Search Results

Search found 9271 results on 371 pages for 'properties'.

Page 261/371 | < Previous Page | 257 258 259 260 261 262 263 264 265 266 267 268  | Next Page >

  • Navigating sharepoint with a treeview

    - by linqmonkey
    I'm trying to replace the navigation on our sharepoint site with a treeview. It's a large site with up to 4 subsite leves in places. All I need it to do is show a consistent structure from page to page show only sites and pages The default sharepoint treeview seems to do neither of these things (doesn't display items from the parent site, includes document libraries but not pages). Does anyone have any idea how to achieve this? We're using the publishing site template throughout if that makes a difference. I've tried binding the tree to the datasource the quick launch uses but I guess from the error message they expect differently named properties.

    Read the article

  • ASP.net PreInit() Vs Init()

    - by ASP.netBeginner
    From local forum i understood that PreInit can be used to handle the following PreInit() >Master pages can be called dynamically >Themes can be set dynamically >Programatically add controls to controls collection and i read Init() is for Init() In this event, we can read the controls properties (set at design time). We cannot read control values changed by the user because that changed value will get loaded after LoadPostData() event fires. Question I am not getting the point "We cannot read control values changed by the user".Where do users change the value of control?.Example would help me to understand the point.

    Read the article

  • Javascript: Inherit method from base class and return the subclass's private variable

    - by marisbest2
    I have the following BaseClass defined: function BaseClass (arg1,arg2,arg3) { //constructor code here then - var privateVar = 7500; this.getPrivateVar = function() { return privateVar; }; } I want to have the following subclass which allows changing privateVar like so: function SubClass (arg1,arg2,arg3,privateVar) { //constructor code here then - var privateVar = privateVar; } SubClass.prototype = new BaseClass(); Now I want SubClass to inherit the getPrivateVar method. However, when I try this, it always returns 7500 which is the value in the BaseClass and not the value of privateVar. In other words, is it possible to inherit a BaseClass's public methods but have any references in them refer to the SubClass's properties? And how would I do that?

    Read the article

  • Why System.String's beahaves like a value type?

    - by Sorush Rabiee
    I want to write a 'Date' class that behaves like a Value Type. for example, Instead of writing a Clone method for setting properties safely, make the Date class to pass by value: public Date Birthday { get { return this.birthday; } set { this.birthday = value.Clone(); } //I want to write this.birthday = value; //without changing external value when this.Birthday changes } I know this is possible because System.String is a class and behaves like a value. for example: String s1 = "Hello"; String s2 = "Hi"; s1 = s2; s2="Hello"; Console.WriteLine(s1); //Prints 'Hi' First I thought writers of this class override '=' operator, but now I know that the '=' operator can not be overridden. so how they write String class?

    Read the article

  • Calculate average in LINQ C# with string representation of property name

    - by Paul
    I need to calculate a whole bunch of averages on an List of Surveys. The surveys have lots of properties that are int and double valued. I am creating a business object to handle all the calculations (there are like 100) and I'd rather not code 100 different methods for finding the average for a particular property. I'd like to be able to have the UI pass a string (representing the property) and have the the business object return an average for that property. So, like... int AverageHeightInInches = MyObject.GetIntAverage("HeightInInches"); . . . Then have linq code to calculate the result. Thanks!

    Read the article

  • How to step inside NSManagedObject; access individual attributes.

    - by user300972
    NSManagedObject *entryObj = [self.fetchedResultsController objectAtIndexPath:indexPath]; entryObj consists of four String attributes. If I NSLog entryObj, I get the information I want. I cannot figure out how to access each of these properties individually. I read a similar post where the solution was to call "entity." I cannot figure out how to use "entity" to access a specific attribute. Any ideas? References? Tutorials? Thanks in advance.

    Read the article

  • Ruby - overriding/enabling multiple assignment (e.g. `a, b, c = d, e, f`)

    - by nicholaides
    In ruby, you can do this: d = [1, 2, 3] a, b, c = d a, b, and c, will receive the values 1, 2, and 3, respectively. d, in this case in an Array and ruby knows to assign it's contents to a, b, and c. But, if d were a Fixnum, for example, only a would be assigned to the value of d while b and c would be assigned nil. What properties of d allow it to be used for multiple assignment? In my exploring so far, I've only been able to make instances of subclasses of Array behave in this way.

    Read the article

  • return not breaking loop (c#)

    - by David Wick
    I'm trying to determine if a user is a member of a group or not in AD. However, the following doesn't seem to be working for some reason... public bool MemberOf(string sObjectName, string sGroup, bool bIsGroup) { DirectoryEntry dEntry = CreateDirectoryEntry(); DirectorySearcher dSearcher = new DirectorySearcher(dEntry); if (bIsGroup) dSearcher.Filter = "(distinguishedName=" + sObjectName + ")"; else dSearcher.Filter = "(&(sAMAccountName=" + sObjectName + ")(objectClass=user))"; SearchResult sResult = dSearcher.FindOne(); if (sResult != null) { foreach (object oGroup in sResult.Properties["MemberOf"]) { if (oGroup.ToString() == sGroup) return true; else this.MemberOf(oGroup.ToString(), sGroup, true); } } return false; } Another variation: http://users.business.uconn.edu/dwick/work/wtf/6-14-2010%201-15-15%20PM.png Doesn't work either. This seems like a really dumb question... but shouldn't it break the loop upon "return true;"

    Read the article

  • Load custom class properly

    - by LinusAn
    I have a custom class which I want to "load" inside the firstViewController and then access it from other classes by segues. My Problem is, I can't even access and change the instance variable inside the firstViewController. Somehow I'm "loading" it wrong. Here is the code I used until now: inside viewController.h @property (strong, nonatomic) myClass *newClass; inside viewController.m @synthesize newClass; I then try to access it by: self.newClass.string = @"myString"; if(newClass.string == @"myString"){ NSLog(@"didn't work"); } Well, I get "didn't work". Why is that? When I write myClass *newClass = [myClass new]; It does work. But the class and its properties gets overwritten every time the ViewController loads again. What would you recommend? Thank you very much.

    Read the article

  • Android Java Eclipse Intent with 2 Projects

    - by user3793685
    Good day! I have 2 Projects in my Eclipse. MainActivity1 and MainActivity2 are the names of the activities. The MainActivity2 is connected to the MainActivity1 via Project in the properties of the MainActivity1. So far, I can call the package of the MainActivity2 from the MainActivity1. Now, below are my problem: I have a button in MainActivity1. What I want to do is after I click on the button in the MainActivity1, it runs the MainActivity2 project and some variables will be passed on to the MainActivity2. I've been searching in google for a while now and I couldn't get the right keyword for it. I've checked some of the questions here in StackOverflow but I'm unable to locate the problem similar to mine with calling and running the MainActivity2 class from the MainActivity1.java I'm a noob in Android Java but have knowledge in other OOP. Any tips will be a great help. Thanks

    Read the article

  • How to make a SUM of Dictionary Value nested into a list with LINQ ?

    - by user551108
    Hi All, I have a product object declared as : Product { int ProductID; string ProductName; int ProductTypeID; string ProductTypeName; int UnitsSold Dictionary <string, int> UnitsSoldByYear; } I want to make a sum on UnitsSold and UnitsSoldByYear properties with a Linq query but I didn't know how to make this kind of sum on a dictionary ! Here is my begining linq query code : var ProductTypeSum = from i in ProductsList group i by new { i.ProductTypeID, i.ProductTypeName} into pt select new { ProductTypeID= pt.Key.ProductTypeID, ProductTypeName= pt.Key.ProductTypeName, UnitsSoldSum= pt.Sum(i => i.UnitsSold), // How to make a Dictionary sum here } Thank you for your help !

    Read the article

  • Why am I getting a MySQL error?

    - by John Hoffman
    Here is my query. Its intention is allow access to properties of the animals that constitute a match of two animals. The match table contains columns for animal1ID and animal2ID to store which animals constitute the match. SELECT id, (SELECT * FROM animals WHERE animals.id=matches.animal1ID) AS animal1, (SELECT * FROM users WHERE animals.id=matches.animalID) AS animal2 FROM matches WHERE id=5 However, MySQl returns this error: Operand should contain 1 column(s). Why? Is there an alternative way to do this, perhaps with a JOIN statement?

    Read the article

  • CSS: can change height by px, but not by %

    - by cag8f
    I am trying to edit the CSS of my Wordpress theme. I have an element whose height I can successfully change from within Element Inspector, if I specify a certain pixel height, e.g. height=100px; But when I try to change the height by specifying a percentage, e.g. height=50%; the element does not change height. Any thoughts on what I'm doing wrong, or how to troubleshoot? None of the parent elements appear to have any height properties.

    Read the article

  • Integrating HTML into Silverlight Applications

    - by dwahlin
    Looking for a way to display HTML content within a Silverlight application? If you haven’t tried doing that before it can be challenging at first until you know a few tricks of the trade.  Being able to display HTML is especially handy when you’re required to display RSS feeds (with embedded HTML), SQL Server Reporting Services reports, PDF files (not actually HTML – but the techniques discussed will work), or other HTML content.  In this post I'll discuss three options for displaying HTML content in Silverlight applications and describe how my company is using these techniques in client applications. Displaying HTML Overlays If you need to display HTML over a Silverlight application (such as an RSS feed containing HTML data in it) you’ll need to set the Silverlight control’s windowless parameter to true. This can be done using the object tag as shown next: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/HTMLAndSilverlight.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50401.0" /> <param name="autoUpgrade" value="true" /> <param name="windowless" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object> By setting the control to “windowless” you can overlay HTML objects by using absolute positioning and other CSS techniques. Keep in mind that on Windows machines the windowless setting can result in a performance hit when complex animations or HD video are running since the plug-in content is displayed directly by the browser window. It goes without saying that you should only set windowless to true when you really need the functionality it offers. For example, if I want to display my blog’s RSS content on top of a Silverlight application I could set windowless to true and create a user control that grabbed the content and output it using a DataList control: <style type="text/css"> a {text-decoration:none;font-weight:bold;font-size:14pt;} </style> <div style="margin-top:10px; margin-left:10px;margin-right:5px;"> <asp:DataList ID="RSSDataList" runat="server" DataSourceID="RSSDataSource"> <ItemTemplate> <a href='<%# XPath("link") %>'><%# XPath("title") %></a> <br /> <%# XPath("description") %> <br /> </ItemTemplate> </asp:DataList> <asp:XmlDataSource ID="RSSDataSource" DataFile="http://weblogs.asp.net/dwahlin/rss.aspx" XPath="rss/channel/item" CacheDuration="60" runat="server" /> </div> The user control can then be placed in the page hosting the Silverlight control as shown below. This example adds a Close button, additional content to display in the overlay window and the HTML generated from the user control. <div id="RSSDiv"> <div style="background-color:#484848;border:1px solid black;height:35px;width:100%;"> <img alt="Close Button" align="right" src="Images/Close.png" onclick="HideOverlay();" style="cursor:pointer;" /> </div> <div style="overflow:auto;width:800px;height:565px;"> <div style="float:left;width:100px;height:103px;margin-left:10px;margin-top:5px;"> <img src="http://weblogs.asp.net/blogs/dwahlin/dan2008.jpg" style="border:1px solid Gray" /> </div> <div style="float:left;width:300px;height:103px;margin-top:5px;"> <a href="http://weblogs.asp.net/dwahlin" style="margin-left:10px;font-size:20pt;">Dan Wahlin's Blog</a> </div> <br /><br /><br /> <div style="clear:both;margin-top:20px;"> <uc:BlogRoller ID="BlogRoller" runat="server" /> </div> </div> </div> Of course, we wouldn’t want the RSS HTML content to be shown until requested. Once it’s requested the absolute position of where it should show above the Silverlight control can be set using standard CSS styles. The following ID selector named #RSSDiv handles hiding the overlay div shown above and determines where it will be display on the screen. #RSSDiv { background-color:White; position:absolute; top:100px; left:300px; width:800px; height:600px; border:1px solid black; display:none; } Now that the HTML content to display above the Silverlight control is set, how can we show it as a user clicks a HyperlinkButton or other control in the application? Fortunately, Silverlight provides an excellent HTML bridge that allows direct access to content hosted within a page. The following code shows two JavaScript functions that can be called from Siverlight to handle showing or hiding HTML overlay content. The two functions rely on jQuery (http://www.jQuery.com) to make it easy to select HTML objects and manipulate their properties: function ShowOverlay() { rssDiv.css('display', 'block'); } function HideOverlay() { rssDiv.css('display', 'none'); } Calling the ShowOverlay function is as simple as adding the following code into the Silverlight application within a button’s Click event handler: private void OverlayHyperlinkButton_Click(object sender, RoutedEventArgs e) { HtmlPage.Window.Invoke("ShowOverlay"); } The result of setting the Silverlight control’s windowless parameter to true and showing the HTML overlay content is shown in the following screenshot:   Thinking Outside the Box to Show HTML Content Setting the windowless parameter to true may not be a viable option for some Silverlight applications or you may simply want to go about showing HTML content a different way. The next technique I’ll show takes advantage of simple HTML, CSS and JavaScript code to handle showing HTML content while a Silverlight application is running in the browser. Keep in mind that with Silverlight’s HTML bridge feature you can always pop-up HTML content in a new browser window using code similar to the following: System.Windows.Browser.HtmlPage.Window.Navigate( new Uri("http://silverlight.net"), "_blank"); For this example I’ll demonstrate how to hide the Silverlight application while maximizing a container div containing the HTML content to show. This allows HTML content to take up the full screen area of the browser without having to set windowless to true and when done right can make the user feel like they never left the Silverlight application. The following HTML shows several div elements that are used to display HTML within the same browser window as the Silverlight application: <div id="JobPlanDiv"> <div style="vertical-align:middle"> <img alt="Close Button" align="right" src="Images/Close.png" onclick="HideJobPlanIFrame();" style="cursor:pointer;" /> </div> <div id="JobPlan_IFrame_Container" style="height:95%;width:100%;margin-top:37px;"></div> </div> The JobPlanDiv element acts as a container for two other divs that handle showing a close button and hosting an iframe that will be added dynamically at runtime. JobPlanDiv isn’t visible when the Silverlight application loads due to the following ID selector added into the page: #JobPlanDiv { position:absolute; background-color:#484848; overflow:hidden; left:0; top:0; height:100%; width:100%; display:none; } When the HTML content needs to be shown or hidden the JavaScript functions shown next can be used: var jobPlanIFrameID = 'JobPlan_IFrame'; var slHost = null; var jobPlanContainer = null; var jobPlanIFrameContainer = null; var rssDiv = null; $(document).ready(function () { slHost = $('#silverlightControlHost'); jobPlanContainer = $('#JobPlanDiv'); jobPlanIFrameContainer = $('#JobPlan_IFrame_Container'); rssDiv = $('#RSSDiv'); }); function ShowJobPlanIFrame(url) { jobPlanContainer.css('display', 'block'); $('<iframe id="' + jobPlanIFrameID + '" src="' + url + '" style="height:100%;width:100%;" />') .appendTo(jobPlanIFrameContainer); slHost.css('width', '0%'); } function HideJobPlanIFrame() { jobPlanContainer.css('display', 'none'); $('#' + jobPlanIFrameID).remove(); slHost.css('width', '100%'); } ShowJobPlanIFrame() handles showing the JobPlanDiv div and adding an iframe into it dynamically. Once JobPlanDiv is shown, the Silverlight control host has its width set to a value of 0% to allow the control to stay alive while making it invisible to the user. I found that this technique works better across multiple browsers as opposed to manipulating the Silverlight control host div’s display or visibility properties. Now that you’ve seen the code to handle showing and hiding the HTML content area, let’s switch focus to the Silverlight application. As a user clicks on a link such as “View Report” the ShowJobPlanIFrame() JavaScript function needs to be called. The following code handles that task: private void ReportHyperlinkButton_Click(object sender, RoutedEventArgs e) { ShowBrowser(_BaseUrl + "/Report.aspx"); } public void ShowBrowser(string url) { HtmlPage.Window.Invoke("ShowJobPlanIFrame", url); } Any URL can be passed into the ShowBrowser() method which handles invoking the JavaScript function. This includes standard web pages or even PDF files. We’ve used this technique frequently with our SmartPrint control (http://www.smartwebcontrols.com) which converts Silverlight screens into PDF documents and displays them. Here’s an example of the content generated:   Silverlight 4’s WebBrowser Control Both techniques shown to this point work well when Silverlight is running in-browser but not so well when it’s running out-of-browser since there’s no host page that you can access using the HTML bridge. Fortunately, Silverlight 4 provides a WebBrowser control that can be used to perform the same functionality quite easily. We’re currently using it in client applications to display PDF documents, SSRS reports and standard HTML content. Using the WebBrowser control simplifies the application quite a bit since no JavaScript is required if the application only runs out-of-browser. Here’s a simple example of defining the WebBrowser control in XAML. I typically define it in MainPage.xaml when a Silverlight Navigation template is used to create the project so that I can re-use the functionality across multiple screens. <Grid x:Name="WebBrowserGrid" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" Visibility="Collapsed"> <StackPanel HorizontalAlignment="Stretch" VerticalAlignment="Stretch"> <Border Background="#484848" HorizontalAlignment="Stretch" Height="40"> <Image x:Name="WebBrowserImage" Width="100" Height="33" Cursor="Hand" HorizontalAlignment="Right" Source="/HTMLAndSilverlight;component/Assets/Images/Close.png" MouseLeftButtonDown="WebBrowserImage_MouseLeftButtonDown" /> </Border> <WebBrowser x:Name="JobPlanReportWebBrowser" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" /> </StackPanel> </Grid> Looking through the XAML you can see that a close image is defined along with the WebBrowser control. Because the URL that the WebBrowser should navigate to isn’t known at design time no value is assigned to the control’s Source property. If the XAML shown above is left “as is” you’ll find that any HTML content assigned to the WebBrowser doesn’t display properly. This is due to no height or width being set on the control. To handle this issue the following code is added into the XAML’s code-behind file to dynamically determine the height and width of the page and assign it to the WebBrowser. This is done by handling the SizeChanged event. void MainPage_SizeChanged(object sender, SizeChangedEventArgs e) { WebBrowserGrid.Height = JobPlanReportWebBrowser.Height = ActualHeight; WebBrowserGrid.Width = JobPlanReportWebBrowser.Width = ActualWidth; } When the user wants to view HTML content they click a button which executes the code shown in next: public void ShowBrowser(string url) { if (Application.Current.IsRunningOutOfBrowser) { JobPlanReportWebBrowser.NavigateToString("<html><body><iframe src='" + url + "' style='width:100%;height:97%;' /></body></html>"); WebBrowserGrid.Visibility = Visibility.Visible; } else { HtmlPage.Window.Invoke("ShowJobPlanIFrame", url); } } private void WebBrowserImage_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) { WebBrowserGrid.Visibility = Visibility.Collapsed; }   Looking through the code you’ll see that it checks to see if the Silverlight application is running out-of-browser and then either displays the WebBrowser control or runs the JavaScript function discussed earlier. Although the WebBrowser control’s Source property could be assigned the URI of the page to navigate to, by assigning HTML content using the NavigateToString() method and adding an iframe, content can be shown from any site including cross-domain sites. This is especially handy when you need to grab a page from a reporting site that’s in a different domain than the Silverlight application. Here’s an example of viewing  PDF file inside of an out-of-browser application. The first image shows the application running out-of-browser before the user clicks a PDF HyperlinkButton.  The second image shows the PDF being displayed.   While there are certainly other techniques that can be used, the ones shown here have worked well for us in different applications and provide the ability to display HTML content in-browser or out-of-browser. Feel free to add a comment if you have another tip or trick you like to use when working with HTML content in Silverlight applications.   Download Code Sample   For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • SQL SERVER – World Shapefile Download and Upload to Database – Spatial Database

    - by pinaldave
    During my recent, training I was asked by a student if I know a place where he can download spatial files for all the countries around the world, as well as if there is a way to upload shape files to a database. Here is a quick tutorial for it. VDS Technologies has all the spatial files for every location for free. You can download the spatial file from here. If you cannot find the spatial file you are looking for, please leave a comment here, and I will send you the necessary details. Unzip the file to a folder and it will have the following content. Then, download Shape2SQL tool from SharpGIS. This is one of the best tools available to convert shapefiles to SQL tables. Afterwards, run the .exe file. When the file is run for the first time, it will ask for the database properties. Provide your database details. Select the appropriate shape files and the tool will fill up the essential details automatically. If you do not want to create the index on the column, uncheck the box beside it. The screenshot below is simply explains the procedure. You also have to be careful regarding your data, whether that is GEOMETRY or GEOGRAPHY. In this example,  it is GEOMETRY data. Click “Upload to Database”. It will show you the uploading process. Once the shape file is uploaded, close the application and open SQL Server Management Studio (SSMS). Run the following code in SSMS Query Editor. USE Spatial GO SELECT * FROM dbo.world GO This will show the complete map of world after you click on Spatial Results in Spatial Tab. In Spatial Results Set, the Zoom feature is available. From the Select label column, choose the country name in order to show the country name overlaying the country borders. Let me know if this tutorial is helpful enough. I am planning to write a few more posts about this later. Note: Please note that the images displayed here do not reflect the original political boundaries. These data are pretty old and can probably draw incorrect maps as well. I have personally spotted several parts of the map where some countries are located a little bit inaccurately. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Add-On, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Spatial, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Visual Studio 2010 SP1 Beta supports IIS Express

    - by DigiMortal
    Visual Studio 2010 SP1 Beta and ASP.NET MVC 3 RC2 were both announced today. I made a little test on one of my web applications to see how Visual Studio 2010 works with IIS Express. In this posting I will show you how to make your ASP.NET MVC 3 application work with IIS Express. Installing new stuff You can install IIS Express using Web Platform Installer. It is not part of WebMatrix anymore and you can just install IIS Express without WebMatrix. NB! You have to install IIS Express using Web Platform installer because IIS Express is not installed by SP1. After installing Visual Studio 2010 SP1 Beta on my machine (it took a long-long-long time to install) I installed also ASP.NET MVC 3 RC2. If you have Async CTP installed on your machine you have to uninstall it to get ASP.NET MVC 3 RC2 installed and run without problems. Screenshot on right shows what kinf of horrors my old laptop had to survive to get all new stuff installer. Setting IIS Express as server for web application Now, when you right-click on some web project you should see new menu item in context menu – Use IIS Express…. If you click on it you are asked for confirmation and if you say Yes then your web application is reconfigured to use IIS Express. After configuration you will see dialog box like this. And you are done. You can run your application now. Running web application When you run your application it is run on IIS Express. You can see IIS Express icon on taskbar and when you click it you can open IIS Express settings. If you closed your application in browser you can open it again from IIS Express icon. Modifying IIS Express settings for web application You can modify IIS Express settings for your application. Just open your project properties and move to Web tab. IIS and IIS Express are using same settings. The difference is if you make check to Use IIS Express checkbox or not. Switching back to Visual Studio Development Server If you don’t want or you can’t use IIS Express for some reason you can easily switch back to Visual Studio Development Server. Just right-click on your web application project and select Use Visual Studio Development Server from context menu. Conclusion IIS Express is more independent than full version of IIS and it can be also installed and run on machines where are very strict rules (some corporate and academic environments by example). IIS Express was previously part of WebMatrix package but now it is separate product and Visual Studio 2010 has very nice support for it thanks to SP1. You can easily make your web applications use IIS Express and if you want to switch back to development server it is also very easy.

    Read the article

  • Fixing the Model Binding issue of ASP.NET MVC 4 and ASP.NET Web API

    - by imran_ku07
            Introduction:                     Yesterday when I was checking ASP.NET forums, I found an important issue/bug in ASP.NET MVC 4 and ASP.NET Web API. The issue is present in System.Web.PrefixContainer class which is used by both ASP.NET MVC and ASP.NET Web API assembly. The details of this issue is available in this thread. This bug can be a breaking change for you if you upgraded your application to ASP.NET MVC 4 and your application model properties using the convention available in the above thread. So, I have created a package which will fix this issue both in ASP.NET MVC and ASP.NET Web API. In this article, I will show you how to use this package.           Description:                     Create or open an ASP.NET MVC 4 project and install ImranB.ModelBindingFix NuGet package. Then, add this using statement on your global.asax.cs file, using ImranB.ModelBindingFix;                     Then, just add this line in Application_Start method,   Fixer.FixModelBindingIssue(); // For fixing only in MVC call this //Fixer.FixMvcModelBindingIssue(); // For fixing only in Web API call this //Fixer.FixWebApiModelBindingIssue(); .                     This line will fix the model binding issue. If you are using Html.Action or Html.RenderAction then you should use Html.FixedAction or Html.FixedRenderAction instead to avoid this bug(make sure to reference ImranB.ModelBindingFix.SystemWebMvc namespace). If you are using FormDataCollection.ReadAs extension method then you should use FormDataCollection.FixedReadAs instead to avoid this bug(make sure to reference ImranB.ModelBindingFix.SystemWebHttp namespace). The source code of this package is available at github.          Summary:                     There is a small but important issue/bug in ASP.NET MVC 4. In this article, I showed you how to fix this issue/bug by using a package. Hopefully you will enjoy this article too.

    Read the article

  • IIS SSL Certificate Renewal Pain

    - by Rick Strahl
    I’m in the middle of my annual certificate renewal for the West Wind site and I can honestly say that I hate IIS’s certificate system.  When it works it’s fine, but when it doesn’t man can it be a pain. Because I deal with public certificates on my site merely once a year, and you have to perform the certificate dance just the right way, I seem to run into some sort of trouble every year, thinking that Microsoft surely must have addressed the issues I ran into previously – HA! Not so. Don’t ever use the Renew Certificate Feature in IIS! The first rule that I should have never forgotten is that certificate renewals in IIS (7 is what I’m using but I think it’s no different in 7.5 and 8), simply don’t work if you’re submitting to get a public certificate from a certificate authority. I use DNSimple for my DNS domain management and SSL certificates because they provide ridiculously easy domain management and good prices for SSL certs – especially wildcard certificates, which is what I use on west-wind.com. Certificates in IIS can be found pegged to the machine root. If you go into the IIS Manager, go to the machine root the tree and then click on certificates and you then get various certificate options: Both of these options create a new Certificate request (CSR), which is just a text file. But if you’re silly enough like me to click on the Renew button on your old certificate, you’ll find that you end up generating a very long Certificate Request that looks nothing like the original certificate request and the format that’s used for this is not accepted by most certificate authorities. While I’m not sure exactly what the problem is, it simply looks like IIS is respecting none of your original certificate bit size choices and is generating a huge certificate request that is 3 times the size of a ‘normal’ certificate request. The end result is (and I’ve done this at least twice now) is that the certificate processor is likely to fail processing those renewals. Always create a new Certificate While it’s a little more work and you have to remember how to fill out the certificate request properly, this is the safe way to make sure your certificate generates properly. First comes the Distinguished Name Properties dialog: Ah yes you have to love the nomenclature of this stuff. Distinguished name, Common name – WTF is a common name? It doesn’t look common to me! Make sure this form gets filled out correctly. Common NameThis is the domain name of the Web site. In my case I’m creating a wildcard certificate so I’m using the * prefix. If you’re purchasing a certificate for a specific domain use www.west-wind.com or store.west-wind.com for example. Make sure this matches the EXACT domain you’re trying to use secure access on because that’s all the certificate is going to work on unless you get a wildcard certificate. Organization Is the name of your company or organization. Depending on the kind of certificate you purchase this name will show up on your certificate. Most low end SSL certificates (ie. those that cost under $100 for single domains) don’t list the organization, the higher signature certificates that also require extensive validation by the cert authority do. Regardless you should make sure this matches the right company/organization. Organizational Unit This can be anything. Not really sure what this is for, but traditionally I’ve always set this to Web because – well this is a Web thing after all right? I’ve never seen this used anywhere that I can tell other than to internally reference the cert. State and CountryPretty obvious. Should reflect the location of the business/organization/person or site.   Next you have to configure the bit size used for the certificate: The default on this dialog is 1024, but I’ve found that most providers these days request a minimum bit length of 2048, as did my DNSimple provider. Again check with the provider when you submit to make sure. Bit length mismatches can cause problems if you use a size that isn’t supported by the provider. I had that happen last year when I submitted my CSR and it got rejected quite a bit later, when the certs usually are issued within an hour or less. When you’re done here, the certificate is saved to disk as a .txt file and it should look something like this (this is a 2048 bit length CSR):-----BEGIN NEW CERTIFICATE REQUEST----- MIIEVGCCAz0CAQAwdjELMAkGA1UEBhMCVVMxDzANBgNVBAgMBkhhd2FpaTENMAsG A1UEBwwEUGFpYTEfMB0GA1UECgwWV2VzdCBXaW5kIFRlY2hub2xvZ2llczEMMAoG B1UECwwDV2ViMRgwFgYDVQQDDA8qLndlc3Qtd2luZC5jb20wggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQDIPWOFMkMVRp2Ftj9w/cCVV4OYYhoZYtl+8lTk oqDwKca0xWHLgioX/9v0rZLS6a82MHqKEBxVXu+cuCmSE4AQtB/1YH9lS4tpc/be OZDvnTotP6l4MCEzzAfROcw4CiIg6X0RMSnl8IATAvv2V5LQM9TDdt9oDdMpX2IY +vVC9RZ7PMHBmR9kwI2i/lrKitzhQKaHgpmKcRlM6iqpALUiX28w5HJaDKK1MDHN 607tyFJLHijuJKx7PdTqZYf50KkC3NupfZ2avVycf18Q13jHWj59tvwEOczoVzRL l4LQivAqbhyiqMpWnrZunIOUZta5aGm+jo7O1knGWJjxuraTAgMBAAGgggGYMBoG CisGAQQBgjcNAgMxDBYKNi4yLjkyMDAuMjA0BgkrBgEEAYI3FRQxJzAlAgEFDAZS QVNYUFMMC1JBU1hQU1xSaWNrDAtJbmV0TWdyLmV4ZTByBgorBgEEAYI3DQICMWQw YgIBAR5aAE0AaQBjAHIAbwBzAG8AZgB0ACAAUgBTAEEAIABTAEMAaABhAG4AbgBl AGwAIABDAHIAeQBwAHQAbwBnAHIAYQBwAGgAaQBjACAAUAByAG8AdgBpAGQAZQBy AwEAMIHPBgkqhkiG9w0BCQ4xgcEwgb4wDgYDVR0PAQH/BAQDAgTwMBMGA1UdJQQM MAoGCCsGAQUFBwMBMHgGCSqGSIb3DQEJDwRrMGkwDgYIKoZIhvcNAwICAgCAMA4G CCqGSIb3DQMEAgIAgDALBglghkgBZQMEASowCwYJYIZIAWUDBAEtMAsGCWCGSAFl AwQBAjALBglghkgBZQMEAQUwBwYFKw4DAgcwCgYIKoZIhvcNAwcwHQYDVR0OBBYE FD/yOsTbXE+GVFCFMmldzQvyloz9MA0GCSqGSIb3DQEBBQUAA4IBAQCK6LlsCuIM 1AU0niB6QZ9v0FTsGFxP1dYvVUnJyY6VEKNiGFiQjZac7UCs0p58yScdXWEFOE8V OsjAYD3xYNc05+ckyD67UHRGEUAVB9RBvbKW23KeR/8kBmEzc8PemD52YOgExxAJ 57xWmAwEHAvbgYzQvhO8AOzH3TGvvHbg5UKM1pYgNmuwZq5DkL/IDoeIJwfk/wrI wghNTuxxIFgbH4YrgLgv4PRvrS/LaTCRBdboaCgzATMczaOb1nd/DVNR+3fCtMhM W0psTAjzRbmXF3nJyAQa7jF/52gkY0RfFX2lG5tJnG+XDsVNvKNvh9Qa5Tlmkm06 ILKCm9ciWCKk -----END NEW CERTIFICATE REQUEST----- You can take that certificate request and submit that to your certificate provider. Since this is base64 encoded you can typically just paste it into a text box on the submission page, or some providers will ask you to upload the CSR as a file. What does a Renewal look like? Note the length of the CSR will vary somewhat with key strength, but compare this to a renewal request that IIS generated from my existing site:-----BEGIN NEW CERTIFICATE REQUEST----- MIIPpwYFKoZIhvcNAQcCoIIPmDCCD5QCAQExCzAJBgUrDgMCGgUAMIIIqAYJKoZI hvcNAQcBoIIImQSCCJUwggiRMIIH+gIBADBdMSEwHwYDVQQLDBhEb21haW4gQ29u dHJvbCBWYWxpFGF0ZWQxHjAcBgNVBAsMFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEY MBYGA1UEAwwPKi53ZXN0LXdpbmQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB iQKBgQCK4OuIOR18Wb8tNMGRZiD1c9X57b332Lj7DhbckFqLs0ys8kVDHrTXSj+T Ye9nmAvfPpZmBtE5p9qRNN79rUYugAdl+qEtE4IJe1bRfxXzcKa1SXa8+TEs3zQa zYSmcR2dDuC8om1eAdeCtt0NnkvANgm1VLwGOor/UHMASaEhCQIDAQABoIIG8jAa BgorBgEEAYI3DQIDMQwWCjYuMi45MjAwLjIwNAYJKwYBBAGCNxUUMScwJQIBBQwG UkFTWFBTDAtSQVNYUFNcUmljawwLSW5ldE1nci5leGUwZgYKKwYBBAGCNw0CAjFY MFYCAQIeTgBNAGkAYwByAG8AcwBvAGYAdAAgAFMAdAByAG8AbgBnACAAQwByAHkA cAB0AG8AZwByAGEAcABoAGkAYwAgAFAAcgBvAHYAaQBkAGUAcgMBADCCAQAGCSqG SIb3DQEJDjGB8jCB7zAOBgNVHQ8BAf8EBAMCBaAwDAYDVR0TAQH/BAIwADA0BgNV HSUELTArBggrBgEFBQcDAQYIKwYBBQUHAwIGCisGAQQBgjcKAwMGCWCGSAGG+EIE ATBPBgNVHSAESDBGMDoGCysGAQQBsjEBAgIHMCswKQYIKwYBBQUHAgEWHWh0dHBz Oi8vc2VjdXJlLmNvbW9kby5jb20vQ1BTMAgGBmeBDAECATApBgNVHREEIjAggg8q Lndlc3Qtd2luZC5jb22CDXdlc3Qtd2luZC5jb20wHQYDVR0OBBYEFEVLAyO8gDiv lsfovKrx9mHPyrsiMIIFMAYJKwYBBAGCNw0BMYIFITCCBR0wggQFoAMCAQICEQDu 1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRsw GQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAY BgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVkMRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wg Q0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUwNjA2MjM1OTU5WjBdMSEwHwYDVQQLExhE b21haW4gQ29udHJvbCBWYWxpZGF0ZWQxHjAcBgNVBAsTFUVzc2VudGlhbFNTTCBX aWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0LXdpbmQuY29tMIIBIjANBgkqhkiG9w0B AQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66XB51DlUfm6xXqJBcvMU2qorRHxC+WjEpB amvg8XoqNfCKzDAvLMbY4BLhbYCTagqtslnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJM CHufZ5RDtuTuxhTdJxzP9YqZUfKV5abWQp/TK6V1ryaBJvdqM73q4tRjrQODtkiR PfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8 UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+wDNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfO a7iZMVGbqDg6rkS//2uGe6tSQJTTs+mAZB+na+M8XT2UqwIDAQABo4IBwTCCAb0w HwYDVR0jBBgwFoAU2svqrVsIXcz//CZUzknlVcY49PgwHQYDVR0OBBYEFH0AmLiL RSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB/wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQG A1UdJQQtMCsGCCsGAQUFBwMBBggrBgEFBQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4 QgQBME8GA1UdIARIMEYwOgYLKwYBBAGyMQECAgcwKzApBggrBgEFBQcCARYdaHR0 cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9DUFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIw MKAuoCyGKmh0dHA6Ly9jcmwuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBLmNy bDBuBggrBgEFBQcBAQRiMGAwOAYIKwYBBQUHMAKGLGh0dHA6Ly9jcnQuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBXzIuY3J0MCQGCCsGAQUFBzABhhhodHRwOi8v b2NzcC5jb21vZG9jYS5jb20wKQYDVR0RBCIwIIIPKi53ZXN0LXdpbmQuY29tgg13 ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEBBQUAA4IBAQBqBfd6QHrxXsfgfKARG6np 8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8 YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXSsBxBdNz8RYTthPMu1h09C0XuDB30sztg nR692FrxJN5/bXsk+MC9nEweTFW/t2HW+XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lD csZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0tCbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk 9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlcrfFP2PK7XcEwWizsvMrNqLyvQVNXSUPT MA0GCSqGSIb3DQEBBQUAA4GBABt/NitwMzc5t22p5+zy4HXbVYzLEjesLH8/v0ot uLQ3kkG8tIWNh5RplxIxtilXt09H4Oxpo3fKUN0yw+E6WsBfg0sAF8pHNBdOJi48 azrQbt4HvKktQkGpgYFjLsormjF44SRtToLHlYycDHBNvjaBClUwMCq8HnwY6vDq xikRoIIFITCCBR0wggQFoAMCAQICEQDu1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3 DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRswGQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0 ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAYBgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVk MRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wgQ0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUw NjA2MjM1OTU5WjBdMSEwHwYDVQQLExhEb21haW4gQ29udHJvbCBWYWxpZGF0ZWQx HjAcBgNVBAsTFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0 LXdpbmQuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66X B51DlUfm6xXqJBcvMU2qorRHxC+WjEpBamvg8XoqNfCKzDAvLMbY4BLhbYCTagqt slnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJMCHufZ5RDtuTuxhTdJxzP9YqZUfKV5abW Qp/TK6V1ryaBJvdqM73q4tRjrQODtkiRPfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d 9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+w DNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfOa7iZMVGbqDg6rkS//2uGe6tSQJTTs+mA ZB+na+M8XT2UqwIDAQABo4IBwTCCAb0wHwYDVR0jBBgwFoAU2svqrVsIXcz//CZU zknlVcY49PgwHQYDVR0OBBYEFH0AmLiLRSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB /wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQGA1UdJQQtMCsGCCsGAQUFBwMBBggrBgEF BQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4QgQBME8GA1UdIARIMEYwOgYLKwYBBAGy MQECAgcwKzApBggrBgEFBQcCARYdaHR0cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9D UFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIwMKAuoCyGKmh0dHA6Ly9jcmwuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBLmNybDBuBggrBgEFBQcBAQRiMGAwOAYIKwYB BQUHMAKGLGh0dHA6Ly9jcnQuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBXzIu Y3J0MCQGCCsGAQUFBzABhhhodHRwOi8vb2NzcC5jb21vZG9jYS5jb20wKQYDVR0R BCIwIIIPKi53ZXN0LXdpbmQuY29tgg13ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEB BQUAA4IBAQBqBfd6QHrxXsfgfKARG6np8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe 4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXS sBxBdNz8RYTthPMu1h09C0XuDB30sztgnR692FrxJN5/bXsk+MC9nEweTFW/t2HW +XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lDcsZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0t CbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlc rfFP2PK7XcEwWizsvMrNqLyvQVNXSUPTMYIBrzCCAasCAQEwgYcwcjELMAkGA1UE BhMCR0IxGzAZBgNVBAgTEkdyZWF0ZXIgTWFuY2hlc3RlcjEQMA4GA1UEBxMHU2Fs Zm9yZDEaMBgGA1UEChMRQ09NT0RPIENBIExpbWl0ZWQxGDAWBgNVBAMTD0Vzc2Vu dGlhbFNTTCBDQQIRAO7UTVPkm+2Sbks59IdptaUwCQYFKw4DAhoFADANBgkqhkiG 9w0BAQEFAASCAQB8PNQ6bYnQpWfkHyxnDuvNKw3wrqF2p7JMZm+SuN2qp3R2LpCR mW2LrGtQIm9Iob/QOYH+8houYNVdvsATGPXX2T8gzn+anof4tOG0vCTK1Bp9bwf9 MkRP+1c8RW/vkYmUW4X5/C+y3CZpMH5dDTaXBIpXFzjX/fxNpH/rvLzGiaYYL3Cn OLO+aOADr9qq5yoqwpiYCSfYNNYKTUNNGfYIidQwYtbHXEYhSukB2oR89xD2sZZ4 bOqFjUPgTa5SsERLDDeg3omMKiIXVYGxlqBEq51Kge6IQt4qQV9P9VgInW7cWmKe dTqNHI9ri3ttewdEnT++TKGKKfTjX9SR8Waj -----END NEW CERTIFICATE REQUEST----- Clearly there’s something very different between this an my original request! And it didn’t work. IIS creates a custom CSR that is encoded in a format that no certificate authority I’ve ever used uses. If you want the gory details of what’s in there look at this ServerFault question (thanks to Mika in the comments). In the end it doesn’t matter  though – no certificate authority knows what to do with this CSR. So create a new CSR and skip the renewal. Always! Use the same Server Keep in mind that on IIS at least you should always create your certificate on a single server and then when you receive the final certificate from your provider import it on that server. IIS tracks the CSR it created and requires it in order to import the final certificate properly. So if for some reason you try to install the certificate on another server, it won’t work. I’ve also run into trouble trying to install the same certificate twice – this time around I didn’t give my certificate the proper friendly name and IIS failed to allow me to assign the certificate to any of my Web sites. So I removed the certificate and tried to import again, only to find it failed the second time around. There are other ways to fix this, but in my case I had to have the certificate re-issued to work – not what you want to do. Regardless of what you do though, when you import make sure you do it right the first time by crossing all your t’s and dotting your i's– it’ll save you a lot of grief! You don’t actually have to use the server that the certificate gets installed on to generate the CSR and first install it, but it is generally a good idea to do so just so you can get the certificate installed into the right place right away. If you have access to the server where you need to install the certificate you might as well use it. But you can use another machine to generated the and install the certificate, then export the certificate and move it to another machine as needed. So you can use your Dev machine to create a certificate then export it and install it on a live server. More on installation and back up/export later. Installing the Certificate Once you’ve submitted a CSR request your provider will process the request and eventually issue you a new final certificate that contains another text file with the final key to import into your certificate store. IIS does this by combining the content in your certificate request with the original CSR. If all goes well your new certificate shows up in the certificate list and you’re ready to assign the certificate to your sites. Make sure you use a friendly name that matches domain name of your site. So use *.mysite.com or www.mysite.com or store.mysite.com to ensure IIS recognizes the certificate. I made the mistake of not naming my friendly name this way and found that IIS was unable to link my sites to my wildcard certificate. It needed to have the *. as part of the certificate otherwise the Hostname input field was blanked out. Changing the Friendly Name If you by accidentally used an invalid friendly name you can change it later in the Windows certificate store. Bring up a Run Box Type MMC File | Add/Remove Snap In Add Certificates | Computer Account | Local Computer Drill into Certificates | Personal | Certificates Find your Certificate | Right Click | Properties Edit the Friendly Name | Click OK Backing up your Certificate The first thing you should do once your certificate is successfully installed is to back it up! In case your server crashes or you otherwise lose your configuration this will ensure you have an easy way to recover and reinstall your certificate either on the same server or a different one. If you’re running a server farm or using a wildcard certificate you also need to get the certificate onto other machines and a PFX file import is the easiest way to do this. To back up your certificate select your certificate and choose Export from the context or sidebar menu: The Export Certificate option allows you to export a password protected binary file that you can import in a single step. You can copy the resulting binary PFX file to back up or copy to other machines to install on. Importing the certificate on another machine is as easy as pointing at the PFX file and specifying the password. IIS handles the rest. Assigning a new certificate to your Site Once you have the new certificate installed, all that’s left to do is assign it to your site. In IIS select your Web site and bring up the Site Bindings from the right sidebar. Add a new binding for https, bind it to port 443, specify your hostname and pick the certificate from the pick list. If you’re using a root site make sure to set up your certificate for www.yoursite.com and also for yoursite.com so that both work properly with SSL. Note that you need to explicitly configure each hostname for a certificate if you plan to use SSL. Luckily if you update your SSL certificate in the following year, IIS prompts you and asks whether you like to update all other sites that are using the existing cert to the newer cert. And you’re done. So what’s the Pain? So, all of this is old hat and it doesn’t look all that bad right? So what’s the pain here? Well if you follow the instructions and do everything right, then the process is about as straight forward as you would expect it to be. You create a cert request, you import it and assign it to your sites. That’s the basic steps and to be perfectly fair it works well – if nothing goes wrong. However, renewing tends to be the problem. The first unintuitive issue is that you simply shouldn’t renew but create a new CSR and generate your new certificate from that. Over the years I’ve fallen prey to the belief that Microsoft eventually will fix this so that the renewal creates the same type of CSR as the old cert, but apparently that will just never happen. Booo! The other problem I ran into is that I accidentally misnamed my imported certificate which in turn set off a chain of events that caused my originally issued certificate to become uninstallable. When I received my completed certificate I installed it and it installed just fine, but the friendly name was wrong. As a result IIS refused to assign the certificate to any of my host headered sites. That’s strike number one. Why the heck should the friendly name have any effect on the ability to attach the certificate??? Next I uninstalled the certificate because I figured that would be the easiest way to make sure I get it right. But I found that I could not reinstall my certificate. I kept getting these stop errors: "ASN1 bad tag value met" that would prevent the installation from completion. After searching around for this error and reading countless long messages on forums, I found that this error supposedly does not actually mean the install failed, but the list wouldn’t refresh. Commodo has this to say: Note: There is a known issue in IIS 7 giving the following error: "Cannot find the certificate request associated with this certificate file. A certificate request must be completed on the computer where it was created." You may also receive a message stating "ASN1 bad tag value met". If this is the same server that you generated the CSR on then, in most cases, the certificate is actually installed. Simply cancel the dialog and press "F5" to refresh the list of server certificates. If the new certificate is now in the list, you can continue with the next step. If it is not in the list, you will need to reissue your certificate using a new CSR (see our CSR creation instructions for IIS 7). After creating a new CSR, login to your Comodo account and click the 'replace' button for your certificate. Not sure if this issue is fixed in IIS 8 but that’s an insane bug to have crop up. As it turns out, in my case the refresh didn’t work and the certificate didn’t show up in the IIS list after the reinstall. In fact when looking at the certificate store I could see my certificate was installed in the right place, but the private key is missing which is most likely why IIS is not picking it up. It looks like IIS could not match the final cert to the original CSR generated. But again some sort of message to that affect might be helpful instead of ASN1 bad tag value met. Recovering the Private Key So it turns out my original problem was that I received the published key, but when I imported the private key was missing. There’s a relatively easy way to recover from this. If your certificate doesn’t show up in IIS check in the certificate store for the local machine (see steps above on how to bring this up). If you look at the certificate in Certificates/Personal/Certificates make sure you see the key as shown in the image below: if the key is missing it means that the certificate is missing the private key most likely. To fix a certificate you can do the following: Double click the certificate Go to the Details Tab Copy down the Serial number You can copy the serial number from the area blurred out above. The serial number will be in a format like ?00 a7 9b a1 a4 9d 91 63 57 d6 9f 26 b8 ee 79 b5 cb and you’ll need to strip out the spaces in order to use it in the next step. Next open up an Administrative command prompt and issue the following command: certutil -repairstore my 00a79ba1a49d916357d69f26b8ee79b5cb You should get a confirmation message that the repair worked. If you now go back to the certificate store you should now see the key icon show up on the certificate. Your certificate is fixed. Now go back into IIS Manager and refresh the list of certificates and if all goes well you should see all the certificates that showed in the cert store now: Remember – back up the key first then map to your site… Summary I deal with a lot of customers who run their own IIS servers, and I can’t tell you how often I hear about botched SSL installations. When I posted some of my issues on Twitter yesterday I got a hell storm of “me too” responses. I’m clearly not the only one, who’s run into this especially with renewals. I feel pretty comfortable with IIS configuration and I do a lot of it for support purposes, but the SSL configuration is one that never seems to go seamlessly. This blog post is meant as reminder to myself to read next time I do a renewal. So I can dot my i's and dash my t’s before I get caught in the mess I’m dealing with today. Hopefully some of you find this useful as well.© Rick Strahl, West Wind Technologies, 2005-2014Posted in IIS7  Security   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • jQuery Time Entry with Time Navigation Keys

    - by Rick Strahl
    So, how do you display time values in your Web applications? Displaying date AND time values in applications is lot less standardized than date display only. While date input has become fairly universal with various date picker controls available, time entry continues to be a bit of a non-standardized. In my own applications I tend to use the jQuery UI DatePicker control for date entries and it works well for that. Here's an example: The date entry portion is well defined and it makes perfect sense to have a calendar pop up so you can pick a date from a rich UI when necessary. However, time values are much less obvious when it comes to displaying a UI or even just making time entries more useful. There are a slew of time picker controls available but other than adding some visual glitz, they are not really making time entry any easier. Part of the reason for this is that time entry is usually pretty simple. Clicking on a dropdown of any sort and selecting a value from a long scrolling list tends to take more user interaction than just typing 5 characters (7 if am/pm is used). Keystrokes can make Time Entry easier Time entry maybe pretty simple, but I find that adding a few hotkeys to handle date navigation can make it much easier. Specifically it'd be nice to have keys to: Jump to the current time (Now) Increase/decrease minutes Increase/decrease hours The timeKeys jQuery PlugIn Some time ago I created a small plugin to handle this scenario. It's non-visual other than tooltip that pops up when you press ? to display the hotkeys that are available: Try it Online The keys loosely follow the ancient Quicken convention of using the first and last letters of what you're increasing decreasing (ie. H to decrease, R to increase hours and + and - for the base unit or minutes here). All navigation happens via the keystrokes shown above, so it's all non-visual, which I think is the most efficient way to deal with dates. To hook up the plug-in, start with the textbox:<input type="text" id="txtTime" name="txtTime" value="12:05 pm" title="press ? for time options" /> Note the title which might be useful to alert people using the field that additional functionality is available. To hook up the plugin code is as simple as:$("#txtTime").timeKeys(); You essentially tie the plugin to any text box control. OptionsThe syntax for timeKeys allows for an options map parameter:$(selector).timeKeys(options); Options are passed as a parameter map object which can have the following properties: timeFormatYou can pass in a format string that allows you to format the date. The default is "hh:mm t" which is US time format that shows a 12 hour clock with am/pm. Alternately you can pass in "HH:mm" which uses 24 hour time. HH, hh, mm and t are translated in the format string - you can arrange the format as you see fit. callbackYou can also specify a callback function that is called when the date value has been set. This allows you to either re-format the date or perform post processing (such as displaying highlight if it's after a certain hour for example). Here's another example that uses both options:$("#txtTime").timeKeys({ timeFormat: "HH:mm", callback: function (time) { showStatus("new time is: " + time.toString() + " " + $(this).val() ); } }); The plugin code itself is fairly simple. It hooks the keydown event and checks for the various keys that affect time navigation which is straight forward. The bulk of the code however deals with parsing the time value and formatting the output using a Time class that implements parsing, formatting and time navigation methods. Here's the code for the timeKeys jQuery plug-in:/// <reference path="jquery.js" /> /// <reference path="ww.jquery.js" /> (function ($) { $.fn.timeKeys = function (options) { /// <summary> /// Attaches a set of hotkeys to time fields /// + Add minute - subtract minute /// H Subtract Hour R Add houR /// ? Show keys /// </summary> /// <param name="options" type="object"> /// Options: /// timeFormat: "hh:mm t" by default HH:mm alternate /// callback: callback handler after time assignment /// </param> /// <example> /// var proxy = new ServiceProxy("JsonStockService.svc/"); /// proxy.invoke("GetStockQuote",{symbol:"msft"},function(quote) { alert(result.LastPrice); },onPageError); ///</example> if (this.length < 1) return this; var opt = { timeFormat: "hh:mm t", callback: null } $.extend(opt, options); return this.keydown(function (e) { var $el = $(this); var time = new Time($el.val()); //alert($(this).val() + " " + time.toString() + " " + time.date.toString()); switch (e.keyCode) { case 78: // [N]ow time = new Time(new Date()); break; case 109: case 189: // - time.addMinutes(-1); break; case 107: case 187: // + time.addMinutes(1); break; case 72: //H time.addHours(-1); break; case 82: //R time.addHours(1); break; case 191: // ? if (e.shiftKey) $(this).tooltip("<b>N</b> Now<br/><b>+</b> add minute<br /><b>-</b> subtract minute<br /><b>H</b> Subtract Hour<br /><b>R</b> add hour", 4000, { isHtml: true }); return false; default: return true; } $el.val(time.toString(opt.timeFormat)); if (opt.callback) { // call async and set context in this element setTimeout(function () { opt.callback.call($el.get(0), time) }, 1); } return false; }); } Time = function (time, format) { /// <summary> /// Time object that can parse and format /// a time values. /// </summary> /// <param name="time" type="object"> /// A time value as a string (12:15pm or 23:01), a Date object /// or time value. /// /// </param> /// <param name="format" type="string"> /// Time format string: /// HH:mm (23:01) /// hh:mm t (11:01 pm) /// </param> /// <example> /// var time = new Time( new Date()); /// time.addHours(5); /// time.addMinutes(10); /// var s = time.toString(); /// /// var time2 = new Time(s); // parse with constructor /// var t = time2.parse("10:15 pm"); // parse with .parse() method /// alert( t.hours + " " + t.mins + " " + t.ampm + " " + t.hours25) ///</example> var _I = this; this.date = new Date(); this.timeFormat = "hh:mm t"; if (format) this.timeFormat = format; this.parse = function (time) { /// <summary> /// Parses time value from a Date object, or string in format of: /// 12:12pm or 23:01 /// </summary> /// <param name="time" type="any"> /// A time value as a string (12:15pm or 23:01), a Date object /// or time value. /// /// </param> if (!time) return null; // Date if (time.getDate) { var t = {}; var d = time; t.hours24 = d.getHours(); t.mins = d.getMinutes(); t.ampm = "am"; if (t.hours24 > 11) { t.ampm = "pm"; if (t.hours24 > 12) t.hours = t.hours24 - 12; } time = t; } if (typeof (time) == "string") { var parts = time.split(":"); if (parts < 2) return null; var time = {}; time.hours = parts[0] * 1; time.hours24 = time.hours; time.mins = parts[1].toLowerCase(); if (time.mins.indexOf("am") > -1) { time.ampm = "am"; time.mins = time.mins.replace("am", ""); if (time.hours == 12) time.hours24 = 0; } else if (time.mins.indexOf("pm") > -1) { time.ampm = "pm"; time.mins = time.mins.replace("pm", ""); if (time.hours < 12) time.hours24 = time.hours + 12; } time.mins = time.mins * 1; } _I.date.setMinutes(time.mins); _I.date.setHours(time.hours24); return time; }; this.addMinutes = function (mins) { /// <summary> /// adds minutes to the internally stored time value. /// </summary> /// <param name="mins" type="number"> /// number of minutes to add to the date /// </param> _I.date.setMinutes(_I.date.getMinutes() + mins); } this.addHours = function (hours) { /// <summary> /// adds hours the internally stored time value. /// </summary> /// <param name="hours" type="number"> /// number of hours to add to the date /// </param> _I.date.setHours(_I.date.getHours() + hours); } this.getTime = function () { /// <summary> /// returns a time structure from the currently /// stored time value. /// Properties: hours, hours24, mins, ampm /// </summary> return new Time(new Date()); h } this.toString = function (format) { /// <summary> /// returns a short time string for the internal date /// formats: 12:12 pm or 23:12 /// </summary> /// <param name="format" type="string"> /// optional format string for date /// HH:mm, hh:mm t /// </param> if (!format) format = _I.timeFormat; var hours = _I.date.getHours(); if (format.indexOf("t") > -1) { if (hours > 11) format = format.replace("t", "pm") else format = format.replace("t", "am") } if (format.indexOf("HH") > -1) format = format.replace("HH", hours.toString().padL(2, "0")); if (format.indexOf("hh") > -1) { if (hours > 12) hours -= 12; if (hours == 0) hours = 12; format = format.replace("hh", hours.toString().padL(2, "0")); } if (format.indexOf("mm") > -1) format = format.replace("mm", _I.date.getMinutes().toString().padL(2, "0")); return format; } // construction if (time) this.time = this.parse(time); } String.prototype.padL = function (width, pad) { if (!width || width < 1) return this; if (!pad) pad = " "; var length = width - this.length if (length < 1) return this.substr(0, width); return (String.repeat(pad, length) + this).substr(0, width); } String.repeat = function (chr, count) { var str = ""; for (var x = 0; x < count; x++) { str += chr }; return str; } })(jQuery); The plugin consists of the actual plugin and the Time class which handles parsing and formatting of the time value via the .parse() and .toString() methods. Code like this always ends up taking up more effort than the actual logic unfortunately. There are libraries out there that can handle this like datejs or even ww.jquery.js (which is what I use) but to keep the code self contained for this post the plugin doesn't rely on external code. There's one optional exception: The code as is has one dependency on ww.jquery.js  for the tooltip plugin that provides the small popup for all the hotkeys available. You can replace that code with some other mechanism to display hotkeys or simply remove it since that behavior is optional. While we're at it: A jQuery dateKeys plugIn Although date entry tends to be much better served with drop down calendars to pick dates from, often it's also easier to pick dates using a few simple hotkeys. Navigation that uses + - for days and M and H for MontH navigation, Y and R for YeaR navigation are a quick way to enter dates without having to resort to using a mouse and clicking around to what you want to find. Note that this plugin does have a dependency on ww.jquery.js for the date formatting functionality.$.fn.dateKeys = function (options) { /// <summary> /// Attaches a set of hotkeys to date 'fields' /// + Add day - subtract day /// M Subtract Month H Add montH /// Y Subtract Year R Add yeaR /// ? Show keys /// </summary> /// <param name="options" type="object"> /// Options: /// dateFormat: "MM/dd/yyyy" by default "MMM dd, yyyy /// callback: callback handler after date assignment /// </param> /// <example> /// var proxy = new ServiceProxy("JsonStockService.svc/"); /// proxy.invoke("GetStockQuote",{symbol:"msft"},function(quote) { alert(result.LastPrice); },onPageError); ///</example> if (this.length < 1) return this; var opt = { dateFormat: "MM/dd/yyyy", callback: null }; $.extend(opt, options); return this.keydown(function (e) { var $el = $(this); var d = new Date($el.val()); if (!d) d = new Date(1900, 0, 1, 1, 1); var month = d.getMonth(); var year = d.getFullYear(); var day = d.getDate(); switch (e.keyCode) { case 84: // [T]oday d = new Date(); break; case 109: case 189: d = new Date(year, month, day - 1); break; case 107: case 187: d = new Date(year, month, day + 1); break; case 77: //M d = new Date(year, month - 1, day); break; case 72: //H d = new Date(year, month + 1, day); break; case 191: // ? if (e.shiftKey) $el.tooltip("<b>T</b> Today<br/><b>+</b> add day<br /><b>-</b> subtract day<br /><b>M</b> subtract Month<br /><b>H</b> add montH<br/><b>Y</b> subtract Year<br/><b>R</b> add yeaR", 5000, { isHtml: true }); return false; default: return true; } $el.val(d.formatDate(opt.dateFormat)); if (opt.callback) // call async setTimeout(function () { opt.callback.call($el.get(0),d); }, 10); return false; }); } The logic for this plugin is similar to the timeKeys plugin, but it's a little simpler as it tries to directly parse the date value from a string via new Date(inputString). As mentioned it also uses a helper function from ww.jquery.js to format dates which removes the logic to perform date formatting manually which again reduces the size of the code. And the Key is… I've been using both of these plugins in combination with the jQuery UI datepicker for datetime values and I've found that I rarely actually pop up the date picker any more. It's just so much more efficient to use the hotkeys to navigate dates. It's still nice to have the picker around though - it provides the expected behavior for date entry. For time values however I can't justify the UI overhead of a picker that doesn't make it any easier to pick a time. Most people know how to type in a time value and if they want shortcuts keystrokes easily beat out any pop up UI. Hopefully you'll find this as useful as I have found it for my code. Resources Online Sample Download Sample Project © Rick Strahl, West Wind Technologies, 2005-2011Posted in jQuery  HTML   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • Localization in ASP.NET MVC 2 using ModelMetadata

    - by rajbk
    This post uses an MVC 2 RTM application inside VS 2010 that is targeting the .NET Framework 4. .NET 4 DataAnnotations comes with a new Display attribute that has several properties including specifying the value that is used for display in the UI and a ResourceType. Unfortunately, this attribute is new and is not supported in MVC 2 RTM. The good news is it will be supported and is currently available in the MVC Futures release. The steps to get this working are shown below: Download the MVC futures library   Add a reference to the Microsoft.Web.MVC.AspNet4 dll.   Add a folder in your MVC project where you will store the resx files   Open the resx file and change “Access Modifier” to “Public”. This allows the resources to accessible from other assemblies. Internaly, it changes the “Custom Tool” used to generate the code behind from  ResXFileCodeGenerator to “PublicResXFileCodeGenerator”    Add your localized strings in the resx.   Register the new ModelMetadataProvider protected void Application_Start() { AreaRegistration.RegisterAllAreas();   RegisterRoutes(RouteTable.Routes);   //Add this ModelMetadataProviders.Current = new DataAnnotations4ModelMetadataProvider(); DataAnnotations4ModelValidatorProvider.RegisterProvider(); }   Use the Display attribute in your Model public class Employee { [Display(Name="ID")] public int ID { get; set; }   [Display(ResourceType = typeof(Common), Name="Name")] public string Name { get; set; } } Use the new HTML UI Helpers in your strongly typed view: <%: Html.EditorForModel() %> <%: Html.EditorFor(m => m) %> <%: Html.LabelFor(m => m.Name) %> ..and you are good to go. Adventure is out there!

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Using BPEL Performance Statistics to Diagnose Performance Bottlenecks

    - by fip
    Tuning performance of Oracle SOA 11G applications could be challenging. Because SOA is a platform for you to build composite applications that connect many applications and "services", when the overall performance is slow, the bottlenecks could be anywhere in the system: the applications/services that SOA connects to, the infrastructure database, or the SOA server itself.How to quickly identify the bottleneck becomes crucial in tuning the overall performance. Fortunately, the BPEL engine in Oracle SOA 11G (and 10G, for that matter) collects BPEL Engine Performance Statistics, which show the latencies of low level BPEL engine activities. The BPEL engine performance statistics can make it a bit easier for you to identify the performance bottleneck. Although the BPEL engine performance statistics are always available, the access to and interpretation of them are somewhat obscure in the early and current (PS5) 11G versions. This blog attempts to offer instructions that help you to enable, retrieve and interpret the performance statistics, before the future versions provides a more pleasant user experience. Overview of BPEL Engine Performance Statistics  SOA BPEL has a feature of collecting some performance statistics and store them in memory. One MBean attribute, StatLastN, configures the size of the memory buffer to store the statistics. This memory buffer is a "moving window", in a way that old statistics will be flushed out by the new if the amount of data exceeds the buffer size. Since the buffer size is limited by StatLastN, impacts of statistics collection on performance is minimal. By default StatLastN=-1, which means no collection of performance data. Once the statistics are collected in the memory buffer, they can be retrieved via another MBean oracle.as.soainfra.bpel:Location=[Server Name],name=BPELEngine,type=BPELEngine.> My friend in Oracle SOA development wrote this simple 'bpelstat' web app that looks up and retrieves the performance data from the MBean and displays it in a human readable form. It does not have beautiful UI but it is fairly useful. Although in Oracle SOA 11.1.1.5 onwards the same statistics can be viewed via a more elegant UI under "request break down" at EM -> SOA Infrastructure -> Service Engines -> BPEL -> Statistics, some unsophisticated minds like mine may still prefer the simplicity of the 'bpelstat' JSP. One thing that simple JSP does do well is that you can save the page and send it to someone to further analyze Follows are the instructions of how to install and invoke the BPEL statistic JSP. My friend in SOA Development will soon blog about interpreting the statistics. Stay tuned. Step1: Enable BPEL Engine Statistics for Each SOA Servers via Enterprise Manager First st you need to set the StatLastN to some number as a way to enable the collection of BPEL Engine Performance Statistics EM Console -> soa-infra(Server Name) -> SOA Infrastructure -> SOA Administration -> BPEL Properties Click on "More BPEL Configuration Properties" Click on attribute "StatLastN", set its value to some integer number. Typically you want to set it 1000 or more. Step 2: Download and Deploy bpelstat.war File to Admin Server, Note: the WAR file contains a JSP that does NOT have any security restriction. You do NOT want to keep in your production server for a long time as it is a security hazard. Deactivate the war once you are done. Download the bpelstat.war to your local PC At WebLogic Console, Go to Deployments -> Install Click on the "upload your file(s)" Click the "Browse" button to upload the deployment to Admin Server Accept the uploaded file as the path, click next Check the default option "Install this deployment as an application" Check "AdminServer" as the target server Finish the rest of the deployment with default settings Console -> Deployments Check the box next to "bpelstat" application Click on the "Start" button. It will change the state of the app from "prepared" to "active" Step 3: Invoke the BPEL Statistic Tool The BPELStat tool merely call the MBean of BPEL server and collects and display the in-memory performance statics. You usually want to do that after some peak loads. Go to http://<admin-server-host>:<admin-server-port>/bpelstat Enter the correct admin hostname, port, username and password Enter the SOA Server Name from which you want to collect the performance statistics. For example, SOA_MS1, etc. Click Submit Keep doing the same for all SOA servers. Step 3: Interpret the BPEL Engine Statistics You will see a few categories of BPEL Statistics from the JSP Page. First it starts with the overall latency of BPEL processes, grouped by synchronous and asynchronous processes. Then it provides the further break down of the measurements through the life time of a BPEL request, which is called the "request break down". 1. Overall latency of BPEL processes The top of the page shows that the elapse time of executing the synchronous process TestSyncBPELProcess from the composite TestComposite averages at about 1543.21ms, while the elapse time of executing the asynchronous process TestAsyncBPELProcess from the composite TestComposite2 averages at about 1765.43ms. The maximum and minimum latency were also shown. Synchronous process statistics <statistics>     <stats key="default/TestComposite!2.0.2-ScopedJMSOSB*soa_bfba2527-a9ba-41a7-95c5-87e49c32f4ff/TestSyncBPELProcess" min="1234" max="4567" average="1543.21" count="1000">     </stats> </statistics> Asynchronous process statistics <statistics>     <stats key="default/TestComposite2!2.0.2-ScopedJMSOSB*soa_bfba2527-a9ba-41a7-95c5-87e49c32f4ff/TestAsyncBPELProcess" min="2234" max="3234" average="1765.43" count="1000">     </stats> </statistics> 2. Request break down Under the overall latency categorized by synchronous and asynchronous processes is the "Request breakdown". Organized by statistic keys, the Request breakdown gives finer grain performance statistics through the life time of the BPEL requests.It uses indention to show the hierarchy of the statistics. Request breakdown <statistics>     <stats key="eng-composite-request" min="0" max="0" average="0.0" count="0">         <stats key="eng-single-request" min="22" max="606" average="258.43" count="277">             <stats key="populate-context" min="0" max="0" average="0.0" count="248"> Please note that in SOA 11.1.1.6, the statistics under Request breakdown is aggregated together cross all the BPEL processes based on statistic keys. It does not differentiate between BPEL processes. If two BPEL processes happen to have the statistic that share same statistic key, the statistics from two BPEL processes will be aggregated together. Keep this in mind when we go through more details below. 2.1 BPEL process activity latencies A very useful measurement in the Request Breakdown is the performance statistics of the BPEL activities you put in your BPEL processes: Assign, Invoke, Receive, etc. The names of the measurement in the JSP page directly come from the names to assign to each BPEL activity. These measurements are under the statistic key "actual-perform" Example 1:  Follows is the measurement for BPEL activity "AssignInvokeCreditProvider_Input", which looks like the Assign activity in a BPEL process that assign an input variable before passing it to the invocation:                                <stats key="AssignInvokeCreditProvider_Input" min="1" max="8" average="1.9" count="153">                                     <stats key="sensor-send-activity-data" min="0" max="1" average="0.0" count="306">                                     </stats>                                     <stats key="sensor-send-variable-data" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="monitor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                 </stats> Note: because as previously mentioned that the statistics cross all BPEL processes are aggregated together based on statistic keys, if two BPEL processes happen to name their Invoke activity the same name, they will show up at one measurement (i.e. statistic key). Example 2: Follows is the measurement of BPEL activity called "InvokeCreditProvider". You can not only see that by average it takes 3.31ms to finish this call (pretty fast) but also you can see from the further break down that most of this 3.31 ms was spent on the "invoke-service".                                  <stats key="InvokeCreditProvider" min="1" max="13" average="3.31" count="153">                                     <stats key="initiate-correlation-set-again" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="invoke-service" min="1" max="13" average="3.08" count="153">                                         <stats key="prep-call" min="0" max="1" average="0.04" count="153">                                         </stats>                                     </stats>                                     <stats key="initiate-correlation-set" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="sensor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                     <stats key="sensor-send-variable-data" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="monitor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                     <stats key="update-audit-trail" min="0" max="2" average="0.03" count="153">                                     </stats>                                 </stats> 2.2 BPEL engine activity latency Another type of measurements under Request breakdown are the latencies of underlying system level engine activities. These activities are not directly tied to a particular BPEL process or process activity, but they are critical factors in the overall engine performance. These activities include the latency of saving asynchronous requests to database, and latency of process dehydration. My friend Malkit Bhasin is working on providing more information on interpreting the statistics on engine activities on his blog (https://blogs.oracle.com/malkit/). I will update this blog once the information becomes available. Update on 2012-10-02: My friend Malkit Bhasin has published the detail interpretation of the BPEL service engine statistics at his blog http://malkit.blogspot.com/2012/09/oracle-bpel-engine-soa-suite.html.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

< Previous Page | 257 258 259 260 261 262 263 264 265 266 267 268  | Next Page >