML, and I cannot seem to find a proper example for the requirements I have (I have spent a couple of days fiddling around, so I apologize if I missed something obvious). Basic idea of the app is to have a large scrollable canvas which would lazily start animating visible parts of the view as soon as user stops panning over a certain content (with some audio played also): My original idea was to use a StackPanel to add a bunch of custom controls, each of which would then animate itself once visible (with a short delay), but I have a couple of concerns: If the entire canvas is ~50 screen widths wide, is it feasible to load all content at the beginning, or do I need to plan doing some lazy loading during scrolling? For example, when I select a certain region in the Bing Travel app, it seems to lazily load tiles as I scroll it towards the end. Since content is stretched 100% vertically, and these animations are vectorized to be resolution independent, I am not sure if XAML (CompositionTarget) will be able to handle this, or I have to go for DirectX (MonoGame or C++) to get rid of flicker. Even better, is there an example for Windows 8 which uses a 100% vertically sized GridView with custom animated controls inside?

    Read the article

  • Generating Normal map from a Image with a given Albedo map

    - by snape
    I am working on a research problem part of which involves generating normal map from a given image of a rusted object. I searched the internet for techniques to achieve the above and apparently crazybump is mentioned a lot. I tried it but it didn't produce the desirable effects. Also I am looking for a method which draws inspiration from an existing research paper not some closed source software. I turned my attention to the technique described in the this paper. Results from this technique are satisfactory for normal objects because of bias in the training data but it doesn't work very well in the case of rusted objects. After this I focussed my attention on generating Albedo map (the above problem would become more solvable if Albedo map is obtained). Fortunately I am able to generate pretty good albedo maps for images of rusted objects. I used this paper's approach to generate Albedo maps. Now I want to know a good technique to get Normal map given an image and it's corresponding Albedo map. To give you an idea of what kind of images I am working with I am attaching a sample. Links to research material would be really appreciated. Thanks!

    Read the article

  • Stencil mask with AlphaTestEffect

    - by Brendan Wanlass
    I am trying to pull off the following effect in XNA 4.0: http://eng.utah.edu/~brendanw/question.jpg The purple area has 50% opacity. I have gotten pretty close with the following code: public static DepthStencilState AlwaysStencilState = new DepthStencilState() { StencilEnable = true, StencilFunction = CompareFunction.Always, StencilPass = StencilOperation.Replace, ReferenceStencil = 1, DepthBufferEnable = false, }; public static DepthStencilState EqualStencilState = new DepthStencilState() { StencilEnable = true, StencilFunction = CompareFunction.Equal, StencilPass = StencilOperation.Keep, ReferenceStencil = 1, DepthBufferEnable = false, }; ... if (_alphaEffect == null) { _alphaEffect = new AlphaTestEffect(_spriteBatch.GraphicsDevice); _alphaEffect.AlphaFunction = CompareFunction.LessEqual; _alphaEffect.ReferenceAlpha = 129; Matrix projection = Matrix.CreateOrthographicOffCenter(0, _spriteBatch.GraphicsDevice.PresentationParameters.BackBufferWidth, _spriteBatch.GraphicsDevice.PresentationParameters.BackBufferHeight, 0, 0, 1); _alphaEffect.Projection = world.SystemManager.GetSystem<RenderSystem>().Camera.View * projection; } _mask = new RenderTarget2D(_spriteBatch.GraphicsDevice, _spriteBatch.GraphicsDevice.PresentationParameters.BackBufferWidth, _spriteBatch.GraphicsDevice.PresentationParameters.BackBufferHeight, false, SurfaceFormat.Color, DepthFormat.Depth24Stencil8); _spriteBatch.GraphicsDevice.SetRenderTarget(_mask); _spriteBatch.GraphicsDevice.Clear(ClearOptions.Target | ClearOptions.Stencil, Color.Transparent, 0, 0); _spriteBatch.Begin(SpriteSortMode.Immediate, null, null, AlwaysStencilState, null, _alphaEffect); _spriteBatch.Draw(sprite.Texture, position, sprite.SourceRectangle,Color.White, 0f, sprite.Origin, 1f, SpriteEffects.None, 0); _spriteBatch.End(); _spriteBatch.Begin(SpriteSortMode.Immediate, null, null, EqualStencilState, null, null); _spriteBatch.Draw(_maskTex, new Vector2(x * _maskTex.Width, y * _maskTex.Height), null, Color.White, 0f, Vector2.Zero, 1f, SpriteEffects.None, 0); _spriteBatch.End(); _spriteBatch.GraphicsDevice.SetRenderTarget(null); _spriteBatch.GraphicsDevice.Clear(Color.Black); _spriteBatch.Begin(); _spriteBatch.Draw((Texture2D)_mask, Vector2.Zero, null, Color.White, 0f, Vector2.Zero, 1f, SpriteEffects.None, layer/max_layer); _spriteBatch.End(); My problem is, I can't get the AlphaTestEffect to behave. I can either mask over the semi-transparent purple junk and fill it in with the green design, or I can draw over the completely opaque grassy texture. How can I specify the exact opacity that needs to be replace with the green design?

    Read the article

  • Parse/Write JSON with Unity iOS

    - by DannoEterno
    anybody know a tutorial or maybe can help me to develop a parser/reader for JSON compatible with Unity iOS pro? I've already tried different third part libraries but without luck (i've tried json.net, jsonfx, litjson). Im pretty in hurry of doing a simple parser/writer that i can use also under iOS and not only in Desktop. P.s. i can also use third part library, but please, first of suggest be sure that it will work under iOS! Thank you all

    Read the article

  • E_INVALIDARG: An invalid parameter was passed to the returning function (-2147024809) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = ImageLoadInformation.FromDefaults(); loadInfo.OptionFlags = ResourceOptionFlags.TextureCube; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); }

    Read the article

  • Keyboard input system handling

    - by The Communist Duck
    Note: I have to poll, rather than do callbacks because of API limitations (SFML). I also apologize for the lack of a 'decent' title. I think I have two questions here; how to register the input I'm receiving, and what to do with it. Handling Input I'm talking about after the fact you've registered that the 'A' key has been pressed, for example, and how to do it from there. I've seen an array of the whole keyboard, something like: bool keyboard[256]; //And each input loop check the state of every key on the keyboard But this seems inefficient. Not only are you coupling the key 'A' to 'player moving left', for example, but it checks every key, 30-60 times a second. I then tried another system which just looked for keys it wanted. std::map< unsigned char, Key keyMap; //Key stores the keycode, and whether it's been pressed. Then, I declare a load of const unsigned char called 'Quit' or 'PlayerLeft'. input-BindKey(Keys::PlayerLeft, KeyCode::A); //so now you can check if PlayerLeft, rather than if A. However, the problem with this is I cannot now type a name, for example, without having to bind every single key. Then, I have the second problem, which I cannot really think of a good solution for: Sending Input I now know that the A key has been pressed or that playerLeft is true. But how do I go from here? I thought about just checking if(input-IsKeyDown(Key::PlayerLeft) { player.MoveLeft(); } This couples the input greatly to the entities, and I find it rather messy. I'd prefer the player to handle its own movement when it gets updated. I thought some kind of event system could work, but I do not know how to go with it. (I heard signals and slots was good for this kind of work, but it's apparently very slow and I cannot see how it'd fit). Thanks.

    Read the article

  • Graph Isomorphism > What kind of Graph is this?

    - by oodavid
    Essentially, this is a variation of Comparing Two Tree Structures, however I do not have "trees", but rather another type of graph. I need to know what kind of Graph I have in order to figure out if there's a Graph Isomorphism Special Case... As you can see, they are: Not Directed Not A Tree Cyclic Max 4 connections But I still don't know the correct terminology, nor the which Isomorphism algorithm to pursue, guidance appreciated.

    Read the article

  • Skewed: a rotating camera in a simple CPU-based voxel raycaster/raytracer

    - by voxelizr
    TL;DR -- in my first simple software voxel raycaster, I cannot get camera rotations to work, seemingly correct matrices notwithstanding. The result is skewed: like a flat rendering, correctly rotated, however distorted and without depth. (While axis-aligned ie. unrotated, depth and parallax are as expected.) I'm trying to write a simple voxel raycaster as a learning exercise. This is purely CPU based for now until I figure out how things work exactly -- fow now, OpenGL is just (ab)used to blit the generated bitmap to the screen as often as possible. Now I have gotten to the point where a perspective-projection camera can move through the world and I can render (mostly, minus some artifacts that need investigation) perspective-correct 3-dimensional views of the "world", which is basically empty but contains a voxel cube of the Stanford Bunny. So I have a camera that I can move up and down, strafe left and right and "walk forward/backward" -- all axis-aligned so far, no camera rotations. Herein lies my problem. Screenshot #1: correct depth when the camera is still strictly axis-aligned, ie. un-rotated. Now I have for a few days been trying to get rotation to work. The basic logic and theory behind matrices and 3D rotations, in theory, is very clear to me. Yet I have only ever achieved a "2.5 rendering" when the camera rotates... fish-eyey, bit like in Google Streetview: even though I have a volumetric world representation, it seems --no matter what I try-- like I would first create a rendering from the "front view", then rotate that flat rendering according to camera rotation. Needless to say, I'm by now aware that rotating rays is not particularly necessary and error-prone. Still, in my most recent setup, with the most simplified raycast ray-position-and-direction algorithm possible, my rotation still produces the same fish-eyey flat-render-rotated style looks: Screenshot #2: camera "rotated to the right by 39 degrees" -- note how the blue-shaded left-hand side of the cube from screen #2 is not visible in this rotation, yet by now "it really should"! Now of course I'm aware of this: in a simple axis-aligned-no-rotation-setup like I had in the beginning, the ray simply traverses in small steps the positive z-direction, diverging to the left or right and top or bottom only depending on pixel position and projection matrix. As I "rotate the camera to the right or left" -- ie I rotate it around the Y-axis -- those very steps should be simply transformed by the proper rotation matrix, right? So for forward-traversal the Z-step gets a bit smaller the more the cam rotates, offset by an "increase" in the X-step. Yet for the pixel-position-based horizontal+vertical-divergence, increasing fractions of the x-step need to be "added" to the z-step. Somehow, none of my many matrices that I experimented with, nor my experiments with matrix-less hardcoded verbose sin/cos calculations really get this part right. Here's my basic per-ray pre-traversal algorithm -- syntax in Go, but take it as pseudocode: fx and fy: pixel positions x and y rayPos: vec3 for the ray starting position in world-space (calculated as below) rayDir: vec3 for the xyz-steps to be added to rayPos in each step during ray traversal rayStep: a temporary vec3 camPos: vec3 for the camera position in world space camRad: vec3 for camera rotation in radians pmat: typical perspective projection matrix The algorithm / pseudocode: // 1: rayPos is for now "this pixel, as a vector on the view plane in 3d, at The Origin" rayPos.X, rayPos.Y, rayPos.Z = ((fx / width) - 0.5), ((fy / height) - 0.5), 0 // 2: rotate around Y axis depending on cam rotation. No prob since view plane still at Origin 0,0,0 rayPos.MultMat(num.NewDmat4RotationY(camRad.Y)) // 3: a temp vec3. planeDist is -0.15 or some such -- fov-based dist of view plane from eye and also the non-normalized, "in axis-aligned world" traversal step size "forward into the screen" rayStep.X, rayStep.Y, rayStep.Z = 0, 0, planeDist // 4: rotate this too -- 0,zstep should become some meaningful xzstep,xzstep rayStep.MultMat(num.NewDmat4RotationY(CamRad.Y)) // set up direction vector from still-origin-based-ray-position-off-rotated-view-plane plus rotated-zstep-vector rayDir.X, rayDir.Y, rayDir.Z = -rayPos.X - me.rayStep.X, -rayPos.Y, rayPos.Z + rayStep.Z // perspective projection rayDir.Normalize() rayDir.MultMat(pmat) // before traversal, the ray starting position has to be transformed from origin-relative to campos-relative rayPos.Add(camPos) I'm skipping the traversal and sampling parts -- as per screens #1 through #3, those are "basically mostly correct" (though not pretty) -- when axis-aligned / unrotated.

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • Converting to and from local and world 3D coordinate spaces?

    - by James Bedford
    Hey guys, I've been following a guide I found here (http://knol.google.com/k/matrices-for-3d-applications-view-transformation) on constructing a matrix that will allow me to 3D coordinates to an object's local coordinate space, and back again. I've tried to implement these two matrices using my object's look, side, up and location vectors and it seems to be working for the first three coordinates. I'm a little confused as to what I should expect for the w coordinate. Here are couple of examples from the print outs I've made of the matricies that are constructed. I'm passing a test vector of [9, 8, 14, 1] each time to see if I can convert both ways: Basic example: localize matrix: Matrix: 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 5.237297 -45.530716 11.021271 1.000000 globalize matrix: Matrix: 0.000000 0.000000 1.000000 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 -11.021271 -45.530716 -5.237297 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(14.000000, 8.000000, 9.000000, -161.812256) worldTest: Vector4f(9.000000, 8.000000, 14.000000, -727.491455) More complicated example: localize matrix: Matrix: 0.052504 -0.000689 -0.998258 0.000000 0.052431 0.998260 0.002068 0.000000 0.997241 -0.052486 0.052486 0.000000 58.806095 2.979346 -39.396252 1.000000 globalize matrix: Matrix: 0.052504 0.052431 0.997241 0.000000 -0.000689 0.998260 -0.052486 0.000000 -0.998258 0.002068 0.052486 0.000000 -42.413120 5.975957 -56.419727 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(-13.508600, 8.486917, 9.290090, 2.542114) worldTest: Vector4f(9.000190, 7.993863, 13.990230, 102.057129) As you can see in the more complicated example, the coordinates after converting both ways loose some precision, but this isn't a problem. I'm just wondering how I should deal with the last (w) coordinate? Should I just set it to 1 after performing the matrix multiplication, or does it look like I've done something wrong? Thanks in advance for your help!

    Read the article

  • How can I make an object's hitbox rotate with its texture?

    - by Matthew Optional Meehan
    In XNA, when you have a rectangular sprite that doesnt rotate, it's easy to get its four corners to make a hitbox. However, when you do a rotation, the points get moved and I assume there is some kind of math that I can use to aquire them. I am using the four points to draw a rectangle that visually represents the hitboxes. I have seen some per-pixel collision examples, but I can forsee they would be hard to draw a box/'convex hull' around. I have also seen physics like farseer but I'm not sure if there is a quick tutorial to do what I want.

    Read the article

  • C# wpf helix scale based mesh parenting using Transform3DGroup

    - by Rick2047
    I am using https://helixtoolkit.codeplex.com/ as a 3D framework. I want to move black mesh relative to the green mesh as shown in the attached image below. I want to make green mesh parent to the black mesh as the change in scale of the green mesh also will result in motion of the black mesh. It could be partial parenting or may be more. I need 3D rotation and 3D transition + transition along green mesh's length axis for the black mesh relative to the green mesh itself. Suppose a variable green_mesh_scale causing scale for the green mesh along its length axis. The black mesh will use that variable in order to move along green mesh's length axis. How to go about it. I've done as follows: GeometryModel3D GreenMesh, BlackMesh; ... double green_mesh_scale = e.NewValue; Transform3DGroup forGreen = new Transform3DGroup(); Transform3DGroup forBlack = new Transform3DGroup(); forGreen.Children.Add(new ScaleTransform3D(new Vector3D(1, green_mesh_scale , 1))); // ... transforms for rotation n transition GreenMesh.Transform = forGreen ; forBlack = forGreen; forBlack.Children.Add(new TranslateTransform3D(new Vector3D(0, green_mesh_scale, 0))); BlackMesh.Transform = forBlack; The problem with this is the scale transform will also be applied to the black mesh. I think i just need to avoid the scale part. I tried keeping all the transforms but scale, on another Transform3DGroup variable but that also not behaving as expected. Can MatrixTransform3D be used here some how? Also please suggest if this question can be posted somewhere else in stackexchange.

    Read the article

  • texture mapping with lib3ds and SOIL help

    - by Adam West
    I'm having trouble with my project for loading a texture map onto a model. Any insight into what is going wrong with my code is fantastic. Right now the code only renders a teapot which I have assinged after creating it in 3DS Max. 3dsloader.cpp #include "3dsloader.h" Object::Object(std:: string filename) { m_TotalFaces = 0; m_model = lib3ds_file_load(filename.c_str()); // If loading the model failed, we throw an exception if(!m_model) { throw strcat("Unable to load ", filename.c_str()); } // set properties of texture coordinate generation for both x and y coordinates glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); // if not already enabled, enable texture generation if(! glIsEnabled(GL_TEXTURE_GEN_S)) glEnable(GL_TEXTURE_GEN_S); if(! glIsEnabled(GL_TEXTURE_GEN_T)) glEnable(GL_TEXTURE_GEN_T); } Object::~Object() { if(m_model) // if the file isn't freed yet lib3ds_file_free(m_model); //free up memory glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); } void Object::GetFaces() { m_TotalFaces = 0; Lib3dsMesh * mesh; // Loop through every mesh. for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { // Add the number of faces this mesh has to the total number of faces. m_TotalFaces += mesh->faces; } } void Object::CreateVBO() { assert(m_model != NULL); // Calculate the number of faces we have in total GetFaces(); // Allocate memory for our vertices and normals Lib3dsVector * vertices = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsVector * normals = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsTexel* texCoords = new Lib3dsTexel[m_TotalFaces * 3]; Lib3dsMesh * mesh; unsigned int FinishedFaces = 0; // Loop through all the meshes for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { lib3ds_mesh_calculate_normals(mesh, &normals[FinishedFaces*3]); // Loop through every face for(unsigned int cur_face = 0; cur_face < mesh->faces;cur_face++) { Lib3dsFace * face = &mesh->faceL[cur_face]; for(unsigned int i = 0;i < 3;i++) { memcpy(&texCoords[FinishedFaces*3 + i], mesh->texelL[face->points[ i ]], sizeof(Lib3dsTexel)); memcpy(&vertices[FinishedFaces*3 + i], mesh->pointL[face->points[ i ]].pos, sizeof(Lib3dsVector)); } FinishedFaces++; } } // Generate a Vertex Buffer Object and store it with our vertices glGenBuffers(1, &m_VertexVBO); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, vertices, GL_STATIC_DRAW); // Generate another Vertex Buffer Object and store the normals in it glGenBuffers(1, &m_NormalVBO); glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, normals, GL_STATIC_DRAW); // Generate a third VBO and store the texture coordinates in it. glGenBuffers(1, &m_TexCoordVBO); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsTexel) * 3 * m_TotalFaces, texCoords, GL_STATIC_DRAW); // Clean up our allocated memory delete vertices; delete normals; delete texCoords; // We no longer need lib3ds lib3ds_file_free(m_model); m_model = NULL; } void Object::applyTexture(const char*texfilename) { float imageWidth; float imageHeight; glGenTextures(1, & textureObject); // allocate memory for one texture textureObject = SOIL_load_OGL_texture(texfilename,SOIL_LOAD_AUTO,SOIL_CREATE_NEW_ID,SOIL_FLAG_MIPMAPS); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glBindTexture(GL_TEXTURE_2D, textureObject); // use our newest texture glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_WIDTH,&imageWidth); glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_HEIGHT,&imageHeight); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // give the best result for texture magnification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //give the best result for texture minification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); // don't repeat texture glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat textureglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat texture glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,GL_MODULATE); glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,imageWidth,imageHeight,0,GL_RGB,GL_UNSIGNED_BYTE,& textureObject); } void Object::Draw() const { // Enable vertex, normal and texture-coordinate arrays. glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Bind the VBO with the normals. glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); // The pointer for the normals is NULL which means that OpenGL will use the currently bound VBO. glNormalPointer(GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glTexCoordPointer(2, GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glVertexPointer(3, GL_FLOAT, 0, NULL); // Render the triangles. glDrawArrays(GL_TRIANGLES, 0, m_TotalFaces * 3); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } 3dsloader.h #include "main.h" #include "lib3ds/file.h" #include "lib3ds/mesh.h" #include "lib3ds/material.h" class Object { public: Object(std:: string filename); virtual ~Object(); virtual void Draw() const; virtual void CreateVBO(); void applyTexture(const char*texfilename); protected: void GetFaces(); unsigned int m_TotalFaces; Lib3dsFile * m_model; Lib3dsMesh* Mesh; GLuint textureObject; GLuint m_VertexVBO, m_NormalVBO, m_TexCoordVBO; }; Called in the main cpp file with: VBO,apply texture and draw (pretty simple, how ironic) and thats it, please help me forum :)

    Read the article

  • How do I make the Cylinder in the model?

    - by Stanley Chiu
    I have a class which will draw cylinders with deformer's index in the FBX file. The deformer which was in the 3ds max's biped. ex: If I have 22 bones in the deformer's structure, I will draw 22 cylinders. But I was in trouble that I want to let these cylinders in the model. And then I refer to the example (XNA Club Simple Animation 4.0) for my program. But these cylinders are not in correct positions with the model. How do I make these cylinders in correct positions with the model?

    Read the article

  • AABB Sweeping, algorithm to solve "stacking box" problem

    - by Ivo Wetzel
    I'm currently working on a simple AABB collision system and after some fiddling the sweeping of a single box vs. another and the calculation of the response velocity needed to push them apart works flawlessly. Now on to the new problem, imagine I'm having a stack of boxes which are falling towards a ground box which isn't moving: Each of these boxes has a vertical velocity for the "gravity" value, let's say this velocity is 5. Now, the result is that they all fall into each other: The reason is obvious, since all the boxes have a downward velocity of 5, this results in no collisions when calculating the relative velocity between the boxes during sweeping. Note: The red ground box here is static (always 0 velocity, can utilize spatial partitioning ), and all dynamic static collisions are resolved first, thus the fact that the boxes stop correctly at this ground box. So, this seems to be simply an issue with the order the boxes are sweept against each other. I imagine that sorting the boxes based on their x and y velocities and then sweeping these groups correctly against each other may resolve this issues. So, I'm looking for algorithms / examples on how to implement such a system. The code can be found here: https://github.com/BonsaiDen/aabb The two files which are of interest are [box/Dynamic.lua][3] and [box/Manager.lua][4]. The project is using Love2D in case you want to run it.

    Read the article

< Previous Page | 237 238 239 240 241 242 243 244 245 246 247 248  | Next Page >