Search Results

Search found 9118 results on 365 pages for 'chris power'.

Page 254/365 | < Previous Page | 250 251 252 253 254 255 256 257 258 259 260 261  | Next Page >

  • Multiple indexes for a Java Collection - most basic solution?

    - by chris_l
    Hi, I'm looking for the most basic solution to create multiple indexes on a Java Collection. Required functionality: When a Value is removed, all index entries associated with that value must be removed. Index lookup must be faster than linear search (at least as fast as a TreeMap). Side conditions: It should ideally work with JavaSE (6.0) alone - no extra libraries, if possible. If necessary, then only small (not something like Lucene), common and well tested libraries. No database! Of course, I could write a class that manages multiple Maps myself. But I'd like to know, if it can be done without - while still getting a simple usage similar to using a single indexed java.util.Map. Thanks, Chris

    Read the article

  • how do I send stuff to method using the JQuery Ajax method

    - by nisardotnet
    $.ajax({ type: "POST", url: "WebService.asmx/AddVisitor", data: "{'fname':'dave', 'lname':'ward'}", contentType: "application/json; charset=utf-8", dataType: "json" }); I have an Asp.Net WebMethod that takes a firstName, lastName.....as a parameter, how do I send that stuff to that method using the JQuery Ajax method. if i hardcode the above it works without any problem but if i pass dynamic it fails var firstName = $("[id$='txtFirstName']"); var lastName = $("[id$='txtLastName']"); //data: "{'firstName':'Chris','lastName':'Brandsma'}"<br> data: "{'firstname':'" + escape(firstName.val()) + "','lastName':'" + escape(lastName.val()) + "'}", my WebMethod looks like this [WebMethod] public bool AddVisitor(string firstName, string lastName) { return true; } what wrong here? i have tried with eval and escape none of that works. Thanks for any help.

    Read the article

  • How do I make a sql query where fields are the result of a different query?

    - by CRP
    I have two tables, the first is like this: f1 | f2 | f3 | f4 ----------------- data.... the second contains info about the fields of the first: field | info ------------ f1 a f2 b f3 a etc. I would like to query the first table selecting the fields with a query on the second. So, for example, I might want to get data for fields where info is equal to "a", thus I would do "select f1, f3 from first_table". How do I do this programmatically? I was thinking about something along the lines of select (select fields from second_table where info='a') from first_table Thanks Chris

    Read the article

  • Rails: Design Pattern to Store Order of Relations

    - by ChrisInCambo
    Hi, I have four models: Customer, QueueRed, QueueBlue, QueueGreen. The Queue models have a one to many relationship with customers A customer must always be in a queue A customer can only be in one queue at a time A customer can change queues We must be able to find out the customers current position in their respective queue In an object model the queues would just have an array property containing customers, but ActiveRecord doesn't have arrays. In a DB I would probably create some extra tables just to handle the order of the stories in the queue. My question is what it the best way to model the relationship in ActiveRecord? Obviously there are many ways this could be done, but what is the best or the most in line with how ActiveRecord should be used? Cheers, Chris

    Read the article

  • Organizing PHP includes in your development environment

    - by Andrew Heath
    I'm auditing my site design based on the excellent Essential PHP Security by Chris Shiflett. One of the recommendations I'd like to adopt is moving all possible files out of webroot, this includes includes. Doing so on my shared host is simple enough, but I'm wondering how people handle this on their development testbeds? Currently I've got an XAMPP installation configured so that localhost/mysite/ matches up with D:\mysite\ in which includes are stored at D:\mysite\includes\ In order to keep include paths accurate, I'm guess I need to replicate the server's path on my local disk? Something like D:\mysite\public_html\ Is there a better way?

    Read the article

  • A good F# codebase to learn from

    - by Lucas
    Hi all, I've been teaching myself F# for a while now. I've read Programming F# by Chris Smith (great book) and I've written a few small scripts for getting the job done here and there. But IMO the best way to learn a new programming language—and more importantly, the idioms that come with it—is to read a good open source codebase written in that language. Naturally, writing code in that language is crucial, but in the beginning, you're basically struggling with your own ignorance about how things should be done. You could perform certain tasks one way or the other, but it takes experience to realize the flaws and virtues of each. Even after you've gotten a firm grasp of how things work, reading the code of people who have an even firmer one helps a great deal. Most would agree that the most insightful parts of any learn-a-programming-language book are the code examples, and reading a well-written open source codebase is the next level of that. So are there any out there for F#?

    Read the article

  • Can the dirtiness of pages of a mmap be found from userspace?

    - by chrisdew
    Can dirtiness of pages of a (non-shared) mmap be accessed from userspace under linux 2.6.30+? Platform-specific hacks and kludges welcome. Ideally, I'm looking for an array of bits, one per page (4kB?) of the mmap'ed region, which are set if that page has been written to since the region was mmap'ed. (I am aware, that the process doing the writing could keep track of this information - but it seems silly to do so if the kernel is doing it anyway.) Thanks, Chris.

    Read the article

  • The Wheel Invention - Beneficial For Learning?

    - by Sarfraz
    Hello, Chris Coyier of css-tricks.com has written a good article titled Regarding Wheel Invention. In a paragraph he says: On the “reinventing” side, you benefit from complete control and learning from the process. And on the very next line he says: On the other side, you benefit from speed, reliability, and familiarity. Also often at odds are time spent and cost. He is right in both statements I think. I really like his first statement. I do actually sometimes re-invent the wheel to learn more and gain complete control over what I am inventing. I wonder why people are so much against that or rather biased. Isn't there the benefit of learning and getting complete control or probably some other benefits too. I would love to see what you have to say about this.

    Read the article

  • Undefined / Uninitialized default values in a class

    - by Jir
    Let's suppose you have this class: class A { public: A () {} A (double val) : m_val(val) {} ~A () {} private: double m_val; }; Once I create an instance of A, how can I check if m_val has been initialized/defined? Put it in other words, is there a way to know if m_val has been initialized/defined or not? Something along the lines of the defined operator in Python, I suppose. (But correct me if I'm wrong.) I thought of modifying the class and the c-tors the following way: class A { public: A () : defined(false) {} A (double val) : m_val(val), defined(true) {} ~A () {} private: double m_val; bool defined; }; How do you rate this solution? Any suggestion? TIA, Chris

    Read the article

  • Passing through lists from jQuery to the service

    - by thedixon
    I'm sure I've done this in another solution, but I can't seem to find any solution as to do it again and wondered if anyone can help me... This is my WebAPI code: public class WebController : ApiController { public void Get(string telephone, string postcode, List<Client> clients) { } } And, calling this from jQuery: function Client(name, age) { this.Name = name; this.Age = age; } var Clients = []; Clients.push(new Client("Chris", 27)); $.ajax({ url: "/api/Web/", data: { telephone: "999", postcode: "xxx xxx", clients: Clients } }); But the "clients" object always comes back as null. I've also tried JSON.stringify(Clients), and this is the same result. Can anyone see anything obvious I'm missing here?

    Read the article

  • sqlite use in tcl script over nfs (or.. how to make standalone sqlite3 which can be run over nfs)

    - by wom
    Hello. I want to use an embed an sqlite database into an existing tcl application (Migrate from flat-file). Currently; our tcl interpreter is run from a network location; /bin/tclsh8.3 I do have an nfs $PATH for executables set for all users already; I am assuming I can place a standalone sqlite3 executible there; though I have been not found an easy way to compile a local lib independent sqlite yet... (all linux clients, running anything from red hat 9 to ubuntu 10.04) Anyone able to poke me in the right direction in building an sqlite3 standalone binary I can use in my nfs tcl install? Thanks, Chris

    Read the article

  • App Engine - Save response from an API in the data store as file (blob)

    - by herrherr
    Hi there, I'm banging my head against the wall with this one: What I want to do is store a file that is returned from an API in the data store as a blob. Here is the code that I use on my local machine (which of course works due to an existing file system): client.convertHtml(html, open('html.pdf', 'wb')) Since I cannot write to a file on App Engine I tried several ways to store the response, without success. Any hints on how to do this? I was trying to do it with StringIO and managed to store the response but then weren't able to store it as a blob in the data store. Thanks, Chris

    Read the article

  • How to scroll whole visible page down to an anchor with a smooth effect (Scriptaculous or jQuery)?

    - by ChrisBenyamin
    Hey community, I want to create an navigation with anchors. By clicking on a navigation link, the whole visible page should scroll down to the clicked anchor. The most important is the following structure of the page. --------------- (Begin visible browser area) NAV1 nav2 nav3 content --------------- (Begin/end visible browser area) nav1 NAV2 nav3 content --------------- (Begin/end visible browser area) nav1 nav2 NAV3 content --------------- (end visible browser area) Finally all content is in a single document and the height of the current page (selected by the nav-item) has to be calculated (with a JS Library). I prefer PrototypeJS/Scriptaculous and jQuery. The scroll effect should be a smooth slide/ effect. Chris

    Read the article

  • antlr 3 ambiguity

    - by tcris
    Hello, I try to write some simple rules and I get this ambiguity rule: field1 field2; //ambiguity between nsf1 and nsf2 even if I use lookahead k=4 field1: nsf1 | whatever1...; field2: nsf2 | whatever2...; nsf1: 'N' 'S' 'F' '1'; //meaning: no such field 1 nsf2: 'N' 'S' 'F' '2'; //meaning: no such field 2 I understand the ambiguity, but I don't understand why lookahead doesn't solve this. I have a simple solution but I don't like it: rule: (nsf1 (nsf2 | whatever2)) | (whatever1 (nsf2 | whatever2)); Does anybody have a more elegant solution? Thanks a lot, Chris

    Read the article

  • Why I am forced to write the (Data Constructor) name with first letter in small case?

    - by Optimight
    Why I am forced to write "liOfLi" in place of "LiOfLi"? Please guide. code in baby.hs LiOfLi = [ [1,3,4,5,6,8], [ 12, 13, 15, 16, 19, 20], [23, 24, 25, 45, 56] ] ghci response: ghci :l baby [1 of 1] Compiling Main ( baby.hs, interpreted ) Failed, modules loaded: none. ghci baby.hs:29:1: Not in scope: data constructor `LiOfLi' When changing the initial letter to smaller case code in baby.hs liOfLi = [ [1,3,4,5,6,8], [ 12, 13, 15, 16, 19, 20], [23, 24, 25, 45, 56] ] ghci response: ghci :l baby [1 of 1] Compiling Main ( baby.hs, interpreted ) Ok, modules loaded: Main. Following are the SO questions I refered but I failed to understand the rules/ logic and get the answer for (my) abovementioned question. Why does Haskell force data constructor's first letter to be upper case? the variable names need to be lowercase. The official documentation related to this is at haskell.org/onlinereport/intro.html#namespaces – (the SO comment by) Chris Kuklewicz

    Read the article

  • PHP find if file data is an image

    - by Christian Sciberras
    Imagine I have some file data in a variable $data. I need to determine whether it is an image or not. No need for details such as corrupt images etc. Firs thought would be getting the file mime type by looking at the magic number and then see whether "image" is in the mime type. No such luck, even if I have a "file extension to mime type" script, I don't have a reliable way to get mime from magic number. My next option was to have a reasonable list of image file magic numbers and consult them. However, it relatively difficult to find such magic numbers (gif for instance has different magic numbers, some of which could pretty rare - if memory serves me right). A better idea would be some linux program which can do this kind of thing. Any ideas? I'm running RHEL and PHP 5.3. I've got root access - ie able to install stuff if needed. - Chris.

    Read the article

  • ruby hash to object - Parsing data from JSON object

    - by Leddo
    Hi all, I'm just starting to dabble in consuming a JSON webservice, and I am having a little trouble working out the best way to get to the actual data elements. I am receiving a response which has been converted into a ruby hash using the JSON.parse method. The hash looks like this: {"response"=>{"code"=>2002, "payload"=>{"topic"=>[{"name"=>"Topic Name", "url"=>"http://www.something.com/topic", "hero_image"=>{"image_id"=>"05rfbwV0Nggp8", "hero_image_id"=>"0d600BZ7MZgLJ", "hero_image_url"=>"http://img.something.com/imageserve/0d600BZ7MZgLJ/60x60.jpg"}, "type"=>"PERSON", "search_score"=>10.0, "topic_id"=>"0eG10W4e3Aapo"}]}, "message"=>"Success"}} What I would like to know, is what is the easiest way to get to the "topic" data so I can do something like: topic.name = json_resp.name topic.img = jsob_resp.hero_image_url etc Many thanks for any help you can offer. Regards Chris

    Read the article

  • What's some simple F# code that generates the .tail IL instruction?

    - by kld2010
    I'd like to see the .tail IL instruction, but the simple recursive functions using tail calls that I've been writing are apparently optimized into loops. I'm actually guessing on this, as I'm not entirely sure what a loop looks like in Reflector. I definitely don't see any .tail opcodes though. I have "Generate tail calls" checked in my project's properties. I've also tried both Debug and Release builds in Reflector. The code I used is from Programming F# by Chris Smith, page 190: let factorial x = // Keep track of both x and an accumulator value (acc) let rec tailRecursiveFactorial x acc = if x <= 1 then acc else tailRecursiveFactorial (x - 1) (acc * x) tailRecursiveFactorial x 1 Can anyone suggest some simple F# code which will indeed generate .tail?

    Read the article

  • Spring @Transactional - Can I Override rollbackFor

    - by user475039
    Hi all, I am calling a service which has the following annotation: @Transactional(rollbackFor=ExceptionA.class) public void myMethodA(....) throws ExceptionA { . . } I am calling this method from an other method in another Spring Bean. @Transactional(rollbackFor=ExceptionB.class) public void mainEntryPointMethod(....) throws ExceptionB { . try { myMethodA() } catch (ExceptionA exp) { . } . } My problem is that if myMethodA throws an exception, my transaction (which is passed from mainEntryPointMethod - myMethodA by default propagation) will be marked for rollback. Is there a way in which the 'rollbackFor' for the inner method can be overriden? Thanks in advance Chris

    Read the article

  • Eclipse 3.5 (Cocoa) slowing down irregularly after some time

    - by chris_l
    Hi, I'd like to hear, if anyone else encounters the same problems, and doesn't use Google's GWT (2.0) plugins: Sometimes, my Eclipse 3.5 (Cocoa) slows down after some time of usage (=30 minutes), so that things like maximizing an editor or moving the splitters becomes unbearably slow (reacting only after several seconds). After an Eclipse restart, everything's fine again. I'm not running low on memory (neither free RAM, nor memory available to Eclipse - Heap/Stack/PermGenSpace), and my system specs are not too bad. I know exactly one other person so far, who sees the same problem - but he also uses the GWT plugins. Since these issues appear irregularly, they're hard to track. Before creating an issue on the GWT bug tracker, I'd like to find out, if this also happens for somebody without Google's plugins. Thanks, Chris Edit: I'm running Snow Leopard 10.6.2

    Read the article

  • Windows Search in Taskbar with my own results

    - by masterchris_99
    Hello, I want to provide a custom Search Connector for Windows Search without accessing a php or aspx website. Is this possible? I don't find anything. It is not possible to create tmp files because of the amount of files. I want to do a db query. Target: .net (C#) Here are 2 pics for a better explanation. What I have What I want the 3 source of information come from a external source via database query. regards Chris

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Installing Lubuntu 14.04.1 forcepae fails

    - by Rantanplan
    I tried to install Lubuntu 14.04.1 from a CD. First, I chose Try Lubuntu without installing which gave: ERROR: PAE is disabled on this Pentium M (PAE can potentially be enabled with kernel parameter "forcepae" ... Following the description on https://help.ubuntu.com/community/PAE, I used forcepae and tried Try Lubuntu without installing again. That worked fine. dmesg | grep -i pae showed: [ 0.000000] Kernel command line: file=/cdrom/preseed/lubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- forcepae [ 0.008118] PAE forced! On the live-CD session, I tried installing Lubuntu double clicking on the install button on the desktop. Here, the CD starts running but then stops running and nothing happens. Next, I rebooted and tried installing Lubuntu directly from the boot menu screen using forcepae again. After a while, I receive the following error message: The installer encountered an unrecoverable error. A desktop session will now be run so that you may investigate the problem or try installing again. Hitting Enter brings me to the desktop. For what errors should I search? And how? Finally, I rebooted once more and tried Check disc for defects with forcepae option; no errors have been found. Now, I am wondering how to find the error or whether it would be better to follow advice c in https://help.ubuntu.com/community/PAE: "Move the hard disk to a computer on which the processor has PAE capability and PAE flag (that is, almost everything else than a Banias). Install the system as usual but don't add restricted drivers. After the install move the disk back." Thanks for some hints! Perhaps some of the following can help: On Lubuntu 12.04: cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 13 model name : Intel(R) Pentium(R) M processor 1.50GHz stepping : 6 microcode : 0x17 cpu MHz : 600.000 cache size : 2048 KB fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 2 wp : yes flags : fpu vme de pse tsc msr mce cx8 mtrr pge mca cmov clflush dts acpi mmx fxsr sse sse2 ss tm pbe up bts est tm2 bogomips : 1284.76 clflush size : 64 cache_alignment : 64 address sizes : 32 bits physical, 32 bits virtual power management: uname -a Linux humboldt 3.2.0-67-generic #101-Ubuntu SMP Tue Jul 15 17:45:51 UTC 2014 i686 i686 i386 GNU/Linux lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 12.04.5 LTS Release: 12.04 Codename: precise cpuid eax in eax ebx ecx edx 00000000 00000002 756e6547 6c65746e 49656e69 00000001 000006d6 00000816 00000180 afe9f9bf 00000002 02b3b001 000000f0 00000000 2c04307d 80000000 80000004 00000000 00000000 00000000 80000001 00000000 00000000 00000000 00000000 80000002 20202020 20202020 65746e49 2952286c 80000003 6e655020 6d756974 20295228 7270204d 80000004 7365636f 20726f73 30352e31 007a4847 Vendor ID: "GenuineIntel"; CPUID level 2 Intel-specific functions: Version 000006d6: Type 0 - Original OEM Family 6 - Pentium Pro Model 13 - Stepping 6 Reserved 0 Brand index: 22 [not in table] Extended brand string: " Intel(R) Pentium(R) M processor 1.50GHz" CLFLUSH instruction cache line size: 8 Feature flags afe9f9bf: FPU Floating Point Unit VME Virtual 8086 Mode Enhancements DE Debugging Extensions PSE Page Size Extensions TSC Time Stamp Counter MSR Model Specific Registers MCE Machine Check Exception CX8 COMPXCHG8B Instruction SEP Fast System Call MTRR Memory Type Range Registers PGE PTE Global Flag MCA Machine Check Architecture CMOV Conditional Move and Compare Instructions FGPAT Page Attribute Table CLFSH CFLUSH instruction DS Debug store ACPI Thermal Monitor and Clock Ctrl MMX MMX instruction set FXSR Fast FP/MMX Streaming SIMD Extensions save/restore SSE Streaming SIMD Extensions instruction set SSE2 SSE2 extensions SS Self Snoop TM Thermal monitor 31 reserved TLB and cache info: b0: unknown TLB/cache descriptor b3: unknown TLB/cache descriptor 02: Instruction TLB: 4MB pages, 4-way set assoc, 2 entries f0: unknown TLB/cache descriptor 7d: unknown TLB/cache descriptor 30: unknown TLB/cache descriptor 04: Data TLB: 4MB pages, 4-way set assoc, 8 entries 2c: unknown TLB/cache descriptor On Lubuntu 14.04.1 live-CD with forcepae: cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 13 model name : Intel(R) Pentium(R) M processor 1.50GHz stepping : 6 microcode : 0x17 cpu MHz : 600.000 cache size : 2048 KB physical id : 0 siblings : 1 core id : 0 cpu cores : 1 apicid : 0 initial apicid : 0 fdiv_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 2 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 sep mtrr pge mca cmov clflush dts acpi mmx fxsr sse sse2 ss tm pbe bts est tm2 bogomips : 1284.68 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 32 bits virtual power management: uname -a Linux lubuntu 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:12 UTC 2014 i686 i686 i686 GNU/Linux lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 14.04.1 LTS Release: 14.04 Codename: trusty cpuid CPU 0: vendor_id = "GenuineIntel" version information (1/eax): processor type = primary processor (0) family = Intel Pentium Pro/II/III/Celeron/Core/Core 2/Atom, AMD Athlon/Duron, Cyrix M2, VIA C3 (6) model = 0xd (13) stepping id = 0x6 (6) extended family = 0x0 (0) extended model = 0x0 (0) (simple synth) = Intel Pentium M (Dothan B1) / Celeron M (Dothan B1), 90nm miscellaneous (1/ebx): process local APIC physical ID = 0x0 (0) cpu count = 0x0 (0) CLFLUSH line size = 0x8 (8) brand index = 0x16 (22) brand id = 0x16 (22): Intel Pentium M, .13um feature information (1/edx): x87 FPU on chip = true virtual-8086 mode enhancement = true debugging extensions = true page size extensions = true time stamp counter = true RDMSR and WRMSR support = true physical address extensions = false machine check exception = true CMPXCHG8B inst. = true APIC on chip = false SYSENTER and SYSEXIT = true memory type range registers = true PTE global bit = true machine check architecture = true conditional move/compare instruction = true page attribute table = true page size extension = false processor serial number = false CLFLUSH instruction = true debug store = true thermal monitor and clock ctrl = true MMX Technology = true FXSAVE/FXRSTOR = true SSE extensions = true SSE2 extensions = true self snoop = true hyper-threading / multi-core supported = false therm. monitor = true IA64 = false pending break event = true feature information (1/ecx): PNI/SSE3: Prescott New Instructions = false PCLMULDQ instruction = false 64-bit debug store = false MONITOR/MWAIT = false CPL-qualified debug store = false VMX: virtual machine extensions = false SMX: safer mode extensions = false Enhanced Intel SpeedStep Technology = true thermal monitor 2 = true SSSE3 extensions = false context ID: adaptive or shared L1 data = false FMA instruction = false CMPXCHG16B instruction = false xTPR disable = false perfmon and debug = false process context identifiers = false direct cache access = false SSE4.1 extensions = false SSE4.2 extensions = false extended xAPIC support = false MOVBE instruction = false POPCNT instruction = false time stamp counter deadline = false AES instruction = false XSAVE/XSTOR states = false OS-enabled XSAVE/XSTOR = false AVX: advanced vector extensions = false F16C half-precision convert instruction = false RDRAND instruction = false hypervisor guest status = false cache and TLB information (2): 0xb0: instruction TLB: 4K, 4-way, 128 entries 0xb3: data TLB: 4K, 4-way, 128 entries 0x02: instruction TLB: 4M pages, 4-way, 2 entries 0xf0: 64 byte prefetching 0x7d: L2 cache: 2M, 8-way, sectored, 64 byte lines 0x30: L1 cache: 32K, 8-way, 64 byte lines 0x04: data TLB: 4M pages, 4-way, 8 entries 0x2c: L1 data cache: 32K, 8-way, 64 byte lines extended feature flags (0x80000001/edx): SYSCALL and SYSRET instructions = false execution disable = false 1-GB large page support = false RDTSCP = false 64-bit extensions technology available = false Intel feature flags (0x80000001/ecx): LAHF/SAHF supported in 64-bit mode = false LZCNT advanced bit manipulation = false 3DNow! PREFETCH/PREFETCHW instructions = false brand = " Intel(R) Pentium(R) M processor 1.50GHz" (multi-processing synth): none (multi-processing method): Intel leaf 1 (synth) = Intel Pentium M (Dothan B1), 90nm

    Read the article

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • Oracle Linux 6 DVDs Now Available

    - by sergio.leunissen
    On Sunday 6 February 2011, Oracle Linux 6 was released on the Unbreakable Linux Network for customers with an Oracle Linux support subscription. Shortly after that, the Oracle Linux 6 RPMs were made available on our public yum server. Today we published the installation DVD images on edelivery.oracle.com/linux. Oracle Linux 6 is free to download, install and use. The full release notes are here, but similar to my recent post about Oracle Linux 5.6, I wanted to highlight a few items about this release. Unbreakable Enterprise Kernel As is the case with Oracle Linux 5.6, the default installed kernel on x86_64 platform in Oracle Linux 6 is the Unbreakable Enterprise Kernel. If you haven't already, I highly recommend you watch the replay of this webcast by Chris Mason on the performance improvements made in this kernel. # uname -r 2.6.32-100.28.5.el6.x86_64 The Unbreakable Enterprise Kernel is delivered via the package kernel-uek: [root@localhost ~]# yum info kernel-uek ... Installed Packages Name : kernel-uek Arch : x86_64 Version : 2.6.32 Release : 100.28.5.el6 Size : 84 M Repo : installed From repo : anaconda-OracleLinuxServer-201102031546.x86_64 Summary : The Linux kernel URL : http://www.kernel.org/ License : GPLv2 Description: The kernel package contains the Linux kernel (vmlinuz), the core of : any Linux operating system. The kernel handles the basic functions : of the operating system: memory allocation, process allocation, : device input and output, etc. ext4 file system The ext4 or fourth extended filesystem replaces ext3 as the default filesystem in Oracle Linux 6. # mount /dev/mapper/VolGroup-lv_root on / type ext4 (rw) proc on /proc type proc (rw) sysfs on /sys type sysfs (rw) devpts on /dev/pts type devpts (rw,gid=5,mode=620) tmpfs on /dev/shm type tmpfs (rw,rootcontext="system_u:object_r:tmpfs_t:s0") /dev/sda1 on /boot type ext4 (rw) none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw) Red Hat compatible kernel Oracle Linux 6 also includes a Red Hat compatible kernel built directly from RHEL source. It's already installed, so booting it is a matter of editing /etc/grub.conf # rpm -qa | grep kernel-2.6.32 kernel-2.6.32-71.el6.x86_64 Oracle Linux 6 no longer includes a Red Hat compatible kernel with Oracle bug fixes. The only Red Hat compatible kernel included is the one built directly from RHEL source. Yum-only access to Unbreakable Linux Network (ULN) Oracle Linux 6 uses yum exclusively for access to Unbreakable Linux Network. To register your system with ULN, use the following command: # uln_register No Itanium Support Oracle Linux 6 is not supported on the Itanium (ia64) platform. Next Steps Read the release notes Download Oracle Linux 6 for free Discuss on the Oracle Linux forum

    Read the article

< Previous Page | 250 251 252 253 254 255 256 257 258 259 260 261  | Next Page >