Search Results

Search found 1848 results on 74 pages for 'algorithms'.

Page 27/74 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Algorithms to trim leading zeroes from a SQL field?

    - by froadie
    I just came across the interesting problem of trying to trim the leading zeroes from a non-numeric field in SQL. (Since it can contain characters, it can't just be converted to a number and then back.) This is what we ended up using: SELECT REPLACE(LTRIM(REPLACE(fieldWithLeadingZeroes,'0',' ')),' ','0') It replaces the zeroes with spaces, left trims it, and then puts the zeroes back in. I thought this was a very clever and interesting way to do it, although not so readable if you've never come across it before. Are there any clearer ways to do this? Any more efficient ways to do this? Or any other ways to do this period? I was intrigued by this problem and would be interested to see any methods of getting around it.

    Read the article

  • Algorithms to find longest common prefix in a sliding window.

    - by nn
    Hi, I have written a Lempel Ziv compressor and decompressor. I am seeking to improve the time to search the dictionary for a phrase. I have considered K-M-P and Boyer-Moore, but I think an algorithm that adapts to changes in the dictionary would be faster. I've been reading that binary search trees (AVL or with splays) improve the performance of compression time considerably. What I fail to understand is how to bootstrap the binary search tree and insert/remove data. I'm not actually quite sure the significance of each node in the binary search. I am searching for phrases so will each character be considered a node? Also how and what is inserted/removed from the search tree as new data enters the dictionary and old data is removed? The binary search tree sounds like a good payoff since it can adapt to the dictionary, but I'm just not quite sure of how it's used.

    Read the article

  • What garbage collection algorithms do all 5 major browsers use?

    - by Martin Wittemann
    I am currently rethinking the object dispose handling of the qooxdoo JavaScript framework. Have a look at the following diagram (A is currently in scope): Let's say we want to delete B. Generally, we cut all reference between all objects. This means we cut connection 1 to 5 in the example. Is this really necessary? As far as I have read hear 1, browsers use the mark-and-sweep algorithm. In that case, we just need to cut reference 1 (connection to the scope) and 5 (connection to the DOM) which could be much faster. But can I be sure that all browsers use the mark-and-sweep algorithm or something similar? 1 http://stackoverflow.com/questions/864516/what-is-javascript-garbage-collection

    Read the article

  • what are the recent dataStructure and algorithms that one should know?

    - by Shamik
    Recently I came across the SkipList data structure. It really helped me to solve one otherwise critical problem to be solved. I was struggling to solve the same problem with Balanced Binary tree but it became very complex as the tree needs to be always balanced and I wanted to know the existence of not only a particular value but values in certain range. SkipList helped me to solve that problem effectively. I am wondering what else data structures that I need to know? I know - Array, List, Stack, Queue, Linked List, hashtable, tree and its different forms like B-tree, Trie etc. Would like to know if you find some other data structure/concept very interesting to know yet effective enough to be used in a daily development cycle.

    Read the article

  • What should students be taught first when first learning sorting algorithms?

    - by Johan
    If you were a programming teacher and you had to choose one sorting algorithm to teach your students which one would it be? I am asking for only one because I just want to introduce the concept of sorting. Should it be the bubble sort or the selection sort? I have noticed that these two are taught most often. Is there another type of sort that will explain sorting in an easier to understand way?

    Read the article

  • Minimum number of training examples for Find-S/Candidate Elimination algorithms?

    - by Rich
    Consider the instance space consisting of integer points in the x, y plane, where 0 = x, y = 10, and the set of hypotheses consisting of rectangles (i.e. being of the form (a = x = b, c = y = d), where 0 = a, b, c, d = 10). What is the smallest number of training examples one needs to provide so that the Find-S algorithm perfectly learns a particular target concept (e.g. (2 = x = 4, 6 = y = 9))? When can we say that the target concept is exactly learned in the case of the Find-S algorithm, and what is the optimal query strategy? I'd also like to know the answer w.r.t Candidate Elimination. Thanks in advance.

    Read the article

  • What Precalculus knowledge is required before learning Discrete Math Computer Science topics?

    - by Ein Doofus
    Below I've listed the chapters from a Precalculus book as well as the author recommended Computer Science chapters from a Discrete Mathematics book. Although these chapters are from two specific books on these subjects I believe the topics are generally the same between any Precalc or Discrete Math book. What Precalculus topics should one know before starting these Discrete Math Computer Science topics?: Discrete Mathematics CS Chapters 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers 1.5 Rules of Inference 1.6 Introduction to Proofs 1.7 Proof Methods and Strategy 2.1 Sets 2.2 Set Operations 2.3 Functions 2.4 Sequences and Summations 3.1 Algorithms 3.2 The Growths of Functions 3.3 Complexity of Algorithms 3.4 The Integers and Division 3.5 Primes and Greatest Common Divisors 3.6 Integers and Algorithms 3.8 Matrices 4.1 Mathematical Induction 4.2 Strong Induction and Well-Ordering 4.3 Recursive Definitions and Structural Induction 4.4 Recursive Algorithms 4.5 Program Correctness 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.6 Generating Permutations and Combinations 6.1 An Introduction to Discrete Probability 6.4 Expected Value and Variance 7.1 Recurrence Relations 7.3 Divide-and-Conquer Algorithms and Recurrence Relations 7.5 Inclusion-Exclusion 8.1 Relations and Their Properties 8.2 n-ary Relations and Their Applications 8.3 Representing Relations 8.5 Equivalence Relations 9.1 Graphs and Graph Models 9.2 Graph Terminology and Special Types of Graphs 9.3 Representing Graphs and Graph Isomorphism 9.4 Connectivity 9.5 Euler and Hamilton Ptahs 10.1 Introduction to Trees 10.2 Application of Trees 10.3 Tree Traversal 11.1 Boolean Functions 11.2 Representing Boolean Functions 11.3 Logic Gates 11.4 Minimization of Circuits 12.1 Language and Grammars 12.2 Finite-State Machines with Output 12.3 Finite-State Machines with No Output 12.4 Language Recognition 12.5 Turing Machines Precalculus Chapters R.1 The Real-Number System R.2 Integer Exponents, Scientific Notation, and Order of Operations R.3 Addition, Subtraction, and Multiplication of Polynomials R.4 Factoring R.5 Rational Expressions R.6 Radical Notation and Rational Exponents R.7 The Basics of Equation Solving 1.1 Functions, Graphs, Graphers 1.2 Linear Functions, Slope, and Applications 1.3 Modeling: Data Analysis, Curve Fitting, and Linear Regression 1.4 More on Functions 1.5 Symmetry and Transformations 1.6 Variation and Applications 1.7 Distance, Midpoints, and Circles 2.1 Zeros of Linear Functions and Models 2.2 The Complex Numbers 2.3 Zeros of Quadratic Functions and Models 2.4 Analyzing Graphs of Quadratic Functions 2.5 Modeling: Data Analysis, Curve Fitting, and Quadratic Regression 2.6 Zeros and More Equation Solving 2.7 Solving Inequalities 3.1 Polynomial Functions and Modeling 3.2 Polynomial Division; The Remainder and Factor Theorems 3.3 Theorems about Zeros of Polynomial Functions 3.4 Rational Functions 3.5 Polynomial and Rational Inequalities 4.1 Composite and Inverse Functions 4.2 Exponential Functions and Graphs 4.3 Logarithmic Functions and Graphs 4.4 Properties of Logarithmic Functions 4.5 Solving Exponential and Logarithmic Equations 4.6 Applications and Models: Growth and Decay 5.1 Systems of Equations in Two Variables 5.2 System of Equations in Three Variables 5.3 Matrices and Systems of Equations 5.4 Matrix Operations 5.5 Inverses of Matrices 5.6 System of Inequalities and Linear Programming 5.7 Partial Fractions 6.1 The Parabola 6.2 The Circle and Ellipse 6.3 The Hyperbola 6.4 Nonlinear Systems of Equations

    Read the article

  • Question about network topology and routing performance

    - by algorithms
    Hello I am currently working on a uni project about routing protocols and network performance, one of the criteria i was going to test under was to see what effect lan topology has, ie workstations arranged in mesh, star, ring etc, but i am having doubts as to whether that would have any affect on the routing performance thus would be useless to do, rather i'm thinking it would be better to test under the topology of the routers themselves, ie routers arranged in either star, mesh ring etc. I would appreciate some feedback on this as I am rather confused. Thank You

    Read the article

  • Keyboard automatically disconnects and reconnects

    - by Algorithms
    The problem i am facing is the keyboard (USB) automatically disconnects when there is a fluctuation in the power supply to the speaker. The speaker and the pc both draw power from a apc ups. The fluctuation occurs because the speaker plug is not tightly connected to the ups power outlet. It is okay for normal work, but a accidental jerk causes the fluctuation. However after some amount of time (usually within 5 seconds) the keyboard automatically reconnects and windows plays the sound of hardware connected. This problem will also occur if I manually take out the speaker power cable from the ups power outlet. My question is whether the problem I am facing is due to electrical issues, or due to software problems. PC config: OS : Windows 7 Ultimate UPS : APC 600 VA PSU : Corsair TX 650 Speaker : Realtek

    Read the article

  • DD-WRT No Internet connection over LAN

    - by algorithms
    I flashed the DD-WRT firmware on my TP-Link WR1043ND router and although after cloning the PC's MAC-Address it gets the correct IP from my ISP, the internet connection over LAN just won't work. The strange thing is it does work flawlessly over W-LAN, which tells me the problem should lie somehow in the default LAN settings or the PC. Any idea what the problem might be? UPDATE: It seems the problem is the desktop PC, since the laptop can connect to the interet via ethernet without any problems. ipconfig /all seems totally normal (dhcp, dns, gateway all set to 192.168.1.1) I already tried the following things without success: disabling firewall rebooting router/modem/pc router hard-reset resetting tcp/ip and winsock manual setting of DNS/IP/Gateway Here is the ipconfig /all: Windows-IP-Konfiguration Hostname . . . . . . . . . . . . : Nitro-PC Primäres DNS-Suffix . . . . . . . : Knotentyp . . . . . . . . . . . . : Hybrid IP-Routing aktiviert . . . . . . : Nein WINS-Proxy aktiviert . . . . . . : Nein Ethernet-Adapter LAN-Verbindung 2: Medienstatus. . . . . . . . . . . : Medium getrennt Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : TAP-Win32 Adapter V9 Physikalische Adresse . . . . . . : 00-FF-56-CA-66-8D DHCP aktiviert. . . . . . . . . . : Ja Autokonfiguration aktiviert . . . : Ja Ethernet-Adapter LAN-Verbindung: Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Realtek PCIe GBE Family Controller Physikalische Adresse . . . . . . : 48-5B-39-5B-DE-17 DHCP aktiviert. . . . . . . . . . : Ja Autokonfiguration aktiviert . . . : Ja Verbindungslokale IPv6-Adresse . : fe80::6934:b121:9eab:c6ce%10(Bevorzugt) IPv4-Adresse . . . . . . . . . . : 192.168.1.18(Bevorzugt) Subnetzmaske . . . . . . . . . . : 255.255.255.0 Lease erhalten. . . . . . . . . . : Donnerstag, 30. August 2012 10:52:30 Lease läuft ab. . . . . . . . . . : Freitag, 31. August 2012 10:52:30 Standardgateway . . . . . . . . . : 192.168.1.1 DHCP-Server . . . . . . . . . . . : 192.168.1.1 DHCPv6-IAID . . . . . . . . . . . : 239622969 DHCPv6-Client-DUID. . . . . . . . : 00-01-00-01-17-43-0D-B2-48-5B-39-5B-DE-17 DNS-Server . . . . . . . . . . . : 192.168.1.1 NetBIOS über TCP/IP . . . . . . . : Aktiviert Tunneladapter isatap.{56CA668D-9112-4399-9D9A-F1D42F0E52DE}: Medienstatus. . . . . . . . . . . : Medium getrennt Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Microsoft-ISATAP-Adapter Physikalische Adresse . . . . . . : 00-00-00-00-00-00-00-E0 DHCP aktiviert. . . . . . . . . . : Nein Autokonfiguration aktiviert . . . : Ja Tunneladapter Teredo Tunneling Pseudo-Interface: Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Teredo Tunneling Pseudo-Interface Physikalische Adresse . . . . . . : 00-00-00-00-00-00-00-E0 DHCP aktiviert. . . . . . . . . . : Nein Autokonfiguration aktiviert . . . : Ja IPv6-Adresse. . . . . . . . . . . : 2001:0:5ef5:79fd:1432:3dcd:3f57:feed(Bevorzugt) Verbindungslokale IPv6-Adresse . : fe80::1432:3dcd:3f57:feed%12(Bevorzugt) Standardgateway . . . . . . . . . : :: NetBIOS über TCP/IP . . . . . . . : Deaktiviert Tunneladapter isatap.{AD21069D-D2AF-423E-BF59-0B1CD0D235E8}: Medienstatus. . . . . . . . . . . : Medium getrennt Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Microsoft-ISATAP-Adapter #2 Physikalische Adresse . . . . . . : 00-00-00-00-00-00-00-E0 DHCP aktiviert. . . . . . . . . . : Nein Autokonfiguration aktiviert . . . : Ja Tunneladapter 6TO4 Adapter: Medienstatus. . . . . . . . . . . : Medium getrennt Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Microsoft-6zu4-Adapter Physikalische Adresse . . . . . . : 00-00-00-00-00-00-00-E0 DHCP aktiviert. . . . . . . . . . : Nein Autokonfiguration aktiviert . . . : Ja route PRINT IPv4-Routentabelle =========================================================================== Aktive Routen: Netzwerkziel Netzwerkmaske Gateway Schnittstelle Metrik 0.0.0.0 0.0.0.0 192.168.1.1 192.168.1.18 10 127.0.0.0 255.0.0.0 Auf Verbindung 127.0.0.1 306 127.0.0.1 255.255.255.255 Auf Verbindung 127.0.0.1 306 127.255.255.255 255.255.255.255 Auf Verbindung 127.0.0.1 306 192.168.1.0 255.255.255.0 Auf Verbindung 192.168.1.18 266 192.168.1.18 255.255.255.255 Auf Verbindung 192.168.1.18 266 192.168.1.255 255.255.255.255 Auf Verbindung 192.168.1.18 266 224.0.0.0 240.0.0.0 Auf Verbindung 127.0.0.1 306 224.0.0.0 240.0.0.0 Auf Verbindung 192.168.1.18 266 255.255.255.255 255.255.255.255 Auf Verbindung 127.0.0.1 306 255.255.255.255 255.255.255.255 Auf Verbindung 192.168.1.18 266 =========================================================================== Stndige Routen: Keine

    Read the article

  • Recommendation for Improving Programming Skills

    - by Moaz ELdeen
    I'm 25, I know C++ syntax since 9 years.. but It seems that I have copied so much code, and I didn't learn that much and didn't solve a lot of algorithms in my own. Currently I'm working for computer vision programmer as a junior and I have difficulity of doing algorithms like blob tracking or object tracking, writing algorithms like KNN, Quadtree,..etc. I don't know what to do, or what to improve, I tried to write asteriods game, I have finished it, and here you can watch it https://www.youtube.com/watch?v=jw0L4aCB4TU What should I do more to enhance my skills ?

    Read the article

  • Continuous Collision Detection Techniques

    - by Griffin
    I know there are quite a few continuous collision detection algorithms out there , but I can't find a list or summary of different 2D techniques; only tutorials on specific algorithms. What techniques are out there for calculating when different 2D bodies will collide and what are the advantages / disadvantages of each? I say techniques and not algorithms because I have not yet decided on how I will store different polygons which might be concave or even have holes. I plan to make a decision on this based on what the algorithm requires (for instance if an algorithm breaks down a polygon into triangles or convex shapes I will simply store the polygon data in this form).

    Read the article

  • How to ramp up my data structures skills after a long hibernation

    - by Anon
    I was pretty good with algorithms and data structures once, a long long time ago. Since then, I programmed professionally, and then went to manage a small team, which totally shot my tech skills in this field back. I've decided I want to be a developer again, and work for Google. The thing is, I'm so out of practice, that if I were to be interviewed right now I would surely flunk out in 10 minutes. What training program would you recommend for me to get back into shape? I already started this weekend by going back to the absolute basics and implementing a few sort algorithms, linked list, and hash table. Next, I think I'll read through the entire course material on the other basic data structures and graph algorithms. I want to find a focused set of practical exercises I can do in a relatively short amount of time, to juggle the old brain cells. I know this stuff - I just need to remind myself that I know it.

    Read the article

  • Abstracting functionality

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/22/abstracting-functionality.aspxWhat is more important than data? Functionality. Yes, I strongly believe we should switch to a functionality over data mindset in programming. Or actually switch back to it. Focus on functionality Functionality once was at the core of software development. Back when algorithms were the first thing you heard about in CS classes. Sure, data structures, too, were important - but always from the point of view of algorithms. (Niklaus Wirth gave one of his books the title “Algorithms + Data Structures” instead of “Data Structures + Algorithms” for a reason.) The reason for the focus on functionality? Firstly, because software was and is about doing stuff. Secondly because sufficient performance was hard to achieve, and only thirdly memory efficiency. But then hardware became more powerful. That gave rise to a new mindset: object orientation. And with it functionality was devalued. Data took over its place as the most important aspect. Now discussions revolved around structures motivated by data relationships. (John Beidler gave his book the title “Data Structures and Algorithms: An Object Oriented Approach” instead of the other way around for a reason.) Sure, this data could be embellished with functionality. But nevertheless functionality was second. When you look at (domain) object models what you mostly find is (domain) data object models. The common object oriented approach is: data aka structure over functionality. This is true even for the most modern modeling approaches like Domain Driven Design. Look at the literature and what you find is recommendations on how to get data structures right: aggregates, entities, value objects. I´m not saying this is what object orientation was invented for. But I´m saying that´s what I happen to see across many teams now some 25 years after object orientation became mainstream through C++, Delphi, and Java. But why should we switch back? Because software development cannot become truly agile with a data focus. The reason for that lies in what customers need first: functionality, behavior, operations. To be clear, that´s not why software is built. The purpose of software is to be more efficient than the alternative. Money mainly is spent to get a certain level of quality (e.g. performance, scalability, security etc.). But without functionality being present, there is nothing to work on the quality of. What customers want is functionality of a certain quality. ASAP. And tomorrow new functionality needs to be added, existing functionality needs to be changed, and quality needs to be increased. No customer ever wanted data or structures. Of course data should be processed. Data is there, data gets generated, transformed, stored. But how the data is structured for this to happen efficiently is of no concern to the customer. Ask a customer (or user) whether she likes the data structured this way or that way. She´ll say, “I don´t care.” But ask a customer (or user) whether he likes the functionality and its quality this way or that way. He´ll say, “I like it” (or “I don´t like it”). Build software incrementally From this very natural focus of customers and users on functionality and its quality follows we should develop software incrementally. That´s what Agility is about. Deliver small increments quickly and often to get frequent feedback. That way less waste is produced, and learning can take place much easier (on the side of the customer as well as on the side of developers). An increment is some added functionality or quality of functionality.[1] So as it turns out, Agility is about functionality over whatever. But software developers’ thinking is still stuck in the object oriented mindset of whatever over functionality. Bummer. I guess that (at least partly) explains why Agility always hits a glass ceiling in projects. It´s a clash of mindsets, of cultures. Driving software development by demanding small increases in functionality runs against thinking about software as growing (data) structures sprinkled with functionality. (Excuse me, if this sounds a bit broad-brush. But you get my point.) The need for abstraction In the end there need to be data structures. Of course. Small and large ones. The phrase functionality over data does not deny that. It´s not functionality instead of data or something. It´s just over, i.e. functionality should be thought of first. It´s a tad more important. It´s what the customer wants. That´s why we need a way to design functionality. Small and large. We need to be able to think about functionality before implementing it. We need to be able to reason about it among team members. We need to be able to communicate our mental models of functionality not just by speaking about them, but also on paper. Otherwise reasoning about it does not scale. We learned thinking about functionality in the small using flow charts, Nassi-Shneiderman diagrams, pseudo code, or UML sequence diagrams. That´s nice and well. But it does not scale. You can use these tools to describe manageable algorithms. But it does not work for the functionality triggered by pressing the “1-Click Order” on an amazon product page for example. There are several reasons for that, I´d say. Firstly, the level of abstraction over code is negligible. It´s essentially non-existent. Drawing a flow chart or writing pseudo code or writing actual code is very, very much alike. All these tools are about control flow like code is.[2] In addition all tools are computationally complete. They are about logic which is expressions and especially control statements. Whatever you code in Java you can fully (!) describe using a flow chart. And then there is no data. They are about control flow and leave out the data altogether. Thus data mostly is assumed to be global. That´s shooting yourself in the foot, as I hope you agree. Even if it´s functionality over data that does not mean “don´t think about data”. Right to the contrary! Functionality only makes sense with regard to data. So data needs to be in the picture right from the start - but it must not dominate the thinking. The above tools fail on this. Bottom line: So far we´re unable to reason in a scalable and abstract manner about functionality. That´s why programmers are so driven to start coding once they are presented with a problem. Programming languages are the only tool they´ve learned to use to reason about functional solutions. Or, well, there might be exceptions. Mathematical notation and SQL may have come to your mind already. Indeed they are tools on a higher level of abstraction than flow charts etc. That´s because they are declarative and not computationally complete. They leave out details - in order to deliver higher efficiency in devising overall solutions. We can easily reason about functionality using mathematics and SQL. That´s great. Except for that they are domain specific languages. They are not general purpose. (And they don´t scale either, I´d say.) Bummer. So to be more precise we need a scalable general purpose tool on a higher than code level of abstraction not neglecting data. Enter: Flow Design. Abstracting functionality using data flows I believe the solution to the problem of abstracting functionality lies in switching from control flow to data flow. Data flow very naturally is not about logic details anymore. There are no expressions and no control statements anymore. There are not even statements anymore. Data flow is declarative by nature. With data flow we get rid of all the limiting traits of former approaches to modeling functionality. In addition, nomen est omen, data flows include data in the functionality picture. With data flows, data is visibly flowing from processing step to processing step. Control is not flowing. Control is wherever it´s needed to process data coming in. That´s a crucial difference and needs some rewiring in your head to be fully appreciated.[2] Since data flows are declarative they are not the right tool to describe algorithms, though, I´d say. With them you don´t design functionality on a low level. During design data flow processing steps are black boxes. They get fleshed out during coding. Data flow design thus is more coarse grained than flow chart design. It starts on a higher level of abstraction - but then is not limited. By nesting data flows indefinitely you can design functionality of any size, without losing sight of your data. Data flows scale very well during design. They can be used on any level of granularity. And they can easily be depicted. Communicating designs using data flows is easy and scales well, too. The result of functional design using data flows is not algorithms (too low level), but processes. Think of data flows as descriptions of industrial production lines. Data as material runs through a number of processing steps to be analyzed, enhances, transformed. On the top level of a data flow design might be just one processing step, e.g. “execute 1-click order”. But below that are arbitrary levels of flows with smaller and smaller steps. That´s not layering as in “layered architecture”, though. Rather it´s a stratified design à la Abelson/Sussman. Refining data flows is not your grandpa´s functional decomposition. That was rooted in control flows. Refining data flows does not suffer from the limits of functional decomposition against which object orientation was supposed to be an antidote. Summary I´ve been working exclusively with data flows for functional design for the past 4 years. It has changed my life as a programmer. What once was difficult is now easy. And, no, I´m not using Clojure or F#. And I´m not a async/parallel execution buff. Designing the functionality of increments using data flows works great with teams. It produces design documentation which can easily be translated into code - in which then the smallest data flow processing steps have to be fleshed out - which is comparatively easy. Using a systematic translation approach code can mirror the data flow design. That way later on the design can easily be reproduced from the code if need be. And finally, data flow designs play well with object orientation. They are a great starting point for class design. But that´s a story for another day. To me data flow design simply is one of the missing links of systematic lightweight software design. There are also other artifacts software development can produce to get feedback, e.g. process descriptions, test cases. But customers can be delighted more easily with code based increments in functionality. ? No, I´m not talking about the endless possibilities this opens for parallel processing. Data flows are useful independently of multi-core processors and Actor-based designs. That´s my whole point here. Data flows are good for reasoning and evolvability. So forget about any special frameworks you might need to reap benefits from data flows. None are necessary. Translating data flow designs even into plain of Java is possible. ?

    Read the article

  • Design for a machine learning artificial intelligence framework

    - by Lirik
    This is a community wiki which aims to provide a good design for a machine learning/artificial intelligence framework (ML/AI framework). Please contribute to the design of a language-agnostic framework which would allow multiple ML/AI algorithms to be plugged into a single framework which: runs the algorithms with a user-specified data set. facilitates learning, qualification, and classification. allows users to easily plug in new algorithms. can aggregate or create an ensemble of the existing algorithms. can save/load the progress of the algorithm (i.e. save the network and weights of a neural network, save the tree of a decision tree, etc.). What is a good design for this sort of ML/AI framework?

    Read the article

  • Design for a machine learning artificial intelligence framework (community wiki)

    - by Lirik
    This is a community wiki which aims to provide a good design for a machine learning/artificial intelligence framework (ML/AI framework). Please contribute to the design of a language-agnostic framework which would allow multiple ML/AI algorithms to be plugged into a single framework which: runs the algorithms with a user-specified data set. facilitates learning, qualification, and classification. allows users to easily plug in new algorithms. can aggregate or create an ensemble of the existing algorithms. can save/load the progress of the algorithm (i.e. save the network and weights of a neural network, save the tree of a decision tree, etc.). What is a good design for this sort of ML/AI framework?

    Read the article

  • Advice on String Similarity Metrics (Java). Distance, sounds like or combo?

    - by andreas
    Hello, A part of a process requires to apply String Similarity Algorithms. The results of this process will be stored and produce lets say SS_Dataset. Based on this Dataset, further decisions will have to be made. My questions are: Should i apply one or more string similarity algorithms to produce SS_Dataset ? Any comparisons between algorithms that calculate the 'distance' and the 'Sounds Like' similarity ? Does one family of algorithms produces more accurate results over the other? Does a combination give more accurate results on similarity? Can you recommend implementations that you have worked with? My implementation will include packages from the following libraries http://www.dcs.shef.ac.uk/~sam/simmetrics.html http://jtmt.sourceforge.net/ Regards,

    Read the article

  • Good Java graph algorithm library?

    - by Nick Fortescue
    Has anyone had good experiences with any Java libraries for Graph algorithms. I've tried JGraph and found it ok, and there are a lot of different ones in google. Are there any that people are actually using successfully in production code or would recommend? To clarify, I'm not looking for a library that produces graphs/charts, I'm looking for one that helps with Graph algorithms, eg minimum spanning tree, Kruskal's algorithm Nodes, Edges, etc. Ideally one with some good algorithms/data structures in a nice Java OO API.

    Read the article

  • How do people prove the correctness of Computer Vision methods?

    - by solvingPuzzles
    I'd like to pose a few abstract questions about computer vision research. I haven't quite been able to answer these questions by searching the web and reading papers. How does someone know whether a computer vision algorithm is correct? How do we define "correct" in the context of computer vision? Do formal proofs play a role in understanding the correctness of computer vision algorithms? A bit of background: I'm about to start my PhD in Computer Science. I enjoy designing fast parallel algorithms and proving the correctness of these algorithms. I've also used OpenCV from some class projects, though I don't have much formal training in computer vision. I've been approached by a potential thesis advisor who works on designing faster and more scalable algorithms for computer vision (e.g. fast image segmentation). I'm trying to understand the common practices in solving computer vision problems.

    Read the article

  • Is it possible to predict future using machine learning and/or AI?

    - by Shekhar
    Recently I have started reading about machine learning. From 3000 feet view, machine learning seems really great thing but as if now I have found that machine learning is limited to only 3 types of algorithms namely classification, clustering and recommendations. I would like to know if my assumption about types of machine learning algorithms is correct or not and What is the extreme thing which we can do using machine learning and/or AI? Is it possible to predict future (same way we predict weather) using AI and/or machine learning?

    Read the article

  • Algorithm for approximating sihlouette image as polygon

    - by jack
    I want to be able to analyze a texture in real time and approximate a polygon to represent a silhouette. Imagine a person standing in front of a green screen and I want to approximately trace around their outline and get a 2D polygon as the result. Are there algorithms to do this and are they fast enough to work frame-to-frame in a game? (I have found algorithms to triangulate polygons, but I am having trouble knowing what to search for that describes my goal.)

    Read the article

  • SEO, SEM Tools

    Search engine optimization allows you to optimize your website and get the traffic. The search engines have complicated algorithms. The search engines use these algorithms to rank the websites.

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >