Search Results

Search found 23955 results on 959 pages for 'insert query'.

Page 245/959 | < Previous Page | 241 242 243 244 245 246 247 248 249 250 251 252  | Next Page >

  • basic json > struct question

    - by danwoods
    I'm working with twitter's api, trying to get the json data from http://search.twitter.com/trends/current.json which looks like: {"as_of":1268069036,"trends":{"2010-03-08 17:23:56":[{"name":"Happy Women's Day","query":"\"Happy Women's Day\" OR \"Women's Day\""},{"name":"#MusicMonday","query":"#MusicMonday"},{"name":"#MM","query":"#MM"},{"name":"Oscars","query":"Oscars OR #oscars"},{"name":"#nooffense","query":"#nooffense"},{"name":"Hurt Locker","query":"\"Hurt Locker\""},{"name":"Justin Bieber","query":"\"Justin Bieber\""},{"name":"Cmon","query":"Cmon"},{"name":"My World 2","query":"\"My World 2\""},{"name":"Sandra Bullock","query":"\"Sandra Bullock\""}]}} My structs look like: type trend struct { name string query string } type trends struct { id string arr_of_trends []trend } type Trending struct { as_of string trends_obj trends } and then I parse the JSON into a variable of type Trending. I'm very new to JSON so my main concern is making sure I've have the data structure correctly setup to hold the returned json data. I'm writing this in 'Go' for a project for school. (This is not part of a particular assignment, just something I'm demo-ing for a presentation on the language)

    Read the article

  • ( Sql Server 2005 C#.Net ) - I want just the insert query for a temp table.

    - by John Stephen
    Hi..I am using C#.Net and Sql Server ( Windows Application ). I had created a temporary table. When a button is clicked, temporary table (#tmp_emp_details) is created. I am having another button called "insert Values" and also 5 textboxes. The values that are entered in the textbox are used and whenever com.ExecuteNonQuery(); line comes, it throws an error message called "Invalid object name '#tbl_emp_answer'.". Below is the set of code..Please give me a solution. Code for insert (in insert value button): private void btninsertvalues_Click(object sender, EventArgs e) { username = txtusername.Text; examloginid = txtexamloginid.Text; question = txtquestion.Text; answer = txtanswer.Text; useranswer = txtanswer.Text; SqlConnection con = new SqlConnection("Data Source=.;Initial Catalog=tempdb;Integrated Security=True;"); SqlCommand com = new SqlCommand("Insert into #tbl_emp_answer values('"+username+"','"+examloginid+"','"+question+"','"+answer+"','"+useranswer+"')", con); con.Open(); com.ExecuteNonQuery(); con.Close(); }

    Read the article

  • Keyboard problem, my Insert key is mix with my Delete key. How to disable overwrite text mode?

    - by Kevin Lee
    I have a problem, everytime i type a text, it is overwriting what i have typed. i assume that the mode is set to overwriting, I want to insert the text not overwrite it, but i can't disable it because my insert key is mix up with my delete key so everytime i enter insert to disable the overwrite mode, it just delete what i type. so how to disable this? it's getting very annoying.. i'm using centOS.. and it seems that my problem is only related to netbeans because when i type here, it is set to insert mode.. but in netbeans, it just overwrites the codes! help!

    Read the article

  • Can I use TCP as DNS query protocol on Mac OS?

    - by Brian
    Hi, I'm using Mac OS, Snow Leopard 10.6.2, and I'm suffering from UDP packet loss during DNS query. So my web browser is too slow to surf internet nicely. But it worked very well when I tried a DNS query on TCP using dig command. However, I can't find some control switch to change to use TCP during DNS query. Is there a way to change it in Mac OS? Thank you.

    Read the article

  • Can I use TCP as DNS query protocol on Mac OS?

    - by Brian
    Hi, I'm using Mac OS, Snow Leopard 10.6.2, and I'm suffering from UDP packet loss during DNS query. So I tried DNS query as TCP using dig command, it worked very well. However, I can't find some control switch to change to use TCP during DNS query. Is there a way to change it in Mac OS? Thank you.

    Read the article

  • How to get just value from database query in Excel?

    - by Corin
    I'm creating a spreadsheet as a collection point of information from a number of MS Access databases. I will run a query on each database to get a count of records in a particular table. Each database has the same structure but different content as they are used in different situations. So the query returns a single value, rec_count. I've figured out how to create that query, save it and then use it as the data source. So far so good. The problem is that Excel treats the query results as a table. So instead of getting just the single value the query returns, I also get the field name. Thus the result takes up two cells instead of one. When linking in the data source, I only see Table, PivotTable Report and PivotChart as options for viewing the data. I don't want any of those. I just want the single value without any formatting, column headers, etc. Is there a way to do this is Excel 2007?

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Operator of the week - Assert

    - by Fabiano Amorim
    Well my friends, I was wondering how to help you in a practical way to understand execution plans. So I think I'll talk about the Showplan Operators. Showplan Operators are used by the Query Optimizer (QO) to build the query plan in order to perform a specified operation. A query plan will consist of many physical operators. The Query Optimizer uses a simple language that represents each physical operation by an operator, and each operator is represented in the graphical execution plan by an icon. I'll try to talk about one operator every week, but so as to avoid having to continue to write about these operators for years, I'll mention only of those that are more common: The first being the Assert. The Assert is used to verify a certain condition, it validates a Constraint on every row to ensure that the condition was met. If, for example, our DDL includes a check constraint which specifies only two valid values for a column, the Assert will, for every row, validate the value passed to the column to ensure that input is consistent with the check constraint. Assert  and Check Constraints: Let's see where the SQL Server uses that information in practice. Take the following T-SQL: IF OBJECT_ID('Tab1') IS NOT NULL   DROP TABLE Tab1 GO CREATE TABLE Tab1(ID Integer, Gender CHAR(1))  GO  ALTER TABLE TAB1 ADD CONSTRAINT ck_Gender_M_F CHECK(Gender IN('M','F'))  GO INSERT INTO Tab1(ID, Gender) VALUES(1,'X') GO To the command above the SQL Server has generated the following execution plan: As we can see, the execution plan uses the Assert operator to check that the inserted value doesn't violate the Check Constraint. In this specific case, the Assert applies the rule, 'if the value is different to "F" and different to "M" than return 0 otherwise returns NULL'. The Assert operator is programmed to show an error if the returned value is not NULL; in other words, the returned value is not a "M" or "F". Assert checking Foreign Keys Now let's take a look at an example where the Assert is used to validate a foreign key constraint. Suppose we have this  query: ALTER TABLE Tab1 ADD ID_Genders INT GO  IF OBJECT_ID('Tab2') IS NOT NULL   DROP TABLE Tab2 GO CREATE TABLE Tab2(ID Integer PRIMARY KEY, Gender CHAR(1))  GO  INSERT INTO Tab2(ID, Gender) VALUES(1, 'F') INSERT INTO Tab2(ID, Gender) VALUES(2, 'M') INSERT INTO Tab2(ID, Gender) VALUES(3, 'N') GO  ALTER TABLE Tab1 ADD CONSTRAINT fk_Tab2 FOREIGN KEY (ID_Genders) REFERENCES Tab2(ID) GO  INSERT INTO Tab1(ID, ID_Genders, Gender) VALUES(1, 4, 'X') Let's look at the text execution plan to see what these Assert operators were doing. To see the text execution plan just execute SET SHOWPLAN_TEXT ON before run the insert command. |--Assert(WHERE:(CASE WHEN NOT [Pass1008] AND [Expr1007] IS NULL THEN (0) ELSE NULL END))      |--Nested Loops(Left Semi Join, PASSTHRU:([Tab1].[ID_Genders] IS NULL), OUTER REFERENCES:([Tab1].[ID_Genders]), DEFINE:([Expr1007] = [PROBE VALUE]))           |--Assert(WHERE:(CASE WHEN [Tab1].[Gender]<>'F' AND [Tab1].[Gender]<>'M' THEN (0) ELSE NULL END))           |    |--Clustered Index Insert(OBJECT:([Tab1].[PK]), SET:([Tab1].[ID] = RaiseIfNullInsert([@1]),[Tab1].[ID_Genders] = [@2],[Tab1].[Gender] = [Expr1003]), DEFINE:([Expr1003]=CONVERT_IMPLICIT(char(1),[@3],0)))           |--Clustered Index Seek(OBJECT:([Tab2].[PK]), SEEK:([Tab2].[ID]=[Tab1].[ID_Genders]) ORDERED FORWARD) Here we can see the Assert operator twice, first (looking down to up in the text plan and the right to left in the graphical plan) validating the Check Constraint. The same concept showed above is used, if the exit value is "0" than keep running the query, but if NULL is returned shows an exception. The second Assert is validating the result of the Tab1 and Tab2 join. It is interesting to see the "[Expr1007] IS NULL". To understand that you need to know what this Expr1007 is, look at the Probe Value (green text) in the text plan and you will see that it is the result of the join. If the value passed to the INSERT at the column ID_Gender exists in the table Tab2, then that probe will return the join value; otherwise it will return NULL. So the Assert is checking the value of the search at the Tab2; if the value that is passed to the INSERT is not found  then Assert will show one exception. If the value passed to the column ID_Genders is NULL than the SQL can't show a exception, in that case it returns "0" and keeps running the query. If you run the INSERT above, the SQL will show an exception because of the "X" value, but if you change the "X" to "F" and run again, it will show an exception because of the value "4". If you change the value "4" to NULL, 1, 2 or 3 the insert will be executed without any error. Assert checking a SubQuery: The Assert operator is also used to check one subquery. As we know, one scalar subquery can't validly return more than one value: Sometimes, however, a  mistake happens, and a subquery attempts to return more than one value . Here the Assert comes into play by validating the condition that a scalar subquery returns just one value. Take the following query: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    |--Assert(WHERE:(CASE WHEN NOT [Pass1016] AND [Expr1015] IS NULL THEN (0) ELSE NULL END))        |--Nested Loops(Left Semi Join, PASSTHRU:([tempdb].[dbo].[Tab1].[ID_TipoSexo] IS NULL), OUTER REFERENCES:([tempdb].[dbo].[Tab1].[ID_TipoSexo]), DEFINE:([Expr1015] = [PROBE VALUE]))              |--Assert(WHERE:([Expr1017]))             |    |--Compute Scalar(DEFINE:([Expr1017]=CASE WHEN [tempdb].[dbo].[Tab1].[Sexo]<>'F' AND [tempdb].[dbo].[Tab1].[Sexo]<>'M' THEN (0) ELSE NULL END))              |         |--Clustered Index Insert(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]), SET:([tempdb].[dbo].[Tab1].[ID_TipoSexo] = [Expr1008],[tempdb].[dbo].[Tab1].[Sexo] = [Expr1009],[tempdb].[dbo].[Tab1].[ID] = [Expr1003]))              |              |--Top(TOP EXPRESSION:((1)))              |                   |--Compute Scalar(DEFINE:([Expr1008]=[Expr1014], [Expr1009]='F'))              |                        |--Nested Loops(Left Outer Join)              |                             |--Compute Scalar(DEFINE:([Expr1003]=getidentity((1856985942),(2),NULL)))              |                             |    |--Constant Scan              |                             |--Assert(WHERE:(CASE WHEN [Expr1013]>(1) THEN (0) ELSE NULL END))              |                                  |--Stream Aggregate(DEFINE:([Expr1013]=Count(*), [Expr1014]=ANY([tempdb].[dbo].[Tab1].[ID_TipoSexo])))             |                                       |--Clustered Index Scan(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]))              |--Clustered Index Seek(OBJECT:([tempdb].[dbo].[Tab2].[PK__Tab2__3214EC27755C58E5]), SEEK:([tempdb].[dbo].[Tab2].[ID]=[tempdb].[dbo].[Tab1].[ID_TipoSexo]) ORDERED FORWARD)  You can see from this text showplan that SQL Server as generated a Stream Aggregate to count how many rows the SubQuery will return, This value is then passed to the Assert which then does its job by checking its validity. Is very interesting to see that  the Query Optimizer is smart enough be able to avoid using assert operators when they are not necessary. For instance: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1 WHERE ID = 1), 'F') INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT TOP 1 ID_TipoSexo FROM Tab1), 'F')  For both these INSERTs, the Query Optimiser is smart enough to know that only one row will ever be returned, so there is no need to use the Assert. Well, that's all folks, I see you next week with more "Operators". Cheers, Fabiano

    Read the article

  • MySQL query being performed when PHP if condition not met?

    - by Ryan
    The script I'm using is if($profile['username'] == $user['username']) { $db->query("UPDATE users SET newcomments = 0 WHERE username = '$user[username]'"); echo "This is a test"; } (Note that $db-query is exactly the same as mysql_query) For some very odd reason, the MySQL query is being performed even if the defined condition is false The "This is a test" works properly and only appears when the condition is met, but the MySQL query is performed anyway Whats the problem with it?

    Read the article

  • So…is it a Seek or a Scan?

    - by Paul White
    You’re probably most familiar with the terms ‘Seek’ and ‘Scan’ from the graphical plans produced by SQL Server Management Studio (SSMS).  The image to the left shows the most common ones, with the three types of scan at the top, followed by four types of seek.  You might look to the SSMS tool-tip descriptions to explain the differences between them: Not hugely helpful are they?  Both mention scans and ranges (nothing about seeks) and the Index Seek description implies that it will not scan the index entirely (which isn’t necessarily true). Recall also yesterday’s post where we saw two Clustered Index Seek operations doing very different things.  The first Seek performed 63 single-row seeking operations; and the second performed a ‘Range Scan’ (more on those later in this post).  I hope you agree that those were two very different operations, and perhaps you are wondering why there aren’t different graphical plan icons for Range Scans and Seeks?  I have often wondered about that, and the first person to mention it after yesterday’s post was Erin Stellato (twitter | blog): Before we go on to make sense of all this, let’s look at another example of how SQL Server confusingly mixes the terms ‘Scan’ and ‘Seek’ in different contexts.  The diagram below shows a very simple heap table with two columns, one of which is the non-clustered Primary Key, and the other has a non-unique non-clustered index defined on it.  The right hand side of the diagram shows a simple query, it’s associated query plan, and a couple of extracts from the SSMS tool-tip and Properties windows. Notice the ‘scan direction’ entry in the Properties window snippet.  Is this a seek or a scan?  The different references to Scans and Seeks are even more pronounced in the XML plan output that the graphical plan is based on.  This fragment is what lies behind the single Index Seek icon shown above: You’ll find the same confusing references to Seeks and Scans throughout the product and its documentation. Making Sense of Seeks Let’s forget all about scans for a moment, and think purely about seeks.  Loosely speaking, a seek is the process of navigating an index B-tree to find a particular index record, most often at the leaf level.  A seek starts at the root and navigates down through the levels of the index to find the point of interest: Singleton Lookups The simplest sort of seek predicate performs this traversal to find (at most) a single record.  This is the case when we search for a single value using a unique index and an equality predicate.  It should be readily apparent that this type of search will either find one record, or none at all.  This operation is known as a singleton lookup.  Given the example table from before, the following query is an example of a singleton lookup seek: Sadly, there’s nothing in the graphical plan or XML output to show that this is a singleton lookup – you have to infer it from the fact that this is a single-value equality seek on a unique index.  The other common examples of a singleton lookup are bookmark lookups – both the RID and Key Lookup forms are singleton lookups (an RID lookup finds a single record in a heap from the unique row locator, and a Key Lookup does much the same thing on a clustered table).  If you happen to run your query with STATISTICS IO ON, you will notice that ‘Scan Count’ is always zero for a singleton lookup. Range Scans The other type of seek predicate is a ‘seek plus range scan’, which I will refer to simply as a range scan.  The seek operation makes an initial descent into the index structure to find the first leaf row that qualifies, and then performs a range scan (either backwards or forwards in the index) until it reaches the end of the scan range. The ability of a range scan to proceed in either direction comes about because index pages at the same level are connected by a doubly-linked list – each page has a pointer to the previous page (in logical key order) as well as a pointer to the following page.  The doubly-linked list is represented by the green and red dotted arrows in the index diagram presented earlier.  One subtle (but important) point is that the notion of a ‘forward’ or ‘backward’ scan applies to the logical key order defined when the index was built.  In the present case, the non-clustered primary key index was created as follows: CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col ASC) ) ; Notice that the primary key index specifies an ascending sort order for the single key column.  This means that a forward scan of the index will retrieve keys in ascending order, while a backward scan would retrieve keys in descending key order.  If the index had been created instead on key_col DESC, a forward scan would retrieve keys in descending order, and a backward scan would return keys in ascending order. A range scan seek predicate may have a Start condition, an End condition, or both.  Where one is missing, the scan starts (or ends) at one extreme end of the index, depending on the scan direction.  Some examples might help clarify that: the following diagram shows four queries, each of which performs a single seek against a column holding every integer from 1 to 100 inclusive.  The results from each query are shown in the blue columns, and relevant attributes from the Properties window appear on the right: Query 1 specifies that all key_col values less than 5 should be returned in ascending order.  The query plan achieves this by seeking to the start of the index leaf (there is no explicit starting value) and scanning forward until the End condition (key_col < 5) is no longer satisfied (SQL Server knows it can stop looking as soon as it finds a key_col value that isn’t less than 5 because all later index entries are guaranteed to sort higher). Query 2 asks for key_col values greater than 95, in descending order.  SQL Server returns these results by seeking to the end of the index, and scanning backwards (in descending key order) until it comes across a row that isn’t greater than 95.  Sharp-eyed readers may notice that the end-of-scan condition is shown as a Start range value.  This is a bug in the XML show plan which bubbles up to the Properties window – when a backward scan is performed, the roles of the Start and End values are reversed, but the plan does not reflect that.  Oh well. Query 3 looks for key_col values that are greater than or equal to 10, and less than 15, in ascending order.  This time, SQL Server seeks to the first index record that matches the Start condition (key_col >= 10) and then scans forward through the leaf pages until the End condition (key_col < 15) is no longer met. Query 4 performs much the same sort of operation as Query 3, but requests the output in descending order.  Again, we have to mentally reverse the Start and End conditions because of the bug, but otherwise the process is the same as always: SQL Server finds the highest-sorting record that meets the condition ‘key_col < 25’ and scans backward until ‘key_col >= 20’ is no longer true. One final point to note: seek operations always have the Ordered: True attribute.  This means that the operator always produces rows in a sorted order, either ascending or descending depending on how the index was defined, and whether the scan part of the operation is forward or backward.  You cannot rely on this sort order in your queries of course (you must always specify an ORDER BY clause if order is important) but SQL Server can make use of the sort order internally.  In the four queries above, the query optimizer was able to avoid an explicit Sort operator to honour the ORDER BY clause, for example. Multiple Seek Predicates As we saw yesterday, a single index seek plan operator can contain one or more seek predicates.  These seek predicates can either be all singleton seeks or all range scans – SQL Server does not mix them.  For example, you might expect the following query to contain two seek predicates, a singleton seek to find the single record in the unique index where key_col = 10, and a range scan to find the key_col values between 15 and 20: SELECT key_col FROM dbo.Example WHERE key_col = 10 OR key_col BETWEEN 15 AND 20 ORDER BY key_col ASC ; In fact, SQL Server transforms the singleton seek (key_col = 10) to the equivalent range scan, Start:[key_col >= 10], End:[key_col <= 10].  This allows both range scans to be evaluated by a single seek operator.  To be clear, this query results in two range scans: one from 10 to 10, and one from 15 to 20. Final Thoughts That’s it for today – tomorrow we’ll look at monitoring singleton lookups and range scans, and I’ll show you a seek on a heap table. Yes, a seek.  On a heap.  Not an index! If you would like to run the queries in this post for yourself, there’s a script below.  Thanks for reading! IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; -- ================ -- Singleton lookup -- ================ ; -- Single value equality seek in a unique index -- Scan count = 0 when STATISTIS IO is ON -- Check the XML SHOWPLAN SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 32 ; -- =========== -- Range Scans -- =========== ; -- Query 1 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col <= 5 ORDER BY E.key_col ASC ; -- Query 2 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col > 95 ORDER BY E.key_col DESC ; -- Query 3 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 10 AND E.key_col < 15 ORDER BY E.key_col ASC ; -- Query 4 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 20 AND E.key_col < 25 ORDER BY E.key_col DESC ; -- Final query (singleton + range = 2 range scans) SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 10 OR E.key_col BETWEEN 15 AND 20 ORDER BY E.key_col ASC ; -- === TIDY UP === DROP TABLE dbo.Example; © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Spooling in SQL execution plans

    - by Rob Farley
    Sewing has never been my thing. I barely even know the terminology, and when discussing this with American friends, I even found out that half the words that Americans use are different to the words that English and Australian people use. That said – let’s talk about spools! In particular, the Spool operators that you find in some SQL execution plans. This post is for T-SQL Tuesday, hosted this month by me! I’ve chosen to write about spools because they seem to get a bad rap (even in my song I used the line “There’s spooling from a CTE, they’ve got recursion needlessly”). I figured it was worth covering some of what spools are about, and hopefully explain why they are remarkably necessary, and generally very useful. If you have a look at the Books Online page about Plan Operators, at http://msdn.microsoft.com/en-us/library/ms191158.aspx, and do a search for the word ‘spool’, you’ll notice it says there are 46 matches. 46! Yeah, that’s what I thought too... Spooling is mentioned in several operators: Eager Spool, Lazy Spool, Index Spool (sometimes called a Nonclustered Index Spool), Row Count Spool, Spool, Table Spool, and Window Spool (oh, and Cache, which is a special kind of spool for a single row, but as it isn’t used in SQL 2012, I won’t describe it any further here). Spool, Table Spool, Index Spool, Window Spool and Row Count Spool are all physical operators, whereas Eager Spool and Lazy Spool are logical operators, describing the way that the other spools work. For example, you might see a Table Spool which is either Eager or Lazy. A Window Spool can actually act as both, as I’ll mention in a moment. In sewing, cotton is put onto a spool to make it more useful. You might buy it in bulk on a cone, but if you’re going to be using a sewing machine, then you quite probably want to have it on a spool or bobbin, which allows it to be used in a more effective way. This is the picture that I want you to think about in relation to your data. I’m sure you use spools every time you use your sewing machine. I know I do. I can’t think of a time when I’ve got out my sewing machine to do some sewing and haven’t used a spool. However, I often run SQL queries that don’t use spools. You see, the data that is consumed by my query is typically in a useful state without a spool. It’s like I can just sew with my cotton despite it not being on a spool! Many of my favourite features in T-SQL do like to use spools though. This looks like a very similar query to before, but includes an OVER clause to return a column telling me the number of rows in my data set. I’ll describe what’s going on in a few paragraphs’ time. So what does a Spool operator actually do? The spool operator consumes a set of data, and stores it in a temporary structure, in the tempdb database. This structure is typically either a Table (ie, a heap), or an Index (ie, a b-tree). If no data is actually needed from it, then it could also be a Row Count spool, which only stores the number of rows that the spool operator consumes. A Window Spool is another option if the data being consumed is tightly linked to windows of data, such as when the ROWS/RANGE clause of the OVER clause is being used. You could maybe think about the type of spool being like whether the cotton is going onto a small bobbin to fit in the base of the sewing machine, or whether it’s a larger spool for the top. A Table or Index Spool is either Eager or Lazy in nature. Eager and Lazy are Logical operators, which talk more about the behaviour, rather than the physical operation. If I’m sewing, I can either be all enthusiastic and get all my cotton onto the spool before I start, or I can do it as I need it. “Lazy” might not the be the best word to describe a person – in the SQL world it describes the idea of either fetching all the rows to build up the whole spool when the operator is called (Eager), or populating the spool only as it’s needed (Lazy). Window Spools are both physical and logical. They’re eager on a per-window basis, but lazy between windows. And when is it needed? The way I see it, spools are needed for two reasons. 1 – When data is going to be needed AGAIN. 2 – When data needs to be kept away from the original source. If you’re someone that writes long stored procedures, you are probably quite aware of the second scenario. I see plenty of stored procedures being written this way – where the query writer populates a temporary table, so that they can make updates to it without risking the original table. SQL does this too. Imagine I’m updating my contact list, and some of my changes move data to later in the book. If I’m not careful, I might update the same row a second time (or even enter an infinite loop, updating it over and over). A spool can make sure that I don’t, by using a copy of the data. This problem is known as the Halloween Effect (not because it’s spooky, but because it was discovered in late October one year). As I’m sure you can imagine, the kind of spool you’d need to protect against the Halloween Effect would be eager, because if you’re only handling one row at a time, then you’re not providing the protection... An eager spool will block the flow of data, waiting until it has fetched all the data before serving it up to the operator that called it. In the query below I’m forcing the Query Optimizer to use an index which would be upset if the Name column values got changed, and we see that before any data is fetched, a spool is created to load the data into. This doesn’t stop the index being maintained, but it does mean that the index is protected from the changes that are being done. There are plenty of times, though, when you need data repeatedly. Consider the query I put above. A simple join, but then counting the number of rows that came through. The way that this has executed (be it ideal or not), is to ask that a Table Spool be populated. That’s the Table Spool operator on the top row. That spool can produce the same set of rows repeatedly. This is the behaviour that we see in the bottom half of the plan. In the bottom half of the plan, we see that the a join is being done between the rows that are being sourced from the spool – one being aggregated and one not – producing the columns that we need for the query. Table v Index When considering whether to use a Table Spool or an Index Spool, the question that the Query Optimizer needs to answer is whether there is sufficient benefit to storing the data in a b-tree. The idea of having data in indexes is great, but of course there is a cost to maintaining them. Here we’re creating a temporary structure for data, and there is a cost associated with populating each row into its correct position according to a b-tree, as opposed to simply adding it to the end of the list of rows in a heap. Using a b-tree could even result in page-splits as the b-tree is populated, so there had better be a reason to use that kind of structure. That all depends on how the data is going to be used in other parts of the plan. If you’ve ever thought that you could use a temporary index for a particular query, well this is it – and the Query Optimizer can do that if it thinks it’s worthwhile. It’s worth noting that just because a Spool is populated using an Index Spool, it can still be fetched using a Table Spool. The details about whether or not a Spool used as a source shows as a Table Spool or an Index Spool is more about whether a Seek predicate is used, rather than on the underlying structure. Recursive CTE I’ve already shown you an example of spooling when the OVER clause is used. You might see them being used whenever you have data that is needed multiple times, and CTEs are quite common here. With the definition of a set of data described in a CTE, if the query writer is leveraging this by referring to the CTE multiple times, and there’s no simplification to be leveraged, a spool could theoretically be used to avoid reapplying the CTE’s logic. Annoyingly, this doesn’t happen. Consider this query, which really looks like it’s using the same data twice. I’m creating a set of data (which is completely deterministic, by the way), and then joining it back to itself. There seems to be no reason why it shouldn’t use a spool for the set described by the CTE, but it doesn’t. On the other hand, if we don’t pull as many columns back, we might see a very different plan. You see, CTEs, like all sub-queries, are simplified out to figure out the best way of executing the whole query. My example is somewhat contrived, and although there are plenty of cases when it’s nice to give the Query Optimizer hints about how to execute queries, it usually doesn’t do a bad job, even without spooling (and you can always use a temporary table). When recursion is used, though, spooling should be expected. Consider what we’re asking for in a recursive CTE. We’re telling the system to construct a set of data using an initial query, and then use set as a source for another query, piping this back into the same set and back around. It’s very much a spool. The analogy of cotton is long gone here, as the idea of having a continual loop of cotton feeding onto a spool and off again doesn’t quite fit, but that’s what we have here. Data is being fed onto the spool, and getting pulled out a second time when the spool is used as a source. (This query is running on AdventureWorks, which has a ManagerID column in HumanResources.Employee, not AdventureWorks2012) The Index Spool operator is sucking rows into it – lazily. It has to be lazy, because at the start, there’s only one row to be had. However, as rows get populated onto the spool, the Table Spool operator on the right can return rows when asked, ending up with more rows (potentially) getting back onto the spool, ready for the next round. (The Assert operator is merely checking to see if we’ve reached the MAXRECURSION point – it vanishes if you use OPTION (MAXRECURSION 0), which you can try yourself if you like). Spools are useful. Don’t lose sight of that. Every time you use temporary tables or table variables in a stored procedure, you’re essentially doing the same – don’t get upset at the Query Optimizer for doing so, even if you think the spool looks like an expensive part of the query. I hope you’re enjoying this T-SQL Tuesday. Why not head over to my post that is hosting it this month to read about some other plan operators? At some point I’ll write a summary post – once I have you should find a comment below pointing at it. @rob_farley

    Read the article

  • How do I query the gvfs metadata for a specific attribute?

    - by Mathieu Comandon
    A nice feature in evince is that when you close the program and later reopen the same pdf, it automatically jumps to the page you were reading. The problem I have is that I often read ebooks on several computers and I have to find were I was on the last computer I was reading the pdf. I think syncing these bookmarks in UbuntuOne would be a killer feature for people like me who read pdfs on different computers. By investigating a bit, I found where evince was storing this data, it's in the gvfs metadata and it can be accessed for a particular document by typing gvfs-ls -a "metadata::evince::page" myEbook.pdf Rather that querying a particular file, I'd like to query the whole metadata file (located in ~/.local/share/gvfs-metadata/home for the home directory) for any file where this particular attribute is set to some value. The biggest issue is that gvfs metadata and stored in binary files and we all know it's not easy to get something out of a binary file. So, do you know any way to query the gvfs metadata for some attribute?

    Read the article

  • Should I have link rel=next & prev on URLs which have query variables?

    - by user21100
    For example, I have link rel prev & next set up on these pages of products: site.com?page=2 site.com?page=3 (this is my preferred structure by the way and I'm trying to get all the ugly URLs which are littered with query variables deindexed as they are causing duplicate content). So the above URLs are fine but once a filter to narrow product results is selected, like "price", the URL shows like this: site.com?price[1000-1499]=on site.com?page=2&price[1000-1499]=on As of right now, I am having the link rel prev & next dynamically added to the header of these pages but since I am working on getting these query variable URLs pages deindexed, I am wondering if I should get rid of it on these pages? Any thoughts?

    Read the article

  • How do I access column data in a previous select statement from a sub-query? [closed]

    - by payling
    PROBLEM How do I access column data in a previous select statement from a sub-query? Below is a simple mock up of what I'm attempting to do. Tables used: Quotes, Users QUOTES TABLE qid, (quote id) owner_uid, creator_uid SQL SYNTAX: SELECT q.qid, q.owner_uid, q.creator_uid, owner.fname, owner.lname FROM quotes q, (SELECT u.fname, u.lname FROM users u WHERE u.uid = q.owner_uid) AS owner WHERE q.qid = '#' SUMMARY I want to be able to use the quote table's owner_uid and specify it for the owner table so I can return all the owner info for that particular quote. The problem is, q.owner_uid is not recognized in the owner sub-query. What am I doing wrong?

    Read the article

  • How do I insert a row with a TimeUUIDType column in Cassandra?

    - by mixmasteralan
    In Cassandra, I have the following Column Family: <ColumnFamily CompareWith="TimeUUIDType" Name="Posts"/> I'm trying to insert a record into it as follows using a C++ generated function generated by Thrift: ColumnPath new_col; new_col.__isset.column = true; /* this is required! */ new_col.column_family.assign("Posts"); new_col.super_column.assign(""); new_col.column.assign("1968ec4a-2a73-11df-9aca-00012e27a270"); client.insert("Keyspace1", "somekey", new_col, "Random Value", 1234, ONE); However, I'm getting the following error: "UUIDs must be exactly 16 bytes" I've even tried the Cassandra CLI with the following command: set Keyspace1.Posts['somekey']['1968ec4a-2a73-11df-9aca-00012e27a270'] = 'Random Value' but I still get the following error: Exception null InvalidRequestException(why:UUIDs must be exactly 16 bytes) at org.apache.cassandra.thrift.Cassandra$insert_result.read(Cassandra.java:11994) at org.apache.cassandra.thrift.Cassandra$Client.recv_insert(Cassandra.java:659) at org.apache.cassandra.thrift.Cassandra$Client.insert(Cassandra.java:632) at org.apache.cassandra.cli.CliClient.executeSet(CliClient.java:420) at org.apache.cassandra.cli.CliClient.executeCLIStmt(CliClient.java:80) at org.apache.cassandra.cli.CliMain.processCLIStmt(CliMain.java:132) at org.apache.cassandra.cli.CliMain.main(CliMain.java:173)

    Read the article

  • How Do You Insert Large Blobs Into Oracle 10G Using System.Data.OracleClient?

    - by discwiz
    Trying to insert 315K Gif files into an Oracle 10g database. Everytime I get this error "ora-01460: unimplemented or unreasonable conversion requested" whe I run the stored procedure. It appears that there is a 32K limit if I use a stored procedure. I read online that this does not apply if you are doing a direct insert, but I do not know how to create the insert string for a Byte Array. This is a thick client running on the server so not worried about SQL Injection attacks. Any help would be greatly appreciated. FYI, code in vb.net. Thanks, Dave

    Read the article

  • T-Sql Modify Insert SProc To Update If Exists.

    - by Goober
    Scenario I have a stored procedure written in T-Sql that I use to insert data into a table as XML. Since the data gets updated regularly, I want the rows to be updated if they already exist (Aside from when the application is first run, they will always exist). Question Below is the code of my Insert Sproc, however I cannot seem to workout the Update side of the stored procedure & would appreciate some help. CODE set ANSI_NULLS ON set QUOTED_IDENTIFIER ON go ALTER PROCEDURE [dbo].[INS_Curve] ( @Curve varchar(MAX) ) AS DECLARE @handle int exec sp_xml_preparedocument @handle OUTPUT, @Curve INSERT INTO CurveDB..tblCurve(LoadID,BusinessDate, Factor) SELECT LoadID,BusinessDate, Factor FROM OPENXML(@handle, 'NewDataSet/Table1',2) WITH( LoadID int, BusinessDate DateTime, Factor float ) exec sp_xml_removedocument @handle

    Read the article

  • How to generate two XML files from a single HL7 file and insert both into two different columns as a single record?

    - by Vivek Ratnaparkhi
    I have Source Connector Type as 'File Reader' which is reading HL7 files and Destination Connector Type as 'Database Writer'. My database table has two columns Participant_Information SPR_Information I want to transform a single HL7 file into two XML files one for Participant_Information column and other for SPR_Information column and need to insert both as a single record into the database table. I'm able to insert one XML at a time but not able to find the way to insert both the XMLs as a single record into the database table. Any help is really greatly appreciated!

    Read the article

  • sql-server: how can I list distinct value of table in a single row, separated by comma

    - by RedsDevils
    I have the following Table: CREATE TABLE TEMP (ID INT,SEGMENT CHAR(1),SEGOFF INT,CHECKED SMALLDATETIME) INSERT INTO TEMP VALUES (1,'A',0,'2009-05-01') INSERT INTO TEMP VALUES (2,'B',1,'2009-05-01') INSERT INTO TEMP VALUES (3,'C',0,'2009-05-01') INSERT INTO TEMP VALUES (4,'A',0,'2009-05-02') INSERT INTO TEMP VALUES (5,'B',2,'2009-05-02') INSERT INTO TEMP VALUES (6,'C',1,'2009-05-02') INSERT INTO TEMP VALUES (7,'A',1,'2009-05-03') INSERT INTO TEMP VALUES (8,'B',0,'2009-05-03') INSERT INTO TEMP VALUES (9,'C',2,'2009-05-03') I would like to show Distinct SEGEMENT in Single row separated by comma (e.g: A,B,C) I try as Follow: DECLARE @SEGMENTList varchar(100) SELECT @SEGMENTList = COALESCE(@SEGMENTList + ', ', '') + SEGMENT FROM TEST SELECT @SEGMENTList It shows A, B, C, A, B, C, A, B, C What do I need to change my query? Thanks all!

    Read the article

  • How do I perform a batch insert in Django?

    - by Thierry Lam
    In mysql, you can insert multiple rows to a table in one query for n 0: INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9), ..., (n-2, n-1, n); Is there a way to achieve the above with Django queryset methods? Here's an example: values = [(1, 2, 3), (4, 5, 6), ...] for value in values: SomeModel.objects.create(first=value[0], second=value[1], third=value[2]) I believe the above is calling an insert query for each iteration of the for loop. I'm looking for a single query, is that possible in Django?

    Read the article

  • Do i need to insert one fake row in database ?

    - by Ankit Rathod
    Hello, I have few tables like example. Users Books UsersBookPurchase UID BookId UserId UName Name BookId Password Price Email This is fine. I am having my own login system but i am also using some 3rd party to validate like OpenID or facebook Authetication. My question is if the user is able to log in successfully using OpenID or facebook Authentication, what steps do i need to do i.e do i have to insert one fake row in Users table because if i do not insert how will integrity be maintained. I mean what user id should i insert in UsersBookPurchase when the person who has logged in using Facebook Authentication has made a purchase because the UserId is reference key from Users table. Please give me a high level overview of what i need to do because this is fairly common scenario. Thanks in advance :)

    Read the article

  • How to insert multiple check-box values inside database when one or more will be left unchecked?

    - by Sally
    I have a form that contains 5 check boxes. The user may select one or more of these check boxes. The user may select 2 and leave 3 unchecked or select 4 and leave one unchecked and so on, in that case how can I write the php/mysql code that will insert the form data into the database. With just one selection it's easy, I would do: $checkbox_value = $_POST['i_agree']; mysql_query("INSERT INTO terms (user, pass, conditions) VALUES ('$user','$pass','$checkbox_value')"); But how can I write this when there are multiple check box options and only one or more of them will be checked? I want to insert them all in one column called "tags" separated by commas.

    Read the article

  • How to change the sorting of a view using hook_views_pre_view()?

    - by RD
    I've got the following: function view_sorter_views_pre_view(&$view) { // don't need $items if ($view->name == 'MOST_RECENT') { $insert = array(); $insert[order] = 'DESC'; //SORT ORDER $insert[id] = 'title'; $insert[table] = 'node'; $insert[field] = 'title'; $insert[override] = array(); $insert[override][button] = 'Override'; $insert[relationship] = 'none'; unset ($view->display['default']->display_options['sorts']['title']); $view->display['default']->display_options['sorts']['title'] = $insert; } } Basically, I'm just changing the sort order... but this does not appear on the view when opening it. Any idea why?

    Read the article

  • hOW TO INSERT DATA FROM ASP.NET TEXTBOX TO TWO DIFFERENT TABLE ON SINGLE BUTTON CLICK EVENT ?

    - by user559800
    I M USING THAT CODE TO INSERT INTO SINGLE TABLE ! HOW TO USE THIS CODE TO INSERT THE TEXTBOX TEXT TO MULTIPLE TABLES OF SAME COLUMN ON SINGLE BUTTON CLICK EVENT IN VB.NET ? Imports System.Data.SqlClient Protected Sub ImageButton1_Click(ByVal sender As Object, ByVal e As System.Web.UI.ImageClickEventArgs) Handles ImageButton1.Click Dim con As New SqlConnection Dim cmd As New SqlCommand con.ConnectionString = "Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\ASPNETDB.MDF;Integrated Security=True;User Instance=True" con.Open() cmd.Connection = con cmd.CommandText = "INSERT INTO a1_ticket (seat_remain) VALUES('" & Trim(Label1.Text) & "')" cmd.ExecuteNonQuery() con.Close() End Sub

    Read the article

  • Run time insert using bulk update ,giving an internal error?

    - by Vineet
    Hi , I am trying to make a run time table named dynamic and inserting data into it from index by table using bulk update,but when i am trying to execute it this error is coming: ERROR at line 1: ORA-06550: line 0, column 0: PLS-00801: internal error [74301 ] declare type index_tbl_type IS table of number index by binary_integer; num_tbl index_tbl_type; TYPE ref_cur IS REF CURSOR; cur_emp ref_cur; begin execute immediate 'create table dynamic (v_num number)';--Creating a run time tabl FOR i in 1..10000 LOOP execute immediate 'insert into dynamic values('||i||')';--run time insert END LOOP; OPEN cur_emp FOR 'select * from dynamic';--opening ref cursor FETCH cur_emp bulk collect into num_tbl;--bulk inserting in index by table close cur_emp; FORALL i in num_tbl.FIRST..num_tbl.LAST --Bulk update execute immediate 'insert into dynamic values('||num_tbl(i)||')'; end;

    Read the article

< Previous Page | 241 242 243 244 245 246 247 248 249 250 251 252  | Next Page >