Search Results

Search found 25521 results on 1021 pages for 'static objects'.

Page 251/1021 | < Previous Page | 247 248 249 250 251 252 253 254 255 256 257 258  | Next Page >

  • sqlalchemy natural sorting

    - by teggy
    Currently, i am querying with this code: meta.Session.query(Label).order_by(Label.name).all() and it returns me objects sorted by Label.name in this manner ['1','7','1a','5c']. Is there a way i can have the objects returned in the order with their Label.name sorted like this ['1','1a','5c','7'] Thanks!

    Read the article

  • How do I keep a datastructure in sync across several servers in Java?

    - by sanity
    Have a Map which contains objects that I want to keep in sync across multiple servers, such that if objects in the map are created, deleted, or modified - this is reflected immediately (ie. within a second or two) across all servers, in a way that can potentially scale up to tens of servers. Is there a lightweight open source Java tool that can do something like this? I'm aware of Terracotta but it is rather heavy weight for what I need.

    Read the article

  • Dilemma with two types and operator +

    - by user35443
    I have small problem with operators. I have this code: public class A { public string Name { get; set; } public A() { } public A(string Name) { this.Name = Name; } public static implicit operator B(A a) { return new B(a.Name); } public static A operator+(A a, A b) { return new A(a.Name + " " + b.Name); } } public class B { public string Name { get; set; } public B() { } public B(string Name) { this.Name = Name; } public static implicit operator A(B b) { return new A(b.Name); } public static B operator +(B b, B a) { return new B(b.Name + " " + a.Name); } } Now I want to know, which's conversion operator will be called and which's addition operator will be called in this operation: new A("a") + new B("b"); Will it be operator of A, or of B? (Or both?) Thanks....

    Read the article

  • ref and out parameters in C# and cannot be marked as variant.

    - by Water Cooler v2
    What does the statement mean? From here ref and out parameters in C# and cannot be marked as variant. 1) Does it mean that the following can not be done. public class SomeClass<R, A>: IVariant<R, A> { public virtual R DoSomething( ref A args ) { return null; } } 2) Or does it mean I cannot have the following. public delegate R Reader<out R, in A>(A arg, string s); public static void AssignReadFromPeonMethodToDelegate(ref Reader<object, Peon> pReader) { pReader = ReadFromPeon; } static object ReadFromPeon(Peon p, string propertyName) { return p.GetType().GetField(propertyName).GetValue(p); } static Reader<object, Peon> pReader; static void Main(string[] args) { AssignReadFromPeonMethodToDelegate(ref pReader); bCanReadWrite = (bool)pReader(peon, "CanReadWrite"); Console.WriteLine("Press any key to quit..."); Console.ReadKey(); } I tried (2) and it worked.

    Read the article

  • Android setContentView operation

    - by stormin986
    I've read that it's important to call setContentView() early in an activity since it builds the view objects that may be manipulated by subsequent code in onCreate(). In terms of lifecycle, does the view get drawn to screen as soon as setContentView() is called, or does it allow the onCreate() function to build/populate the information in the view objects, and wait to actually draw it after onCreate() completes? Thanks!

    Read the article

  • Efficiently get the size of a parameter pack up to a certain index

    - by NmdMystery
    I want to be able to determine the number of bytes that are in a subset of a parameter pack from 0 to a given index. Right now I'm using a non-constexpr way of doing this. Below is my code: template <size_t index, typename... args> struct pack_size_index; template <size_t index, typename type_t, typename... args> struct pack_size_index <index, type_t, args...> { static const size_t index_v = index; static const size_t value(void) { if (index_v > 0) { return sizeof(type_t) + pack_size_index<index - 1, args...>::value(); } return 0; } }; template <size_t index> struct pack_size_index <index> { static const size_t index_v = index; static const size_t value(void) { return 0; } }; Usage: //output: 5 (equal to 1 + 4) std::cout << pack_size_index<2, bool, float, int, double>::value() << std::endl; //output: 20 (equal to 8 + 8 + 4) std::cout << pack_size_index<3, double, double, float, int>::value() << std::endl; This gets the job done, but this uses runtime comparison and the resulting executable increases in size rapidly whenever this is used. What's a less expensive way of doing this?

    Read the article

  • Using overloaded operator== in a generic function

    - by Dimitri C.
    Consider the following code: class CustomClass { public CustomClass(string value) { m_value = value; } public static bool operator==(CustomClass a, CustomClass b) { return a.m_value == b.m_value; } public static bool operator!=(CustomClass a, CustomClass b) { return a.m_value != b.m_value; } public override bool Equals(object o) { return m_value == (o as CustomClass).m_value; } public override int GetHashCode() { return 0; /* not needed */ } string m_value; } class G { public static bool enericFunction1<T>(T a1, T a2) where T : class { return a1.Equals(a2); } public static bool enericFunction2<T>(T a1, T a2) where T : class { return a1==a2; } } Now when I call both generic functions, one succeeds and one fails: var a = new CustomClass("same value"); var b = new CustomClass("same value"); Debug.Assert(G.enericFunction1(a, b)); // Succeeds Debug.Assert(G.enericFunction2(a, b)); // Fails Apparently, G.enericFunction2 executes the default operator== implementation instead of my override. Can anybody explain why this happens?

    Read the article

  • is it good "form" to declare new classes in the same file ?

    - by hatorade
    I code in Python a lot, and I frequently create classes. Now, I'm not sure if this is good Python form, but I just declare a class in the same file as my main(). class foo { ... } I'm wondering if it's good form in Java to do the same? For example, class foo { public static int name; public static int numPoints; public static int[] points; } public class bar { public static void main(String[] args) { ... } } Does not throw errors in Eclipse, so it must be allowed. But is it okay to do? Would it be better to just declare this class in a separate file..? Edit: I just want to emphasize that my new class literally is just a container to hold the same type of data multiple times, and literally will only have like 3 values. So it's total about 5 lines of code. The question is - does this merit a new file?

    Read the article

  • Writing a recursive sorting algorithm of an array of integers

    - by 12345
    I am trying to write a recursive sorting algorithm for an array of integers. The following codes prints to the console: 3, 5, 2, 1, 1, 2, 6, 7, 8, 10, 20 The output should be sorted but somehow "it doesn't work". public static void main(String[] args) { int[] unsortedList = {20, 3, 1, 2, 1, 2, 6, 8, 10, 5, 7}; duplexSelectionSort(unsortedList, 0, unsortedList.length-1); for (int i = 0; i < unsortedList.length; i++) { System.out.println(unsortedList[i]); } } public static void duplexSelectionSort( int[] unsortedNumbers, int startIndex, int stopIndex) { int minimumIndex = 0; int maximumIndex = 0; if (startIndex < stopIndex) { int index = 0; while (index <= stopIndex) { if (unsortedNumbers[index] < unsortedNumbers[minimumIndex]) { minimumIndex = index; } if (unsortedNumbers[index] > unsortedNumbers[maximumIndex]) { maximumIndex = index; } index++; } swapEdges(unsortedNumbers, startIndex, stopIndex, minimumIndex, maximumIndex); duplexSelectionSort(unsortedNumbers, startIndex + 1, stopIndex - 1); } } public static void swapEdges( int[] listOfIntegers, int startIndex, int stopIndex, int minimumIndex, int maximumIndex) { if ((minimumIndex == stopIndex) && (maximumIndex == startIndex)) { swap(listOfIntegers, startIndex, stopIndex); } else { if (maximumIndex == startIndex) { swap(listOfIntegers, maximumIndex, stopIndex); swap(listOfIntegers, minimumIndex, startIndex); } else { swap(listOfIntegers, minimumIndex, startIndex); swap(listOfIntegers, maximumIndex, stopIndex); } } } public static void swap(int[] listOfIntegers, int index1, int index2) { int savedElementAtIndex1 = listOfIntegers[index1]; listOfIntegers[index1] = listOfIntegers[index2]; listOfIntegers[index2] = savedElementAtIndex1; }

    Read the article

  • UIButtons display differently on UIImageView when created at design time vs. run time

    - by PRITISH
    I have added some UIButton objects into .xib file, and some UIButton objects with the code. But now I am facing one problem. While Zooming the UIImageView the UIButtons that are added through code are shown on the UIImageView and those that are added with .xib file are below the UIImageView. Code for UIButtons added with code: btnBrightness = UIButton.FromType (UIButtonType.RoundedRect); btnBrightness.Frame = new RectangleF (540, 20, 95, 37); btnBrightness.SetTitle ("Brightness", UIControlState.Normal); More details: monotouch

    Read the article

  • math.Random isn't working right

    - by RandomlyKnighted
    I'm trying to simulate a coin flip using the code below. public class Coin { public static double result; int[] count = new count[2]; public static void flip() { result = Math.random(); } public static boolean isHeads() { if (result == 0.0) { count[0]++; return false; } else { count[1]++; return true; } } public static void main(String[] args) { flip(); isHeads(); System.out.println(count[0]); System.out.println(count[1]); } } For some reason Eclipse says that the import java.util.Random; is never used even though I'm clearly using it. I didn't put my for loop into the code above but it loops n number of times and then outputs the result. No matter how many times it loops it always returns that the result is greater than 0.0 which can't be right. Am I calling Math.random incorrectly?

    Read the article

  • How does Undo work?

    - by dontWatchMyProfile
    How does undo work? Does it copy all the managed objects every time any of the values change? Or does it only copy the actual changes together with an information which objects were affected? Is that heavy or lightweight?

    Read the article

  • Django get() query not working

    - by pimcoooooooo
    this_category = Category.objects.get(name=cat_name) gives error: get() takes exactly 2 non-keyword arguments (1 given) I am using the appengine helper, so maybe that is causing problems. Category is my model. Category.objects.all() works fine. Filter is also similarily not working. Thanks,

    Read the article

  • Program that edits string and prints each word individually with C

    - by Michael_19
    I keep getting the error segmentation fault (core dumped) when I run my progam. #include<stdio.h> #include<stdlib.h> int nextword(char *str); int main(void) { char str[] = "Hello! Today is a beautiful day!!\t\n"; int i = nextword(str); while(i != -1) { printf("%s\n",&(str[i])); i = nextword(NULL); } return 0; } int nextword(char *str) { // create two static variables - these stay around across calls static char *s; static int nextindex; int thisindex; // reset the static variables if (str != NULL) { s = str; thisindex = 0; // TODO: advance this index past any leading spaces while (s[thisindex]=='\n' || s[thisindex]=='\t' || s[thisindex]==' ' ) thisindex++; } else { // set the return value to be the nextindex thisindex = nextindex; } // if we aren't done with the string... if (thisindex != -1) { nextindex = thisindex; // TODO: two things // 1: place a '\0' after the current word // 2: advance nextindex to the beginning // of the next word while (s[nextindex] != ' ' && s[nextindex] != '\0') nextindex++; str[nextindex] = '\0'; nextindex++; } return thisindex; } The goal of the program is to print each word in the string str[] to the console on a new line. I am a beginning programmer and this is an assignment so I must use this type of format (no string library allowed). I just would like to know where I went wrong and how I can fix it.

    Read the article

  • HttpContext.Items and Server.Transfer/Execute

    - by Rick Strahl
    A few days ago my buddy Ben Jones pointed out that he ran into a bug in the ScriptContainer control in the West Wind Web and Ajax Toolkit. The problem was basically that when a Server.Transfer call was applied the script container (and also various ClientScriptProxy script embedding routines) would potentially fail to load up the specified scripts. It turns out the problem is due to the fact that the various components in the toolkit use request specific singletons via a Current property. I use a static Current property tied to a Context.Items[] entry to handle this type of operation which looks something like this: /// <summary> /// Current instance of this class which should always be used to /// access this object. There are no public constructors to /// ensure the reference is used as a Singleton to further /// ensure that all scripts are written to the same clientscript /// manager. /// </summary> public static ClientScriptProxy Current { get { if (HttpContext.Current == null) return new ClientScriptProxy(); ClientScriptProxy proxy = null; if (HttpContext.Current.Items.Contains(STR_CONTEXTID)) proxy = HttpContext.Current.Items[STR_CONTEXTID] as ClientScriptProxy; else { proxy = new ClientScriptProxy(); HttpContext.Current.Items[STR_CONTEXTID] = proxy; } return proxy; } } The proxy is attached to a Context.Items[] item which makes the instance Request specific. This works perfectly fine in most situations EXCEPT when you’re dealing with Server.Transfer/Execute requests. Server.Transfer doesn’t cause Context.Items to be cleared so both the current transferred request and the original request’s Context.Items collection apply. For the ClientScriptProxy this causes a problem because script references are tracked on a per request basis in Context.Items to check for script duplication. Once a script is rendered an ID is written into the Context collection and so considered ‘rendered’: // No dupes - ref script include only once if (HttpContext.Current.Items.Contains( STR_SCRIPTITEM_IDENTITIFIER + fileId ) ) return; HttpContext.Current.Items.Add(STR_SCRIPTITEM_IDENTITIFIER + fileId, string.Empty); where the fileId is the script name or unique identifier. The problem is on the Transferred page the item will already exist in Context and so fail to render because it thinks the script has already rendered based on the Context item. Bummer. The workaround for this is simple once you know what’s going on, but in this case it was a bitch to track down because the context items are used in many places throughout this class. The trick is to determine when a request is transferred and then removing the specific keys. The first issue is to determine if a script is in a Trransfer or Execute call: if (HttpContext.Current.CurrentHandler != HttpContext.Current.Handler) Context.Handler is the original handler and CurrentHandler is the actual currently executing handler that is running when a Transfer/Execute is active. You can also use Context.PreviousHandler to get the last handler and chain through the whole list of handlers applied if Transfer calls are nested (dog help us all for the person debugging that). For the ClientScriptProxy the full logic to check for a transfer and remove the code looks like this: /// <summary> /// Clears all the request specific context items which are script references /// and the script placement index. /// </summary> public void ClearContextItemsOnTransfer() { if (HttpContext.Current != null) { // Check for Server.Transfer/Execute calls - we need to clear out Context.Items if (HttpContext.Current.CurrentHandler != HttpContext.Current.Handler) { List<string> Keys = HttpContext.Current.Items.Keys.Cast<string>().Where(s => s.StartsWith(STR_SCRIPTITEM_IDENTITIFIER) || s == STR_ScriptResourceIndex).ToList(); foreach (string key in Keys) { HttpContext.Current.Items.Remove(key); } } } } along with a small update to the Current property getter that sets a global flag to indicate whether the request was transferred: if (!proxy.IsTransferred && HttpContext.Current.Handler != HttpContext.Current.CurrentHandler) { proxy.ClearContextItemsOnTransfer(); proxy.IsTransferred = true; } return proxy; I know this is pretty ugly, but it works and it’s actually minimal fuss without affecting the behavior of the rest of the class. Ben had a different solution that involved explicitly clearing out the Context items and replacing the collection with a manually maintained list of items which also works, but required changes through the code to make this work. In hindsight, it would have been better to use a single object that encapsulates all the ‘persisted’ values and store that object in Context instead of all these individual small morsels. Hindsight is always 20/20 though :-}. If possible use Page.Items ClientScriptProxy is a generic component that can be used from anywhere in ASP.NET, so there are various methods that are not Page specific on this component which is why I used Context.Items, rather than the Page.Items collection.Page.Items would be a better choice since it will sidestep the above Server.Transfer nightmares as the Page is reloaded completely and so any new Page gets a new Items collection. No fuss there. So for the ScriptContainer control, which has to live on the page the behavior is a little different. It is attached to Page.Items (since it’s a control): /// <summary> /// Returns a current instance of this control if an instance /// is already loaded on the page. Otherwise a new instance is /// created, added to the Form and returned. /// /// It's important this function is not called too early in the /// page cycle - it should not be called before Page.OnInit(). /// /// This property is the preferred way to get a reference to a /// ScriptContainer control that is either already on a page /// or needs to be created. Controls in particular should always /// use this property. /// </summary> public static ScriptContainer Current { get { // We need a context for this to work! if (HttpContext.Current == null) return null; Page page = HttpContext.Current.CurrentHandler as Page; if (page == null) throw new InvalidOperationException(Resources.ERROR_ScriptContainer_OnlyWorks_With_PageBasedHandlers); ScriptContainer ctl = null; // Retrieve the current instance ctl = page.Items[STR_CONTEXTID] as ScriptContainer; if (ctl != null) return ctl; ctl = new ScriptContainer(); page.Form.Controls.Add(ctl); return ctl; } } The biggest issue with this approach is that you have to explicitly retrieve the page in the static Current property. Notice again the use of CurrentHandler (rather than Handler which was my original implementation) to ensure you get the latest page including the one that Server.Transfer fired. Server.Transfer and Server.Execute are Evil All that said – this fix is probably for the 2 people who are crazy enough to rely on Server.Transfer/Execute. :-} There are so many weird behavior problems with these commands that I avoid them at all costs. I don’t think I have a single application that uses either of these commands… Related Resources Full source of ClientScriptProxy.cs (repository) Part of the West Wind Web Toolkit Static Singletons for ASP.NET Controls Post © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • Preserving Permalinks

    - by Daniel Moth
    One of the things that gets me on a rant is websites that break permalinks. If you have posted something somewhere and there is a public URL pointing to it, that URL should never ever return a 404. You are breaking all websites that ever linked to you and you are breaking all search engine links to your content (that others will try and follow). It is a pet peeve of mine. So when I had to move my blog, obviously I would preserve the root URL (www.danielmoth.com/Blog/), but I also wanted to preserve every URL my blog has generated over the years. To be clear, our focus here is on the URL formatting, not the content migration which I'll talk about in my next post. In this post, I'll describe my solution first and then what it solves. 1. The IIS7 Rewrite Module and web.config There are a few ways you can map an old URL to a new one (so when requests to the old URL come in, they get redirected to the new one). The new blog engine I use (dasBlog) has built-in functionality to do that (Scott refers to it here). Instead, the way I chose to address the issue was to use the IIS7 rewrite module. The IIS7 rewrite module allows redirecting URLs based on pattern matching, regular expressions and, of course, hardcoded full URLs for things that don't fall into any pattern. You can configure it visually from IIS Manager using a handy dialog that allows testing patterns against input URLs. Here is what mine looked like after configuring a few rules: To learn more about this technology check out this video, the reference page and this overview blog post; all 3 pages have a collection of related resources at the bottom worth checking out too. All the visual configuration ends up in a web.config file at the root folder of your website. If you are on a shared hosting service, probably the only way you can use the Rewrite Module is by directly editing the web.config file. Next, I'll describe the URLs I had to map and how that manifested itself in the web.config file. What I did was create the rules locally using the GUI, and then took the generated web.config file and uploaded it to my live site. You can view my web.config here. 2. Monthly Archives Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/2004_07_01_mothblog_archive.html dasBlog: /Blog/default,month,2004-07.aspx In my web.config file, the rule that deals with this is the one named "monthlyarchive_redirect". 3. Categories Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/labels/Personal.html dasBlog: /Blog/CategoryView,category,Personal.aspx In my web.config file the rule that deals with this is the one named "category_redirect". 4. Posts Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/2004/07/hello-world.html dasBlog: /Blog/Hello-World.aspx In my web.config file the rule that deals with this is the one named "post_redirect". Note: The decision is taken to use dasBlog URLs that do not include the date info (see the description of my Appearance settings). If we included the date info then it would have to include the day part, which blogger did not generate. This makes it impossible to redirect correctly and to have a single permalink for blog posts moving forward. An implication of this decision, is that no two blog posts can have the same title. The tool I will describe in my next post (inelegantly) deals with duplicates, but not with triplicates or higher. 5. Unhandled by a generic rule Unfortunately, the two blog engines use different rules for generating URLs for blog posts. Most of the time the conversion is as simple as the example of the previous section where a post titled "Hello World" generates a URL with the words separated by a hyphen. Some times that is not the case, for example: /Blog/2006/05/medc-wrap-up.html /Blog/MEDC-Wrapup.aspx or /Blog/2005/01/best-of-moth-2004.html /Blog/Best-Of-The-Moth-2004.aspx or /Blog/2004/11/more-windows-mobile-2005-details.html /Blog/More-Windows-Mobile-2005-Details-Emerge.aspx In short, blogger does not add words to the title beyond ~39 characters, it drops some words from the title generation (e.g. a, an, on, the), and it preserve hyphens that appear in the title. For this reason, we need to detect these and explicitly list them for redirects (no regular expression can help here because the full set of rules is not listed anywhere). In my web.config file the rule that deals with this is the one named "Redirect rule1 for FullRedirects" combined with the rewriteMap named "StaticRedirects". Note: The tool I describe in my next post will detect all the URLs that need to be explicitly redirected and will list them in a file ready for you to copy them to your web.config rewriteMap. 6. C# code doing the same as the web.config I wrote some naive code that does the same thing as the web.config: given a string it will return a new string converted according to the 3 rules above. It does not take into account the 4th case where an explicit hard-coded conversion is needed (the tool I present in the next post does take that into account). static string REGEX_post_redirect = "[0-9]{4}/[0-9]{2}/([0-9a-z-]+).html"; static string REGEX_category_redirect = "labels/([_0-9a-z-% ]+).html"; static string REGEX_monthlyarchive_redirect = "([0-9]{4})_([0-9]{2})_[0-9]{2}_mothblog_archive.html"; static string Redirect(string oldUrl) { GroupCollection g; if (RunRegExOnIt(oldUrl, REGEX_post_redirect, 2, out g)) return string.Concat(g[1].Value, ".aspx"); if (RunRegExOnIt(oldUrl, REGEX_category_redirect, 2, out g)) return string.Concat("CategoryView,category,", g[1].Value, ".aspx"); if (RunRegExOnIt(oldUrl, REGEX_monthlyarchive_redirect, 3, out g)) return string.Concat("default,month,", g[1].Value, "-", g[2], ".aspx"); return string.Empty; } static bool RunRegExOnIt(string toRegEx, string pattern, int groupCount, out GroupCollection g) { if (pattern.Length == 0) { g = null; return false; } g = new Regex(pattern, RegexOptions.IgnoreCase | RegexOptions.Compiled).Match(toRegEx).Groups; return (g.Count == groupCount); } Comments about this post welcome at the original blog.

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • Given an XML which contains a representation of a graph, how to apply it DFS algorithm? [on hold]

    - by winston smith
    Given the followin XML which is a directed graph: <?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE graph PUBLIC "-//FC//DTD red//EN" "../dtd/graph.dtd"> <graph direct="1"> <vertex label="V0"/> <vertex label="V1"/> <vertex label="V2"/> <vertex label="V3"/> <vertex label="V4"/> <vertex label="V5"/> <edge source="V0" target="V1" weight="1"/> <edge source="V0" target="V4" weight="1"/> <edge source="V5" target="V2" weight="1"/> <edge source="V5" target="V4" weight="1"/> <edge source="V1" target="V2" weight="1"/> <edge source="V1" target="V3" weight="1"/> <edge source="V1" target="V4" weight="1"/> <edge source="V2" target="V3" weight="1"/> </graph> With this classes i parsed the graph and give it an adjacency list representation: import java.io.IOException; import java.util.HashSet; import java.util.LinkedList; import java.util.Collection; import java.util.Iterator; import java.util.logging.Level; import java.util.logging.Logger; import practica3.util.Disc; public class ParsingXML { public static void main(String[] args) { try { // TODO code application logic here Collection<Vertex> sources = new HashSet<Vertex>(); LinkedList<String> lines = Disc.readFile("xml/directed.xml"); for (String lin : lines) { int i = Disc.find(lin, "source=\""); String data = ""; if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } Vertex v = new Vertex(); v.setName(data); v.setAdy(new HashSet<Vertex>()); sources.add(v); } } Iterator it = sources.iterator(); while (it.hasNext()) { Vertex ver = (Vertex) it.next(); Collection<Vertex> adyacencias = ver.getAdy(); LinkedList<String> ls = Disc.readFile("xml/graphs.xml"); for (String lin : ls) { int i = Disc.find(lin, "target=\""); String data = ""; if (lin.contains("source=\""+ver.getName())) { Vertex v = new Vertex(); if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } v.setName(data); } i = Disc.find(lin, "weight=\""); data = ""; if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } v.setWeight(Integer.parseInt(data)); } if (v.getName() != null) { adyacencias.add(v); } } } } for (Vertex vert : sources) { System.out.println(vert); System.out.println("adyacencias: " + vert.getAdy()); } } catch (IOException ex) { Logger.getLogger(ParsingXML.class.getName()).log(Level.SEVERE, null, ex); } } } This is another class: import java.util.Collection; import java.util.Objects; public class Vertex { private String name; private int weight; private Collection ady; public Collection getAdy() { return ady; } public void setAdy(Collection adyacencias) { this.ady = adyacencias; } public String getName() { return name; } public void setName(String nombre) { this.name = nombre; } public int getWeight() { return weight; } public void setWeight(int weight) { this.weight = weight; } @Override public int hashCode() { int hash = 7; hash = 43 * hash + Objects.hashCode(this.name); hash = 43 * hash + this.weight; return hash; } @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final Vertex other = (Vertex) obj; if (!Objects.equals(this.name, other.name)) { return false; } if (this.weight != other.weight) { return false; } return true; } @Override public String toString() { return "Vertice{" + "name=" + name + ", weight=" + weight + '}'; } } And finally: /** * * @author user */ /* -*-jde-*- */ /* <Disc.java> Contains the main argument*/ import java.io.*; import java.util.LinkedList; /** * Lectura y escritura de archivos en listas de cadenas * Ideal para el uso de las clases para gráficas. * * @author Peralta Santa Anna Victor Miguel * @since Julio 2011 */ public class Disc { /** * Metodo para lectura de un archivo * * @param fileName archivo que se va a leer * @return El archivo en representacion de lista de cadenas */ public static LinkedList<String> readFile(String fileName) throws IOException { BufferedReader file = new BufferedReader(new FileReader(fileName)); LinkedList<String> textlist = new LinkedList<String>(); while (file.ready()) { textlist.add(file.readLine().trim()); } file.close(); /* for(String linea:textlist){ if(linea.contains("source")){ //String generado = linea.replaceAll("<\\w+\\s+\"", ""); //System.out.println(generado); } }*/ return textlist; }//readFile public static int find(String linea,String palabra){ int i,j; boolean found = false; for(i=0,j=0;i<linea.length();i++){ if(linea.charAt(i)==palabra.charAt(j)){ j++; if(j==palabra.length()){ found = true; return i; } }else{ continue; } } if(!found){ i= -1; } return i; } /** * Metodo para la escritura de un archivo * * @param fileName archivo que se va a escribir * @param tofile la lista de cadenas que quedaran en el archivo * @param append el bit que dira si se anexa el contenido o se empieza de cero */ public static void writeFile(String fileName, LinkedList<String> tofile, boolean append) throws IOException { FileWriter file = new FileWriter(fileName, append); for (int i = 0; i < tofile.size(); i++) { file.write(tofile.get(i) + "\n"); } file.close(); }//writeFile /** * Metodo para escritura de un archivo * @param msg archivo que se va a escribir * @param tofile la cadena que quedaran en el archivo * @param append el bit que dira si se anexa el contenido o se empieza de cero */ public static void writeFile(String msg, String tofile, boolean append) throws IOException { FileWriter file = new FileWriter(msg, append); file.write(tofile); file.close(); }//writeFile }// I'm stuck on what can be the best way to given an adjacency list representation of the graph how to apply it Depth-first search algorithm. Any idea of how to aproach to complete the task?

    Read the article

  • The Clocks on USACO

    - by philip
    I submitted my code for a question on USACO titled "The Clocks". This is the link to the question: http://ace.delos.com/usacoprob2?a=wj7UqN4l7zk&S=clocks This is the output: Compiling... Compile: OK Executing... Test 1: TEST OK [0.173 secs, 13928 KB] Test 2: TEST OK [0.130 secs, 13928 KB] Test 3: TEST OK [0.583 secs, 13928 KB] Test 4: TEST OK [0.965 secs, 13928 KB] Run 5: Execution error: Your program (`clocks') used more than the allotted runtime of 1 seconds (it ended or was stopped at 1.584 seconds) when presented with test case 5. It used 13928 KB of memory. ------ Data for Run 5 ------ 6 12 12 12 12 12 12 12 12 ---------------------------- Your program printed data to stdout. Here is the data: ------------------- time:_0.40928452 ------------------- Test 5: RUNTIME 1.5841 (13928 KB) I wrote my program so that it will print out the time taken (in seconds) for the program to complete before it exits. As can be seen, it took 0.40928452 seconds before exiting. So how the heck did the runtime end up to be 1.584 seconds? What should I do about it? This is the code if it helps: import java.io.; import java.util.; class clocks { public static void main(String[] args) throws IOException { long start = System.nanoTime(); // Use BufferedReader rather than RandomAccessFile; it's much faster BufferedReader f = new BufferedReader(new FileReader("clocks.in")); // input file name goes above PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("clocks.out"))); // Use StringTokenizer vs. readLine/split -- lots faster int[] clock = new int[9]; for (int i = 0; i < 3; i++) { StringTokenizer st = new StringTokenizer(f.readLine()); // Get line, break into tokens clock[i * 3] = Integer.parseInt(st.nextToken()); clock[i * 3 + 1] = Integer.parseInt(st.nextToken()); clock[i * 3 + 2] = Integer.parseInt(st.nextToken()); } ArrayList validCombination = new ArrayList();; for (int i = 1; true; i++) { ArrayList combination = getPossibleCombinations(i); for (int j = 0; j < combination.size(); j++) { if (tryCombination(clock, (int[]) combination.get(j))) { validCombination.add(combination.get(j)); } } if (validCombination.size() > 0) { break; } } int [] min = (int[])validCombination.get(0); if (validCombination.size() > 1){ String minS = ""; for (int i=0; i<min.length; i++) minS += min[i]; for (int i=1; i<validCombination.size(); i++){ String tempS = ""; int [] temp = (int[])validCombination.get(i); for (int j=0; j<temp.length; j++) tempS += temp[j]; if (tempS.compareTo(minS) < 0){ minS = tempS; min = temp; } } } for (int i=0; i<min.length-1; i++) out.print(min[i] + " "); out.println(min[min.length-1]); out.close(); // close the output file long end = System.nanoTime(); System.out.println("time: " + (end-start)/1000000000.0); System.exit(0); // don't omit this! } static boolean tryCombination(int[] clock, int[] steps) { int[] temp = Arrays.copyOf(clock, clock.length); for (int i = 0; i < steps.length; i++) transform(temp, steps[i]); for (int i=0; i<temp.length; i++) if (temp[i] != 12) return false; return true; } static void transform(int[] clock, int n) { if (n == 1) { int[] clocksToChange = {0, 1, 3, 4}; add3(clock, clocksToChange); } else if (n == 2) { int[] clocksToChange = {0, 1, 2}; add3(clock, clocksToChange); } else if (n == 3) { int[] clocksToChange = {1, 2, 4, 5}; add3(clock, clocksToChange); } else if (n == 4) { int[] clocksToChange = {0, 3, 6}; add3(clock, clocksToChange); } else if (n == 5) { int[] clocksToChange = {1, 3, 4, 5, 7}; add3(clock, clocksToChange); } else if (n == 6) { int[] clocksToChange = {2, 5, 8}; add3(clock, clocksToChange); } else if (n == 7) { int[] clocksToChange = {3, 4, 6, 7}; add3(clock, clocksToChange); } else if (n == 8) { int[] clocksToChange = {6, 7, 8}; add3(clock, clocksToChange); } else if (n == 9) { int[] clocksToChange = {4, 5, 7, 8}; add3(clock, clocksToChange); } } static void add3(int[] clock, int[] position) { for (int i = 0; i < position.length; i++) { if (clock[position[i]] != 12) { clock[position[i]] += 3; } else { clock[position[i]] = 3; } } } static ArrayList getPossibleCombinations(int size) { ArrayList l = new ArrayList(); int[] current = new int[size]; for (int i = 0; i < current.length; i++) { current[i] = 1; } int[] end = new int[size]; for (int i = 0; i < end.length; i++) { end[i] = 9; } l.add(Arrays.copyOf(current, size)); while (!Arrays.equals(current, end)) { incrementWithoutRepetition(current, current.length - 1); l.add(Arrays.copyOf(current, size)); } int [][] combination = new int[l.size()][size]; for (int i=0; i<l.size(); i++) combination[i] = (int[])l.get(i); return l; } static int incrementWithoutRepetition(int[] n, int index) { if (n[index] != 9) { n[index]++; return n[index]; } else { n[index] = incrementWithoutRepetition(n, index - 1); return n[index]; } } static void p(int[] n) { for (int i = 0; i < n.length; i++) { System.out.print(n[i] + " "); } System.out.println(""); } }

    Read the article

< Previous Page | 247 248 249 250 251 252 253 254 255 256 257 258  | Next Page >