Search Results

Search found 23792 results on 952 pages for 'void pointers'.

Page 25/952 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • Interpretation of int (*a)[3]

    - by kapuzineralex
    When working with arrays and pointers in C, one quickly discovers that they are by no means equivalent although it might seem so at a first glance. I know about the differences in L-values and R-values. Still, recently I tried to find out the type of a pointer that I could use in conjunction with a two-dimensional array, i.e. int foo[2][3]; int (*a)[3] = foo; However, I just can't find out how the compiler "understands" the type definition of a in spite of the regular operator precedence rules for * and []. If instead I were to use a typedef, the problem becomes significantly simpler: int foo[2][3]; typedef int my_t[3]; my_t *a = foo; At the bottom line, can someone answer me the questions as to how the term int (*a)[3] is read by the compiler? int a[3] is simple, int *a[3] is simple as well. But then, why is it not int *(a[3])? EDIT: Of course, instead of "typecast" I meant "typedef" (it was just a typo).

    Read the article

  • Pointer and malloc issue

    - by Andy
    I am fairly new to C and am getting stuck with arrays and pointers when they refer to strings. I can ask for input of 2 numbers (ints) and then return the one I want (first number or second number) without any issues. But when I request names and try to return them, the program crashes after I enter the first name and not sure why. In theory I am looking to reserve memory for the first name, and then expand it to include a second name. Can anyone explain why this breaks? Thanks! #include <stdio.h> #include <stdlib.h> void main () { int NumItems = 0; NumItems += 1; char* NameList = malloc(sizeof(char[10])*NumItems); printf("Please enter name #1: \n"); scanf("%9s", NameList[0]); fpurge(stdin); NumItems += 1; NameList = realloc(NameList,sizeof(char[10])*NumItems); printf("Please enter name #2: \n"); scanf("%9s", NameList[1]); fpurge(stdin); printf("The first name is: %s",NameList[0]); printf("The second name is: %s",NameList[1]); return 0; }

    Read the article

  • Public class: Makes pointer from integer without cast

    - by meridimus
    I have written a class to help save and load data for the sake of persistence for my iPhone application but I have a problem with some NSUIntegers that I'm passing across. Basically, I have the code to use pointers, but eventually it has to start out being an actual value right? So I get this error warning: passing argument 1 of 'getSaveWithCampaign:andLevel:' makes pointer from integer without a cast My code is laid out like so. (Persistence is the name of the class) NSDictionary *saveData = [Persistence getSaveWithCampaign:currentCampaign andLevel:[indexPath row]]; Here's Persistence.m #import "Persistence.h" @implementation Persistence + (NSString *)dataFilePath { NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES); NSString *documentsDirectory = [paths objectAtIndex:0]; return [documentsDirectory stringByAppendingPathComponent:kSaveFilename]; } + (NSDictionary *)getSaveWithCampaign:(NSUInteger *)campaign andLevel:(NSUInteger *)level { NSString *filePath = [self dataFilePath]; if([[NSFileManager defaultManager] fileExistsAtPath:filePath]) { NSDictionary *saveData = [[NSDictionary alloc] initWithContentsOfFile:filePath]; NSString *campaignAndLevelKey = [self makeCampaign:campaign andLevelKey:level]; NSDictionary *campaignAndLevelData = [saveData objectForKey:campaignAndLevelKey]; [saveData release]; return campaignAndLevelData; } else { return nil; } } + (NSString *)makeCampaign:(NSUInteger *)campaign andLevelKey:(NSUInteger *)level { return [[NSString stringWithFormat:@"%d - ", campaign+1] stringByAppendingString:[NSString stringWithFormat:@"%d", level+1]]; } @end

    Read the article

  • How to queue and call actual methods (rather than immediately eval) in java?

    - by alleywayjack
    There are a list of tasks that are time sensitive (but "time" in this case is arbitrary to what another program tells me - it's more like "ticks" rather than time). However, I do NOT want said methods to evaluate immediately. I want one to execute after the other finished. I'm using a linked list for my queue, but I'm not really sure how/if I can access the actual methods in a class without evaluating them immediate. The code would look something like... LinkedList<Method> l = new LinkedList<Method>(); l.add( this.move(4) ); l.add( this.read() ); l.removeFirst().call(); //wait 80 ticks l.removeFirst().call(); move(4) would execute immediately, then 80 ticks later, I would remove it from the list and call this.read() which would then be executed. I'm assuming this has to do with the reflection classes, and I've poked around a bit, but I can't seem to get anything to work, or do what I want. If only I could use pointers...

    Read the article

  • Strange code behaviour?

    - by goldenmean
    Hi, I have a C code in which i have a structure declaration which has an array of int[576] declared in it. For some reason, i had to remove this array from the structure, So i replaced this array with a pointer as int *ptr; declared some global array of same type, somewhere else in the code, and initialized this pointer by assigning the global array to this pointer. So i did not have to change the way i was accessing this array, from other parts of my code. But it works fine/gives desired output when i have the array declared in the structure, but it gives junk output when i declare it as a pointer in the structure and assign a global array to this pointer, as a part of the pointer initialization. All this code is being run on MS-VC 6.0/Windows setup/Intel-x86. I tried below things: 1)Suspected structure padding/alignment but could not get any leads? If at all structure alignment could be a culprit how can i proceed to narrow it down and confirm it? 2) I have made sure that in both cases the array is initialized to some default values, say 0 before its first use, and its not being used before initialization. 3)I tried using global array as well as malloc based memory for this newly declared array. Same result, junk output. Am i missing something? How can i zero down the problem. Any pointers would be helpful. Thanks, -AD.

    Read the article

  • Misaligned Pointer Performance

    - by Elite Mx
    Aren't misaligned pointers (in the BEST possible case) supposed to slow down performance and in the worst case crash your program (assuming the compiler was nice enough to compile your invalid c program). Well, the following code doesn't seem to have any performance differences between the aligned and misaligned versions. Why is that? /* brutality.c */ #ifdef BRUTALITY xs = (unsigned long *) ((unsigned char *) xs + 1); #endif ... /* main.c */ #include <stdio.h> #include <stdlib.h> #define size_t_max ((size_t)-1) #define max_count(var) (size_t_max / (sizeof var)) int main(int argc, char *argv[]) { unsigned long sum, *xs, *itr, *xs_end; size_t element_count = max_count(*xs) >> 4; xs = malloc(element_count * (sizeof *xs)); if(!xs) exit(1); xs_end = xs + element_count - 1; sum = 0; for(itr = xs; itr < xs_end; itr++) *itr = 0; #include "brutality.c" itr = xs; while(itr < xs_end) sum += *itr++; printf("%lu\n", sum); /* we could free the malloc-ed memory here */ /* but we are almost done */ exit(0); } Compiled and tested on two separate machines using gcc -pedantic -Wall -O0 -std=c99 main.c for i in {0..9}; do time ./a.out; done

    Read the article

  • C++0x Smart Pointer Comparisons: Inconsistent, what's the rationale?

    - by GManNickG
    In C++0x (n3126), smart pointers can be compared, both relationally and for equality. However, the way this is done seems inconsistent to me. For example, shared_ptr defines operator< be equivalent to: template <typename T, typename U> bool operator<(const shared_ptr<T>& a, const shared_ptr<T>& b) { return std::less<void*>()(a.get(), b.get()); } Using std::less provides total ordering with respect to pointer values, unlike a vanilla relational pointer comparison, which is unspecified. However, unique_ptr defines the same operator as: template <typename T1, typename D1, typename T2, typename D2> bool operator<(const unique_ptr<T1, D1>& a, const unique_ptr<T2, D2>& b) { return a.get() < b.get(); } It also defined the other relational operators in similar fashion. Why the change in method and "completeness"? That is, why does shared_ptr use std::less while unique_ptr uses the built-in operator<? And why doesn't shared_ptr also provide the other relational operators, like unique_ptr? I can understand the rationale behind either choice: with respect to method: it represents a pointer so just use the built-in pointer operators, versus it needs to be usable within an associative container so provide total ordering (like a vanilla pointer would get with the default std::less predicate template argument) with respect to completeness: it represents a pointer so provide all the same comparisons as a pointer, versus it is a class type and only needs to be less-than comparable to be used in an associative container, so only provide that requirement But I don't see why the choice changes depending on the smart pointer type. What am I missing? Bonus/related: std::shared_ptr seems to have followed from boost::shared_ptr, and the latter omits the other relational operators "by design" (and so std::shared_ptr does too). Why is this?

    Read the article

  • How do I reset my pointer to a specific array location?

    - by ohtanya
    I am a brand new programming student, so please forgive my ignorance. My assignment states: Write a program that declares an array of 10 integers. Write a loop that accepts 10 values from the keyboard and write another loop that displays the 10 values. Do not use any subscripts within the two loops; use pointers only. Here is my code: #include "stdafx.h" #include <iostream> using namespace std; int main() { const int NUM = 10; int values[NUM]; int *p = &values[0]; int x; for(x = 0; x < NUM; ++x, ++p) { cout << "Enter a value: "; cin >> *p; } for(x = 0; x < NUM; ++x, ++p) { cout << *p << " "; } return 0; } I think I know where my problem is. After my first loop, my pointer is at values[10], but I need to get it back to values[0] to display them. How can I do that?

    Read the article

  • Assigning address to array from heap

    - by Schaltfehler
    I want to save the state of my structs as a binary file and load them again. My structs look like this: typedef struct { uint8_t pointerLength; uint8_t *pointer; uint8_t NumBla; uinT16 Bla[MAX_NUM_Bla]; ... } BAR_STRUCT, *BAR; typedef struct { int numBar; BAR bars[MAX_NUM_BAR]; } FOO_STRUCT, *FOO; Saving is no problem, but restoring the state. Iam at the point where the bytestring from the file is on the heap and a pointer is pointing to the first adress of this string. And I do as follows: const void* dataPointer //points to adress in heap unsigned char* bytePointer = (unsigned char*)dataPointer; FOO foo = (FOO_STRUCT*)bytePointer; bytePointer += sizeof(FOO_STRUCT); for (int i=0; i < MAX_NUM_BAR; i++) { foo->bars[i] = (BAR_STRUCT*)bytePointer; } The last assignment doesn't work and I get an EXC_BAD_ACCESS. Because bars is an array of pointers i need to correct the adresses of each element is pointing to. Because they are not valid anymore. So I try to assign the adress of the object I saved in the bytesteam to foo-bars[i]; But I can not change foo-bars[i] at all. Accessing works but but assigning a new adress doesn't. I wonder why.

    Read the article

  • How to read some bytes from BYTE*

    - by chekalin-v
    I have BYTE pointer. For example the length of this BYTE array is 10. How can I read 4 bytes from 3 position BYTE array? Now I doing it so BYTE *source = "1234567890\0"; BYTE* tmp = new BYTE[4+1](); for(int i=0; i<4; i++) { tmp[i] = source[i+3]; }

    Read the article

  • What could cause a returning function to crash? C++

    - by JeanOTF
    So I have been debugging this error for hours now. I writing a program using Ogre3d relevant only because it doesn't load symbols so it doesn't let me stack trace which made finding the location of the crash even harder. So, write before I call a specific function I print out "Starting" then I call the function and immediately after I print "Stopping". Throughout the function I print out letters A-F where F is printed right before the function returns (one line above the last '}') The weird thing is when the crash occurs it is after the 'F' is printed but there is no 'Stopping'. Does this mean that the crash is happening in between somewhere? The only thing I can think of is something going wrong during the deallocation of some of the memory allocated during the function. I've never had anything happen like this, I will keep checking to make sure it's going wrong where I think it is.

    Read the article

  • Linked List exercise, what am I doing wrong?

    - by Sean Ochoa
    Hey all. I'm doing a linked list exercise that involves dynamic memory allocation, pointers, classes, and exceptions. Would someone be willing to critique it and tell me what I did wrong and what I should have done better both with regards to style and to those subjects I listed above? /* Linked List exercise */ #include <iostream> #include <exception> #include <string> using namespace std; class node{ public: node * next; int * data; node(const int i){ data = new int; *data = i; } node& operator=(node n){ *data = *(n.data); } ~node(){ delete data; } }; class linkedList{ public: node * head; node * tail; int nodeCount; linkedList(){ head = NULL; tail = NULL; } ~linkedList(){ while (head){ node* t = head->next; delete head; if (t) head = t; } } void add(node * n){ if (!head) { head = n; head->next = NULL; tail = head; nodeCount = 0; }else { node * t = head; while (t->next) t = t->next; t->next = n; n->next = NULL; nodeCount++; } } node * operator[](const int &i){ if ((i >= 0) && (i < nodeCount)) throw new exception("ERROR: Invalid index on linked list.", -1); node *t = head; for (int x = i; x < nodeCount; x++) t = t->next; return t; } void print(){ if (!head) return; node * t = head; string collection; cout << "["; int c = 0; if (!t->next) cout << *(t->data); else while (t->next){ cout << *(t->data); c++; if (t->next) t = t->next; if (c < nodeCount) cout << ", "; } cout << "]" << endl; } }; int main (const int & argc, const char * argv[]){ try{ linkedList * myList = new linkedList; for (int x = 0; x < 10; x++) myList->add(new node(x)); myList->print(); }catch(exception &ex){ cout << ex.what() << endl; return -1; } return 0; }

    Read the article

  • C++ std::vector problems

    - by Faur Ioan-Aurel
    For 2 days i tried to explain myself some of the things that are happening in my c++ code,and i can't get a good explanation.I must say that i'm more a java programmer.Long time i used quite a bit the C language but i guess Java erased those skills and now i'm hitting a wall trying to port a few classes from java to c++. So let's say that we have this 2 classes: class ForwardNetwork { protected: ForwardLayer* inputLayer; ForwardLayer* outputLayer; vector<ForwardLayer* > layers; public: void ForwardNetwork::getLayers(std::vector< ForwardLayer* >& result ) { for(int i= 0 ;i< layers.size(); i++){ ForwardLayer* lay = dynamic_cast<ForwardLayer*>(this->layers.at(i)); if(lay != NULL) result.push_back(lay); else cout << "Layer at#" << i << " is null" << endl; } } void ForwardNetwork::addLayer ( ForwardLayer* layer ) { if(layer != NULL) cout << "Before push layer is not null" << endl; //setup the forward and back pointer if ( this->outputLayer != NULL ) { layer->setPrevious ( this->outputLayer ); this->outputLayer->setNext ( layer ); } //update the input layer and outputLayer variables if ( this->layers.size() == 0 ) this->inputLayer = this->outputLayer = layer; else this->outputLayer = layer; //push layer in vector this->layers.push_back ( layer ); for(int i = 0; i< layers.size();i++) if(layers[i] != NULL) cout << "Check::Layer[" << i << "] is not null!" << endl; } }; Second class: class Backpropagation : public Train { public: Backpropagation::Backpropagation ( FeedForwardNetwork* network ){ this->network = network; vector<FeedforwardLayer*> vec; network->getLayers(vec); } }; Now if i add from main() some layers into network via addLayer(..) method it's all good.My vector is just as it should.But after i call Backpropagation() constructor with a network object ,when i enter getLayers(), some of my objects from vector have their address set to NULL(they are randomly chosen:for example if i run my app once with 3 layer's into vector ,the first object from vector is null.If i run it second time first 2 objects are null,third time just first object null and so on). Now i can't explain why this is happening.I must say that all the objects that should be in vector they also live inside the network and they are not NULL; This happens everywhere after i done with addLayer() so not just in the getLayers(). I cant get a good grasp to this problem.I thought first that i might modify my vector.But i can't find such thing. Also why if the reference from vector is NULL ,the reference that lives inside ForwardNetwork as a linked list (inputLayer and outputLayer) is not NULL? I must ask for your help.Please ,if you have some advices don't hesitate! PS: as compiler i use g++ part of gcc 4.6.1 under ubuntu 11.10

    Read the article

  • Problems Allocating Objects of Derived Class Where Base Class has Abstract Virtual Functions

    - by user1743901
    I am trying to get this Zombie/Human agent based simulation running, but I am having problems with these derived classes (Human and Zombie) who have parent class "Creature". I have 3 virtual functions declared in "Creature" and all three of these are re-declared AND DEFINED in both "Human" and "Zombie". But for some reason when I have my program call "new" to allocate memory for objects of type Human or Zombie, it complains about the virtual functions being abstract. Here's the code: definitions.h #ifndef definitions_h #define definitions_h class Creature; class Item; class Coords; class Grid { public: Creature*** cboard; Item*** iboard; int WIDTH; int HEIGHT; Grid(int WIDTHVALUE, int HEIGHTVALUE); void FillGrid(); //initializes grid object with humans and zombies void Refresh(); //calls Creature::Die(),Move(),Attack(),Breed() on every square void UpdateBuffer(char** buffer); bool isEmpty(int startx, int starty, int dir); char CreatureType(int xcoord, int ycoord); char CreatureType(int startx, int starty, int dir); }; class Random { public: int* rptr; void Print(); Random(int MIN, int MAX, int LEN); ~Random(); private: bool alreadyused(int checkthis, int len, int* rptr); bool isClean(); int len; }; class Coords { public: int x; int y; int MaxX; int MaxY; Coords() {x=0; y=0; MaxX=0; MaxY=0;} Coords(int X, int Y, int WIDTH, int HEIGHT) {x=X; y=Y; MaxX=WIDTH; MaxY=HEIGHT; } void MoveRight(); void MoveLeft(); void MoveUp(); void MoveDown(); void MoveUpRight(); void MoveUpLeft(); void MoveDownRight(); void MoveDownLeft(); void MoveDir(int dir); void setx(int X) {x=X;} void sety(int Y) {y=Y;} }; class Creature { public: bool alive; Coords Location; char displayletter; Creature() {Location.x=0; Location.y=0;} Creature(int i, int j) {Location.setx(i); Location.sety(j);} virtual void Attack() =0; virtual void AttackCreature(Grid G, int attackdirection) =0; virtual void Breed() =0; void Die(); void Move(Grid G); int DecideSquare(Grid G); void MoveTo(Grid G, int dir); }; class Human : public Creature { public: bool armed; //if armed, chances of winning fight increased for next fight bool vaccinated; //if vaccinated, no chance of getting infected int bitecount; //if a human is bitten, bite count is set to a random number int breedcount; //if a human goes x steps without combat, will breed if next to a human int starvecount; //if a human does not eat in x steps, will die Human() {displayletter='H';} Human(int i, int j) {displayletter='H';} void Attack(Grid G); void AttackCreature(Grid G, int attackdirection); void Breed(Grid G); //will breed after x steps and next to human int DecideAttack(Grid G); }; class Zombie : public Creature { public: Zombie() {displayletter='Z';} Zombie(int i, int j) {displayletter='Z';} void Attack(Grid G); void AttackCreature(Grid G, int attackdirection); void Breed() {} //does nothing int DecideAttack(Grid G); void AttackCreature(Grid G, int attackdirection); }; class Item { }; #endif definitions.cpp #include <cstdlib> #include "definitions.h" Random::Random(int MIN, int MAX, int LEN) //constructor { len=LEN; rptr=new int[LEN]; //allocate array of given length for (int i=0; i<LEN; i++) { int random; do { random = rand() % (MAX-MIN+1) + MIN; } while (alreadyused(random,LEN,rptr)); rptr[i]=random; } } bool Random::alreadyused(int checkthis, int len, int* rptr) { for (int i=0; i<len; i++) { if (rptr[i]==checkthis) return 1; } return 0; } Random::~Random() { delete rptr; } Grid::Grid(int WIDTHVALUE, int HEIGHTVALUE) { WIDTH = WIDTHVALUE; HEIGHT = HEIGHTVALUE; //builds 2d array of creature pointers cboard = new Creature**[WIDTH]; for(int i=0; i<WIDTH; i++) { cboard[i] = new Creature*[HEIGHT]; } //builds 2d array of item pointers iboard = new Item**[WIDTH]; for (int i=0; i<WIDTH; i++) { iboard[i] = new Item*[HEIGHT]; } } void Grid::FillGrid() { /* For each creature pointer in grid, randomly selects whether to initalize as zombie, human, or empty square. This methodology can be changed to initialize different creature types with different probabilities */ int random; for (int i=0; i<WIDTH; i++) { for (int j=0; j<HEIGHT; j++) { Random X(1,100,1); //create a single random integer from [1,100] at X.rptr random=*(X.rptr); if (random < 20) cboard[i][j] = new Human(i,j); else if (random < 40) cboard[i][j] = new Zombie(i,j); else cboard[i][j] = NULL; } } //at this point every creature pointer should be pointing to either //a zombie, human, or NULL with varying probabilities } void Grid::UpdateBuffer(char** buffer) { for (int i=0; i<WIDTH; i++) { for (int j=0; j<HEIGHT; j++) { if (cboard[i][j]) buffer[i][j]=cboard[i][j]->displayletter; else buffer[i][j]=' '; } } } bool Grid::isEmpty(int startx, int starty, int dir) { Coords StartLocation(startx,starty,WIDTH,HEIGHT); switch(dir) { case 1: StartLocation.MoveUp(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 2: StartLocation.MoveUpRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 3: StartLocation.MoveRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 4: StartLocation.MoveDownRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 5: StartLocation.MoveDown(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 6: StartLocation.MoveDownLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 7: StartLocation.MoveLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 8: StartLocation.MoveUpLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; } return 1; } char Grid::CreatureType(int xcoord, int ycoord) { if (cboard[xcoord][ycoord]) //if there is a creature at location xcoord,ycoord return (cboard[xcoord][ycoord]->displayletter); else //if pointer at location xcoord,ycoord is null, return null char return '\0'; } char Grid::CreatureType(int startx, int starty, int dir) { Coords StartLocation(startx,starty,WIDTH,HEIGHT); switch(dir) { case 1: StartLocation.MoveUp(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 2: StartLocation.MoveUpRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 3: StartLocation.MoveRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 4: StartLocation.MoveDownRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 5: StartLocation.MoveDown(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 6: StartLocation.MoveDownLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 7: StartLocation.MoveLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 8: StartLocation.MoveUpLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); } //if function hasn't returned by now, square being looked at is pointer to null return '\0'; //return null char } void Coords::MoveRight() {(x==MaxX)? (x=0):(x++);} void Coords::MoveLeft() {(x==0)? (x=MaxX):(x--);} void Coords::MoveUp() {(y==0)? (y=MaxY):(y--);} void Coords::MoveDown() {(y==MaxY)? (y=0):(y++);} void Coords::MoveUpRight() {MoveUp(); MoveRight();} void Coords::MoveUpLeft() {MoveUp(); MoveLeft();} void Coords::MoveDownRight() {MoveDown(); MoveRight();} void Coords::MoveDownLeft() {MoveDown(); MoveLeft();} void Coords::MoveDir(int dir) { switch(dir) { case 1: MoveUp(); break; case 2: MoveUpRight(); break; case 3: MoveRight(); break; case 4: MoveDownRight(); break; case 5: MoveDown(); break; case 6: MoveDownLeft(); break; case 7: MoveLeft(); break; case 8: MoveUpLeft(); break; case 0: break; } } void Creature::Move(Grid G) { int movedir=DecideSquare(G); MoveTo(G,movedir); } int Creature::DecideSquare(Grid G) { Random X(1,8,8); //X.rptr now points to 8 unique random integers from [1,8] for (int i=0; i<8; i++) { int dir=X.rptr[i]; if (G.isEmpty(Location.x,Location.y,dir)) return dir; } return 0; } void Creature::MoveTo(Grid G, int dir) { Coords OldLocation=Location; Location.MoveDir(dir); G.cboard[Location.x][Location.y]=this; //point new location to this creature G.cboard[OldLocation.x][OldLocation.y]=NULL; //point old location to NULL } void Creature::Die() { if (!alive) { delete this; this=NULL; } } void Human::Breed(Grid G) { if (!breedcount) { Coords BreedLocation=Location; Random X(1,8,8); for (int i=0; i<8; i++) { BreedLocation.MoveDir(X.rptr[i]); if (!G.cboard[BreedLocation.x][BreedLocation.y]) { G.cboard[BreedLocation.x][BreedLocation.y])=new Human(BreedLocation.x,BreedLocation.y); return; } } } } int Human::DecideAttack(Grid G) { Coords AttackLocation=Location; Random X(1,8,8); int attackdir; for (int i=0; i<8; i++) { attackdir=X.rptr[i]; switch(G.CreatureType(Location.x,Location.y,attackdir)) { case 'H': break; case 'Z': return attackdir; case '\0': break; default: break; } } return 0; //no zombies! } int AttackRoll(int para1, int para2) { //outcome 1: Zombie wins, human dies //outcome 2: Human wins, zombie dies //outcome 3: Human wins, zombie dies, but human is bitten Random X(1,100,1); int roll= *(X.rptr); if (roll < para1) return 1; else if (roll < para2) return 2; else return 3; } void Human::AttackCreature(Grid G, int attackdirection) { Coords AttackLocation=Location; AttackLocation.MoveDir(attackdirection); int para1=33; int para2=33; if (vaccinated) para2=101; //makes attackroll > para 2 impossible, never gets infected if (armed) para1-=16; //reduces chance of zombie winning fight int roll=AttackRoll(para1,para2); //outcome 1: Zombie wins, human dies //outcome 2: Human wins, zombie dies //outcome 3: Human wins, zombie dies, but human is bitten switch(roll) { case 1: alive=0; //human (this) dies return; case 2: G.cboard[AttackLocation.x][AttackLocation.y]->alive=0; return; //zombie dies case 3: G.cboard[AttackLocation.x][AttackLocation.y]->alive=0; //zombie dies Random X(3,7,1); //human is bitten bitecount=*(X.rptr); return; } } int Zombie::DecideAttack(Grid G) { Coords AttackLocation=Location; Random X(1,8,8); int attackdir; for (int i=0; i<8; i++) { attackdir=X.rptr[i]; switch(G.CreatureType(Location.x,Location.y,attackdir)) { case 'H': return attackdir; case 'Z': break; case '\0': break; default: break; } } return 0; //no zombies! } void Zombie::AttackCreature(Grid G, int attackdirection) { int reversedirection; if (attackdirection < 9 && attackdirection>0) { (attackdirection<5)? (reversedirection=attackdirection+4):(reversedirection=attackdirection-4); } else reversedirection=0; //this should never happen //when a zombie attacks a human, the Human::AttackZombie() function is called //in the "reverse" direction, utilizing that function that has already been written Coords ZombieLocation=Location; Coords HumanLocation=Location; HumanLocation.MoveDir(attackdirection); if (G.cboard[HumanLocation.x][HumanLocation.y]) //if there is a human there, which there should be G.cboard[HumanLocation.x][HumanLocation.y]->AttackCreature(G,reversedirection); } void Zombie::Attack(Grid G) { int attackdirection=DecideAttack(G); AttackCreature(G,attackdirection); } main.cpp #include <cstdlib> #include <iostream> #include "definitions.h" using namespace std; int main(int argc, char *argv[]) { Grid G(500,500); system("PAUSE"); return EXIT_SUCCESS; }

    Read the article

  • Getting a seg fault, having trouble with classes and variables.

    - by celestialorb
    Ok, so I'm still learning the ropes of C++ here so I apologize if this is a simple mistake. I have this class: class RunFrame : public wxFrame { public: RunFrame(); void OnKey(wxKeyEvent& keyEvent); private: // Configuration variables. const wxString *title; const wxPoint *origin; const wxSize *size; const wxColour *background; const wxColour *foreground; const wxString *placeholder; // Control variables. wxTextCtrl *command; // Event table. DECLARE_EVENT_TABLE() }; ...then in the OnKey method I have this code: void RunFrame::OnKey(wxKeyEvent& keyEvent) { // Take the key and process it. if(WXK_RETURN == keyEvent.GetKeyCode()) { bool empty = command -> IsEmpty(); } // Propogate the event through. keyEvent.Skip(); } ...but my program keeps seg faulting when it reaches the line where I attempt to call the IsEmpty method from the command variable. My question is, "Why?" In the constructor of the RunFrame class I can seemingly call methods for the command variable in the same way I'm doing so in the OnKey method...and it compiles correctly, it just seg faults on me when it attempts to execute that line. Here is the code for the constructor if necessary: RunFrame::RunFrame() : wxFrame(NULL, wxID_ANY, wxT("DEFAULT"), wxDefaultPosition, wxDefaultSize, wxBORDER_NONE) { // Create the styling constants. title = new wxString(wxT("RUN")); origin = new wxPoint(0, 0); size = new wxSize(250, 25); background = new wxColour(33, 33, 33); foreground = new wxColour(255, 255, 255); placeholder = new wxString(wxT("command")); // Set the styling for the frame. this -> SetTitle(*title); this -> SetSize(*size); // Create the panel and attach the TextControl to it. wxPanel *panel = new wxPanel(this, wxID_ANY, *origin, *size, wxBORDER_NONE); // Create the text control and attach it to the panel. command = new wxTextCtrl(panel, wxID_ANY, *placeholder, *origin, *size); // Set the styling for the text control. command -> SetBackgroundColour(*background); command -> SetForegroundColour(*foreground); // Connect the key event to the text control. command -> Connect(wxEVT_CHAR, wxKeyEventHandler(RunFrame::OnKey)); // Set the focus to the command box. command -> SetFocus(); } Thanks in advance for any help you can give! Regards, celestialorb

    Read the article

  • bubble sort on array of c structures not sorting properly

    - by xmpirate
    I have the following program for books record and I want to sort the records on name of book. the code isn't showing any error but it's not sorting all the records. #include "stdio.h" #include "string.h" #define SIZE 5 struct books{ //define struct char name[100],author[100]; int year,copies; }; struct books book1[SIZE],book2[SIZE],*pointer; //define struct vars void sort(struct books *,int); //define sort func main() { int i; char c; for(i=0;i<SIZE;i++) //scanning values { gets(book1[i].name); gets(book1[i].author); scanf("%d%d",&book1[i].year,&book1[i].copies); while((c = getchar()) != '\n' && c != EOF); } pointer=book1; sort(pointer,SIZE); //sort call i=0; //printing values while(i<SIZE) { printf("##########################################################################\n"); printf("Book: %s\nAuthor: %s\nYear of Publication: %d\nNo of Copies: %d\n",book1[i].name,book1[i].author,book1[i].year,book1[i].copies); printf("##########################################################################\n"); i++; } } void sort(struct books *pointer,int n) { int i,j,sorted=0; struct books temp; for(i=0;(i<n-1)&&(sorted==0);i++) //bubble sort on the book name { sorted=1; for(j=0;j<n-i-1;j++) { if(strcmp((*pointer).name,(*(pointer+1)).name)>0) { //copy to temp val strcpy(temp.name,(*pointer).name); strcpy(temp.author,(*pointer).author); temp.year=(*pointer).year; temp.copies=(*pointer).copies; //copy next val strcpy((*pointer).name,(*(pointer+1)).name); strcpy((*pointer).author,(*(pointer+1)).author); (*pointer).year=(*(pointer+1)).year; (*pointer).copies=(*(pointer+1)).copies; //copy back temp val strcpy((*(pointer+1)).name,temp.name); strcpy((*(pointer+1)).author,temp.author); (*(pointer+1)).year=temp.year; (*(pointer+1)).copies=temp.copies; sorted=0; } *pointer++; } } } My Imput The C Programming Language X Y Z 1934 56 Inferno Dan Brown 1993 453 harry Potter and the soccers stone J K Rowling 2012 150 Ruby On Rails jim aurther nil 2004 130 Learn Python Easy Way gmaps4rails 1967 100 And the output ########################################################################## Book: Inferno Author: Dan Brown Year of Publication: 1993 No of Copies: 453 ########################################################################## ########################################################################## Book: The C Programming Language Author: X Y Z Year of Publication: 1934 No of Copies: 56 ########################################################################## ########################################################################## Book: Ruby On Rails Author: jim aurther nil Year of Publication: 2004 No of Copies: 130 ########################################################################## ########################################################################## Book: Learn Python Easy Way Author: gmaps4rails Year of Publication: 1967 No of Copies: 100 ########################################################################## ########################################################################## Book: Author: Year of Publication: 0 No of Copies: 0 ########################################################################## We can see the above sorting is wrong? What I'm I doing wrong?

    Read the article

  • CComPtr pass by reference

    - by Mahesh
    I have a situation where I need to pass a CComPtr<IXmlReader> to a function by reference. Does the called parameter takes the ownership from the callee parameter (or) the reference count is increased? void foo( CComPtr<IXmlReader> & pReader ) { // There is no reassignment of the CComPtr. // Just call the IXmlReader methods. } CComPtr<IXmlReader> pReader; foo( pReader ); // Is pReader still valid after the function return ? Thanks.

    Read the article

  • Pointer argument to boost python

    - by piotr
    What's the best way to make a function that has pointer as argument work with boost python? I see there are many possibilities for return values in the docs, but I don't know how to do it with arguments. void Tesuto::testp(std::string* s) { if (!s) cout << " NULL s" << endl; else cout << s << endl; } >>> t.testp(None) NULL s >>> >>> s='test' >>> t.testp(s) Traceback (most recent call last): File "<stdin>", line 1, in <module> Boost.Python.ArgumentError: Python argument types in Tesuto.testp(Tesuto, str) did not match C++ signature: testp(Tesuto {lvalue}, std::string*) >>>

    Read the article

  • "Initializing" the pointer in the separate function in C

    - by pechenie
    I need to do a simple thing, which I used to do many times in Java, but I'm stuck in C (pure C, not C++). The situation looks like this: int *a; void initArray( int *arr ) { arr = malloc( sizeof( int ) * SIZE ); } int main() { initArray( a ); // a is NULL here! what to do?! return 0; } I have some "initializing" function, which SHOULD assign a given pointer to some allocated data (doesn't matter). How should I give a pointer to a function in order to this pointer will be modified, and then can be used further in the code (after that function call returns)? Thanx for help.

    Read the article

  • Pass 2d array to function in C?

    - by Evelyn
    I know it's simple, but I can't seem to make this work. My function is like so: int GefMain(int array[][5]) { //do stuff return 1; } In my main: int GefMain(int array[][5]); int main(void) { int array[1800][5]; GefMain(array); return 0; } I referred to this helpful resource, but I am still getting the error "warning: passing argument 1 of GefMain from incompatible pointer type." What am I doing wrong?

    Read the article

  • Passing a 2D array to a function in C

    - by Tyler Treat
    I have, essentially, a matrix of data (lets say ints) that I would like to store in a 2D array in which the dimensions are not known until runtime (say x columns and y rows). I want to populate the array in a function, so I assume I need to do something like this: int main(int argc, char **argv) { int y = atoi(argv[1]); int x = atoi(argv[2]); int **matrix = malloc(x * sizeof(int*)); populateMatrix(matrix, y, x); return 0; } void populateMatrix(**matrix, int y, int x) { int i, j; for (i = 0; i < y; i++) { for (j = 0; j < x; j++) { matrix[i][j] = i * j; // populated with trivial data to keep it simple } } } Obviously this doesn't work, but I'm not sure how to do what I'm describing exactly.

    Read the article

  • Pointer to local variable

    - by Radek Šimko
    May I have any acces to local variable in different function? If may, how? void replaceNumberAndPrint(int array[3]) { printf("%i\n", array[1]); printf("%i\n", array[1]); } int * getArray() { int myArray[3] = {4, 65, 23}; return myArray; } int main() { replaceNumberAndPrint(getArray()); } The output of the piece of code above: 65 4202656 What am i doing wrong? What the "4202656" means?? Do I have to copy the whole array in the replaceNumberAndPrint() function to be able to access to it more than first times?

    Read the article

  • When should an array name be treated as a pointer and when does it just represent the array itself? [duplicate]

    - by user1087373
    This question already has an answer here: When is an array name or a function name 'converted' into a pointer ? (in C) 4 answers I just made a test program after reading the book and the result turned out confusing: #include <stdio.h> int main(void) { char text[] = "hello!"; printf("sizeof(text):%d sizeof(text+2):%d sizeof(text[0]):%d \n",(int)sizeof(text), sizeof(text+2), sizeof(text[0])); printf("text:%p sizeof(text):%d &text:%p sizeof(&text):%d \n",text, sizeof(text), &text, sizeof(&text)); printf("text+1:%p &text+1:%p \n", text+1, &text+1); return 0; } The result: sizeof(text):7 sizeof(text+2):4 sizeof(text[0]):1 text:0xbfc8769d sizeof(text):7 &text:0xbfc8769d sizeof(&text):4 text+1:0xbfc8769e &text+1:0xbfc876a4 What makes me feel confused are: why the value of 'sizeof(text)' is 7 whereas 'sizeof(text+2)' is 4 what's the difference between 'text' and '&text'?

    Read the article

  • Why would I get a bus error or segmentation fault when calling free() normally?

    - by chucknelson
    I have a very simple test program, running on Solaris 5.8: #include <stdio.h> #include <stdlib.h> int main(void) { char *paths; paths = getenv("PATH"); printf("Paths: %s\n", paths); free(paths); // this causes a bus error return 0; } If I don't call free() at the end, it displays the message fine and exits. If I include the free() call, it crashes with a bus error. I've had other calls to free(), in other programs, cause segmentation faults as well. Even if I allocate the memory for *paths myself, free() will cause a bus error. Is there some reason trying to free up the memory is causing a crash?

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >