Search Results

Search found 619 results on 25 pages for 'dig'.

Page 25/25 | < Previous Page | 21 22 23 24 25 

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Is your team is a high-performing team?

    As a child I can remember looking out of the car window as my father drove along the Interstate in Florida while seeing prisoners wearing bright orange jump suits and prison guards keeping a watchful eye on them. The prisoners were taking part in a prison road gang. These road gangs were formed to help the state maintain the state highway infrastructure. The prisoner’s primary responsibilities are to pick up trash and debris from the roadway. This is a prime example of a work group or working group used by most prison systems in the United States. Work groups or working groups can be defined as a collection of individuals or entities working together to achieve a specific goal or accomplish a specific set of tasks. Typically these groups are only established for a short period of time and are dissolved once the desired outcome has been achieved. More often than not group members usually feel as though they are expendable to the group and some even dread that they are even in the group. "A team is a small number of people with complementary skills who are committed to a common purpose, performance goals, and approach for which they are mutually accountable." (Katzenbach and Smith, 1993) So how do you determine that a team is a high-performing team?  This can be determined by three base line criteria that include: consistently high quality output, the promotion of personal growth and well being of all team members, and most importantly the ability to learn and grow as a unit. Initially, a team can successfully create high-performing output without meeting all three criteria, however this will erode over time because team members will feel detached from the group or that they are not growing then the quality of the output will decline. High performing teams are similar to work groups because they both utilize a collection of individuals or entities to accomplish tasks. What distinguish a high-performing team from a work group are its characteristics. High-performing teams contain five core characteristics. These characteristics are what separate a group from a team. The five characteristics of a high-performing team include: Purpose, Performance Measures, People with Tasks and Relationship Skills, Process, and Preparation and Practice. A high-performing team is much more than a work group, and typically has a life cycle that can vary from team to team. The standard team lifecycle consists of five states and is comparable to a human life cycle. The five states of a high-performing team lifecycle include: Formulating, Storming, Normalizing, Performing, and Adjourning. The Formulating State of a team is first realized when the team members are first defined and roles are assigned to all members. This initial stage is very important because it can set the tone for the team and can ultimately determine its success or failure. In addition, this stage requires the team to have a strong leader because team members are normally unclear about specific roles, specific obstacles and goals that my lay ahead of them.  Finally, this stage is where most team members initially meet one another prior to working as a team unless the team members already know each other. The Storming State normally arrives directly after the formulation of a new team because there are still a lot of unknowns amongst the newly formed assembly. As a general rule most of the parties involved in the team are still getting used to the workload, pace of work, deadlines and the validity of various tasks that need to be performed by the group.  In this state everything is questioned because there are so many unknowns. Items commonly questioned include the credentials of others on the team, the actual validity of a project, and the leadership abilities of the team leader.  This can be exemplified by looking at the interactions between animals when they first meet.  If we look at a scenario where two people are walking directly toward each other with their dogs. The dogs will automatically enter the Storming State because they do not know the other dog. Typically in this situation, they attempt to define which is more dominating via play or fighting depending on how the dogs interact with each other. Once dominance has been defined and accepted by both dogs then they will either want to play or leave depending on how the dogs interacted and other environmental variables. Once the Storming State has been realized then the Normalizing State takes over. This state is entered by a team once all the questions of the Storming State have been answered and the team has been tested by a few tasks or projects.  Typically, participants in the team are filled with energy, and comradery, and a strong alliance with team goals and objectives.  A high school football team is a perfect example of the Normalizing State when they start their season.  The player positions have been assigned, the depth chart has been filled and everyone is focused on winning each game. All of the players encourage and expect each other to perform at the best of their abilities and are united by competition from other teams. The Performing State is achieved by a team when its history, working habits, and culture solidify the team as one working unit. In this state team members can anticipate specific behaviors, attitudes, reactions, and challenges are seen as opportunities and not problems. Additionally, each team member knows their role in the team’s success, and the roles of others. This is the most productive state of a group and is where all the time invested working together really pays off. If you look at an Olympic figure skating team skate you can easily see how the time spent working together benefits their performance. They skate as one unit even though it is comprised of two skaters. Each skater has their routine completely memorized as well as their partners. This allows them to anticipate each other’s moves on the ice makes their skating look effortless. The final state of a team is the Adjourning State. This state is where accomplishments by the team and each individual team member are recognized. Additionally, this state also allows for reflection of the interactions between team members, work accomplished and challenges that were faced. Finally, the team celebrates the challenges they have faced and overcome as a unit. Currently in the workplace teams are divided into two different types: Co-located and Distributed Teams. Co-located teams defined as the traditional group of people working together in an office, according to Andy Singleton of Assembla. This traditional type of a team has dominated business in the past due to inadequate technology, which forced workers to primarily interact with one another via face to face meetings.  Team meetings are primarily lead by the person with the highest status in the company. Having personally, participated in meetings of this type, usually a select few of the team members dominate the flow of communication which reduces the input of others in group discussions. Since discussions are dominated by a select few individuals the discussions and group discussion are skewed in favor of the individuals who communicate the most in meetings. In addition, Team members might not give their full opinions on a topic of discussion in part not to offend or create controversy amongst the team and can alter decision made in meetings towards those of the opinions of the dominating team members. Distributed teams are by definition spread across an area or subdivided into separate sections. That is exactly what distributed teams when compared to a more traditional team. It is common place for distributed teams to have team members across town, in the next state, across the country and even with the advances in technology over the last 20 year across the world. These teams allow for more diversity compared to the other type of teams because they allow for more flexibility regarding location. A team could consist of a 30 year old male Italian project manager from New York, a 50 year old female Hispanic from California and a collection of programmers from India because technology allows them to communicate as if they were standing next to one another.  In addition, distributed team members consult with more team members prior to making decisions compared to traditional teams, and take longer to come to decisions due to the changes in time zones and cultural events. However, team members feel more empowered to speak out when they do not agree with the team and to notify others of potential issues regarding the work that the team is doing. Virtual teams which are a subset of the distributed team type is changing organizational strategies due to the fact that a team can now in essence be working 24 hrs a day because of utilizing employees in various time zones and locations.  A primary example of this is with customer services departments, a company can have multiple call centers spread across multiple time zones allowing them to appear to be open 24 hours a day while all a employees work from 9AM to 5 PM every day. Virtual teams also allow human resources departments to go after the best talent for the company regardless of where the potential employee works because they will be a part of a virtual team all that is need is the proper technology to be setup to allow everyone to communicate. In addition to allowing employees to work from home, the company can save space and resources by not having to provide a desk for every team member. In fact, those team members that randomly come into the office can actually share one desk amongst multiple people. This is definitely a cost cutting plus given the current state of the economy. One thing that can turn a team into a high-performing team is leadership. High-performing team leaders need to focus on investing in ongoing personal development, provide team members with direction, structure, and resources needed to accomplish their work, make the right interventions at the right time, and help the team manage boundaries between the team and various external parties involved in the teams work. A team leader needs to invest in ongoing personal development in order to effectively manage their team. People have said that attitude is everything; this is very true about leaders and leadership. A team takes on the attitudes and behaviors of its leaders. This can potentially harm the team and the team’s output. Leaders must concentrate on self-awareness, and understanding their team’s group dynamics to fully understand how to lead them. In addition, always learning new leadership techniques from other effective leaders is also very beneficial. Providing team members with direction, structure, and resources that they need to accomplish their work collectively sounds easy, but it is not.  Leaders need to be able to effectively communicate with their team on how their work helps the company reach for its organizational vision. Conversely, the leader needs to allow his team to work autonomously within specific guidelines to turn the company’s vision into a reality.  This being said the team must be appropriately staffed according to the size of the team’s tasks and their complexity. These tasks should be clear, and be meaningful to the company’s objectives and allow for feedback to be exchanged with the leader and the team member and the leader and upper management. Now if the team is properly staffed, and has a clear and full understanding of what is to be done; the company also must supply the workers with the proper tools to achieve the tasks that they are asked to do. No one should be asked to dig a hole without being given a shovel.  Finally, leaders must reward their team members for accomplishments that they achieve. Awards could range from just a simple congratulatory email, a party to close the completion of a large project, or other monetary rewards. Managing boundaries is very important for team leaders because it can alter attitudes of team members and can add undue stress to the team which will force them to loose focus on the tasks at hand for the group. Team leaders should promote communication between team members so that burdens are shared amongst the team and solutions can be derived from hearing the opinions of multiple sources. This also reinforces team camaraderie and working as a unit. Team leaders must manage the type and timing of interventions as to not create an even bigger mess within the team. Poorly timed interventions can really deflate team members and make them question themselves. This could really increase further and undue interventions by the team leader. Typically, the best time for interventions is when the team is just starting to form so that all unproductive behaviors are removed from the team and that it can retain focus on its agenda. If an intervention is effectively executed the team will feel energized about the work that they are doing, promote communication and interaction amongst the group and improve moral overall. High-performing teams are very import to organizations because they consistently produce high quality output and develop a collective purpose for their work. This drive to succeed allows team members to utilize specific talents allowing for growth in these areas.  In addition, these team members usually take on a sense of ownership with their projects and feel that the other team members are irreplaceable. References: http://blog.assembla.com/assemblablog/tabid/12618/bid/3127/Three-ways-to-organize-your-team-co-located-outsourced-or-global.aspx Katzenbach, J.R. & Smith, D.K. (1993). The Wisdom of Teams: Creating the High-performance Organization. Boston: Harvard Business School.

    Read the article

  • WCF: Server Not Found - from trace Empty Message when run async but works fine from console app?

    - by MrTortoise
    Todays cause of hair loss has been the following scenario: I have a service that takes 2 strings and returns another. This service uses basicHttpBinding <basicHttpBinding> <binding name="basicHttpNoSec"> <security mode="None" /> </binding> </basicHttpBinding> Anyway, it works fine from a console test app. I have a silverlight app sat on top which implements another basicHttpBinding service that simply reuses the contract in the other service and the silverlight App uses this service. I have a console app that confirms that this service is working and set up with basichttpbinding. I have all the clientAccessPolicy stuff in place. when I run the silverlight app the difference is that it runs everything async ... as such the only message i directly get back rom wcf is server not found. When i enable tracing I dig down to this message - as I know the methods work and the parameteres i pass in will return a valid string i am really puzzled at to what the cause is. any help much appreciated. <E2ETraceEvent xmlns="http://schemas.microsoft.com/2004/06/E2ETraceEvent"> <System xmlns="http://schemas.microsoft.com/2004/06/windows/eventlog/system"> <EventID>131075</EventID> <Type>3</Type> <SubType Name="Error">0</SubType> <Level>2</Level> <TimeCreated SystemTime="2010-06-07T14:17:40.6639249Z" /> <Source Name="System.ServiceModel" /> <Correlation ActivityID="{8ea9530e-12f4-4a82-9c26-dd2e23264c3c}" /> <Execution ProcessName="aspnet_wp" ProcessID="4616" ThreadID="6" /> <Channel /> <Computer>5JC2Y2J</Computer> </System> <ApplicationData> <TraceData> <DataItem> <TraceRecord xmlns="http://schemas.microsoft.com/2004/10/E2ETraceEvent/TraceRecord" Severity="Error"> <TraceIdentifier>http://msdn.microsoft.com/en-GB/library/System.ServiceModel.Diagnostics.ThrowingException.aspx</TraceIdentifier> <Description>Throwing an exception.</Description> <AppDomain>/LM/w3svc/1/ROOT/CopSilverlight.Web-1-129203938565564172</AppDomain> <Exception> <ExceptionType>System.ServiceModel.ProtocolException, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</ExceptionType> <Message>There is a problem with the XML that was received from the network. See inner exception for more details.</Message> <StackTrace> at System.ServiceModel.Channels.HttpRequestContext.CreateMessage() at System.ServiceModel.Channels.HttpChannelListener.HttpContextReceived(HttpRequestContext context, Action callback) at System.ServiceModel.Activation.HostedHttpTransportManager.HttpContextReceived(HostedHttpRequestAsyncResult result) at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.HandleRequest() at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.BeginRequest() at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.OnBeginRequest(Object state) at System.Runtime.IOThreadScheduler.ScheduledOverlapped.IOCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* nativeOverlapped) at System.Runtime.Fx.IOCompletionThunk.UnhandledExceptionFrame(UInt32 error, UInt32 bytesRead, NativeOverlapped* nativeOverlapped) at System.Threading._IOCompletionCallback.PerformIOCompletionCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* pOVERLAP) </StackTrace> <ExceptionString>System.ServiceModel.ProtocolException: There is a problem with the XML that was received from the network. See inner exception for more details. ---&gt; System.Xml.XmlException: The body of the message cannot be read because it is empty. --- End of inner exception stack trace ---</ExceptionString> <InnerException> <ExceptionType>System.Xml.XmlException, System.Xml, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</ExceptionType> <Message>The body of the message cannot be read because it is empty.</Message> <StackTrace> at System.ServiceModel.Channels.HttpRequestContext.CreateMessage() at System.ServiceModel.Channels.HttpChannelListener.HttpContextReceived(HttpRequestContext context, Action callback) at System.ServiceModel.Activation.HostedHttpTransportManager.HttpContextReceived(HostedHttpRequestAsyncResult result) at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.HandleRequest() at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.BeginRequest() at System.ServiceModel.Activation.HostedHttpRequestAsyncResult.OnBeginRequest(Object state) at System.Runtime.IOThreadScheduler.ScheduledOverlapped.IOCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* nativeOverlapped) at System.Runtime.Fx.IOCompletionThunk.UnhandledExceptionFrame(UInt32 error, UInt32 bytesRead, NativeOverlapped* nativeOverlapped) at System.Threading._IOCompletionCallback.PerformIOCompletionCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* pOVERLAP) </StackTrace> <ExceptionString>System.Xml.XmlException: The body of the message cannot be read because it is empty.</ExceptionString> </InnerException> </Exception> </TraceRecord> </DataItem> </TraceData> </ApplicationData> </E2ETraceEvent>

    Read the article

  • Problems with Google Maps API v3 + jQuery UI Tabs

    - by Bears will eat you
    There are a number of problems, which seem to be fairly well-known, when using the Google Maps API to render a map within a jQuery UI tab. I've seen SO questions posted about similar issues (here and here, for example) but the solutions there only seem to work for v2 of the Maps API. Other references I checked out are here and here, along with pretty much everything I could dig up through Googling. I've been trying to stuff a map (using v3 of the API) into a jQuery tab with mixed results. I'm using the latest versions of everything (currently jQuery 1.3.2, jQuery UI 1.7.2, don't know about Maps). This is the markup & javascript: <body> <div id="dashtabs"> <span class="logout"> <a href="go away">Log out</a> </span> <!-- tabs --> <ul class="dashtabNavigation"> <li><a href="#first_tab" >First</a></li> <li><a href="#second_tab" >Second</a></li> <li><a href="#map_tab" >Map</a></li> </ul> <!-- tab containers --> <div id="first_tab">This is my first tab</div> <div id="second_tab">This is my second tab</div> <div id="map_tab"> <div id="map_canvas"></div> </div> </div> </body> and $(document).ready(function() { var map = null; $('#dashtabs').tabs(); $('#dashtabs').bind('tabsshow', function(event, ui) { if (ui.panel.id == 'map_tab' && !map) { map = initializeMap(); google.maps.event.trigger(map, 'resize'); } }); }); function initializeMap() { // Just some canned map for now var latlng = new google.maps.LatLng(-34.397, 150.644); var myOptions = { zoom: 8, center: latlng, mapTypeId: google.maps.MapTypeId.ROADMAP }; return new google.maps.Map($('#map_canvas')[0], myOptions); } And here's what I've found that does/doesn't work (for Maps API v3): Using the off-left technique as described in the jQuery UI Tabs documentation (and in the answers to the two questions I linked) doesn't work at all. In fact, the best-functioning code uses the CSS .ui-tabs .ui-tabs-hide { display: none; } instead. The only way to get a map to display in a tab at all is to set the CSS width and height of #map_canvas to be absolute values. Changing the width and height to auto or 100% causes the map to not display at all, even if it's already been successfully rendered (using absolute width and height). I couldn't find it documented anywhere outside of the Maps API, but map.checkResize() won't work anymore. Instead, you have to fire a resize event by calling google.maps.event.trigger(map, 'resize'). If the map is not initialized inside of a function bound to a tabsshow event, the map itself is rendered correctly but the controls are not - most are just plain missing. So, here are my questions: Does anyone else have experience accomplishing this same feat? If so, how did you figure out what would actually work, since the documented tricks don't work for Maps API v3? What about loading tab content using Ajax as per the jQuery UI docs? I haven't had a chance to play around with it but my guess is that it's going to break Maps even more. What are the chances of getting it to work (or is it not worth trying)? How do I make the map fill the largest possible area? I'd like it to fill the tab and adapt to page resizes, much in the way that it's done over at maps.google.com. But, as I said, I appear to be stuck with applying only absolute width and height CSS to the map div. Sorry if this was long-winded but this might be the only documentation for Maps API v3 + jQuery tabs. Cheers!

    Read the article

  • Rails, gmail: howto get plain/text from body

    - by atmorell
    Hello, I am loading am email with IMAP and parsing it with mail. This works very well, however the mail.body.decoded field contains a lot of formatting. How do I dig out the plain/txt body of the email - ignore attachements, formatting etc. It works fine if I try with an email without html. source = imap.uid_fetch(uid, ['RFC822']).first.attr['RFC822'] mail = Mail.new(source) This body content looks like this: Mail::Body:0x7f36ed468270 @epilogue="", @boundary="_004_4C49171DCB8C4540844E69DD39FDD98Ffirm_", @encoding="7bit", @raw_source="--_004_4C49171DCB8C4540844E69DD39FDD98Ffirm_\r\nContent-Type: multipart/alternative;\r\n\tboundary=\"_000_4C49171DCB8C4540844E69DD39FDD98Ffirm_\"\r\n\r\n--_000_4C49171DCB8C4540844E69DD39FDD98Ffirm_\r\nContent-Type: text/plain; charset=\"iso-8859-1\"\r\nContent-Transfer-Encoding: quoted-printable\r\n\r\ndasdsasda\r\n\r\n\r\n\r\nMed venlig hilsen / Med V=E4nlig H=E4lsning / Best Regards\r\r\nAsbj=F8rn Toke Morell. .\r\n+45 7020 0160\r\n+45 2152 0015\r\n[cid:[email protected]]\r\nhttp://www..dk\r\n\r\n\r\n--_000_4C49171DCB8C4540844E69DD39FDD98Ffirm_\r\nContent-Type: text/html; charset=\"iso-8859-1\"\r\nContent-Transfer-Encoding: quoted-printable\r\n\r\n<html>headheadbody style3D"word-wrap: break-word; -webkit-nbsp-mode:=\r\n space; -webkit-line-break: after-white-space; ">dasdsasda<br><div apple-co=\r\nntent-edited=3D"true">\r\n<span class=3D"Apple-style-span" style=3D"border-collapse: separate; color:=\r\n rgb(0, 0, 0); font-family: Helvetica; font-size: medium; font-style: norma=\r\nl; font-variant: normal; font-weight: normal; letter-spacing: normal; line-=\r\nheight: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transf=\r\norm: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-borde=\r\nr-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-te=\r\nxt-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-tex=\r\nt-stroke-width: 0px; "><span class=3D"Apple-style-span" style=3D"font-famil=\r\ny: Calibri, sans-serif; font-size: 15px; "><span class=3D"Apple-style-span"=\r\n style=3D"border-collapse: separate; color: rgb(0, 0, 0); font-family: Helv=\r\netica; font-size: medium; font-style: normal; font-variant: normal; font-we=\r\night: normal; letter-spacing: normal; line-height: normal; orphans: 2; text=\r\n-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-sp=\r\nacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical=\r\n-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-=\r\nadjust: auto; -webkit-text-stroke-width: 0px; "><span class=3D"Apple-style-=\r\nspan" style=3D"font-family: Calibri, sans-serif; font-size: 15px; "><div st=\r\nyle=3D"margin-top: 0cm; margin-right: 0cm; margin-bottom: 0.0001pt; margin-=\r\nleft: 0cm; font-size: 11pt; font-family: Calibri, sans-serif; "><font class=\r\n=3D"Apple-style-span" color=3D"#000080" face=3D"'Times New Roman', serif" s=\r\nize=3D"3"><span class=3D"Apple-style-span" style=3D"font-size: 13px; "><br =\r\nclass=3D"Apple-interchange-newline"><br></span></font></div><div style=3D"m=\r\nargin-top: 0cm; margin-right: 0cm; margin-bottom: 0.0001pt; margin-left: 0c=\r\nm; font-size: 11pt; font-family: Calibri, sans-serif; "><font class=3D"Appl=\r\ne-style-span" color=3D"#000080" face=3D"'Times New Roman', serif" size=3D"3=\r\n"><span class=3D"Apple-style-span" style=3D"font-size: 13px; "><br></span><=\r\n/font></div><div style=3D"margin-top: 0cm; margin-right: 0cm; margin-bottom=\r\n: 0.0001pt; margin-left: 0cm; font-size: 11pt; font-family: Calibri, sans-s=\r\nerif; "><span style=3D"font-size: 10pt; font-family: 'Times New Roman', ser=\r\nif; color: navy; ">Med venlig hilsen / Med V=E4nlig H=E4lsning / Best Regar=\r\nds&nbsp;<br>firm<br>Asbj=F8rn Toke Morell... This is the ony relevant from information from the body: 'ndasdsasda\r\n\r\n\r\n\r\nMed venlig hilsen / Med V=E4nlig H=E4lsning / Best Regards\r\r\nAsbj=F8rn Toke Morell' Any ideas?

    Read the article

  • What's the best name for a non-mutating "add" method on an immutable collection?

    - by Jon Skeet
    Sorry for the waffly title - if I could come up with a concise title, I wouldn't have to ask the question. Suppose I have an immutable list type. It has an operation Foo(x) which returns a new immutable list with the specified argument as an extra element at the end. So to build up a list of strings with values "Hello", "immutable", "world" you could write: var empty = new ImmutableList<string>(); var list1 = empty.Foo("Hello"); var list2 = list1.Foo("immutable"); var list3 = list2.Foo("word"); (This is C# code, and I'm most interested in a C# suggestion if you feel the language is important. It's not fundamentally a language question, but the idioms of the language may be important.) The important thing is that the existing lists are not altered by Foo - so empty.Count would still return 0. Another (more idiomatic) way of getting to the end result would be: var list = new ImmutableList<string>().Foo("Hello"); .Foo("immutable"); .Foo("word"); My question is: what's the best name for Foo? EDIT 3: As I reveal later on, the name of the type might not actually be ImmutableList<T>, which makes the position clear. Imagine instead that it's TestSuite and that it's immutable because the whole of the framework it's a part of is immutable... (End of edit 3) Options I've come up with so far: Add: common in .NET, but implies mutation of the original list Cons: I believe this is the normal name in functional languages, but meaningless to those without experience in such languages Plus: my favourite so far, it doesn't imply mutation to me. Apparently this is also used in Haskell but with slightly different expectations (a Haskell programmer might expect it to add two lists together rather than adding a single value to the other list). With: consistent with some other immutable conventions, but doesn't have quite the same "additionness" to it IMO. And: not very descriptive. Operator overload for + : I really don't like this much; I generally think operators should only be applied to lower level types. I'm willing to be persuaded though! The criteria I'm using for choosing are: Gives the correct impression of the result of the method call (i.e. that it's the original list with an extra element) Makes it as clear as possible that it doesn't mutate the existing list Sounds reasonable when chained together as in the second example above Please ask for more details if I'm not making myself clear enough... EDIT 1: Here's my reasoning for preferring Plus to Add. Consider these two lines of code: list.Add(foo); list.Plus(foo); In my view (and this is a personal thing) the latter is clearly buggy - it's like writing "x + 5;" as a statement on its own. The first line looks like it's okay, until you remember that it's immutable. In fact, the way that the plus operator on its own doesn't mutate its operands is another reason why Plus is my favourite. Without the slight ickiness of operator overloading, it still gives the same connotations, which include (for me) not mutating the operands (or method target in this case). EDIT 2: Reasons for not liking Add. Various answers are effectively: "Go with Add. That's what DateTime does, and String has Replace methods etc which don't make the immutability obvious." I agree - there's precedence here. However, I've seen plenty of people call DateTime.Add or String.Replace and expect mutation. There are loads of newsgroup questions (and probably SO ones if I dig around) which are answered by "You're ignoring the return value of String.Replace; strings are immutable, a new string gets returned." Now, I should reveal a subtlety to the question - the type might not actually be an immutable list, but a different immutable type. In particular, I'm working on a benchmarking framework where you add tests to a suite, and that creates a new suite. It might be obvious that: var list = new ImmutableList<string>(); list.Add("foo"); isn't going to accomplish anything, but it becomes a lot murkier when you change it to: var suite = new TestSuite<string, int>(); suite.Add(x => x.Length); That looks like it should be okay. Whereas this, to me, makes the mistake clearer: var suite = new TestSuite<string, int>(); suite.Plus(x => x.Length); That's just begging to be: var suite = new TestSuite<string, int>().Plus(x => x.Length); Ideally, I would like my users not to have to be told that the test suite is immutable. I want them to fall into the pit of success. This may not be possible, but I'd like to try. I apologise for over-simplifying the original question by talking only about an immutable list type. Not all collections are quite as self-descriptive as ImmutableList<T> :)

    Read the article

  • How to Run Low-Cost Minecraft on a Raspberry Pi for Block Building on the Cheap

    - by Jason Fitzpatrick
    We’ve shown you how to run your own blocktastic personal Minecraft server on a Windows/OSX box, but what if you crave something lighter weight, more energy efficient, and always ready for your friends? Read on as we turn a tiny Raspberry Pi machine into a low-cost Minecraft server you can leave on 24/7 for around a penny a day. Why Do I Want to Do This? There’s two aspects to this tutorial, running your own Minecraft server and specifically running that Minecraft server on a Raspberry Pi. Why would you want to run your own Minecraft server? It’s a really great way to extend and build upon the Minecraft play experience. You can leave the server running when you’re not playing so friends and family can join and continue building your world. You can mess around with game variables and introduce mods in a way that isn’t possible when you’re playing the stand-alone game. It also gives you the kind of control over your multiplayer experience that using public servers doesn’t, without incurring the cost of hosting a private server on a remote host. While running a Minecraft server on its own is appealing enough to a dedicated Minecraft fan, running it on the Raspberry Pi is even more appealing. The tiny little Pi uses so little resources that you can leave your Minecraft server running 24/7 for a couple bucks a year. Aside from the initial cost outlay of the Pi, an SD card, and a little bit of time setting it up, you’ll have an always-on Minecraft server at a monthly cost of around one gumball. What Do I Need? For this tutorial you’ll need a mix of hardware and software tools; aside from the actual Raspberry Pi and SD card, everything is free. 1 Raspberry Pi (preferably a 512MB model) 1 4GB+ SD card This tutorial assumes that you have already familiarized yourself with the Raspberry Pi and have installed a copy of the Debian-derivative Raspbian on the device. If you have not got your Pi up and running yet, don’t worry! Check out our guide, The HTG Guide to Getting Started with Raspberry Pi, to get up to speed. Optimizing Raspbian for the Minecraft Server Unlike other builds we’ve shared where you can layer multiple projects over one another (e.g. the Pi is more than powerful enough to serve as a weather/email indicator and a Google Cloud Print server at the same time) running a Minecraft server is a pretty intense operation for the little Pi and we’d strongly recommend dedicating the entire Pi to the process. Minecraft seems like a simple game, with all its blocky-ness and what not, but it’s actually a pretty complex game beneath the simple skin and required a lot of processing power. As such, we’re going to tweak the configuration file and other settings to optimize Rasbian for the job. The first thing you’ll need to do is dig into the Raspi-Config application to make a few minor changes. If you’re installing Raspbian fresh, wait for the last step (which is the Raspi-Config), if you already installed it, head to the terminal and type in “sudo raspi-config” to launch it again. One of the first and most important things we need to attend to is cranking up the overclock setting. We need all the power we can get to make our Minecraft experience enjoyable. In Raspi-Config, select option number 7 “Overclock”. Be prepared for some stern warnings about overclocking, but rest easy knowing that overclocking is directly supported by the Raspberry Pi foundation and has been included in the configuration options since late 2012. Once you’re in the actual selection screen, select “Turbo 1000MhHz”. Again, you’ll be warned that the degree of overclocking you’ve selected carries risks (specifically, potential corruption of the SD card, but no risk of actual hardware damage). Click OK and wait for the device to reset. Next, make sure you’re set to boot to the command prompt, not the desktop. Select number 3 “Enable Boot to Desktop/Scratch”  and make sure “Console Text console” is selected. Back at the Raspi-Config menu, select number 8 “Advanced Options’. There are two critical changes we need to make in here and one option change. First, the critical changes. Select A3 “Memory Split”: Change the amount of memory available to the GPU to 16MB (down from the default 64MB). Our Minecraft server is going to ruin in a GUI-less environment; there’s no reason to allocate any more than the bare minimum to the GPU. After selecting the GPU memory, you’ll be returned to the main menu. Select “Advanced Options” again and then select A4 “SSH”. Within the sub-menu, enable SSH. There is very little reason to keep this Pi connected to a monitor and keyboard, by enabling SSH we can remotely access the machine from anywhere on the network. Finally (and optionally) return again to the “Advanced Options” menu and select A2 “Hostname”. Here you can change your hostname from “raspberrypi” to a more fitting Minecraft name. We opted for the highly creative hostname “minecraft”, but feel free to spice it up a bit with whatever you feel like: creepertown, minecraft4life, or miner-box are all great minecraft server names. That’s it for the Raspbian configuration tab down to the bottom of the main screen and select “Finish” to reboot. After rebooting you can now SSH into your terminal, or continue working from the keyboard hooked up to your Pi (we strongly recommend switching over to SSH as it allows you to easily cut and paste the commands). If you’ve never used SSH before, check out how to use PuTTY with your Pi here. Installing Java on the Pi The Minecraft server runs on Java, so the first thing we need to do on our freshly configured Pi is install it. Log into your Pi via SSH and then, at the command prompt, enter the following command to make a directory for the installation: sudo mkdir /java/ Now we need to download the newest version of Java. At the time of this publication the newest release is the OCT 2013 update and the link/filename we use will reflect that. Please check for a more current version of the Linux ARMv6/7 Java release on the Java download page and update the link/filename accordingly when following our instructions. At the command prompt, enter the following command: sudo wget --no-check-certificate http://www.java.net/download/jdk8/archive/b111/binaries/jdk-8-ea-b111-linux-arm-vfp-hflt-09_oct_2013.tar.gz Once the download has finished successfully, enter the following command: sudo tar zxvf jdk-8-ea-b111-linux-arm-vfp-hflt-09_oct_2013.tar.gz -C /opt/ Fun fact: the /opt/ directory name scheme is a remnant of early Unix design wherein the /opt/ directory was for “optional” software installed after the main operating system; it was the /Program Files/ of the Unix world. After the file has finished extracting, enter: sudo /opt/jdk1.8.0/bin/java -version This command will return the version number of your new Java installation like so: java version "1.8.0-ea" Java(TM) SE Runtime Environment (build 1.8.0-ea-b111) Java HotSpot(TM) Client VM (build 25.0-b53, mixed mode) If you don’t see the above printout (or a variation thereof if you’re using a newer version of Java), try to extract the archive again. If you do see the readout, enter the following command to tidy up after yourself: sudo rm jdk-8-ea-b111-linux-arm-vfp-hflt-09_oct_2013.tar.gz At this point Java is installed and we’re ready to move onto installing our Minecraft server! Installing and Configuring the Minecraft Server Now that we have a foundation for our Minecraft server, it’s time to install the part that matter. We’ll be using SpigotMC a lightweight and stable Minecraft server build that works wonderfully on the Pi. First, grab a copy of the the code with the following command: sudo wget http://ci.md-5.net/job/Spigot/lastSuccessfulBuild/artifact/Spigot-Server/target/spigot.jar This link should remain stable over time, as it points directly to the most current stable release of Spigot, but if you have any issues you can always reference the SpigotMC download page here. After the download finishes successfully, enter the following command: sudo /opt/jdk1.8.0/bin/java -Xms256M -Xmx496M -jar /home/pi/spigot.jar nogui Note: if you’re running the command on a 256MB Pi change the 256 and 496 in the above command to 128 and 256, respectively. Your server will launch and a flurry of on-screen activity will follow. Be prepared to wait around 3-6 minutes or so for the process of setting up the server and generating the map to finish. Future startups will take much less time, around 20-30 seconds. Note: If at any point during the configuration or play process things get really weird (e.g. your new Minecraft server freaks out and starts spawning you in the Nether and killing you instantly), use the “stop” command at the command prompt to gracefully shutdown the server and let you restart and troubleshoot it. After the process has finished, head over to the computer you normally play Minecraft on, fire it up, and click on Multiplayer. You should see your server: If your world doesn’t popup immediately during the network scan, hit the Add button and manually enter the address of your Pi. Once you connect to the server, you’ll see the status change in the server status window: According to the server, we’re in game. According to the actual Minecraft app, we’re also in game but it’s the middle of the night in survival mode: Boo! Spawning in the dead of night, weaponless and without shelter is no way to start things. No worries though, we need to do some more configuration; no time to sit around and get shot at by skeletons. Besides, if you try and play it without some configuration tweaks first, you’ll likely find it quite unstable. We’re just here to confirm the server is up, running, and accepting incoming connections. Once we’ve confirmed the server is running and connectable (albeit not very playable yet), it’s time to shut down the server. Via the server console, enter the command “stop” to shut everything down. When you’re returned to the command prompt, enter the following command: sudo nano server.properties When the configuration file opens up, make the following changes (or just cut and paste our config file minus the first two lines with the name and date stamp): #Minecraft server properties #Thu Oct 17 22:53:51 UTC 2013 generator-settings= #Default is true, toggle to false allow-nether=false level-name=world enable-query=false allow-flight=false server-port=25565 level-type=DEFAULT enable-rcon=false force-gamemode=false level-seed= server-ip= max-build-height=256 spawn-npcs=true white-list=false spawn-animals=true texture-pack= snooper-enabled=true hardcore=false online-mode=true pvp=true difficulty=1 player-idle-timeout=0 gamemode=0 #Default 20; you only need to lower this if you're running #a public server and worried about loads. max-players=20 spawn-monsters=true #Default is 10, 3-5 ideal for Pi view-distance=5 generate-structures=true spawn-protection=16 motd=A Minecraft Server In the server status window, seen through your SSH connection to the pi, enter the following command to give yourself operator status on your Minecraft server (so that you can use more powerful commands in game, without always returning to the server status window). op [your minecraft nickname] At this point things are looking better but we still have a little tweaking to do before the server is really enjoyable. To that end, let’s install some plugins. The first plugin, and the one you should install above all others, is NoSpawnChunks. To install the plugin, first visit the NoSpawnChunks webpage and grab the download link for the most current version. As of this writing the current release is v0.3. Back at the command prompt (the command prompt of your Pi, not the server console–if your server is still active shut it down) enter the following commands: cd /home/pi/plugins sudo wget http://dev.bukkit.org/media/files/586/974/NoSpawnChunks.jar Next, visit the ClearLag plugin page, and grab the latest link (as of this tutorial, it’s v2.6.0). Enter the following at the command prompt: sudo wget http://dev.bukkit.org/media/files/743/213/Clearlag.jar Because the files aren’t compressed in a .ZIP or similar container, that’s all there is to it: the plugins are parked in the plugin directory. (Remember this for future plugin downloads, the file needs to be whateverplugin.jar, so if it’s compressed you need to uncompress it in the plugin directory.) Resart the server: sudo /opt/jdk1.8.0/bin/java -Xms256M -Xmx496M -jar /home/pi/spigot.jar nogui Be prepared for a slightly longer startup time (closer to the 3-6 minutes and much longer than the 30 seconds you just experienced) as the plugins affect the world map and need a minute to massage everything. After the spawn process finishes, type the following at the server console: plugins This lists all the plugins currently active on the server. You should see something like this: If the plugins aren’t loaded, you may need to stop and restart the server. After confirming your plugins are loaded, go ahead and join the game. You should notice significantly snappier play. In addition, you’ll get occasional messages from the plugins indicating they are active, as seen below: At this point Java is installed, the server is installed, and we’ve tweaked our settings for for the Pi.  It’s time to start building with friends!     

    Read the article

  • Quick Quips on QR Codes

    - by Tim Dexter
    Yes, I'm an alliterating all-star; I missed my calling as a newspaper headline writer. I have recently received questions from several folks on support for QR codes. You know them they are everywhere you look, even here! How does Publisher handle QR codes then? In theory, exactly the same way we handle any other 2D barcode font. We need the font file, a mapping entry and an encoding class. With those three pieces we can embed QR codes into any output. To test the theory, I went off to IDAutomation, I have worked with them and many customers over the years and their fonts and encoders have worked great and have been very reliable. They kindly provide demo fonts which has made my life so much easier to be able to write posts like this. Their QR font and encoder is a little tough to find. I started here and then hit the Demo Now button. On the next page I hit the right hand Demo Now button. In the resulting zip file you'll need two files: AdditionalFonts.zip >> Automation2DFonts >> TrueType >> IDAutomation2D.ttf Java Class Encoder >> IDAutomation_JavaFontEncoder_QRCode.jar - the QRBarcodeExample.java is useful to see how to call the encoder. The font file needs to be installed into the windows/fonts directory, just copy and paste it in using file explorer and windows will install it for you. Remember, we are using the demo font here and you'll see if you get your phones decoder to looks a the font above there is a fixed string 'DEMO' at the beginning. You want that removed? Go buy the font from the IDAutomation folks. The Encoder Next you need to create your encoding wrapper class. Publisher does ship a class but its compiled and I do not recommend trying to modify it, you can just build your own. I have loaded up my class here. You do not need to be a java guru, its pretty straightforward. I'd recommend a java IDE like JDeveloper from a convenience point of view. I have annotated my class and added a main method to it so you can test your encoders from JDeveloper without having to deploy them first. You can load up the project form the zip file straight into JDeveloper.Next, take a look at IDAutomation's example java class and you'll see: QRCodeEncoder qre=new QRCodeEncoder();  String DataToEncode = "IDAutmation Inc.";  boolean ApplyTilde = false;  int EncodingMode = 0;  int Version = 0;  int ErrorCorrectionLevel = 0;  System.out.println( qre.FontEncode(DataToEncode, ApplyTilde, EncodingMode, Version, ErrorCorrectionLevel) ); You'll need to check what settings you need to set for the ApplyTilde, EncodingMode, Version and ErrorCorrectionLevel. They are covered in the user guide from IDAutomation here. If you do not want to hard code the values in the encoder then you can quite easily externalize them and read the values from a text file. I have not covered that scenario here, I'm going with IDAutomation's defaults and my phone app is reading the fonts no problem. Now you know how to call the encoder, you need to incorporate it into your encoder wrapper class. From my sample class:       Class[] clazz = new Class[] { "".getClass() };        ENCODERS.put("code128a",mUtility.getClass().getMethod("code128a", clazz));       ENCODERS.put("code128b",mUtility.getClass().getMethod("code128b", clazz));       ENCODERS.put("code128c",mUtility.getClass().getMethod("code128c", clazz));       ENCODERS.put("qrcode",mUtility.getClass().getMethod("qrcode", clazz)); I just added a new entry to register the encoder method 'qrcode' (in red). Then I created a new method inside the class to call the IDAutomation encoder. /** Call to IDAutomations QR Code encoder. Passing the data to encode      Returning the encoded string to the template for formatting **/ public static final String qrcode (String DataToEncode) {   QRCodeEncoder qre=new QRCodeEncoder();    boolean ApplyTilde = false;    int EncodingMode = 0;    int Version = 0;    int ErrorCorrectionLevel = 0; return qre.FontEncode(DataToEncode, ApplyTilde, EncodingMode, Version, ErrorCorrectionLevel); } Almost the exact same code in their sample class. The DataToEncode string is passed in rather than hardcoded of course. With the class done you can now compile it, but you need to ensure that the IDAutomation_JavaFontEncoder_QRCode.jar is in the classpath. In JDeveloper, open the project properties >> Libraries and Classpaths and then add the jar to the list. You'll need the publisher jars too. You can find those in the jlib directory in your Template Builder for Word directory.Note! In my class, I have used package oracle.psbi.barcode; As my package spec, yours will be different but you need to note it for later. Once you have it compiling without errors you will need to generate a jar file to keep it in. In JDeveloper highlight your project node >> New >> Deployment Profile >> JAR file. Once you have created the descriptor, just take the defaults. It will tell you where the jar is located. Go get it and then its time to copy it and the IDAutomation jar into the Template Builder for Word directory structure. Deploying the jars On your windows machine locate the jlib directory under the Template Builder for Word install directory. On my machine its here, F:\Program Files\Oracle\BI Publisher\BI Publisher Desktop\Template Builder for Word\jlib. Copy both of the jar files into the directory. The next step is to get the jars into the classpath for the Word plugin so that Publisher can find your wrapper class and it can then find the IDAutomation encoder. The most consistent way I have found so far, is to open up the RTF2PDF.jar in the same directory and make some mods. First make a backup of the jar file then open it using winzip or 7zip or similar and get into the META-INF directory. In there is a file, MANIFEST.MF. This contains the classpath for the plugin, open it in an editor and add the jars to the end of the classpath list. In mine I have: Manifest-Version: 1.0 Class-Path: ./activation.jar ./mail.jar ./xdochartstyles.jar ./bicmn.jar ./jewt4.jar ./share.jar ./bipres.jar ./xdoparser.jar ./xdocore.jar ./xmlparserv2.jar ./xmlparserv2-904.jar  ./i18nAPI_v3.jar ./versioninfo.jar ./barcodejar.jar ./IDAutomation_JavaFontEncoder_QRCode.jar Main-Class: RTF2PDF I have put in carriage returns above to make the Class-Path: entry more readable, make sure yours is all on one line. Be sure to use the ./ as a prefix to the jar name. Ensure the file is saved inside the jar file 7zip and winzip both have popups asking if you want to update the file in the jar file.Now you have the jars on the classpath, the Publisher plugin will be able to find our classes at run time. Referencing the Font The next step is to reference the font location so that the rendering engine can find it and embed a subset into the PDF output. Remember the other output formats rely on the font being present on the machine that is opening the document. The PDF is the only truly portable format. Inside the config directory under the Template Builder for Word install directory, mine is here, F:\Program Files\Oracle\BI Publisher\BI Publisher Desktop\Template Builder for Word\config. You'll find the file, 'xdo example.cfg'. Rename it to xdo.cfg and open it in a text editor. In the fonts section, create a new entry:       <font family="IDAutomation2D" style="normal" weight="normal">              <truetype path="C:\windows\fonts\IDAutomation2D.ttf" />       </font> Note, 'IDAutomation2D' (in red) is the same name as you can see when you open MSWord and look for the QRCode font. This must match exactly. When Publisher looks at the fonts in the RTF template at runtime it will see 'IDAutomation2D' it will then look at its font mapping entries to find where that font file resides on the disk. If the names do not match or the font is not present then the font will not get used and it will fall back on Helvetica. Building the Template Now you have the data encoder and the font in place and mapped; you can use it in the template. The two commands you will need to have present are: <?register-barcode-vendor:'ENCODER WRAPPER CLASS'; 'ENCODER NAME'?> for my encoder I have: <?register-barcode-vendor:'oracle.psbi.barcode.BarcodeUtil'; 'MyBarcodeEncoder'?> Notice the two parameters for the command. The first provides the package 'path' and class name (remember I said you need to remember that above.)The second is the name of the encoder, in my case 'MyBarcodeEncoder'. Check my full encoder class in the zip linked below to see where I named it. You can change it to something else, no problem.This command needs to be near the top of the template. The second command is the encoding command: <?format-barcode:DATAT_TO_ENCODE;'ENCODER_METHOD_NAME';'ENCODER_NAME'?> for my command I have <?format-barcode:DATATEXT;'qrcode';'MyBarcodeEncoder'?>DATATEXT is the XML element that contains the text to be encoded. If you want to hard code a piece of text just surround it with single quotes. qrcode is the name of my encoder method that calls the IDAutomation encoder. Remember this.MyBarcodeEncoder is the name of my encoder. Repetition? Yes but its needed again. Both of these commands are put inside their own form fields. Do not apply the QRCode font to the second field just yet. Lets make sure the encoder is working. Run you template with some data and you should get something like this for your encoded data: AHEEEHAPPJOPMOFADIPFJKDCLPAHEEEHA BNFFFNBPJGMDIDJPFOJGIGBLMPBNFFFNB APIBOHFJCFBNKHGGBMPFJFJLJBKGOMNII OANKPJFFLEPLDNPCLMNGNIJIHFDNLJFEH FPLFLHFHFILKFBLOIGMDFCFLGJGOPJJME CPIACDFJPBGDODOJCHALJOBPECKMOEDDF MFFNFNEPKKKCHAIHCHPCFFLDAHFHAGLMK APBBBPAPLDKNKJKKGIPDLKGMGHDDEPHLN HHHHHHHPHPHHPHPPHPPPPHHPHHPHPHPHP Grooovy huh? If you do not get the encoded text then go back and check that your jars are in the right spot and that you have the MANIFEST.MF file updated correctly. Once you do get the encoded text, highlight the field and apply the IDAutomation2D font to it. Then re-run the report and you will hopefully see the QR code in your output. If not, go back and check the xdo.cfg entry and make sure its in the right place and the font location is correct. That's it, you now have QR codes in Publisher outputs. Everything I have written above, has been tested with the 5.6.3, 10.1.3.4.2 codelines. I'll be testing the 11g code in the next day or two and will update you with any changes. One thing I have not covered yet and will do in the next few days is how to deploy all of this to your server. Look out for a follow up post. One note on the apparent white lines in the font (see the image above). Once printed they disappear and even viewing the code on a screen with the white lines, my phone app is still able to read and interpret the contents no problem. I have zipped up my encoder wrapper class as a JDeveloper 11.1.1.6 project here. Just dig into the src directories to find the BarcodeUtil.java file if you just want the code. I have put comments into the file to hopefully help the novice java programmer out. Happy QR'ing!

    Read the article

  • Arduino - AdHoc Network Setup

    - by methodMan
    I`m currently working with an arduino trying to build an adhoc network to which a device can connect to and send web request to. The problem I am currently having is that I can only set up one connection and then when that connection is terminated (client.stop()) all subsequent connections are not picked up by the server, even a curl command just sits there spinning. The first connection I start when I reset the server works fine and I am able to talk to the server; but after that, the arduino can no longer find new clients (even though it's trying with the library given). I`m using the sparkfun library for the wifly shield cloned from github, along with an Arduino Uno. My current code is based off their default example 'WiFly_AdHoc_Example' but I had to remove a few things to get the network to start up which might be the cause of this problem. Here is the .ino file that I am running. #include <SPI.h> #include <WiFly.h> //#include <SoftwareSerial.h> //SoftwareSerial mySerial( 5, 4); //Part from example not used(see below) WiFlyServer server(80); void setup() { Serial.begin(9600); //The code below is from the example but when I run it the WiFly will hang // on Wifly.begin(). Without it the WiFly starts up fine but only works for // one request. //mySerial.begin(9600); //WiFly.setUart(&mySerial); // Tell the WiFly library that we are not //using the SPIUart Serial.println("**************Starting WiFly**************"); // Enable Adhoc mod WiFly.begin(true); Serial.println("WiFly started, creating network."); if (!WiFly.createAdHocNetwork("wifly")) { Serial.print("Failed to create ad hoc network."); while (1) { // Hang on failure. } } Serial.println("Network created"); Serial.print("IP: "); Serial.println(WiFly.ip()); Serial.println("Starting Server..."); server.begin(); Serial.print("Server started, waiting for client."); } void loop() { delay(200); WiFlyClient client = server.available(); if (client) { Serial.println("Client Found."); // a string to store received commands String current_command = ""; while (client.connected()) { if (client.available()) { //Gets a character from the sent request. char c = client.read(); if (c=='#' || c=='\n') //End of extraneous output { current_command = ""; } else if(c!= '\n') { current_command+=c; } if (current_command== "get") { // output the value of each analog input pin for (int i = 0; i < 6; i++) { client.print("analog input "); client.print(i); client.print(" is "); client.print(analogRead(i)); client.println("<br />"); } } else if(current_command== "hello") { client.println("Hello there, I'm still here."); } else if (current_command== "quit") { client.println("Goodbye..."); client.stop(); current_command == ""; break; } else if (current_command == "*OPEN*") { current_command == ""; } } } // give the web browser time to receive the data delay(200); // close the connection client.stop(); } } If anyone understands this better then I (I`m new to arduino) please leave some helpful comments. Or just help me out on getting this little web server up and running so that I can hit it with more then one request. If there is any other helpful information I can provide please let me know. Thanks for reading and hope you can help. EDIT: Using telnet I can successfully connect (the first time) and send commands to the arduino including one to terminate the connection (calls the client.stop() method). But when I try to reconnect though telnet, it says the connection was successful but on the arduino it's still looping thinking the client is still false. WHAT??? I know right, I'm getting mixed messages from telnet vs arduino. None of the commands work obviously since the ardunio is still looping waiting for a client that evaluates to true. I'm gonna take a look at WiFlyServer from the library I imported and see if I can dig up the problem because somehow that server.available() method isn't finding new clients. Noticing a lot of TODO's in the library code.... EDIT: So I found the reason for the problem, it was in WiFlyServer.cpp file from the sparkfun library. The code that was causing the reconnect issue was infact in the server.availible() method. Right at the top of the method, there is a check: // TODO: Ensure no active non-server client connection. if (!WiFly.serverConnectionActive) { activeClient._port = 0; } For some reason when I comment this out, I can reconnect fine and everything works as it should. I will now dive into the library and see if I can fix this, I'm not exactly sure what this is doing but it gets called when the server connection is not active and is somehow blocking subsequent connections. Does anyone have any ideas how I might get to the root of this problem without using this commenting hack? Please help, no-one has commented or answered yet! Don't you want to join in on the fun???

    Read the article

  • .NET Code Evolution

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/07/24/153504.aspxAt my day job I do look at a lot of code written by other people. Most of the code is quite good and some is even a masterpiece. And there is also code which makes you think WTF… oh it was written by me. Hm not so bad after all. There are many excuses reasons for bad code. Most often it is time pressure followed by not enough ambition (who cares) or insufficient training. Normally I do care about code quality quite a lot which makes me a (perceived) slow worker who does write many tests and refines the code quite a lot because of the design deficiencies. Most of the deficiencies I do find by putting my design under stress while checking for invariants. It does also help a lot to step into the code with a debugger (sometimes also Windbg). I do this much more often when my tests are red. That way I do get a much better understanding what my code really does and not what I think it should be doing. This time I do want to show you how code can evolve over the years with different .NET Framework versions. Once there was  time where .NET 1.1 was new and many C++ programmers did switch over to get rid of not initialized pointers and memory leaks. There were also nice new data structures available such as the Hashtable which is fast lookup table with O(1) time complexity. All was good and much code was written since then. At 2005 a new version of the .NET Framework did arrive which did bring many new things like generics and new data structures. The “old” fashioned way of Hashtable were coming to an end and everyone used the new Dictionary<xx,xx> type instead which was type safe and faster because the object to type conversion (aka boxing) was no longer necessary. I think 95% of all Hashtables and dictionaries use string as key. Often it is convenient to ignore casing to make it easy to look up values which the user did enter. An often followed route is to convert the string to upper case before putting it into the Hashtable. Hashtable Table = new Hashtable(); void Add(string key, string value) { Table.Add(key.ToUpper(), value); } This is valid and working code but it has problems. First we can pass to the Hashtable a custom IEqualityComparer to do the string matching case insensitive. Second we can switch over to the now also old Dictionary type to become a little faster and we can keep the the original keys (not upper cased) in the dictionary. Dictionary<string, string> DictTable = new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase); void AddDict(string key, string value) { DictTable.Add(key, value); } Many people do not user the other ctors of Dictionary because they do shy away from the overhead of writing their own comparer. They do not know that .NET has for strings already predefined comparers at hand which you can directly use. Today in the many core area we do use threads all over the place. Sometimes things break in subtle ways but most of the time it is sufficient to place a lock around the offender. Threading has become so mainstream that it may sound weird that in the year 2000 some guy got a huge incentive for the idea to reduce the time to process calibration data from 12 hours to 6 hours by using two threads on a dual core machine. Threading does make it easy to become faster at the expense of correctness. Correct and scalable multithreading can be arbitrarily hard to achieve depending on the problem you are trying to solve. Lets suppose we want to process millions of items with two threads and count the processed items processed by all threads. A typical beginners code might look like this: int Counter; void IJustLearnedToUseThreads() { var t1 = new Thread(ThreadWorkMethod); t1.Start(); var t2 = new Thread(ThreadWorkMethod); t2.Start(); t1.Join(); t2.Join(); if (Counter != 2 * Increments) throw new Exception("Hmm " + Counter + " != " + 2 * Increments); } const int Increments = 10 * 1000 * 1000; void ThreadWorkMethod() { for (int i = 0; i < Increments; i++) { Counter++; } } It does throw an exception with the message e.g. “Hmm 10.222.287 != 20.000.000” and does never finish. The code does fail because the assumption that Counter++ is an atomic operation is wrong. The ++ operator is just a shortcut for Counter = Counter + 1 This does involve reading the counter from a memory location into the CPU, incrementing value on the CPU and writing the new value back to the memory location. When we do look at the generated assembly code we will see only inc dword ptr [ecx+10h] which is only one instruction. Yes it is one instruction but it is not atomic. All modern CPUs have several layers of caches (L1,L2,L3) which try to hide the fact how slow actual main memory accesses are. Since cache is just another word for redundant copy it can happen that one CPU does read a value from main memory into the cache, modifies it and write it back to the main memory. The problem is that at least the L1 cache is not shared between CPUs so it can happen that one CPU does make changes to values which did change in meantime in the main memory. From the exception you can see we did increment the value 20 million times but half of the changes were lost because we did overwrite the already changed value from the other thread. This is a very common case and people do learn to protect their  data with proper locking.   void Intermediate() { var time = Stopwatch.StartNew(); Action acc = ThreadWorkMethod_Intermediate; var ar1 = acc.BeginInvoke(null, null); var ar2 = acc.BeginInvoke(null, null); ar1.AsyncWaitHandle.WaitOne(); ar2.AsyncWaitHandle.WaitOne(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Intermediate did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Intermediate() { for (int i = 0; i < Increments; i++) { lock (this) { Counter++; } } } This is better and does use the .NET Threadpool to get rid of manual thread management. It does give the expected result but it can result in deadlocks because you do lock on this. This is in general a bad idea since it can lead to deadlocks when other threads use your class instance as lock object. It is therefore recommended to create a private object as lock object to ensure that nobody else can lock your lock object. When you read more about threading you will read about lock free algorithms. They are nice and can improve performance quite a lot but you need to pay close attention to the CLR memory model. It does make quite weak guarantees in general but it can still work because your CPU architecture does give you more invariants than the CLR memory model. For a simple counter there is an easy lock free alternative present with the Interlocked class in .NET. As a general rule you should not try to write lock free algos since most likely you will fail to get it right on all CPU architectures. void Experienced() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); t1.Wait(); t2.Wait(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Experienced did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Experienced() { for (int i = 0; i < Increments; i++) { Interlocked.Increment(ref Counter); } } Since time does move forward we do not use threads explicitly anymore but the much nicer Task abstraction which was introduced with .NET 4 at 2010. It is educational to look at the generated assembly code. The Interlocked.Increment method must be called which does wondrous things right? Lets see: lock inc dword ptr [eax] The first thing to note that there is no method call at all. Why? Because the JIT compiler does know very well about CPU intrinsic functions. Atomic operations which do lock the memory bus to prevent other processors to read stale values are such things. Second: This is the same increment call prefixed with a lock instruction. The only reason for the existence of the Interlocked class is that the JIT compiler can compile it to the matching CPU intrinsic functions which can not only increment by one but can also do an add, exchange and a combined compare and exchange operation. But be warned that the correct usage of its methods can be tricky. If you try to be clever and look a the generated IL code and try to reason about its efficiency you will fail. Only the generated machine code counts. Is this the best code we can write? Perhaps. It is nice and clean. But can we make it any faster? Lets see how good we are doing currently. Level Time in s IJustLearnedToUseThreads Flawed Code Intermediate 1,5 (lock) Experienced 0,3 (Interlocked.Increment) Master 0,1 (1,0 for int[2]) That lock free thing is really a nice thing. But if you read more about CPU cache, cache coherency, false sharing you can do even better. int[] Counters = new int[12]; // Cache line size is 64 bytes on my machine with an 8 way associative cache try for yourself e.g. 64 on more modern CPUs void Master() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Master, 0); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Master, Counters.Length - 1); t1.Wait(); t2.Wait(); Counter = Counters[0] + Counters[Counters.Length - 1]; if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Master did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Master(object number) { int index = (int) number; for (int i = 0; i < Increments; i++) { Counters[index]++; } } The key insight here is to use for each core its own value. But if you simply use simply an integer array of two items, one for each core and add the items at the end you will be much slower than the lock free version (factor 3). Each CPU core has its own cache line size which is something in the range of 16-256 bytes. When you do access a value from one location the CPU does not only fetch one value from main memory but a complete cache line (e.g. 16 bytes). This means that you do not pay for the next 15 bytes when you access them. This can lead to dramatic performance improvements and non obvious code which is faster although it does have many more memory reads than another algorithm. So what have we done here? We have started with correct code but it was lacking knowledge how to use the .NET Base Class Libraries optimally. Then we did try to get fancy and used threads for the first time and failed. Our next try was better but it still had non obvious issues (lock object exposed to the outside). Knowledge has increased further and we have found a lock free version of our counter which is a nice and clean way which is a perfectly valid solution. The last example is only here to show you how you can get most out of threading by paying close attention to your used data structures and CPU cache coherency. Although we are working in a virtual execution environment in a high level language with automatic memory management it does pay off to know the details down to the assembly level. Only if you continue to learn and to dig deeper you can come up with solutions no one else was even considering. I have studied particle physics which does help at the digging deeper part. Have you ever tried to solve Quantum Chromodynamics equations? Compared to that the rest must be easy ;-). Although I am no longer working in the Science field I take pride in discovering non obvious things. This can be a very hard to find bug or a new way to restructure data to make something 10 times faster. Now I need to get some sleep ….

    Read the article

  • Parsing Concerns

    - by Jesse
    If you’ve ever written an application that accepts date and/or time inputs from an external source (a person, an uploaded file, posted XML, etc.) then you’ve no doubt had to deal with parsing some text representing a date into a data structure that a computer can understand. Similarly, you’ve probably also had to take values from those same data structure and turn them back into their original formats. Most (all?) suitably modern development platforms expose some kind of parsing and formatting functionality for turning text into dates and vice versa. In .NET, the DateTime data structure exposes ‘Parse’ and ‘ToString’ methods for this purpose. This post will focus mostly on parsing, though most of the examples and suggestions below can also be applied to the ToString method. The DateTime.Parse method is pretty permissive in the values that it will accept (though apparently not as permissive as some other languages) which makes it pretty easy to take some text provided by a user and turn it into a proper DateTime instance. Here are some examples (note that the resulting DateTime values are shown using the RFC1123 format): DateTime.Parse("3/12/2010"); //Fri, 12 Mar 2010 00:00:00 GMT DateTime.Parse("2:00 AM"); //Sat, 01 Jan 2011 02:00:00 GMT (took today's date as date portion) DateTime.Parse("5-15/2010"); //Sat, 15 May 2010 00:00:00 GMT DateTime.Parse("7/8"); //Fri, 08 Jul 2011 00:00:00 GMT DateTime.Parse("Thursday, July 1, 2010"); //Thu, 01 Jul 2010 00:00:00 GMT Dealing With Inaccuracy While the DateTime struct has the ability to store a date and time value accurate down to the millisecond, most date strings provided by a user are not going to specify values with that much precision. In each of the above examples, the Parse method was provided a partial value from which to construct a proper DateTime. This means it had to go ahead and assume what you meant and fill in the missing parts of the date and time for you. This is a good thing, especially when we’re talking about taking input from a user. We can’t expect that every person using our software to provide a year, day, month, hour, minute, second, and millisecond every time they need to express a date. That said, it’s important for developers to understand what assumptions the software might be making and plan accordingly. I think the assumptions that were made in each of the above examples were pretty reasonable, though if we dig into this method a little bit deeper we’ll find that there are a lot more assumptions being made under the covers than you might have previously known. One of the biggest assumptions that the DateTime.Parse method has to make relates to the format of the date represented by the provided string. Let’s consider this example input string: ‘10-02-15’. To some people. that might look like ‘15-Feb-2010’. To others, it might be ‘02-Oct-2015’. Like many things, it depends on where you’re from. This Is America! Most cultures around the world have adopted a “little-endian” or “big-endian” formats. (Source: Date And Time Notation By Country) In this context,  a “little-endian” date format would list the date parts with the least significant first while the “big-endian” date format would list them with the most significant first. For example, a “little-endian” date would be “day-month-year” and “big-endian” would be “year-month-day”. It’s worth nothing here that ISO 8601 defines a “big-endian” format as the international standard. While I personally prefer “big-endian” style date formats, I think both styles make sense in that they follow some logical standard with respect to ordering the date parts by their significance. Here in the United States, however, we buck that trend by using what is, in comparison, a completely nonsensical format of “month/day/year”. Almost no other country in the world uses this format. I’ve been fortunate in my life to have done some international travel, so I’ve been aware of this difference for many years, but never really thought much about it. Until recently, I had been developing software for exclusively US-based audiences and remained blissfully ignorant of the different date formats employed by other countries around the world. The web application I work on is being rolled out to users in different countries, so I was recently tasked with updating it to support different date formats. As it turns out, .NET has a great mechanism for dealing with different date formats right out of the box. Supporting date formats for different cultures is actually pretty easy once you understand this mechanism. Pulling the Curtain Back On the Parse Method Have you ever taken a look at the different flavors (read: overloads) that the DateTime.Parse method comes in? In it’s simplest form, it takes a single string parameter and returns the corresponding DateTime value (if it can divine what the date value should be). You can optionally provide two additional parameters to this method: an ‘System.IFormatProvider’ and a ‘System.Globalization.DateTimeStyles’. Both of these optional parameters have some bearing on the assumptions that get made while parsing a date, but for the purposes of this article I’m going to focus on the ‘System.IFormatProvider’ parameter. The IFormatProvider exposes a single method called ‘GetFormat’ that returns an object to be used for determining the proper format for displaying and parsing things like numbers and dates. This interface plays a big role in the globalization capabilities that are built into the .NET Framework. The cornerstone of these globalization capabilities can be found in the ‘System.Globalization.CultureInfo’ class. To put it simply, the CultureInfo class is used to encapsulate information related to things like language, writing system, and date formats for a certain culture. Support for many cultures are “baked in” to the .NET Framework and there is capacity for defining custom cultures if needed (thought I’ve never delved into that). While the details of the CultureInfo class are beyond the scope of this post, so for now let me just point out that the CultureInfo class implements the IFormatInfo interface. This means that a CultureInfo instance created for a given culture can be provided to the DateTime.Parse method in order to tell it what date formats it should expect. So what happens when you don’t provide this value? Let’s crack this method open in Reflector: When no IFormatInfo parameter is provided (i.e. we use the simple DateTime.Parse(string) overload), the ‘DateTimeFormatInfo.CurrentInfo’ is used instead. Drilling down a bit further we can see the implementation of the DateTimeFormatInfo.CurrentInfo property: From this property we can determine that, in the absence of an IFormatProvider being specified, the DateTime.Parse method will assume that the provided date should be treated as if it were in the format defined by the CultureInfo object that is attached to the current thread. The culture specified by the CultureInfo instance on the current thread can vary depending on several factors, but if you’re writing an application where a single instance might be used by people from different cultures (i.e. a web application with an international user base), it’s important to know what this value is. Having a solid strategy for setting the current thread’s culture for each incoming request in an internationally used ASP .NET application is obviously important, and might make a good topic for a future post. For now, let’s think about what the implications of not having the correct culture set on the current thread. Let’s say you’re running an ASP .NET application on a server in the United States. The server was setup by English speakers in the United States, so it’s configured for US English. It exposes a web page where users can enter order data, one piece of which is an anticipated order delivery date. Most users are in the US, and therefore enter dates in a ‘month/day/year’ format. The application is using the DateTime.Parse(string) method to turn the values provided by the user into actual DateTime instances that can be stored in the database. This all works fine, because your users and your server both think of dates in the same way. Now you need to support some users in South America, where a ‘day/month/year’ format is used. The best case scenario at this point is a user will enter March 13, 2011 as ‘25/03/2011’. This would cause the call to DateTime.Parse to blow up since that value doesn’t look like a valid date in the US English culture (Note: In all likelihood you might be using the DateTime.TryParse(string) method here instead, but that method behaves the same way with regard to date formats). “But wait a minute”, you might be saying to yourself, “I thought you said that this was the best case scenario?” This scenario would prevent users from entering orders in the system, which is bad, but it could be worse! What if the order needs to be delivered a day earlier than that, on March 12, 2011? Now the user enters ‘12/03/2011’. Now the call to DateTime.Parse sees what it thinks is a valid date, but there’s just one problem: it’s not the right date. Now this order won’t get delivered until December 3, 2011. In my opinion, that kind of data corruption is a much bigger problem than having the Parse call fail. What To Do? My order entry example is a bit contrived, but I think it serves to illustrate the potential issues with accepting date input from users. There are some approaches you can take to make this easier on you and your users: Eliminate ambiguity by using a graphical date input control. I’m personally a fan of a jQuery UI Datepicker widget. It’s pretty easy to setup, can be themed to match the look and feel of your site, and has support for multiple languages and cultures. Be sure you have a way to track the culture preference of each user in your system. For a web application this could be done using something like a cookie or session state variable. Ensure that the current user’s culture is being applied correctly to DateTime formatting and parsing code. This can be accomplished by ensuring that each request has the handling thread’s CultureInfo set properly, or by using the Format and Parse method overloads that accept an IFormatProvider instance where the provided value is a CultureInfo object constructed using the current user’s culture preference. When in doubt, favor formats that are internationally recognizable. Using the string ‘2010-03-05’ is likely to be recognized as March, 5 2011 by users from most (if not all) cultures. Favor standard date format strings over custom ones. So far we’ve only talked about turning a string into a DateTime, but most of the same “gotchas” apply when doing the opposite. Consider this code: someDateValue.ToString("MM/dd/yyyy"); This will output the same string regardless of what the current thread’s culture is set to (with the exception of some cultures that don’t use the Gregorian calendar system, but that’s another issue all together). For displaying dates to users, it would be better to do this: someDateValue.ToString("d"); This standard format string of “d” will use the “short date format” as defined by the culture attached to the current thread (or provided in the IFormatProvider instance in the proper method overload). This means that it will honor the proper month/day/year, year/month/day, or day/month/year format for the culture. Knowing Your Audience The examples and suggestions shown above can go a long way toward getting an application in shape for dealing with date inputs from users in multiple cultures. There are some instances, however, where taking approaches like these would not be appropriate. In some cases, the provider or consumer of date values that pass through your application are not people, but other applications (or other portions of your own application). For example, if your site has a page that accepts a date as a query string parameter, you’ll probably want to format that date using invariant date format. Otherwise, the same URL could end up evaluating to a different page depending on the user that is viewing it. In addition, if your application exports data for consumption by other systems, it’s best to have an agreed upon format that all systems can use and that will not vary depending upon whether or not the users of the systems on either side prefer a month/day/year or day/month/year format. I’ll look more at some approaches for dealing with these situations in a future post. If you take away one thing from this post, make it an understanding of the importance of knowing where the dates that pass through your system come from and are going to. You will likely want to vary your parsing and formatting approach depending on your audience.

    Read the article

  • SimpleMembership, Membership Providers, Universal Providers and the new ASP.NET 4.5 Web Forms and ASP.NET MVC 4 templates

    - by Jon Galloway
    The ASP.NET MVC 4 Internet template adds some new, very useful features which are built on top of SimpleMembership. These changes add some great features, like a much simpler and extensible membership API and support for OAuth. However, the new account management features require SimpleMembership and won't work against existing ASP.NET Membership Providers. I'll start with a summary of top things you need to know, then dig into a lot more detail. Summary: SimpleMembership has been designed as a replacement for traditional the previous ASP.NET Role and Membership provider system SimpleMembership solves common problems people ran into with the Membership provider system and was designed for modern user / membership / storage needs SimpleMembership integrates with the previous membership system, but you can't use a MembershipProvider with SimpleMembership The new ASP.NET MVC 4 Internet application template AccountController requires SimpleMembership and is not compatible with previous MembershipProviders You can continue to use existing ASP.NET Role and Membership providers in ASP.NET 4.5 and ASP.NET MVC 4 - just not with the ASP.NET MVC 4 AccountController The existing ASP.NET Role and Membership provider system remains supported as is part of the ASP.NET core ASP.NET 4.5 Web Forms does not use SimpleMembership; it implements OAuth on top of ASP.NET Membership The ASP.NET Web Site Administration Tool (WSAT) is not compatible with SimpleMembership The following is the result of a few conversations with Erik Porter (PM for ASP.NET MVC) to make sure I had some the overall details straight, combined with a lot of time digging around in ILSpy and Visual Studio's assembly browsing tools. SimpleMembership: The future of membership for ASP.NET The ASP.NET Membership system was introduces with ASP.NET 2.0 back in 2005. It was designed to solve common site membership requirements at the time, which generally involved username / password based registration and profile storage in SQL Server. It was designed with a few extensibility mechanisms - notably a provider system (which allowed you override some specifics like backing storage) and the ability to store additional profile information (although the additional  profile information was packed into a single column which usually required access through the API). While it's sometimes frustrating to work with, it's held up for seven years - probably since it handles the main use case (username / password based membership in a SQL Server database) smoothly and can be adapted to most other needs (again, often frustrating, but it can work). The ASP.NET Web Pages and WebMatrix efforts allowed the team an opportunity to take a new look at a lot of things - e.g. the Razor syntax started with ASP.NET Web Pages, not ASP.NET MVC. The ASP.NET Web Pages team designed SimpleMembership to (wait for it) simplify the task of dealing with membership. As Matthew Osborn said in his post Using SimpleMembership With ASP.NET WebPages: With the introduction of ASP.NET WebPages and the WebMatrix stack our team has really be focusing on making things simpler for the developer. Based on a lot of customer feedback one of the areas that we wanted to improve was the built in security in ASP.NET. So with this release we took that time to create a new built in (and default for ASP.NET WebPages) security provider. I say provider because the new stuff is still built on the existing ASP.NET framework. So what do we call this new hotness that we have created? Well, none other than SimpleMembership. SimpleMembership is an umbrella term for both SimpleMembership and SimpleRoles. Part of simplifying membership involved fixing some common problems with ASP.NET Membership. Problems with ASP.NET Membership ASP.NET Membership was very obviously designed around a set of assumptions: Users and user information would most likely be stored in a full SQL Server database or in Active Directory User and profile information would be optimized around a set of common attributes (UserName, Password, IsApproved, CreationDate, Comment, Role membership...) and other user profile information would be accessed through a profile provider Some problems fall out of these assumptions. Requires Full SQL Server for default cases The default, and most fully featured providers ASP.NET Membership providers (SQL Membership Provider, SQL Role Provider, SQL Profile Provider) require full SQL Server. They depend on stored procedure support, and they rely on SQL Server cache dependencies, they depend on agents for clean up and maintenance. So the main SQL Server based providers don't work well on SQL Server CE, won't work out of the box on SQL Azure, etc. Note: Cory Fowler recently let me know about these Updated ASP.net scripts for use with Microsoft SQL Azure which do support membership, personalization, profile, and roles. But the fact that we need a support page with a set of separate SQL scripts underscores the underlying problem. Aha, you say! Jon's forgetting the Universal Providers, a.k.a. System.Web.Providers! Hold on a bit, we'll get to those... Custom Membership Providers have to work with a SQL-Server-centric API If you want to work with another database or other membership storage system, you need to to inherit from the provider base classes and override a bunch of methods which are tightly focused on storing a MembershipUser in a relational database. It can be done (and you can often find pretty good ones that have already been written), but it's a good amount of work and often leaves you with ugly code that has a bunch of System.NotImplementedException fun since there are a lot of methods that just don't apply. Designed around a specific view of users, roles and profiles The existing providers are focused on traditional membership - a user has a username and a password, some specific roles on the site (e.g. administrator, premium user), and may have some additional "nice to have" optional information that can be accessed via an API in your application. This doesn't fit well with some modern usage patterns: In OAuth and OpenID, the user doesn't have a password Often these kinds of scenarios map better to user claims or rights instead of monolithic user roles For many sites, profile or other non-traditional information is very important and needs to come from somewhere other than an API call that maps to a database blob What would work a lot better here is a system in which you were able to define your users, rights, and other attributes however you wanted and the membership system worked with your model - not the other way around. Requires specific schema, overflow in blob columns I've already mentioned this a few times, but it bears calling out separately - ASP.NET Membership focuses on SQL Server storage, and that storage is based on a very specific database schema. SimpleMembership as a better membership system As you might have guessed, SimpleMembership was designed to address the above problems. Works with your Schema As Matthew Osborn explains in his Using SimpleMembership With ASP.NET WebPages post, SimpleMembership is designed to integrate with your database schema: All SimpleMembership requires is that there are two columns on your users table so that we can hook up to it – an “ID” column and a “username” column. The important part here is that they can be named whatever you want. For instance username doesn't have to be an alias it could be an email column you just have to tell SimpleMembership to treat that as the “username” used to log in. Matthew's example shows using a very simple user table named Users (it could be named anything) with a UserID and Username column, then a bunch of other columns he wanted in his app. Then we point SimpleMemberhip at that table with a one-liner: WebSecurity.InitializeDatabaseFile("SecurityDemo.sdf", "Users", "UserID", "Username", true); No other tables are needed, the table can be named anything we want, and can have pretty much any schema we want as long as we've got an ID and something that we can map to a username. Broaden database support to the whole SQL Server family While SimpleMembership is not database agnostic, it works across the SQL Server family. It continues to support full SQL Server, but it also works with SQL Azure, SQL Server CE, SQL Server Express, and LocalDB. Everything's implemented as SQL calls rather than requiring stored procedures, views, agents, and change notifications. Note that SimpleMembership still requires some flavor of SQL Server - it won't work with MySQL, NoSQL databases, etc. You can take a look at the code in WebMatrix.WebData.dll using a tool like ILSpy if you'd like to see why - there places where SQL Server specific SQL statements are being executed, especially when creating and initializing tables. It seems like you might be able to work with another database if you created the tables separately, but I haven't tried it and it's not supported at this point. Note: I'm thinking it would be possible for SimpleMembership (or something compatible) to run Entity Framework so it would work with any database EF supports. That seems useful to me - thoughts? Note: SimpleMembership has the same database support - anything in the SQL Server family - that Universal Providers brings to the ASP.NET Membership system. Easy to with Entity Framework Code First The problem with with ASP.NET Membership's system for storing additional account information is that it's the gate keeper. That means you're stuck with its schema and accessing profile information through its API. SimpleMembership flips that around by allowing you to use any table as a user store. That means you're in control of the user profile information, and you can access it however you'd like - it's just data. Let's look at a practical based on the AccountModel.cs class in an ASP.NET MVC 4 Internet project. Here I'm adding a Birthday property to the UserProfile class. [Table("UserProfile")] public class UserProfile { [Key] [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] public int UserId { get; set; } public string UserName { get; set; } public DateTime Birthday { get; set; } } Now if I want to access that information, I can just grab the account by username and read the value. var context = new UsersContext(); var username = User.Identity.Name; var user = context.UserProfiles.SingleOrDefault(u => u.UserName == username); var birthday = user.Birthday; So instead of thinking of SimpleMembership as a big membership API, think of it as something that handles membership based on your user database. In SimpleMembership, everything's keyed off a user row in a table you define rather than a bunch of entries in membership tables that were out of your control. How SimpleMembership integrates with ASP.NET Membership Okay, enough sales pitch (and hopefully background) on why things have changed. How does this affect you? Let's start with a diagram to show the relationship (note: I've simplified by removing a few classes to show the important relationships): So SimpleMembershipProvider is an implementaiton of an ExtendedMembershipProvider, which inherits from MembershipProvider and adds some other account / OAuth related things. Here's what ExtendedMembershipProvider adds to MembershipProvider: The important thing to take away here is that a SimpleMembershipProvider is a MembershipProvider, but a MembershipProvider is not a SimpleMembershipProvider. This distinction is important in practice: you cannot use an existing MembershipProvider (including the Universal Providers found in System.Web.Providers) with an API that requires a SimpleMembershipProvider, including any of the calls in WebMatrix.WebData.WebSecurity or Microsoft.Web.WebPages.OAuth.OAuthWebSecurity. However, that's as far as it goes. Membership Providers still work if you're accessing them through the standard Membership API, and all of the core stuff  - including the AuthorizeAttribute, role enforcement, etc. - will work just fine and without any change. Let's look at how that affects you in terms of the new templates. Membership in the ASP.NET MVC 4 project templates ASP.NET MVC 4 offers six Project Templates: Empty - Really empty, just the assemblies, folder structure and a tiny bit of basic configuration. Basic - Like Empty, but with a bit of UI preconfigured (css / images / bundling). Internet - This has both a Home and Account controller and associated views. The Account Controller supports registration and login via either local accounts and via OAuth / OpenID providers. Intranet - Like the Internet template, but it's preconfigured for Windows Authentication. Mobile - This is preconfigured using jQuery Mobile and is intended for mobile-only sites. Web API - This is preconfigured for a service backend built on ASP.NET Web API. Out of these templates, only one (the Internet template) uses SimpleMembership. ASP.NET MVC 4 Basic template The Basic template has configuration in place to use ASP.NET Membership with the Universal Providers. You can see that configuration in the ASP.NET MVC 4 Basic template's web.config: <profile defaultProvider="DefaultProfileProvider"> <providers> <add name="DefaultProfileProvider" type="System.Web.Providers.DefaultProfileProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </profile> <membership defaultProvider="DefaultMembershipProvider"> <providers> <add name="DefaultMembershipProvider" type="System.Web.Providers.DefaultMembershipProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" applicationName="/" /> </providers> </membership> <roleManager defaultProvider="DefaultRoleProvider"> <providers> <add name="DefaultRoleProvider" type="System.Web.Providers.DefaultRoleProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </roleManager> <sessionState mode="InProc" customProvider="DefaultSessionProvider"> <providers> <add name="DefaultSessionProvider" type="System.Web.Providers.DefaultSessionStateProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" /> </providers> </sessionState> This means that it's business as usual for the Basic template as far as ASP.NET Membership works. ASP.NET MVC 4 Internet template The Internet template has a few things set up to bootstrap SimpleMembership: \Models\AccountModels.cs defines a basic user account and includes data annotations to define keys and such \Filters\InitializeSimpleMembershipAttribute.cs creates the membership database using the above model, then calls WebSecurity.InitializeDatabaseConnection which verifies that the underlying tables are in place and marks initialization as complete (for the application's lifetime) \Controllers\AccountController.cs makes heavy use of OAuthWebSecurity (for OAuth account registration / login / management) and WebSecurity. WebSecurity provides account management services for ASP.NET MVC (and Web Pages) WebSecurity can work with any ExtendedMembershipProvider. There's one in the box (SimpleMembershipProvider) but you can write your own. Since a standard MembershipProvider is not an ExtendedMembershipProvider, WebSecurity will throw exceptions if the default membership provider is a MembershipProvider rather than an ExtendedMembershipProvider. Practical example: Create a new ASP.NET MVC 4 application using the Internet application template Install the Microsoft ASP.NET Universal Providers for LocalDB NuGet package Run the application, click on Register, add a username and password, and click submit You'll get the following execption in AccountController.cs::Register: To call this method, the "Membership.Provider" property must be an instance of "ExtendedMembershipProvider". This occurs because the ASP.NET Universal Providers packages include a web.config transform that will update your web.config to add the Universal Provider configuration I showed in the Basic template example above. When WebSecurity tries to use the configured ASP.NET Membership Provider, it checks if it can be cast to an ExtendedMembershipProvider before doing anything else. So, what do you do? Options: If you want to use the new AccountController, you'll either need to use the SimpleMembershipProvider or another valid ExtendedMembershipProvider. This is pretty straightforward. If you want to use an existing ASP.NET Membership Provider in ASP.NET MVC 4, you can't use the new AccountController. You can do a few things: Replace  the AccountController.cs and AccountModels.cs in an ASP.NET MVC 4 Internet project with one from an ASP.NET MVC 3 application (you of course won't have OAuth support). Then, if you want, you can go through and remove other things that were built around SimpleMembership - the OAuth partial view, the NuGet packages (e.g. the DotNetOpenAuthAuth package, etc.) Use an ASP.NET MVC 4 Internet application template and add in a Universal Providers NuGet package. Then copy in the AccountController and AccountModel classes. Create an ASP.NET MVC 3 project and upgrade it to ASP.NET MVC 4 using the steps shown in the ASP.NET MVC 4 release notes. None of these are particularly elegant or simple. Maybe we (or just me?) can do something to make this simpler - perhaps a NuGet package. However, this should be an edge case - hopefully the cases where you'd need to create a new ASP.NET but use legacy ASP.NET Membership Providers should be pretty rare. Please let me (or, preferably the team) know if that's an incorrect assumption. Membership in the ASP.NET 4.5 project template ASP.NET 4.5 Web Forms took a different approach which builds off ASP.NET Membership. Instead of using the WebMatrix security assemblies, Web Forms uses Microsoft.AspNet.Membership.OpenAuth assembly. I'm no expert on this, but from a bit of time in ILSpy and Visual Studio's (very pretty) dependency graphs, this uses a Membership Adapter to save OAuth data into an EF managed database while still running on top of ASP.NET Membership. Note: There may be a way to use this in ASP.NET MVC 4, although it would probably take some plumbing work to hook it up. How does this fit in with Universal Providers (System.Web.Providers)? Just to summarize: Universal Providers are intended for cases where you have an existing ASP.NET Membership Provider and you want to use it with another SQL Server database backend (other than SQL Server). It doesn't require agents to handle expired session cleanup and other background tasks, it piggybacks these tasks on other calls. Universal Providers are not really, strictly speaking, universal - at least to my way of thinking. They only work with databases in the SQL Server family. Universal Providers do not work with Simple Membership. The Universal Providers packages include some web config transforms which you would normally want when you're using them. What about the Web Site Administration Tool? Visual Studio includes tooling to launch the Web Site Administration Tool (WSAT) to configure users and roles in your application. WSAT is built to work with ASP.NET Membership, and is not compatible with Simple Membership. There are two main options there: Use the WebSecurity and OAuthWebSecurity API to manage the users and roles Create a web admin using the above APIs Since SimpleMembership runs on top of your database, you can update your users as you would any other data - via EF or even in direct database edits (in development, of course)

    Read the article

  • Top things web developers should know about the Visual Studio 2013 release

    - by Jon Galloway
    ASP.NET and Web Tools for Visual Studio 2013 Release NotesASP.NET and Web Tools for Visual Studio 2013 Release NotesSummary for lazy readers: Visual Studio 2013 is now available for download on the Visual Studio site and on MSDN subscriber downloads) Visual Studio 2013 installs side by side with Visual Studio 2012 and supports round-tripping between Visual Studio versions, so you can try it out without committing to a switch Visual Studio 2013 ships with the new version of ASP.NET, which includes ASP.NET MVC 5, ASP.NET Web API 2, Razor 3, Entity Framework 6 and SignalR 2.0 The new releases ASP.NET focuses on One ASP.NET, so core features and web tools work the same across the platform (e.g. adding ASP.NET MVC controllers to a Web Forms application) New core features include new templates based on Bootstrap, a new scaffolding system, and a new identity system Visual Studio 2013 is an incredible editor for web files, including HTML, CSS, JavaScript, Markdown, LESS, Coffeescript, Handlebars, Angular, Ember, Knockdown, etc. Top links: Visual Studio 2013 content on the ASP.NET site are in the standard new releases area: http://www.asp.net/vnext ASP.NET and Web Tools for Visual Studio 2013 Release Notes Short intro videos on the new Visual Studio web editor features from Scott Hanselman and Mads Kristensen Announcing release of ASP.NET and Web Tools for Visual Studio 2013 post on the official .NET Web Development and Tools Blog Scott Guthrie's post: Announcing the Release of Visual Studio 2013 and Great Improvements to ASP.NET and Entity Framework Okay, for those of you who are still with me, let's dig in a bit. Quick web dev notes on downloading and installing Visual Studio 2013 I found Visual Studio 2013 to be a pretty fast install. According to Brian Harry's release post, installing over pre-release versions of Visual Studio is supported.  I've installed the release version over pre-release versions, and it worked fine. If you're only going to be doing web development, you can speed up the install if you just select Web Developer tools. Of course, as a good Microsoft employee, I'll mention that you might also want to install some of those other features, like the Store apps for Windows 8 and the Windows Phone 8.0 SDK, but they do download and install a lot of other stuff (e.g. the Windows Phone SDK sets up Hyper-V and downloads several GB's of VM's). So if you're planning just to do web development for now, you can pick just the Web Developer Tools and install the other stuff later. If you've got a fast internet connection, I recommend using the web installer instead of downloading the ISO. The ISO includes all the features, whereas the web installer just downloads what you're installing. Visual Studio 2013 development settings and color theme When you start up Visual Studio, it'll prompt you to pick some defaults. These are totally up to you -whatever suits your development style - and you can change them later. As I said, these are completely up to you. I recommend either the Web Development or Web Development (Code Only) settings. The only real difference is that Code Only hides the toolbars, and you can switch between them using Tools / Import and Export Settings / Reset. Web Development settings Web Development (code only) settings Usually I've just gone with Web Development (code only) in the past because I just want to focus on the code, although the Standard toolbar does make it easier to switch default web browsers. More on that later. Color theme Sigh. Okay, everyone's got their favorite colors. I alternate between Light and Dark depending on my mood, and I personally like how the low contrast on the window chrome in those themes puts the emphasis on my code rather than the tabs and toolbars. I know some people got pretty worked up over that, though, and wanted the blue theme back. I personally don't like it - it reminds me of ancient versions of Visual Studio that I don't want to think about anymore. So here's the thing: if you install Visual Studio Ultimate, it defaults to Blue. The other versions default to Light. If you use Blue, I won't criticize you - out loud, that is. You can change themes really easily - either Tools / Options / Environment / General, or the smart way: ctrl+q for quick launch, then type Theme and hit enter. Signing in During the first run, you'll be prompted to sign in. You don't have to - you can click the "Not now, maybe later" link at the bottom of that dialog. I recommend signing in, though. It's not hooked in with licensing or tracking the kind of code you write to sell you components. It is doing good things, like  syncing your Visual Studio settings between computers. More about that here. So, you don't have to, but I sure do. Overview of shiny new things in ASP.NET land There are a lot of good new things in ASP.NET. I'll list some of my favorite here, but you can read more on the ASP.NET site. One ASP.NET You've heard us talk about this for a while. The idea is that options are good, but choice can be a burden. When you start a new ASP.NET project, why should you have to make a tough decision - with long-term consequences - about how your application will work? If you want to use ASP.NET Web Forms, but have the option of adding in ASP.NET MVC later, why should that be hard? It's all ASP.NET, right? Ideally, you'd just decide that you want to use ASP.NET to build sites and services, and you could use the appropriate tools (the green blocks below) as you needed them. So, here it is. When you create a new ASP.NET application, you just create an ASP.NET application. Next, you can pick from some templates to get you started... but these are different. They're not "painful decision" templates, they're just some starting pieces. And, most importantly, you can mix and match. I can pick a "mostly" Web Forms template, but include MVC and Web API folders and core references. If you've tried to mix and match in the past, you're probably aware that it was possible, but not pleasant. ASP.NET MVC project files contained special project type GUIDs, so you'd only get controller scaffolding support in a Web Forms project if you manually edited the csproj file. Features in one stack didn't work in others. Project templates were painful choices. That's no longer the case. Hooray! I just did a demo in a presentation last week where I created a new Web Forms + MVC + Web API site, built a model, scaffolded MVC and Web API controllers with EF Code First, add data in the MVC view, viewed it in Web API, then added a GridView to the Web Forms Default.aspx page and bound it to the Model. In about 5 minutes. Sure, it's a simple example, but it's great to be able to share code and features across the whole ASP.NET family. Authentication In the past, authentication was built into the templates. So, for instance, there was an ASP.NET MVC 4 Intranet Project template which created a new ASP.NET MVC 4 application that was preconfigured for Windows Authentication. All of that authentication stuff was built into each template, so they varied between the stacks, and you couldn't reuse them. You didn't see a lot of changes to the authentication options, since they required big changes to a bunch of project templates. Now, the new project dialog includes a common authentication experience. When you hit the Change Authentication button, you get some common options that work the same way regardless of the template or reference settings you've made. These options work on all ASP.NET frameworks, and all hosting environments (IIS, IIS Express, or OWIN for self-host) The default is Individual User Accounts: This is the standard "create a local account, using username / password or OAuth" thing; however, it's all built on the new Identity system. More on that in a second. The one setting that has some configuration to it is Organizational Accounts, which lets you configure authentication using Active Directory, Windows Azure Active Directory, or Office 365. Identity There's a new identity system. We've taken the best parts of the previous ASP.NET Membership and Simple Identity systems, rolled in a lot of feedback and made big enhancements to support important developer concerns like unit testing and extensiblity. I've written long posts about ASP.NET identity, and I'll do it again. Soon. This is not that post. The short version is that I think we've finally got just the right Identity system. Some of my favorite features: There are simple, sensible defaults that work well - you can File / New / Run / Register / Login, and everything works. It supports standard username / password as well as external authentication (OAuth, etc.). It's easy to customize without having to re-implement an entire provider. It's built using pluggable pieces, rather than one large monolithic system. It's built using interfaces like IUser and IRole that allow for unit testing, dependency injection, etc. You can easily add user profile data (e.g. URL, twitter handle, birthday). You just add properties to your ApplicationUser model and they'll automatically be persisted. Complete control over how the identity data is persisted. By default, everything works with Entity Framework Code First, but it's built to support changes from small (modify the schema) to big (use another ORM, store your data in a document database or in the cloud or in XML or in the EXIF data of your desktop background or whatever). It's configured via OWIN. More on OWIN and Katana later, but the fact that it's built using OWIN means it's portable. You can find out more in the Authentication and Identity section of the ASP.NET site (and lots more content will be going up there soon). New Bootstrap based project templates The new project templates are built using Bootstrap 3. Bootstrap (formerly Twitter Bootstrap) is a front-end framework that brings a lot of nice benefits: It's responsive, so your projects will automatically scale to device width using CSS media queries. For example, menus are full size on a desktop browser, but on narrower screens you automatically get a mobile-friendly menu. The built-in Bootstrap styles make your standard page elements (headers, footers, buttons, form inputs, tables etc.) look nice and modern. Bootstrap is themeable, so you can reskin your whole site by dropping in a new Bootstrap theme. Since Bootstrap is pretty popular across the web development community, this gives you a large and rapidly growing variety of templates (free and paid) to choose from. Bootstrap also includes a lot of very useful things: components (like progress bars and badges), useful glyphicons, and some jQuery plugins for tooltips, dropdowns, carousels, etc.). Here's a look at how the responsive part works. When the page is full screen, the menu and header are optimized for a wide screen display: When I shrink the page down (this is all based on page width, not useragent sniffing) the menu turns into a nice mobile-friendly dropdown: For a quick example, I grabbed a new free theme off bootswatch.com. For simple themes, you just need to download the boostrap.css file and replace the /content/bootstrap.css file in your project. Now when I refresh the page, I've got a new theme: Scaffolding The big change in scaffolding is that it's one system that works across ASP.NET. You can create a new Empty Web project or Web Forms project and you'll get the Scaffold context menus. For release, we've got MVC 5 and Web API 2 controllers. We had a preview of Web Forms scaffolding in the preview releases, but they weren't fully baked for RTM. Look for them in a future update, expected pretty soon. This scaffolding system wasn't just changed to work across the ASP.NET frameworks, it's also built to enable future extensibility. That's not in this release, but should also hopefully be out soon. Project Readme page This is a small thing, but I really like it. When you create a new project, you get a Project_Readme.html page that's added to the root of your project and opens in the Visual Studio built-in browser. I love it. A long time ago, when you created a new project we just dumped it on you and left you scratching your head about what to do next. Not ideal. Then we started adding a bunch of Getting Started information to the new project templates. That told you what to do next, but you had to delete all of that stuff out of your website. It doesn't belong there. Not ideal. This is a simple HTML file that's not integrated into your project code at all. You can delete it if you want. But, it shows a lot of helpful links that are current for the project you just created. In the future, if we add new wacky project types, they can create readme docs with specific information on how to do appropriately wacky things. Side note: I really like that they used the internal browser in Visual Studio to show this content rather than popping open an HTML page in the default browser. I hate that. It's annoying. If you're doing that, I hope you'll stop. What if some unnamed person has 40 or 90 tabs saved in their browser session? When you pop open your "Thanks for installing my Visual Studio extension!" page, all eleventy billion tabs start up and I wish I'd never installed your thing. Be like these guys and pop stuff Visual Studio specific HTML docs in the Visual Studio browser. ASP.NET MVC 5 The biggest change with ASP.NET MVC 5 is that it's no longer a separate project type. It integrates well with the rest of ASP.NET. In addition to that and the other common features we've already looked at (Bootstrap templates, Identity, authentication), here's what's new for ASP.NET MVC. Attribute routing ASP.NET MVC now supports attribute routing, thanks to a contribution by Tim McCall, the author of http://attributerouting.net. With attribute routing you can specify your routes by annotating your actions and controllers. This supports some pretty complex, customized routing scenarios, and it allows you to keep your route information right with your controller actions if you'd like. Here's a controller that includes an action whose method name is Hiding, but I've used AttributeRouting to configure it to /spaghetti/with-nesting/where-is-waldo public class SampleController : Controller { [Route("spaghetti/with-nesting/where-is-waldo")] public string Hiding() { return "You found me!"; } } I enable that in my RouteConfig.cs, and I can use that in conjunction with my other MVC routes like this: public class RouteConfig { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapMvcAttributeRoutes(); routes.MapRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); } } You can read more about Attribute Routing in ASP.NET MVC 5 here. Filter enhancements There are two new additions to filters: Authentication Filters and Filter Overrides. Authentication filters are a new kind of filter in ASP.NET MVC that run prior to authorization filters in the ASP.NET MVC pipeline and allow you to specify authentication logic per-action, per-controller, or globally for all controllers. Authentication filters process credentials in the request and provide a corresponding principal. Authentication filters can also add authentication challenges in response to unauthorized requests. Override filters let you change which filters apply to a given action method or controller. Override filters specify a set of filter types that should not be run for a given scope (action or controller). This allows you to configure filters that apply globally but then exclude certain global filters from applying to specific actions or controllers. ASP.NET Web API 2 ASP.NET Web API 2 includes a lot of new features. Attribute Routing ASP.NET Web API supports the same attribute routing system that's in ASP.NET MVC 5. You can read more about the Attribute Routing features in Web API in this article. OAuth 2.0 ASP.NET Web API picks up OAuth 2.0 support, using security middleware running on OWIN (discussed below). This is great for features like authenticated Single Page Applications. OData Improvements ASP.NET Web API now has full OData support. That required adding in some of the most powerful operators: $select, $expand, $batch and $value. You can read more about OData operator support in this article by Mike Wasson. Lots more There's a huge list of other features, including CORS (cross-origin request sharing), IHttpActionResult, IHttpRequestContext, and more. I think the best overview is in the release notes. OWIN and Katana I've written about OWIN and Katana recently. I'm a big fan. OWIN is the Open Web Interfaces for .NET. It's a spec, like HTML or HTTP, so you can't install OWIN. The benefit of OWIN is that it's a community specification, so anyone who implements it can plug into the ASP.NET stack, either as middleware or as a host. Katana is the Microsoft implementation of OWIN. It leverages OWIN to wire up things like authentication, handlers, modules, IIS hosting, etc., so ASP.NET can host OWIN components and Katana components can run in someone else's OWIN implementation. Howard Dierking just wrote a cool article in MSDN magazine describing Katana in depth: Getting Started with the Katana Project. He had an interesting example showing an OWIN based pipeline which leveraged SignalR, ASP.NET Web API and NancyFx components in the same stack. If this kind of thing makes sense to you, that's great. If it doesn't, don't worry, but keep an eye on it. You're going to see some cool things happen as a result of ASP.NET becoming more and more pluggable. Visual Studio Web Tools Okay, this stuff's just crazy. Visual Studio has been adding some nice web dev features over the past few years, but they've really cranked it up for this release. Visual Studio is by far my favorite code editor for all web files: CSS, HTML, JavaScript, and lots of popular libraries. Stop thinking of Visual Studio as a big editor that you only use to write back-end code. Stop editing HTML and CSS in Notepad (or Sublime, Notepad++, etc.). Visual Studio starts up in under 2 seconds on a modern computer with an SSD. Misspelling HTML attributes or your CSS classes or jQuery or Angular syntax is stupid. It doesn't make you a better developer, it makes you a silly person who wastes time. Browser Link Browser Link is a real-time, two-way connection between Visual Studio and all connected browsers. It's only attached when you're running locally, in debug, but it applies to any and all connected browser, including emulators. You may have seen demos that showed the browsers refreshing based on changes in the editor, and I'll agree that's pretty cool. But it's really just the start. It's a two-way connection, and it's built for extensiblity. That means you can write extensions that push information from your running application (in IE, Chrome, a mobile emulator, etc.) back to Visual Studio. Mads and team have showed off some demonstrations where they enabled edit mode in the browser which updated the source HTML back on the browser. It's also possible to look at how the rendered HTML performs, check for compatibility issues, watch for unused CSS classes, the sky's the limit. New HTML editor The previous HTML editor had a lot of old code that didn't allow for improvements. The team rewrote the HTML editor to take advantage of the new(ish) extensibility features in Visual Studio, which then allowed them to add in all kinds of features - things like CSS Class and ID IntelliSense (so you type style="" and get a list of classes and ID's for your project), smart indent based on how your document is formatted, JavaScript reference auto-sync, etc. Here's a 3 minute tour from Mads Kristensen. The previous HTML editor had a lot of old code that didn't allow for improvements. The team rewrote the HTML editor to take advantage of the new(ish) extensibility features in Visual Studio, which then allowed them to add in all kinds of features - things like CSS Class and ID IntelliSense (so you type style="" and get a list of classes and ID's for your project), smart indent based on how your document is formatted, JavaScript reference auto-sync, etc. Lots more Visual Studio web dev features That's just a sampling - there's a ton of great features for JavaScript editing, CSS editing, publishing, and Page Inspector (which shows real-time rendering of your page inside Visual Studio). Here are some more short videos showing those features. Lots, lots more Okay, that's just a summary, and it's still quite a bit. Head on over to http://asp.net/vnext for more information, and download Visual Studio 2013 now to get started!

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Am I just not understanding TDD unit testing (Asp.Net MVC project)?

    - by KallDrexx
    I am trying to figure out how to correctly and efficiently unit test my Asp.net MVC project. When I started on this project I bought the Pro ASP.Net MVC, and with that book I learned about TDD and unit testing. After seeing the examples, and the fact that I work as a software engineer in QA in my current company, I was amazed at how awesome TDD seemed to be. So I started working on my project and went gun-ho writing unit tests for my database layer, business layer, and controllers. Everything got a unit test prior to implementation. At first I thought it was awesome, but then things started to go downhill. Here are the issues I started encountering: I ended up writing application code in order to make it possible for unit tests to be performed. I don't mean this in a good way as in my code was broken and I had to fix it so the unit test pass. I mean that abstracting out the database to a mock database is impossible due to the use of linq for data retrieval (using the generic repository pattern). The reason is that with linq-sql or linq-entities you can do joins just by doing: var objs = select p from _container.Projects select p.Objects; However, if you mock the database layer out, in order to have that linq pass the unit test you must change the linq to be var objs = select p from _container.Projects join o in _container.Objects on o.ProjectId equals p.Id select o; Not only does this mean you are changing your application logic just so you can unit test it, but you are making your code less efficient for the sole purpose of testability, and getting rid of a lot of advantages using an ORM has in the first place. Furthermore, since a lot of the IDs for my models are database generated, I proved to have to write additional code to handle the non-database tests since IDs were never generated and I had to still handle those cases for the unit tests to pass, yet they would never occur in real scenarios. Thus I ended up throwing out my database unit testing. Writing unit tests for controllers was easy as long as I was returning views. However, the major part of my application (and the one that would benefit most from unit testing) is a complicated ajax web application. For various reasons I decided to change the app from returning views to returning JSON with the data I needed. After this occurred my unit tests became extremely painful to write, as I have not found any good way to write unit tests for non-trivial json. After pounding my head and wasting a ton of time trying to find a good way to unit test the JSON, I gave up and deleted all of my controller unit tests (all controller actions are focused on this part of the app so far). So finally I was left with testing the Service layer (BLL). Right now I am using EF4, however I had this issue with linq-sql as well. I chose to do the EF4 model-first approach because to me, it makes sense to do it that way (define my business objects and let the framework figure out how to translate it into the sql backend). This was fine at the beginning but now it is becoming cumbersome due to relationships. For example say I have Project, User, and Object entities. One Object must be associated to a project, and a project must be associated to a user. This is not only a database specific rule, these are my business rules as well. However, say I want to do a unit test that I am able to save an object (for a simple example). I now have to do the following code just to make sure the save worked: User usr = new User { Name = "Me" }; _userService.SaveUser(usr); Project prj = new Project { Name = "Test Project", Owner = usr }; _projectService.SaveProject(prj); Object obj = new Object { Name = "Test Object" }; _objectService.SaveObject(obj); // Perform verifications There are many issues with having to do all this just to perform one unit test. There are several issues with this. For starters, if I add a new dependency, such as all projects must belong to a category, I must go into EVERY single unit test that references a project, add code to save the category then add code to add the category to the project. This can be a HUGE effort down the road for a very simple business logic change, and yet almost none of the unit tests I will be modifying for this requirement are actually meant to test that feature/requirement. If I then add verifications to my SaveProject method, so that projects cannot be saved unless they have a name with at least 5 characters, I then have to go through every Object and Project unit test to make sure that the new requirement doesn't make any unrelated unit tests fail. If there is an issue in the UserService.SaveUser() method it will cause all project, and object unit tests to fail and it the cause won't be immediately noticeable without having to dig through the exceptions. Thus I have removed all service layer unit tests from my project. I could go on and on, but so far I have not seen any way for unit testing to actually help me and not get in my way. I can see specific cases where I can, and probably will, implement unit tests, such as making sure my data verification methods work correctly, but those cases are few and far between. Some of my issues can probably be mitigated but not without adding extra layers to my application, and thus making more points of failure just so I can unit test. Thus I have no unit tests left in my code. Luckily I heavily use source control so I can get them back if I need but I just don't see the point. Everywhere on the internet I see people talking about how great TDD unit tests are, and I'm not just talking about the fanatical people. The few people who dismiss TDD/Unit tests give bad arguments claiming they are more efficient debugging by hand through the IDE, or that their coding skills are amazing that they don't need it. I recognize that both of those arguments are utter bullocks, especially for a project that needs to be maintainable by multiple developers, but any valid rebuttals to TDD seem to be few and far between. So the point of this post is to ask, am I just not understanding how to use TDD and automatic unit tests?

    Read the article

  • How to change image through click - javascript

    - by Elmir Kouliev
    I have a toolbar that has 5 table cells. The first cell looks clear, and the other 4 have a shade over them. I want to make it so that clicking on the table cell will also change the image so that the shade will also change in respect to the current table cell that is selected. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <title>X?B?RL?R V? HADIS?L?R</title> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <link rel="stylesheet" href="N&SAz.css" /> <link rel="shortcut icon" href="../../Images/favicon.ico" /> <script type="text/javascript"> var switchTo5x = true; </script> <script type="text/javascript" src="http://w.sharethis.com/button/buttons.js"></script> <script type="text/javascript"> stLight.options({ publisher: "581d0c30-ee9d-4c94-9b6f-a55e8ae3f4ae" }); </script> <script src="../../jquery-1.7.2.min.js" type="text/javascript"> </script> <script type="text/javascript"> $(document).ready(function () { $(".fade").css("display", "none"); $(".fade").fadeIn(20); $("a.transition").click(function (event) { event.preventDefault(); linkLocation = this.href; $("body").fadeOut(500, redirectPage); }); function redirectPage() { window.location = linkLocation; } }); $(document).ready(function () { $('.preview').hide(); $('#link_1').click(function () { $('#latest_story_preview1').hide(); $('#latest_story_preview2').hide(); $('#latest_story_preview3').hide(); $('#latest_story_preview4').hide(); $('#latest_story_main').fadeIn(800); }); $('#link_2').click(function () { $('#latest_story_main').hide(); $('#latest_story_preview2').hide(); $('#latest_story_preview3').hide(); $('#latest_story_preview4').hide(); $('#latest_story_preview1').fadeIn(800); }); $('#link_3').click(function () { $('#latest_story_main').hide(); $('#latest_story_preview1').hide(); $('#latest_story_preview3').hide(); $('#latest_story_preview4').hide(); $('#latest_story_preview2').fadeIn(800); }); $('#link_4').click(function () { $('#latest_story_main').hide(); $('#latest_story_preview1').hide(); $('#latest_story_preview2').hide(); $('#latest_story_preview4').hide(); $('#latest_story_preview3').fadeIn(800); }); $('#link_5').click(function () { $('#latest_story_main').hide(); $('#latest_story_preview1').hide(); $('#latest_story_preview2').hide(); $('#latest_story_preview3').hide(); $('#latest_story_preview4').fadeIn(800); }); $(".fade").css("display", "none"); $(".fade").fadeIn(1200); $("a.transition").click(function (event) { event.preventDefault(); linkLocation = this.href; $("body").fadeOut(500, redirectPage); }); }); </script> </head> <body id="body" style="background-color:#FFF;" onload="document"> <div style="margin:0px auto;width:1000px;" id="all_content"> <div id="top_content" style="background-color:transparent;"> <ul id="translation_list"> <li> <a href=""> AZ </a> </li> <li> <a href="#"> RUS </a> </li> <li> <a href="#"> ENG </a> </li> </ul> <div id="share_buttons"> <span class='st_facebook' displayText='' title="Facebook"></span> <span class='st_twitter' displayText='' title="Twitter"></span> <span class='st_linkedin' displayText='' title="Linkedin"></span> <span class='st_googleplus' displayText='' title="Google +"></span> <span class='st_email' displayText='' title="Email"></span> </div> <img src="../../Images/RasulGuliyev.png" width="330" height="80" id="top_logo"> <br /> <br /> <div class="fade" id="navigation"> <ul> <font face="Verdana, Geneva, sans-serif"> <li> <a href="../../index.html"> ANA S?HIF? </a> </li> <li> <a href="../biographyAZ.html"> BIOQRAFIYA </a> </li> <li style="background-color:#9C1A35;"> <a href="#"> X?B?RL?R V? HADIS?L?R </a> </li> <li> <a> PROQRAM </a> </li> <li> <a> SEÇICIL?R </a> </li> <li> <a> ?LAQ?L?R</a> </li> </font> </ul> </div> <font face="Tahoma, Geneva, sans-serif"> <br /> <div id="navigation2"> <ul> <a> <li><i> HADIS?L?R </i></li> </a> <a> <li><i>VIDEOLAR</i> </li> </a> </ul> </div> <div id="news_section" style="background-color:#FFF;"> <h3 style="font-weight:100; font-size:22px; font-style:normal; color:#7C7C7C;">Son X?b?rl?r</h3> <div class="fade" id="Latest-Stories"> <table id="stories-preview" width="330" height="598" border="0" cellpadding="0" cellspacing="0"> <tr> <td> <a id="link_1" href="#"><img src="../../Images/N&EImages/images/Article-Nav-Bar1_01.gif" width="330" height="114" alt=""></a> </td> </tr> <tr> <td> <a id="link_2" href="#"> <img src="../../Images/N&EImages/images/Article-Nav-Bar1_02.gif" width="330" height="109" alt=""> </a> </td> </tr> <tr> <td> <a id="link_3" href="#"> <img src="../../Images/N&EImages/images/Article-Nav-Bar1_03.gif" width="330" height="132" alt=""></a> </td> </tr> <tr> <td> <a id="link_4" href="#"><img src="../../Images/N&EImages/images/Article-Nav-Bar1_04.gif" width="330" height="124" alt=""></a> </td> </tr> <tr> <td> <a id="link_5" href="#"><img src="../../Images/N&EImages/images/Article-Nav-Bar1_05.gif" width="330" height="119" alt=""></a> </td> </tr> </table> <div class="fade" id="latest_story_main"> <!--START--> <img src="../../Images/N&EImages/GuliyevFace.jpeg" style="padding:4px; margin-top:6px; border-style:groove; border-width:thin; margin-left:90px;" /> <a href="#"> <h2 style="font-weight:100; font-style:normal;"> "Bizim V?zif?miz Az?rbaycan Xalqinin T?zyiq? M?ruz Qalmamasini T?min Etm?kdir" </h2> </a> <h5 style="font-weight:100; font-size:12px; color:#888; opacity:.9;"> <img src="../../Images/ClockImage.png" />IYUN 19, 2012 BY RASUL GULIYEV - R?SUL QULIYEV</h5> <p style="font-size:14px; font-style:normal;">ACP-nin v? Müqavim?t H?r?katinin lideri, eks-spiker R?sul Quliyev "Yeni Müsavat"a müsahib? verib. O, son vaxtlar ACP-d? bas ver?n kadr d?yisiklikl?ri, bar?sind? dolasan söz-söhb?tl?r v? dig?r m?s?l?l?r? aydinliq g?tirib. Müsahib?ni t?qdim edirik. – Az?rbaycanda siyasi günd?mi ?hat? ed?n m?s?l?l?rd?n biri d? Sülh?ddin ?kb?rin ACP-y? s?dr g?tirilm?sidir. Ideya v? t?s?bbüs kimin idi? – ?vv?ll?r d? qeyd <a href="#"> [...]</a> </p> <!--FIRST STORY END --> </div> <div class="preview" id="latest_story_preview1"> <!--START--> <img src="../../Images/N&EImages/GuliyevFace2.jpeg" style="padding:4px; margin-top:6px; border-style:groove; border-width:thin; margin-left:90px;" /> <a href="#"> <h2 style="font-weight:100; font-style:normal;"> "S?xsiyy?ti Alçaldilan Insanlarin Qisasi Amansiz Olur" </h2></a> <h5 style="font-weight:100; font-size:12px; color:#888; opacity:.9;"> <img src="../../Images/ClockImage.png" />IYUN 12, 2012 BY RASUL GULIYEV - R?SUL QULIYEV</h5> <p style="font-size:14px; font-style:normal;">R?sul Quliyev: "Az?rbaycanda müxalif?tin görün?n f?aliyy?ti ?halinin hökum?td?n naraziliq potensialini ifad? etmir" Eks-spiker Avropa görüsl?rinin yekunlarini s?rh etdi ACP lideri R?sul Quliyevin Avropa görüsl?ri basa çatib. S?f?rin yekunlari bar?d? R?sul Quliyev eksklüziv olaraq "Yeni Müsavat"a açiqlama verib. Norveçd? keçiril?n görüsl?rd? Açiq C?miyy?t v? Liberal Demokrat partiyalarinin s?drl?ri Sülh?ddin ?kb?r, Fuad ?liyev v? Müqavim?t H?r?kati Avropa <a href="#"> [...]</a> </p> <!--SECOND STORY END --> </div> <div class="preview" id="latest_story_preview2"> <!--START--> <img src="../../Images/N&EImages/GuliyevFace3.jpeg" style="padding:4px; margin-top:6px; border-style:groove; border-width:thin; margin-left:90px;" /> <a href="#"> <h2 style="font-weight:100; font-style:normal;"> R?sul Quliyevin Iyunun 4, 2012-ci ild? Bryusseld?ki Görüsl?rl? ?laq?dar Çixisi </h2></a> <h5 style="font-weight:100; font-size:12px; color:#888; opacity:.9;"> <img src="../../Images/ClockImage.png" />IYUN 4, 2012 BY RASUL GULIYEV - R?SUL QULIYEV</h5> <p style="font-size:14px; font-style:normal;">Brüssel görüsl?ri – Az?rbaycanda xalqin malini ogurlayan korrupsioner Höküm?t liderl?rinin xarici banklarda olan qara pullari v? ?mlaklarinin dondurulmasina çox qalmayib. Camaatin hüquqlarini pozan polis, prokuratura v? m?hk?m? isçil?rin? v? onlarin r?hb?rl?rin? viza m?hdudiyy?tl?ri qoymaqda reallasacaq. R?sul Quliyevin Iyunun 4, 2012-ci ild? Bryusseld?ki Görüsl?rl? ?laq?dar Çixisi Rasul Guliyev's Speech on June 4, 2012 about Brussels Meetings <a href="#">[...]</a> </p> <!--THIRD STORY END --> </div> <div class="preview" id="latest_story_preview3"> <!--START--> <img src="../../Images/N&EImages/GuliyevGroup1.jpeg" style="padding:4px; margin-top:6px; border-style:groove; border-width:thin; margin-left:90px;" /> <a href="#"> <h2 style="font-weight:100; font-style:normal;"> R?sul Quliyevin Avropa Parlamentind? v? Hakimiyy?t Qurumlarinda Görüsl?ri Baslamisdir </h2></a> <h5 style="font-weight:100; font-size:12px; color:#888; opacity:.9;"> <img src="../../Images/ClockImage.png" />MAY 31, 2012 BY RASUL GULIYEV - R?SUL QULIYEV</h5> <p style="font-size:14px; font-style:normal;">Aciq C?miyy?t Partiyasinin lideri, eks-spiker R?sul Quliyev Avropa Parlamentind? görüsl?rini davam etdirir. Bu haqda "Yeni Müsavat"a R.Quliyev özü m?lumat verib. O bildirib ki, görüsl?rd? Liberal Demokrat Partiyasinin s?dri Fuad ?liyev v? R.Quliyevin Skandinaviya ölk?l?ri üzr? müsaviri Rauf K?rimov da istirak edirl?r. Eks-spiker deyib ki, bu görüsl?r 2013-cü ild? keçiril?c?k prezident seçkil?rind? saxtalasdirmanin qarsisini almaq planinin [...]</p> <!--FOURTH STORY END --> </div> <div class="preview" id="latest_story_preview4"> <!--START--> <img src="../../Images/N&EImages/GuliyevGroup2.jpeg" style="padding:4px; margin-top:6px; border-style:groove; border-width:thin; margin-left:90px;" /> <a href="#"> <h2 style="font-weight:100; font-style:normal;"> Norveçin Oslo S?h?rind? Parlament Üzvl?ri il? v? Xarici Isl?r Nazirliyind? Görüsl?r </h2></a> <h5 style="font-weight:100; font-size:12px; color:#888; opacity:.9;"> <img src="../../Images/ClockImage.png" />MAY 30, 2012 BY RASUL GULIYEV - R?SUL QULIYEV</h5> <p style="font-size:14px; font-style:normal;">R?sul Quliyev Norveçin Oslo s?h?rind? Parlament üzvl?ri v? Xarici isl?r nazirliyind? görüsl?r keçirmisdir. Bu görüsl?rd? Az?rbaycandan Liberal Demokrat Partiyasinin s?dri Fuad ?liyev, Avro-Atlantik Surasinin s?dri Sülh?ddin ?kb?r v? Milli Müqavim?t H?r?katinin Skandinaviya ölk?l?ri üzr? nümay?nd?si Rauf K?rimov istirak etmisdir. Siyasil?r ilk ?vv?l mayin 22-d? Norveç Parlamentinin Avropa Surasinda t?msil ed?n nümay?nd? hey?tinin üzvül?ri Karin S. [...]</a> </p> <!--FIFTH STORY END --> </div> <hr /> </div> <!--LATEST STORIES --> <div class="fade" id="article-section"> <h3 style="font-weight:100; font-size:22px; font-style:normal; color:#7C7C7C;">Çecin X?b?rl?r</h3> <div class="older-article"> <img src="../../Images/N&EImages/GuliyevGroup2.jpeg" style="padding:4px; margin-top:6px; border-style:groove; border-width:thin; margin-left:90px;" /> <a href="#"> <h2 style="font-weight:100; font-style:normal;"> Norveçin Oslo S?h?rind? Parlament Üzvl?ri il? v? Xarici Isl?r Nazirliyind? Görüsl?r </h2></a> <h5 style="font-weight:100; font-size:12px; color:#888; opacity:.9;"> <img src="../../Images/ClockImage.png" />MAY 30, 2012 BY RASUL GULIYEV - R?SUL QULIYEV</h5> <p style="font-size:14px; font-style:normal;">R?sul Quliyev Norveçin Oslo s?h?rind? Parlament üzvl?ri v? Xarici isl?r nazirliyind? görüsl?r keçirmisdir. Bu görüsl?rd? Az?rbaycandan Liberal Demokrat Partiyasinin s?dri Fuad ?liyev, Avro-Atlantik Surasinin s?dri Sülh?ddin ?kb?r v? Milli Müqavim?t H?r?katinin Skandinaviya ölk?l?ri üzr? nümay?nd?si Rauf K?rimov istirak etmisdir. Siyasil?r ilk ?vv?l mayin 22-d? Norveç Parlamentinin Avropa Surasinda t?msil ed?n nümay?nd? hey?tinin üzvül?ri Karin S. [...]</a> </p> </div> <hr /> </div> <!--NEWS SECTION--> </font> <h3 class="fade" id="footer">Rasul Guliyev 2012</h3> </div> </body> </head> </html>

    Read the article

< Previous Page | 21 22 23 24 25