Search Results

Search found 1848 results on 74 pages for 'algorithms'.

Page 30/74 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • Algorithm for performing decentralized search in social networks

    - by Jack
    I want to find out all the existing decentralized algorithms that exploit the structural properties of social networks. So far I know the following algorithms - 1) Best connected search - Adamic et al 2) Random Walk (does not exploit any structural property but still it is decentralized) 3) Hamming distance search 4) Weak/Strong tie search Any help would be appreciated

    Read the article

  • Artificial Inteligence library in python

    - by João Portela
    I was wondering if there are any python AI libraries similar to aima-python but for a more recent version of python... and how they are in comparison to aima-python. I was particularly interested in search algorithms such as hill-climbing, simulated annealing, tabu search and genetic algorithms. edit: made the question more clear.

    Read the article

  • How do you solve the 15-puzzle with A-Star or Dijkstra's Algorithm?

    - by Sean
    I've read in one of my AI books that popular algorithms (A-Star, Dijkstra) for path-finding in simulation or games is also used to solve the well-known "15-puzzle". Can anyone give me some pointers on how I would reduce the 15-puzzle to a graph of nodes and edges so that I could apply one of these algorithms? If I were to treat each node in the graph as a game state then wouldn't that tree become quite large? Or is that just the way to do it?

    Read the article

  • Travelling Salesman Problem

    - by Arjun Vasudevan
    I'm trying to solve the travelling salesman problem using the following algorithms - DFS, Hill Climbing and A*. I could write up a code for solving it using DFS. Can I have some help in solving it using the other 2 algorithms? I searched for it a lot, on the web.

    Read the article

  • Practical Uses of Fractals in Programming

    - by Sami
    Fractals have always been a bit of a mystery for me. What practical uses (beyond rendering to beautiful images) are there for fractals in the various programming problem domains? And please, don't just list areas that use them. I'm interested in specific algorithms and how fractals are used with those algorithms to solve something in practice. Please at least give a short description of the algorithm.

    Read the article

  • Genetic algorithm resource

    - by Siblja
    Lately I'm interested in a topic of genetic algorithms, but i couldn't find any good resource. If you know any good resource, book or a site i would appreciate it. I have solid knowledge of algorithms and A.I. but im looking for something with good introduction in genetic programing.

    Read the article

  • [LaTeX] Math symbols in listings

    - by Michal
    Hi, I have a problem with Latex -- I don't know how to put mathematical equations and symbols in listings. I use --listings-- package and it's offers great looking listings, but it doesn't allow math symbols in $ .. $. Another package --algorithms-- allows math, but listings doesn't look as good as in --listings-- (the problem is that --algorithms-- demands to get new line after every --if--, --then--, etc.) Thanks for reply Michal

    Read the article

  • Reduce number of points in line

    - by culebrón
    I'm searching for algorithms to reduce the LOD of polylines, lines (looped or not) of nodes. In simple words, I want to take hi-resolution coastline data and be able to reduce its LOD hundred- or thousandfold to render it in small-scale. I found polygon reduction algorithms (but they require triangles) and Laplacian smoothing, but that doesn't seem exactly what I need.

    Read the article

  • Motion detection information

    - by dotnetdev
    Hi, I know the AFORGE.NET API has motion detection algorithms, but what would be a good book to learn these algorithms with C# samples (the AFORGE.NET code is complex and not commented enough to help). Thanks

    Read the article

  • What Software Engineering Areas should be stressed upon while Interviewing Candidate for Fulltime So

    - by Rachel
    Hi, This question is somewhat related to other posts which I found on Stackoverflow but not exactly and so am prompted to ask about it. I know we must ask for Data-Structures and Algorithms but what specific data-structures or Algorithms or other CS Concepts should be asked while interviewing Sr. Software Engineering Fulltime Position as compared with Software Engineering Position. Thanks.

    Read the article

  • Problem solving/ Algorithm Skill is a knack or can be developed with practice?

    - by KaluSingh Gabbar
    Every time I start a hard problem and if can not figure out the exact solution or can not get started, I get into this never ending discussion with myself, as below: That problem solving/mathematics/algorithms skills are gifted (not that you can learn by practicing, by practice, you only master the kind of problems that you already have solved before) only those who went to good schools can do it, as they learned it early. What are your thoughts, can one achieve awesomeness in problem solving/algorithms just by hard work or you need to have that extra-gene in you?

    Read the article

  • Android dev platform supporting OpenGL ES 2.0: Where to buy?

    - by pixelpush
    I plan to port some camera and multimedia algorithms and functionality on a Qualcomm Snapdragon platform running Android. I need OpenGL ES 2.0 acceleration for many algorithms. Which platform is the right one? Also, where can I purchase this? The Android dev platform on Google's website supports on OpenGL ES 1.x Thanks for any input.

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Finding the heaviest length-constrained path in a weighted Binary Tree

    - by Hristo
    UPDATE I worked out an algorithm that I think runs in O(n*k) running time. Below is the pseudo-code: routine heaviestKPath( T, k ) // create 2D matrix with n rows and k columns with each element = -8 // we make it size k+1 because the 0th column must be all 0s for a later // function to work properly and simplicity in our algorithm matrix = new array[ T.getVertexCount() ][ k + 1 ] (-8); // set all elements in the first column of this matrix = 0 matrix[ n ][ 0 ] = 0; // fill our matrix by traversing the tree traverseToFillMatrix( T.root, k ); // consider a path that would arc over a node globalMaxWeight = -8; findArcs( T.root, k ); return globalMaxWeight end routine // node = the current node; k = the path length; node.lc = node’s left child; // node.rc = node’s right child; node.idx = node’s index (row) in the matrix; // node.lc.wt/node.rc.wt = weight of the edge to left/right child; routine traverseToFillMatrix( node, k ) if (node == null) return; traverseToFillMatrix(node.lc, k ); // recurse left traverseToFillMatrix(node.rc, k ); // recurse right // in the case that a left/right child doesn’t exist, or both, // let’s assume the code is smart enough to handle these cases matrix[ node.idx ][ 1 ] = max( node.lc.wt, node.rc.wt ); for i = 2 to k { // max returns the heavier of the 2 paths matrix[node.idx][i] = max( matrix[node.lc.idx][i-1] + node.lc.wt, matrix[node.rc.idx][i-1] + node.rc.wt); } end routine // node = the current node, k = the path length routine findArcs( node, k ) if (node == null) return; nodeMax = matrix[node.idx][k]; longPath = path[node.idx][k]; i = 1; j = k-1; while ( i+j == k AND i < k ) { left = node.lc.wt + matrix[node.lc.idx][i-1]; right = node.rc.wt + matrix[node.rc.idx][j-1]; if ( left + right > nodeMax ) { nodeMax = left + right; } i++; j--; } // if this node’s max weight is larger than the global max weight, update if ( globalMaxWeight < nodeMax ) { globalMaxWeight = nodeMax; } findArcs( node.lc, k ); // recurse left findArcs( node.rc, k ); // recurse right end routine Let me know what you think. Feedback is welcome. I think have come up with two naive algorithms that find the heaviest length-constrained path in a weighted Binary Tree. Firstly, the description of the algorithm is as follows: given an n-vertex Binary Tree with weighted edges and some value k, find the heaviest path of length k. For both algorithms, I'll need a reference to all vertices so I'll just do a simple traversal of the Tree to have a reference to all vertices, with each vertex having a reference to its left, right, and parent nodes in the tree. Algorithm 1 For this algorithm, I'm basically planning on running DFS from each node in the Tree, with consideration to the fixed path length. In addition, since the path I'm looking for has the potential of going from left subtree to root to right subtree, I will have to consider 3 choices at each node. But this will result in a O(n*3^k) algorithm and I don't like that. Algorithm 2 I'm essentially thinking about using a modified version of Dijkstra's Algorithm in order to consider a fixed path length. Since I'm looking for heaviest and Dijkstra's Algorithm finds the lightest, I'm planning on negating all edge weights before starting the traversal. Actually... this doesn't make sense since I'd have to run Dijkstra's on each node and that doesn't seem very efficient much better than the above algorithm. So I guess my main questions are several. Firstly, do the algorithms I've described above solve the problem at hand? I'm not totally certain the Dijkstra's version will work as Dijkstra's is meant for positive edge values. Now, I am sure there exist more clever/efficient algorithms for this... what is a better algorithm? I've read about "Using spine decompositions to efficiently solve the length-constrained heaviest path problem for trees" but that is really complicated and I don't understand it at all. Are there other algorithms that tackle this problem, maybe not as efficiently as spine decomposition but easier to understand? Thanks.

    Read the article

  • ASP.NET 2.0 RijndaelManaged encryption algorithm vs. FIPS

    - by R Rush
    I'm running into an issue with an ASP.NET 2.0 application. Our network folks just upped our security, and now I get the floowing error whenever I try to access the app: "This implementation is not part of the Windows Platform FIPS validated cryptographic algorithms." I've done a little research, and it sounds like ASP.NET uses the RijndaelManaged AES encryption algorithm to encrypt the ViewState of pages... and RijndaelManaged is on the list of algorithms that aren't FIPS compliant. We're certainly not explicitly calling any encryption algorithm... much less anything on the non-compliant list. This ViewState business makes sense to me, I guess. The thing I can't muddle out, though, is what to do about it. I've found a KB article that suggests using a web.config setting to specify a different algorithm... but either that didn't stick, or that algorithm isn't up to snuff, either. So: 1) Is the RijndaelManaged / ViewState thing actually the problem? Or am I barking up the wrong tree? 2) How to I specify what algorithm to use instead of RijndaelManaged? I've got a list of algorithms that are and aren't compliant; I'm just not sure where to plug that information in. Thanks! Richard

    Read the article

  • Thread Local Memory, Using std::string's internal buffer for c-style Scratch Memory.

    - by Hassan Syed
    I am using Protocol Buffers and OpensSSL to generate, HMACs and then CBC encrypt the two fields to obfuscate the session cookies -- similar Kerberos tokens. Protocol Buffers' API communicates with std::strings and has a buffer caching mechanism; I exploit the caching mechanism, for successive calls in the the same thread, by placing it in thread local memory; additionally the OpenSSL HMAC and EVP CTX's are also placed in the same thread local memory structure ( see this question for some detail on why I use thread local memory and the massive amount of speedup it enables even with a single thread). The generation and deserialization, "my algorithms", of these cookie strings uses intermediary void *s and std::strings and since Protocol Buffers has an internal memory retention mechanism I want these characteristics for "my algorithms". So how do I implement a common scratch memory ? I don't know much about the rdbuf(streambuf - strinbuf ??) of the std::string object. I would presumeably need to grow it to the lowest common size ever encountered during the execution of "my algorithms". Thoughts ? My question I guess would be: " is the internal buffer of a string re-usable, and if so, how ?" Edit: See comments to Vlad's answer please.

    Read the article

  • LINQ Joins - Performance

    - by Meiscooldude
    I am curious on how exactly LINQ (not LINQ to SQL) is performing is joins behind the scenes in relation to how Sql Server performs joins. Sql Server before executing a query, generates an Execution Plan. The Execution Plan is basically an Expression Tree on what it believes is the best way to execute the query. Each node provides information on whether to do a Sort, Scan, Select, Join, ect. On a 'Join' node in our execution plan, we can see three possible algorithms; Hash Join, Merge Join, and Nested Loops Join. Sql Server will choose which algorithm to for each Join operation based on expected number of rows in Inner and Outer tables, what type of join we are doing (some algorithms don't support all types of joins), whether we need data ordered, and probably many other factors. Join Algorithms: Nested Loop Join: Best for small inputs, can be optimized with ordered inner table. Merge Join: Best for medium to large inputs sorted inputs, or an output that needs to be ordered. Hash Join: Best for medium to large inputs, can be parallelized to scale linearly. LINQ Query: DataTable firstTable, secondTable; ... var rows = from firstRow in firstTable.AsEnumerable () join secondRow in secondTable.AsEnumerable () on firstRow.Field<object> (randomObject.Property) equals secondRow.Field<object> (randomObject.Property) select new {firstRow, secondRow}; SQL Query: SELECT * FROM firstTable fT INNER JOIN secondTable sT ON fT.Property = sT.Property Sql Server might use a Nested Loop Join if it knows there are a small number of rows from each table, a merge join if it knows one of the tables has an index, and Hash join if it knows there are a lot of rows on either table and neither has an index. Does Linq choose its algorithm for joins? or does it always use one?

    Read the article

  • Endianness and C API's: Specifically OpenSSL.

    - by Hassan Syed
    I have an algorithm that uses the following OpenSSL calls: HMAC_update() / HMAC_final() // ripe160 EVP_CipherUpdate() / EVP_CipherFinal() // cbc_blowfish These algorithm take a unsigned char * into the "plain text". My input data is comes from a C++ std::string::c_str() which originate from a protocol buffer object as a encoded UTF-8 string. UTF-8 strings are meant to be endian neutrial. However I'm a bit paranoid about how OpenSSL may perform operations on the data. My understanding is that encryption algorithms work on 8-bit blocks of data, and if a unsigned char * is used for pointer arithmetic when the operations are performed the algorithms should be endian neutral and I do not need to worry about anything. My uncertainty is compounded by the fact that I am working on a little-endian machine and have never done any real cross-architecture programming. My beliefs/reasoning are/is based on the following two properties std::string (not wstring) internally uses a 8-bit ptr and a the resulting c_str() ptr will itterate the same way regardless of the CPU architecture. Encryption algorithms are either by design, or by implementation, endian neutral. I know the best way to get a definitive answer is to use QEMU and do some cross-platform unit tests (which I plan to do). My question is a request for comments on my reasoning, and perhaps will assist other programmers when faced with similar problems.

    Read the article

  • What is better for a student programming in C++ to learn for writing GUI: C# vs QT?

    - by flashnik
    I'm a teacher(instructor) of CS in the university. The course is based on Cormen and Knuth and students program algorithms in C++. But sometimes it is good to show how an algorithm works or just a result of task through GUI. Also in my opinion it's very imporant to be able to write full programs. They will have courses concerning GUI but a three years, later, in fact, before graduatuion. I think that they should be able to write simple GUI applications earlier. So I want to teach them it. How do you think, what is more useful for them to learn: programming GUI with QT or writing GUI in C# and calling unmanaged C++ library? Update. For developing C++ applications students use MS Visual studio, so C# is already installed. But QT AFAIK also can be integrated into VS. I have following pros of C# (some were suggested there in answers): The need to make an additional layer. It's more work, but it forces you explicitly specify contract between GUI and processing data. The border between GUI and algorithms becomes very clear. It's more popular among employers. At least, in Russia where we live. It's rather common to write performance-critical algorithms in C++ and PInvoke them from well-looking C# application/ASP.Net website. Maybe it is not so widespread in the rest of the world but in Russia Windows is very popular, especially in companies and corporations due to some reasons, so most of b2b applications are Windows applications. Rapid development. It's much quicker to code in .Net then in C++ due to many reasons. And the con is that it's a new language with own specific for students. And the mess with invoking calls to library.

    Read the article

  • Are there any FIPS-140-2 certified solutions for Linux?

    - by Mark Renouf
    I'm not even 100% certain what this involves, but my current understanding is this: use of only approved cryptographic algorithms for network traffic (easy, we use SSL and lock down the algorithms to only the really strong ones). Some form of physical data protection, involving disk encryption and physical tamper evident packaging. Obviously we're on our own if we need a tamper-proof product. But what about software for encrpytion. My guess is just using LUKS (although secure) will not be certified because it's open source (gov't seems a bit biased towards proprietary solutions here). Guardian Edge was mentioned by someone, but that appears to be complete Windows-based. So we need something like it, certified FIPS-140 compliant we can use on Linux.

    Read the article

  • Oracle Advanced Security Options is Blank

    - by mak4pi
    I just installed Oracle DB 10gR2 with Oracle Advanced Security, but cannot see the algorithms. [user@db-1] adapters Installed Oracle Net transport protocols are: IPC BEQ TCP/IP SSL RAW Installed Oracle Net naming methods are: Local Naming (tnsnames.ora) Oracle Directory Naming Oracle Host Naming Oracle Names Server Naming Installed Oracle Advanced Security options are: Where are all the algorithms for Oracle Advanced Security options please? I checked the $ORACLE_HOME/bin/adapters file and it's looking for naea256i, naemd5i, etc. in the naetab.so file, but none of these are listed in the naetab.so file. What's wrong with the naetab.so file? Thanks.

    Read the article

  • How do I completely self study computer science?

    - by Optimus
    Being a completely self taught programmer I would like it if I could better myself by self-learning computer science course taught to a typical CS grad. Finding different resources on internet has been easy, there is of course MIT open course ware, and there are Coursera courses from Stanford and other universities. There are numerous other open resources scattered around the Internet and some good books that are repeatedly recommended. I have been learning a lot but my study is heavily fragmented, which really bugs me, I would love If somewhere I could find a path I should follow and a stack I should limit myself to so that I can be sure about what essential parts of computer science I have studied and systematically approach those I haven't. The problem with Wikipedia is it doesn't tell you whats essential but insists on being a complete reference. MIT open course ware for Computer science and Electrical Engg. has a huge list of courses also not telling you what courses are essential and what optional as per person's interest/requirement. I found no mention of an order in which one should study different subjects. What I would love is to create a list that I can follow like this dummy one SUBJECTS DONE Introduction to Computer Science * Introduction to Algorithms * Discrete Mathematics Adv. Discrete Mathematics Data structures * Adv. Algorithms ... As you can clearly see I have little idea of what specific subjects computer science consists of. It would be hugely helpful even if some one pointed out essential courses from MIT Course ware ( + essential subjects not present at MIT OCW) in a recommended order of study. I'll list the Posts I already went through (and I didn't get what I was looking for there) Computer science curriculum for non-CS major? - top answer says it isn't worth studying cse How can a self-taught programmer learn more about Computer Science? - points to MIT OCW Studying computer science - what am I getting myself into? Overview of computer science, programming

    Read the article

  • Mission critical embedded language

    - by Moe
    Maybe the question sounds a bit strange, so i'll explain a the background a little bit. Currently i'm working on a project at y university, which will be a complete on-board software for an satellite. The system is programmed in c++ on top of a real-time operating system. However, some subsystems like the attitude control system and the fault detection and a space simulation are currently only implemented in Matlab/Simulink, to prototype the algorithms efficiently. After their verification, they will be translated into c++. The complete on-board software grew very complex, and only a handful people know the whole system. Furthermore, many of the students haven't program in c++ yet and the manual memory management of c++ makes it even more difficult to write mission critical software. Of course the main system has to be implemented in c++, but i asked myself if it's maybe possible to use an embedded language to implement the subsystem which are currently written in Matlab. This embedded language should feature: static/strong typing and compiler checks to minimize runtime errors small memory usage, and relative fast runtime attitude control algorithms are mainly numerical computations, so a good numeric support would be nice maybe some sort of functional programming feature, matlab/simulink encourage you to use it too I googled a bit, but only found Lua. It looks nice, but i would not use it in mission critical software. Have you ever encountered a situation like this, or do you know any language, which could satisfies the conditions? EDIT: To clarify some things: embedded means it should be able to embed the language into the existing c++ environment. So no compiled languages like Ada or Haskell ;)

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >