Search Results

Search found 65997 results on 2640 pages for 'custom post type'.

Page 243/2640 | < Previous Page | 239 240 241 242 243 244 245 246 247 248 249 250  | Next Page >

  • Customizing the TFS 2008 build sequence to avoid compilation and deploy SSRS

    - by Andrew
    I'm trying to create a CI process for SQL Server Reporting Services. I am fairly new to TFS but quite experienced with MSBuild. In the past I've used a combination of MSBuild with Team City so the whole build process is more or less custom. Here lies the start of my problems, as the solution I am deploying only contains Report Server projects (rds), no compilation is required. I thought that I would override the the first default task that TFS runs (EndToEndIteration) to override the default TFS build sequence and inject my own. The first snag that I have come across is that the build always fails, how can I set the status of the build to success? Currently the EndToEndIteration task is very light and only has a message. Is this the best method to create a custom build process in TFS where compilation is not required? Or should I use the default sequence and override one of the hook tasks mentioned in http://msdn.microsoft.com/en-us/library/aa337604%28VS.80%29.aspx (ie: AfterCompile) The core steps that I'd like to achieve are: Bundle the RDL and datasource files Connect to the host server to register/deploy the reports Re-apply any subscriptions that previously existed Run tests to verify the deployment succeeded and is returning results as expected I have found another article on Report services deployment: http://stackoverflow.com/questions/88710/reporting-services-deployment But it doesn't mention the best practice for customizing the standard build process. Any help would be appreciated.

    Read the article

  • Stop output of image if no record - paperclip - Ruby on rails

    - by bgadoci
    I have just installed paperclip into my ruby on rails blog application. Everything is working great...too great. I am trying to figure out how to tell paperclip not to output anything if there is no record in the table so that I don't have broken image links everywhere. How, and where, do I do this? Here is my code: class Post < ActiveRecord::Base has_attached_file :photo, :styles => { :small => "150x150"} validates_presence_of :body, :title has_many :comments, :dependent => :destroy has_many :tags, :dependent => :destroy has_many :ugtags, :dependent => :destroy has_many :votes, :dependent => :destroy belongs_to :user after_create :self_vote def self_vote # I am assuming you have a user_id field in `posts` and `votes` table. self.votes.create(:user => self.user) end cattr_reader :per_page @@per_page = 10 end View <% div_for post do %> <div id="post-wrapper"> <div id="post-photo"> <%= image_tag post.photo.url(:small) %> </div> <h2><%= link_to_unless_current h(post.title), post %></h2> <div class="light-color"> <i>Posted <%= time_ago_in_words(post.created_at) %></i> ago </div> <%= simple_format truncate(post.body, :length => 600) %> <div id="post-options"> <%= link_to "Read More >>", post %> | <%= link_to "Comments (#{post.comments.count})", post %> | <%= link_to "Strings (#{post.tags.count})", post %> | <%= link_to "Contributions (#{post.ugtags.count})", post %> | <%= link_to "Likes (#{post.votes.count})", post %> </div> </div> <% end %>

    Read the article

  • Image_tag .blank? - paperclip - Ruby on rails

    - by bgadoci
    I have just installed paperclip into my ruby on rails blog application. Everything is working great...too great. I am trying to figure out how to tell paperclip not to output anything if there is no record in the table so that I don't have broken image links everywhere. How, and where, do I do this? Here is my code: class Post < ActiveRecord::Base has_attached_file :photo, :styles => { :small => "150x150"} validates_presence_of :body, :title has_many :comments, :dependent => :destroy has_many :tags, :dependent => :destroy has_many :ugtags, :dependent => :destroy has_many :votes, :dependent => :destroy belongs_to :user after_create :self_vote def self_vote # I am assuming you have a user_id field in `posts` and `votes` table. self.votes.create(:user => self.user) end cattr_reader :per_page @@per_page = 10 end View <% div_for post do %> <div id="post-wrapper"> <div id="post-photo"> <%= image_tag post.photo.url(:small) %> </div> <h2><%= link_to_unless_current h(post.title), post %></h2> <div class="light-color"> <i>Posted <%= time_ago_in_words(post.created_at) %></i> ago </div> <%= simple_format truncate(post.body, :length => 600) %> <div id="post-options"> <%= link_to "Read More >>", post %> | <%= link_to "Comments (#{post.comments.count})", post %> | <%= link_to "Strings (#{post.tags.count})", post %> | <%= link_to "Contributions (#{post.ugtags.count})", post %> | <%= link_to "Likes (#{post.votes.count})", post %> </div> </div> <% end %>

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Conversion constructor vs. conversion operator: precedence

    - by GRB
    Reading some questions here on SO about conversion operators and constructors got me thinking about the interaction between them, namely when there is an 'ambiguous' call. Consider the following code: class A; class B { public: B(){} B(const A&) //conversion constructor { cout << "called B's conversion constructor" << endl; } }; class A { public: operator B() //conversion operator { cout << "called A's conversion operator" << endl; return B(); } }; int main() { B b = A(); //what should be called here? apparently, A::operator B() return 0; } The above code displays "called A's conversion operator", meaning that the conversion operator is called as opposed to the constructor. If you remove/comment out the operator B() code from A, the compiler will happily switch over to using the constructor instead (with no other changes to the code). My questions are: Since the compiler doesn't consider B b = A(); to be an ambiguous call, there must be some type of precedence at work here. Where exactly is this precedence established? (a reference/quote from the C++ standard would be appreciated) From an object-oriented philosophical standpoint, is this the way the code should behave? Who knows more about how an A object should become a B object, A or B? According to C++, the answer is A -- is there anything in object-oriented practice that suggests this should be the case? To me personally, it would make sense either way, so I'm interested to know how the choice was made. Thanks in advance

    Read the article

  • using text and ntext SQL Datatypes in RPG

    - by David Stratton
    I'll preface this with saying that I'm a .NET developer, and am NOT an RPG developer. I'm working with one of our RPG developers to come up with a solution, so any suggestions you provide will get passed to him. We have a scenario where we want our iSeries to read from a SQL Server database. One of the columns is a TEXT column. IN RPG, there is no equivalent data type to use for this. We've gone back and forth on this, and our current plan is to change course, and have our SQL Server write out a text file, which the iSeries can pick up and parse. This is, however, a last resort option, as the data in the file is sensitive, and we'd like to avoid the additional security overhead. We've already got the SQL Server locked down as tight as possible (one user only has read access to this, and that user is an iSeries user.) We don't want to have to worry about transferring files back and forth. However, at this point, we see no other option. We have no in-house Java developers, and need to do this in RPG. So I'm wondering if there are any RPG developers out there who have faced this situation and have any advice.

    Read the article

  • Weird error running com-exposed assembly

    - by Bernabé Panarello
    I am facing the following issue when deploying a com-exposed assembly to my client's. The COM component should be consummed by a vb6 application. Here's how it's done 1) I have one c# project which has a class with a couple of methods exposed to COM 2) The project has references to multiple assemblies 3) I compile the project, generating a folder (named dllcom) that contains the assembly plus all the referenced dlls 4) I include in the folder a .bat which does the following: regasm /u c:\dllcom\LibInsertador.dll del LibInsertador.tlb regasm c:\dllcom\LibInsertador.dll /tlb:c:\dllcom\LibInsertador.tlb /codebase c:\dllcom\ pause 5) After running the bat locally in many workstations of my laboratory, i'm able to consume the generated tlb from my vb6 application without any problems. I'm even able to update the dll by only means of running this bat, without having to recompile the vb6 application. I mean that im not having issues of vb6 fiding and invoking the exposed com object. The problem 6) I send the SAME FOLDER to my client 7) They execute the .bat locally, without any errors 8) They execute the vb6 application, vb6 finds the main assembly, the .net code seems to run correctly (it's even able to generate a log file) until it has to intantiate it's first referenced assembly. Then, they get the following exception: "Could not load type 'GYF.Common.TypeBuilder' from assembly 'GYF_Common, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null'." Where "GYF.Common" is an assembly referenced by LibInsertador and TypeBuilder is a class contained in GYF.Common. GYF.Common is not a signed assembly and it's not in the GAC, just in the same folder with Libinsertador. According to .net reflector, the version is correct. ¿Any ideas about what could be happening?

    Read the article

  • DBD::SQLite::st execute failed: datatype mismatch

    - by Barton Chittenden
    Here's a snippit of perl code: sub insert_timesheet { my $dbh = shift; my $entryref = shift; my $insertme = join(',', @_); my $values_template = '?, ' x scalar(@_); chop $values_template; chop $values_template; #remove trailing comma my $insert = "INSERT INTO timesheet( $insertme ) VALUES ( $values_template );"; my $sth = $dbh->prepare($insert); debug("$insert"); my @values; foreach my $entry (@_){ push @values, $$entryref{$entry} } debug("@values"); my $rv = $sth->execute( @values ) or die $dbh->errstr; debug("sql return value: $rv"); $dbh->disconnect; } The value of $insert: [INSERT INTO timesheet( idx,Start_Time,End_Time,Project,Ticket_Number,Site,Duration,Notes ) VALUES ( ?, ?, ?, ?, ?, ?, ?, ? );] Here are @values: [null '1270950742' '1270951642' 'asdf' 'asdf' 'adsf' 15 ''] Here's the schema of 'timesheet' timesheet( idx INTEGER PRIMARY KEY AUTOINCREMENT, Start_Time VARCHAR, End_Time VARCHAR, Duration INTEGER, Project VARCHAR, Ticket_Number VARCHAR, Site VARCHAR, Notes VARCHAR) Here's how things line up: ---- Insert Statement Schema @values ---- idx idx INTEGER PRIMARY KEY AUTOINCREMENT null: # this is not a mismatch, passing null will allow auto-increment. Start_Time Start_Time VARCHAR '1270950742' End_Time End_Time VARCHAR '1270951642' Project Project VARCHAR 'asdf' Ticket_Number Ticket_Number VARCHAR 'asdf' Site Site VARCHAR 'adsf' Duration Duration INTEGER 15 Notes Notes VARCHAR '' ... I can't see the data-type mis-match.

    Read the article

  • Reading DATA from an OBJECT asp.net MVC C#

    - by kalyan
    Hi, I am new to the MVC and I am stuck with a wierd situation. I have to read the Data from the type object and I tried different ways and I couldn't get a solution.Please help. IList<User> u = new UserRepository().Getuser(Name.ToUpper(), UserName.ToUpper(), UserCertNumber.ToUpper(), Date.ToUpper(), UserType.ToUpper(), Company.ToUpper(), PageNumber, Orderby, SearchALL.ToUpper(), PrintAllPages.ToUpper()); object[] users = new object[u.Count]; for (int i = 0; i < u.Count; i++) { users[i] = new { Id = u[i].UserId, Title = u[i].Title, FirstName = u[i].FirstName, LastName = u[i].LastName, Privileges = (from apps in u[i].UserPrivileges select new { PrivilegeId = apps.Privilege.PrivilegeId, PrivilegeName = apps.Privilege.Name, DeactiveDate = apps.DeactiveDate }), Status = (from status in u[i].UserStatus select new { StatusId = status.Status.StatusId, StatusName = status.Status.StatusName, DeactiveDate = status.DeactiveDate }), ActiveDate = u[i].ActiveDate, UserName = u[i].Email, UserCN = (from cert in u[i].UserCertificates select new { CertificateNumber = cert.CertificateNumber, DeactiveDate = cert.DeactiveDate }), Company = u[i].Company.Name }; } string x = ""; string y = ""; var report = users; foreach (var r in report) { x = r[0].....; i want to assign the values from the report to something else and I am not able to read the data from the report object. Please help. } Thank you.

    Read the article

  • Compile time float packing/punning

    - by detly
    I'm writing C for the PIC32MX, compiled with Microchip's PIC32 C compiler (based on GCC 3.4). My problem is this: I have some reprogrammable numeric data that is stored either on EEPROM or in the program flash of the chip. This means that when I want to store a float, I have to do some type punning: typedef union { int intval; float floatval; } IntFloat; unsigned int float_as_int(float fval) { IntFloat intf; intf.floatval = fval; return intf.intval; } // Stores an int of data in whatever storage we're using void StoreInt(unsigned int data, unsigned int address); void StoreFPVal(float data, unsigned int address) { StoreInt(float_as_int(data), address); } I also include default values as an array of compile time constants. For (unsigned) integer values this is trivial, I just use the integer literal. For floats, though, I have to use this Python snippet to convert them to their word representation to include them in the array: import struct hex(struct.unpack("I", struct.pack("f", float_value))[0]) ...and so my array of defaults has these indecipherable values like: const unsigned int DEFAULTS[] = { 0x00000001, // Some default integer value, 1 0x3C83126F, // Some default float value, 0.005 } (These actually take the form of X macro constructs, but that doesn't make a difference here.) Commenting is nice, but is there a better way? It's be great to be able to do something like: const unsigned int DEFAULTS[] = { 0x00000001, // Some default integer value, 1 COMPILE_TIME_CONVERT(0.005), // Some default float value, 0.005 } ...but I'm completely at a loss, and I don't even know if such a thing is possible. Notes Obviously "no, it isn't possible" is an acceptable answer if true. I'm not overly concerned about portability, so implementation defined behaviour is fine, undefined behaviour is not (I have the IDB appendix sitting in front of me). As fas as I'm aware, this needs to be a compile time conversion, since DEFAULTS is in the global scope. Please correct me if I'm wrong about this.

    Read the article

  • Handles Comparison: empty classes vs. undefined classes vs. void*

    - by Nawaz
    Microsoft's GDI+ defines many empty classes to be treated as handles internally. For example, (source GdiPlusGpStubs.h) //Approach 1 class GpGraphics {}; class GpBrush {}; class GpTexture : public GpBrush {}; class GpSolidFill : public GpBrush {}; class GpLineGradient : public GpBrush {}; class GpPathGradient : public GpBrush {}; class GpHatch : public GpBrush {}; class GpPen {}; class GpCustomLineCap {}; There are other two ways to define handles. They're, //Approach 2 class BOOK; //no need to define it! typedef BOOK *PBOOK; typedef PBOOK HBOOK; //handle to be used internally //Approach 3 typedef void* PVOID; typedef PVOID HBOOK; //handle to be used internally I just want to know the advantages and disadvantages of each of these approaches. One advantage with Microsoft's approach is that, they can define type-safe hierarchy of handles using empty classes, which (I think) is not possible with the other two approaches. What else? EDIT: One advantage with the second approach (i.e using incomplete classes) is that we can prevent clients from dereferencing the handles (that means, this approach appears to support encapsulation strongly, I suppose). The code would not even compile if one attempts to dereference handles. What else?

    Read the article

  • inline images in email using javamail

    - by manu1001
    I want to send an email with an inline image using javamail. I'm doing something like this. MimeMultipart content = new MimeMultipart("related"); BodyPart bodyPart = new MimeBodyPart(); bodyPart.setContent(message, "text/html; charset=ISO-8859-1"); content.addBodyPart(bodyPart); bodyPart = new MimeBodyPart(); DataSource ds = new ByteArrayDataSource(image, "image/jpeg"); bodyPart.setDataHandler(new DataHandler(ds)); bodyPart.setHeader("Content-Type", "image/jpeg; name=image.jpg"); bodyPart.setHeader("Content-ID", "<image>"); bodyPart.setHeader("Content-Disposition", "inline"); content.addBodyPart(bodyPart); msg.setContent(content); I've also tried bodyPart.setHeader("inline; filename=image.jpg"); and bodyPart.setDisposition("inline"); but no matter what, the image is being sent as an attachment and the Content-Dispostion is turning into "attachment". How do I send an image inline in the email using javamail?

    Read the article

  • Overriding content_type for Rails Paperclip plugin

    - by Fotios
    I think I have a bit of a chicken and egg problem. I would like to set the content_type of a file uploaded via Paperclip. The problem is that the default content_type is only based on extension, but I'd like to base it on another module. I seem to be able to set the content_type with the before_post_process class Upload < ActiveRecord::Base has_attached_file :upload before_post_process :foo def foo logger.debug "Changing content_type" #This works self.upload.instance_write(:content_type,"foobar") # This fails because the file does not actually exist yet self.upload.instance_write(:content_type,file_type(self.upload.path) end # Returns the filetype based on file command (assume it works) def file_type(path) return `file -ib '#{path}'`.split(/;/)[0] end end But...I cannot base the content type on the file because Paperclip doesn't write the file until after_create. And I cannot seem to set the content_type after it has been saved or with the after_create callback (even back in the controller) So I would like to know if I can somehow get access to the actual file object (assume there are no processors doing anything to the original file) before it is saved, so that I can run the file_type command on that. Or is there a way to modify the content_type after the objects have been created.

    Read the article

  • "database already closed" is shown using a custom cursor adapter

    - by kiduxa
    I'm using a cursor with a custom adapter that extends SimpleCursorAdapter: public class ListWordAdapter extends SimpleCursorAdapter { private LayoutInflater inflater; private Cursor mCursor; private int mLayout; private String[] from; private int[] to; public ListWordAdapter(Context context, int layout, Cursor c, String[] from, int[] to, int flags) { super(context, layout, c, from, to, flags); this.mCursor = c; this.inflater = LayoutInflater.from(context); this.mLayout = layout; this.from = from; this.to = to; } private static class ViewHolder { //public ImageView img; public TextView name; public TextView type; public TextView translate; } @Override public View getView(int position, View convertView, ViewGroup parent) { if (mCursor.moveToPosition(position)) { ViewHolder holder; if (convertView == null) { convertView = inflater.inflate(mLayout, null); holder = new ViewHolder(); // holder.img = (ImageView) convertView.findViewById(R.id.img_row); holder.name = (TextView) convertView.findViewById(to[0]); holder.type = (TextView) convertView.findViewById(to[1]); holder.translate = (TextView) convertView.findViewById(to[2]); convertView.setTag(holder); } else { holder = (ViewHolder) convertView.getTag(); } holder.name.setText(mCursor.getString(mCursor.getColumnIndex(from[0]))); holder.type.setText(mCursor.getString(mCursor.getColumnIndex(from[1]))); holder.translate.setText(mCursor.getString(mCursor.getColumnIndex(from[2]))); // holder.img.setImageResource(img_resource); } return convertView; } } And in the main activity I call it as: adapter = new ListWordAdapter(getSherlockActivity(), R.layout.row_list_words, mCursorWords, from, to, 0); When a modification in the list is made, I call this method: public void onWordSaved() { WordDAO wordsDao = new WordSqliteDAO(); Cursor mCursorWords = wordsDao.list(getSherlockActivity()); adapter.changeCursor(mCursorWords); } The thing here is that this produces me this exception: 10-29 11:14:33.810: E/AndroidRuntime(18659): java.lang.IllegalStateException: database /data/data/com.example.palabrasdeldia/databases/palabrasDelDia (conn# 0) already closed Complete stack trace: 10-29 11:14:33.810: E/AndroidRuntime(18659): FATAL EXCEPTION: main 10-29 11:14:33.810: E/AndroidRuntime(18659): java.lang.IllegalStateException: database /data/data/com.example.palabrasdeldia/databases/palabrasDelDia (conn# 0) already closed 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteDatabase.verifyDbIsOpen(SQLiteDatabase.java:2123) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteDatabase.lock(SQLiteDatabase.java:398) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteDatabase.lock(SQLiteDatabase.java:390) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteQuery.fillWindow(SQLiteQuery.java:74) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteCursor.fillWindow(SQLiteCursor.java:311) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteCursor.onMove(SQLiteCursor.java:283) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.AbstractCursor.moveToPosition(AbstractCursor.java:173) 10-29 11:14:33.810: E/AndroidRuntime(18659): at com.example.palabrasdeldia.adapters.ListWordAdapter.getView(ListWordAdapter.java:42) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.AbsListView.obtainView(AbsListView.java:2128) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.ListView.makeAndAddView(ListView.java:1817) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.ListView.fillSpecific(ListView.java:1361) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.ListView.layoutChildren(ListView.java:1646) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.AbsListView.onLayout(AbsListView.java:1979) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1542) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.layoutHorizontal(LinearLayout.java:1527) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.onLayout(LinearLayout.java:1316) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.support.v4.view.ViewPager.onLayout(ViewPager.java:1589) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1542) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.layoutVertical(LinearLayout.java:1403) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.onLayout(LinearLayout.java:1314) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1542) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.layoutVertical(LinearLayout.java:1403) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.onLayout(LinearLayout.java:1314) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewRoot.performTraversals(ViewRoot.java:1253) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewRoot.handleMessage(ViewRoot.java:2017) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.os.Handler.dispatchMessage(Handler.java:99) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.os.Looper.loop(Looper.java:132) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.app.ActivityThread.main(ActivityThread.java:4028) 10-29 11:14:33.810: E/AndroidRuntime(18659): at java.lang.reflect.Method.invokeNative(Native Method) 10-29 11:14:33.810: E/AndroidRuntime(18659): at java.lang.reflect.Method.invoke(Method.java:491) 10-29 11:14:33.810: E/AndroidRuntime(18659): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:844) 10-29 11:14:33.810: E/AndroidRuntime(18659): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:602) 10-29 11:14:33.810: E/AndroidRuntime(18659): at dalvik.system.NativeStart.main(Native Method) If I use SimpleCursorAdapter directly instead of ListWordAdapter, it works fine. What's wrong with my custom adapter implementation? The line in bold in the stack trace corresponds with: if (mCursor.moveToPosition(position)) inside getView method. EDIT: I have created a custom class to manage DB operations as open and close: public class ConexionBD { private Context context; private SQLiteDatabase database; private DataBaseHelper dbHelper; public ConexionBD(Context context) { this.context = context; } public ConexionBD open() throws SQLException { this.dbHelper = DataBaseHelper.getInstance(context); this.database = dbHelper.getWritableDatabase(); database.execSQL("PRAGMA foreign_keys=ON"); return this; } public void close() { if (database.isOpen() && database != null) { dbHelper.close(); } } /*Getters y setters*/ public SQLiteDatabase getDatabase() { return database; } public void setDatabase(SQLiteDatabase database) { this.database = database; } } And this is my DataBaseHelper: public class DataBaseHelper extends SQLiteOpenHelper { private static final String DATABASE_NAME = "myDb"; private static final int DATABASE_VERSION = 1; private static DataBaseHelper sInstance = null; public static DataBaseHelper getInstance(Context context) { // Use the application context, which will ensure that you // don't accidentally leak an Activity's context. // See this article for more information: http://bit.ly/6LRzfx if (sInstance == null) { sInstance = new DataBaseHelper(context.getApplicationContext()); } return sInstance; } @Override public void onCreate(SQLiteDatabase database) { ... } .... And this is an example of how I manage a query: public Cursor list(Context context) { ConexionBD conexion = new ConexionBD(context); Cursor mCursor = null; try{ conexion.open(); mCursor = conexion.getDatabase().query(DataBaseHelper.TABLE_WORD , null , null, null, null, null, Word.NAME); if (mCursor != null) { mCursor.moveToFirst(); } }finally{ conexion.close(); } return mCursor; } For every connection to the DB I open it and close it.

    Read the article

  • How do you perform arithmetic calculations on symbols in Scheme/Lisp?

    - by kunjaan
    I need to perform calculations with a symbol. I need to convert the time which is of hh:mm form to the minutes passed. ;; (get-minutes symbol)->number ;; convert the time in hh:mm to minutes ;; (get-minutes 6:19)-> 6* 60 + 19 (define (get-minutes time) (let* ((a-time (string->list (symbol->string time))) (hour (first a-time)) (minutes (third a-time))) (+ (* hour 60) minutes))) This is an incorrect code, I get a character after all that conversion and cannot perform a correct calculation. Do you guys have any suggestions? I cant change the input type. Context: The input is a flight schedule so I cannot alter the data structure. ;; ---------------------------------------------------------------------- Edit: Figured out an ugly solution. Please suggest something better. (define (get-minutes time) (let* ((a-time (symbol->string time)) (hour (string->number (substring a-time 0 1))) (minutes (string->number (substring a-time 2 4)))) (+ (* hour 60) minutes)))

    Read the article

  • Conversion between different template instantiation of the same template

    - by Naveen
    I am trying to write an operator which converts between the differnt types of the same implementation. This is the sample code: template <class T = int> class A { public: A() : m_a(0){} template <class U> operator A<U>() { A<U> u; u.m_a = m_a; return u; } private: int m_a; }; int main(void) { A<int> a; A<double> b = a; return 0; } However, it gives the following error for line u.m_a = m_a;. Error 2 error C2248: 'A::m_a' : cannot access private member declared in class 'A' d:\VC++\Vs8Console\Vs8Console\Vs8Console.cpp 30 Vs8Console I understand the error is because A<U> is a totally different type from A<T>. Is there any simple way of solving this (may be using a friend?) other than providing setter and getter methods? I am using Visual studio 2008 if it matters.

    Read the article

  • Aliasing `T*` with `char*` is allowed. Is it also allowed the other way around?

    - by StackedCrooked
    Note: This question has been renamed and reduced to make it more focused and readable. Most of the comments refer to the old text. According to the standard objects of different type may not share the same memory location. So this would not be legal: int i = 0; short * s = reinterpret_cast<short*>(&i); // BAD! The standard however allows an exception to this rule: any object may be accessed through a pointer to char or unsigned char: int i = 0; char * c = reinterpret_cast<char*>(&i); // OK However, it is not clear to me if this is also allowed the other way around. For example: char * c = read_socket(...); unsigned * u = reinterpret_cast<unsigned*>(c); // huh? Summary of the answers The answer is NO for two reasons: You an only access an existing object as char*. There is no object in my sample code, only a byte buffer. The pointer address may not have the right alignment for the target object. In that case dereferencing it would result in undefined behavior. On the Intel and AMD platforms it will result performance overhead. On ARM it will trigger a CPU trap and your program will be terminated! This is a simplified explanation. For more detailed information see answers by @Luc Danton, @Cheers and hth. - Alf and @David Rodríguez.

    Read the article

  • SQL SERVER – Guest Posts – Feodor Georgiev – The Context of Our Database Environment – Going Beyond the Internal SQL Server Waits – Wait Type – Day 21 of 28

    - by pinaldave
    This guest post is submitted by Feodor. Feodor Georgiev is a SQL Server database specialist with extensive experience of thinking both within and outside the box. He has wide experience of different systems and solutions in the fields of architecture, scalability, performance, etc. Feodor has experience with SQL Server 2000 and later versions, and is certified in SQL Server 2008. In this article Feodor explains the server-client-server process, and concentrated on the mutual waits between client and SQL Server. This is essential in grasping the concept of waits in a ‘global’ application plan. Recently I was asked to write a blog post about the wait statistics in SQL Server and since I had been thinking about writing it for quite some time now, here it is. It is a wide-spread idea that the wait statistics in SQL Server will tell you everything about your performance. Well, almost. Or should I say – barely. The reason for this is that SQL Server is always a part of a bigger system – there are always other players in the game: whether it is a client application, web service, any other kind of data import/export process and so on. In short, the SQL Server surroundings look like this: This means that SQL Server, aside from its internal waits, also depends on external waits and settings. As we can see in the picture above, SQL Server needs to have an interface in order to communicate with the surrounding clients over the network. For this communication, SQL Server uses protocol interfaces. I will not go into detail about which protocols are best, but you can read this article. Also, review the information about the TDS (Tabular data stream). As we all know, our system is only as fast as its slowest component. This means that when we look at our environment as a whole, the SQL Server might be a victim of external pressure, no matter how well we have tuned our database server performance. Let’s dive into an example: let’s say that we have a web server, hosting a web application which is using data from our SQL Server, hosted on another server. The network card of the web server for some reason is malfunctioning (think of a hardware failure, driver failure, or just improper setup) and does not send/receive data faster than 10Mbs. On the other end, our SQL Server will not be able to send/receive data at a faster rate either. This means that the application users will notify the support team and will say: “My data is coming very slow.” Now, let’s move on to a bit more exciting example: imagine that there is a similar setup as the example above – one web server and one database server, and the application is not using any stored procedure calls, but instead for every user request the application is sending 80kb query over the network to the SQL Server. (I really thought this does not happen in real life until I saw it one day.) So, what happens in this case? To make things worse, let’s say that the 80kb query text is submitted from the application to the SQL Server at least 100 times per minute, and as often as 300 times per minute in peak times. Here is what happens: in order for this query to reach the SQL Server, it will have to be broken into a of number network packets (according to the packet size settings) – and will travel over the network. On the other side, our SQL Server network card will receive the packets, will pass them to our network layer, the packets will get assembled, and eventually SQL Server will start processing the query – parsing, allegorizing, generating the query execution plan and so on. So far, we have already had a serious network overhead by waiting for the packets to reach our Database Engine. There will certainly be some processing overhead – until the database engine deals with the 80kb query and its 20 subqueries. The waits you see in the DMVs are actually collected from the point the query reaches the SQL Server and the packets are assembled. Let’s say that our query is processed and it finally returns 15000 rows. These rows have a certain size as well, depending on the data types returned. This means that the data will have converted to packages (depending on the network size package settings) and will have to reach the application server. There will also be waits, however, this time you will be able to see a wait type in the DMVs called ASYNC_NETWORK_IO. What this wait type indicates is that the client is not consuming the data fast enough and the network buffers are filling up. Recently Pinal Dave posted a blog on Client Statistics. What Client Statistics does is captures the physical flow characteristics of the query between the client(Management Studio, in this case) and the server and back to the client. As you see in the image, there are three categories: Query Profile Statistics, Network Statistics and Time Statistics. Number of server roundtrips–a roundtrip consists of a request sent to the server and a reply from the server to the client. For example, if your query has three select statements, and they are separated by ‘GO’ command, then there will be three different roundtrips. TDS Packets sent from the client – TDS (tabular data stream) is the language which SQL Server speaks, and in order for applications to communicate with SQL Server, they need to pack the requests in TDS packets. TDS Packets sent from the client is the number of packets sent from the client; in case the request is large, then it may need more buffers, and eventually might even need more server roundtrips. TDS packets received from server –is the TDS packets sent by the server to the client during the query execution. Bytes sent from client – is the volume of the data set to our SQL Server, measured in bytes; i.e. how big of a query we have sent to the SQL Server. This is why it is best to use stored procedures, since the reusable code (which already exists as an object in the SQL Server) will only be called as a name of procedure + parameters, and this will minimize the network pressure. Bytes received from server – is the amount of data the SQL Server has sent to the client, measured in bytes. Depending on the number of rows and the datatypes involved, this number will vary. But still, think about the network load when you request data from SQL Server. Client processing time – is the amount of time spent in milliseconds between the first received response packet and the last received response packet by the client. Wait time on server replies – is the time in milliseconds between the last request packet which left the client and the first response packet which came back from the server to the client. Total execution time – is the sum of client processing time and wait time on server replies (the SQL Server internal processing time) Here is an illustration of the Client-server communication model which should help you understand the mutual waits in a client-server environment. Keep in mind that a query with a large ‘wait time on server replies’ means the server took a long time to produce the very first row. This is usual on queries that have operators that need the entire sub-query to evaluate before they proceed (for example, sort and top operators). However, a query with a very short ‘wait time on server replies’ means that the query was able to return the first row fast. However a long ‘client processing time’ does not necessarily imply the client spent a lot of time processing and the server was blocked waiting on the client. It can simply mean that the server continued to return rows from the result and this is how long it took until the very last row was returned. The bottom line is that developers and DBAs should work together and think carefully of the resource utilization in the client-server environment. From experience I can say that so far I have seen only cases when the application developers and the Database developers are on their own and do not ask questions about the other party’s world. I would recommend using the Client Statistics tool during new development to track the performance of the queries, and also to find a synchronous way of utilizing resources between the client – server – client. Here is another example: think about similar setup as above, but add another server to the game. Let’s say that we keep our media on a separate server, and together with the data from our SQL Server we need to display some images on the webpage requested by our user. No matter how simple or complicated the logic to get the images is, if the images are 500kb each our users will get the page slowly and they will still think that there is something wrong with our data. Anyway, I don’t mean to get carried away too far from SQL Server. Instead, what I would like to say is that DBAs should also be aware of ‘the big picture’. I wrote a blog post a while back on this topic, and if you are interested, you can read it here about the big picture. And finally, here are some guidelines for monitoring the network performance and improving it: Run a trace and outline all queries that return more than 1000 rows (in Profiler you can actually filter and sort the captured trace by number of returned rows). This is not a set number; it is more of a guideline. The general thought is that no application user can consume that many rows at once. Ask yourself and your fellow-developers: ‘why?’. Monitor your network counters in Perfmon: Network Interface:Output queue length, Redirector:Network errors/sec, TCPv4: Segments retransmitted/sec and so on. Make sure to establish a good friendship with your network administrator (buy them coffee, for example J ) and get into a conversation about the network settings. Have them explain to you how the network cards are setup – are they standalone, are they ‘teamed’, what are the settings – full duplex and so on. Find some time to read a bit about networking. In this short blog post I hope I have turned your attention to ‘the big picture’ and the fact that there are other factors affecting our SQL Server, aside from its internal workings. As a further reading I would still highly recommend the Wait Stats series on this blog, also I would recommend you have the coffee break conversation with your network admin as soon as possible. This guest post is written by Feodor Georgiev. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL

    Read the article

  • Awesome Read: Buck Woody&rsquo;s post on the proper use of the Windows Azure VM Role

    - by Enrique Lima
    I have heard some service providers (or cloud providers), hosting companies and such complain, criticize or even venture to call foul on Microsoft’s Azure VM Role.  The problem:  None of them have gone through the effort of truly understanding (or perhaps not wanting to know) what is going on there.  Many have jumped right into the “purist” definition of IaaS, or PaaS for that matter. Ok, Buck’s post is a true gem (my opinion) in the sense it gives you parallels of what the VM Role is and is not.  And it brings Hyper-V and SCVMM to the forefront explaining what it is and what it also offers to the IaaS Microsoft offers. Here is an excerpt of the summary, but please go on over to read his post it will clear a lot if you are wondering when and how to use the Windows Azure VM Role. The excerpt: “Virtualizing servers alone has limitations of scale, availability and recovery. Microsoft’s offering in this area is Hyper-V and System Center, not the VM Role. The VM Role is still used for running Stateless code, just like the Web and Worker Roles, with the exception that it allows you more control over the environment of where that code runs.” The source and post:  Buck Woody -http://blogs.msdn.com/b/buckwoody/archive/2010/12/28/the-proper-use-of-the-vm-role-in-windows-azure.aspx?wa=wsignin1.0

    Read the article

  • FIX: Visual Studio Post Build Event Returns &ndash;1 when it should not.

    - by ChrisD
    I had written a Console Application that I run as part of my post build for other projects..  The Console application logs a series of messages to the console as it executes.  I use the Environment.ExitCode value to specify an error or success condition.  When the application executes without issue, the ExitCode is 0, when there is a problem its –1. As part of my logging, I log the value of the exit code right before the application terminates.  When I run this executable from the command line, it behaves as it should; error scenarios return –1 and success scenarios return 0.   When I run the same command line as part of the post-build event, Visual Studio reports the exit code as –1, even when the application reports the exit code as 0.   A snippet of the build output follows: Verbose: Exiting with ExitCode=0 C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.Common.targets(3397,13): error MSB3073: The command ""MGC.exe" "-TargetPath=C:\TFS\Solutions\Research\Source\Framework\Services\Identity\STS\_STSBuilder\bin\Debug\_STSBuilder.dll" C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.Common.targets(3397,13): error MSB3073:  C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.Common.targets(3397,13): error MSB3073: " exited with code -1. The Application returns a 0 exit code.  But visual studio is reporting an error.  Why? The answer is in the way I format my log messages.  Apparently Visual Studio watches the messages that get streamed to the the output console.  If those messages match a pattern used by visual studio to communicate errors, Visual Studio assumes an error has occurred in the executable and returns a –1.  This post details the formats used by Visual Studio to determine error conditions. In my case, the presence of the colon was tripping up Visual studio.  I Replaced all occurrences of colon with an equal sign and Visual Studio once again respected the exit code of the application. Verbose= Exiting with ExitCode=0 ========== Build: 3 succeeded or up-to-date, 0 failed, 0 skipped ==========

    Read the article

  • Can not print after upgrading from 12.x to 14.04

    - by user318889
    After upgrading from V12.04 to V14.04 I am not able to print. I am using an HP LaserJet 400 M451dn. The printer troubleshooter told me that there is no solution to the problem. This is the output of the advanced diagnositc output. (Due to limited space I cut the output!) Can anybody tell me what is going wrong. I am using the printer via USB ? Page 1 (Scheduler not running?): {'cups_connection_failure': False} Page 2 (Is local server publishing?): {'local_server_exporting_printers': False} Page 3 (Choose printer): {'cups_dest': , 'cups_instance': None, 'cups_queue': u'HP-LaserJet-400-color-M451dn', 'cups_queue_listed': True} Page 4 (Check printer sanity): {'cups_device_uri_scheme': u'hp', 'cups_printer_dict': {'device-uri': u'hp:/usb/HP_LaserJet_400_color_M451dn?serial=CNFF308670', 'printer-info': u'Hewlett-Packard HP LaserJet 400 color M451dn', 'printer-is-shared': True, 'printer-location': u'Pinatubo', 'printer-make-and-model': u'HP LJ 300-400 color M351-M451 Postscript (recommended)', 'printer-state': 4, 'printer-state-message': u'', 'printer-state-reasons': [u'none'], 'printer-type': 8556636, 'printer-uri-supported': u'ipp://localhost:631/printers/HP-LaserJet-400-color-M451dn'}, 'cups_printer_remote': False, 'hplip_output': (['', '\x1b[01mHP Linux Imaging and Printing System (ver. 3.14.6)\x1b[0m', '\x1b[01mDevice Information Utility ver. 5.2\x1b[0m', '', 'Copyright (c) 2001-13 Hewlett-Packard Development Company, LP', 'This software comes with ABSOLUTELY NO WARRANTY.', 'This is free software, and you are welcome to distribute it', 'under certain conditions. See COPYING file for more details.', '', '', '\x1b[01mhp:/usb/HP_LaserJet_400_color_M451dn?serial=CNFF308670\x1b[0m', '', '\x1b[01mDevice Parameters (dynamic data):\x1b[0m', '\x1b[01m Parameter Value(s) \x1b[0m', ' ---------------------------- ----------------------------------------------------------', ' back-end hp ', " cups-printers ['HP-LaserJet-400-color-M451dn'] ", ' cups-uri hp:/usb/HP_LaserJet_400_color_M451dn?serial=CNFF308670 ', ' dev-file ', ' device-state -1 ', ' device-uri hp:/usb/HP_LaserJet_400_color_M451dn?serial=CNFF308670 ', ' deviceid ', ' error-state 101 ', ' host ', ' is-hp True ', ' panel 0 ', ' panel-line1 ', ' panel-line2 ', ' port 1 ', ' serial CNFF308670 ', ' status-code 5002 ', ' status-desc ', '\x1b[01m', 'Model Parameters (static data):\x1b[0m', '\x1b[01m Parameter Value(s) \x1b[0m', ' ---------------------------- ----------------------------------------------------------', ' align-type 0 ', ' clean-type 0 ', ' color-cal-type 0 ', ' copy-type 0 ', ' embedded-server-type 0 ', ' fax-type 0 ', ' fw-download False ', ' icon hp_color_laserjet_cp2025.png ', ' io-mfp-mode 1 ', ' io-mode 1 ', ' io-support 6 ', ' job-storage 0 ', ' linefeed-cal-type 0 ', ' model HP_LaserJet_400_color_M451dn ', ' model-ui HP LaserJet 400 Color m451dn ', ' model1 HP LaserJet 400 Color M451dn ', ' monitor-type 0 ', ' panel-check-type 0 ', ' pcard-type 0 ', ' plugin 0 ', ' plugin-reason 0 ', ' power-settings 0 ', ' ppd-name lj_300_400_color_m351_m451 ', ' pq-diag-type 0 ', ' r-type 0 ', ' r0-agent1-kind 4 ', ' r0-agent1-sku CE410A/CE410X ', ' r0-agent1-type 1 ', ' r0-agent2-kind 4 ', ' r0-agent2-sku CE411A ', ' r0-agent2-type 4 ', ' r0-agent3-kind 4 ', ' r0-agent3-sku CE413A ', ' r0-agent3-type 5 ', ' r0-agent4-kind 4 ', ' r0-agent4-sku CE412A ', ' r0-agent4-type 6 ', ' scan-src 0 ', ' scan-type 0 ', ' status-battery-check 0 ', ' status-dynamic-counters 0 ', ' status-type 3 ', ' support-released True ', ' support-subtype 2202411 ', ' support-type 2 ', ' support-ver 3.12.2 ', " tech-class ['Postscript'] ", " tech-subclass ['Normal'] ", ' tech-type 4 ', ' usb-pid 3882 ', ' usb-vid 1008 ', ' wifi-config 0 ', '\x1b[01m', 'Status History (most recent first):\x1b[0m', '\x1b[01m Date/Time Code Status Description User Job ID \x1b[0m', ' -------------------- ----- ---------------------------------------- -------- --------', ' 08/21/14 00:07:25 5012 Device communication error richard 0 ', ' 08/20/14 13:42:44 500 Started a print job richard 4214 ', '', '', 'Done.', ''], ['\x1b[35;01mwarning: No display found.\x1b[0m', '\x1b[31;01merror: hp-info -u/--gui requires Qt4 GUI support. Entering interactive mode.\x1b[0m', '\x1b[31;01merror: Unable to communicate with device (code=12): hp:/usb/HP_LaserJet_400_color_M451dn?serial=CNFF308670\x1b[0m', '\x1b[31;01merror: Error opening device (Device not found).\x1b[0m', ''], 0), 'is_cups_class': False, 'local_cups_queue_attributes': {'charset-configured': u'utf-8', 'charset-supported': [u'us-ascii', u'utf-8'], 'color-supported': True, 'compression-supported': [u'none', u'gzip'], 'copies-default': 1, 'copies-supported': (1, 9999), 'cups-version': u'1.7.2', 'device-uri': u'hp:/usb/HP_LaserJet_400_color_M451dn?serial=CNFF308670', 'document-format-default': u'application/octet-stream', 'document-format-supported': [u'application/octet-stream', u'application/pdf', u'application/postscript', u'application/vnd.adobe-reader-postscript', u'application/vnd.cups-command', u'application/vnd.cups-pdf', u'application/vnd.cups-pdf-banner', u'application/vnd.cups-postscript', u'application/vnd.cups-raw', u'application/vnd.samsung-ps', u'application/x-cshell', u'application/x-csource', u'application/x-perl', u'application/x-shell', u'image/gif', u'image/jpeg', u'image/png', u'image/tiff', u'image/urf', u'image/x-bitmap', u'image/x-photocd', u'image/x-portable-anymap', u'image/x-portable-bitmap', u'image/x-portable-graymap', u'image/x-portable-pixmap', u'image/x-sgi-rgb', u'image/x-sun-raster', u'image/x-xbitmap', u'image/x-xpixmap', u'image/x-xwindowdump', u'text/css', u'text/html', u'text/plain'], 'finishings-default': 3, 'finishings-supported': [3], 'generated-natural-language-supported': [u'en-us'], 'ipp-versions-supported': [u'1.0', u'1.1', u'2.0', u'2.1'], 'ippget-event-life': 15, 'job-creation-attributes-supported': [u'copies', u'finishings', u'ipp-attribute-fidelity', u'job-hold-until', u'job-name', u'job-priority', u'job-sheets', u'media', u'media-col', u'multiple-document-handling', u'number-up', u'output-bin', u'orientation-requested', u'page-ranges', u'print-color-mode', u'print-quality', u'printer-resolution', u'sides'], 'job-hold-until-default': u'no-hold', 'job-hold-until-supported': [u'no-hold', u'indefinite', u'day-time', u'evening', u'night', u'second-shift', u'third-shift', u'weekend'], 'job-ids-supported': True, 'job-k-limit': 0, 'job-k-octets-supported': (0, 470914416), 'job-page-limit': 0, 'job-priority-default': 50, 'job-priority-supported': [100], 'job-quota-period': 0, 'job-settable-attributes-supported': [u'copies', u'finishings', u'job-hold-until', u'job-name', u'job-priority', u'media', u'media-col', u'multiple-document-handling', u'number-up', u'output-bin', u'orientation-requested', u'page-ranges', u'print-color-mode', u'print-quality', u'printer-resolution', u'sides'], 'job-sheets-default': (u'none', u'none'), 'job-sheets-supported': [u'none', u'classified', u'confidential', u'form', u'secret', u'standard', u'topsecret', u'unclassified'], 'jpeg-k-octets-supported': (0, 470914416), 'jpeg-x-dimension-supported': (0, 65535), 'jpeg-y-dimension-supported': (1, 65535), 'marker-change-time': 0, 'media-bottom-margin-supported': [423], 'media-col-default': u'(unknown IPP value tag 0x34)', 'media-col-supported': [u'media-bottom-margin', u'media-left-margin', u'media-right-margin', u'media-size', u'media-source', u'media-top-margin', u'media-type'], 'media-default': u'iso_a4_210x297mm', 'media-left-margin-supported': [423], 'media-right-margin-supported': [423],

    Read the article

  • How to import or "using" a custom class in Unity script?

    - by Bobbake4
    I have downloaded the JSONObject plugin for parsing JSON in Unity but when I use it in a script I get an error indicating JSONObject cannot be found. My question is how do I use a custom object class defined inside another class. I know I need a using directive to solve this but I am not sure of the path to these custom objects I have imported. They are in the root project folder inside JSONObject folder and class is called JSONObject. Thanks

    Read the article

  • File / Application association using a custom command is gone?

    - by Christian Vielma
    In previous Ubuntus when you want to select/change an application to open a specific file (right-click/open with other application or properties) you were able to write a custom command to open the file. This was very useful, but now in 11.10 I can't find this option, it only shows me a list of applications and a button to look for applications in Internet. Is there a way to restore the command line to write custom commands to open files?

    Read the article

  • Having a generic data type for a database table column, is it "good" practice?

    - by Yanick Rochon
    I'm working on a PHP project where some object (class member) may contain different data type. For example : class Property { private $_id; // (PK) private $_ref_id; // the object reference id (FK) private $_name; // the name of the property private $_type; // 'string', 'int', 'float(n,m)', 'datetime', etc. private $_data; // ... // ..snip.. public getters/setters } Now, I need to perform some persistence on these objects. Some properties may be a text data type, but nothing bigger than what a varchar may hold. Also, later on, I need to be able to perform searches and sorting. Is it a good practice to use a single database table for this (ie. is there a non negligible performance impact)? If it's "acceptable", then what could be the data type for the data column?

    Read the article

  • Can I show a table of one custom variable against another?

    - by Simon
    We have a number of custom variables set up in google analytics. We'd like to show a table of event occurrences broken down by two custom variables, e.g. if variable one can be A, B, or C and variable two can be J, K or L: Events | A | B | C | -------+-----+-----+-----+ J | 345 | 65 | 12 | K | 234 | 43 | 7 | L | 123 | 21 | 4 | -------+-----+-----+-----+ How do I get the information in that format?

    Read the article

< Previous Page | 239 240 241 242 243 244 245 246 247 248 249 250  | Next Page >