Search Results

Search found 1848 results on 74 pages for 'algorithms'.

Page 33/74 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • Is it possible to "learn" a regular expression by user-provided examples?

    - by DR
    Is it possible to "learn" a regular expression by user-provided examples? To clarify: I do not want to learn regular expressions. I want to create a program which "learns" a regular expression from examples which are interactively provided by a user, perhaps by selecting parts from a text or selecting begin or end markers. Is it possible? Are there algorithms, keywords, etc. which I can Google for? EDIT: Thank you for the answers, but I'm not interested in tools which provide this feature. I'm looking for theoretical information, like papers, tutorials, source code, names of algorithms, so I can create something for myself.

    Read the article

  • Java: how to represent graphs?

    - by Rosarch
    I'm implementing some algorithms to teach myself about graphs and how to work with them. What would you recommend is the best way to do that in Java? I was thinking something like this: public class Vertex { private ArrayList<Vertex> outnodes; //Adjacency list. if I wanted to support edge weight, this would be a hash map. //methods to manipulate outnodes } public class Graph { private ArrayList<Vertex> nodes; //algorithms on graphs } But I basically just made this up. Is there a better way? Also, I want it to be able to support variations on vanilla graphs like digraphs, weighted edges, multigraphs, etc.

    Read the article

  • Stuck on solving the Minimal Spanning Tree problem.

    - by kunjaan
    I have reduced my problem to finding the minimal spanning tree in the graph. But I want to have one more constraint which is that the total degree for each vertex shouldnt exceed a certain constant factor. How do I model my problem? Is MST the wrong path? Do you know any algorithms that will help me? One more problem: My graph has duplicate edge weights so is there a way to count the number of unique MSTs? Are there algorithms that do this? Thank You. Edit: By degree, I mean the total number of edges connecting the vertex. By duplicate edge weight I mean that two edges have the same weight.

    Read the article

  • Knowledge mining using Hadoop.

    - by Anurag
    Hello there, I want to do a project Hadoop and map reduce and present it as my graduation project. To this, I've given some thought,searched over the internet and came up with the idea of implementing some basic knowledge mining algorithms say on a social websites like Facebook or may stckoverflow, Quora etc and draw some statistical graphs, comparisons frequency distributions and other sort of important values.For searching purpose would it be wise to use Apache Solr ? I want know If such thing is feasible using the above mentioned tools, if so how should I build up on this little idea? Where can I learn about knowledge mining algorithms which are easy to implement using java and map reduce techniques? In case this is a wrong idea please suggest what else can otherwise be done on using Hadoop and other related sub-projects? Thank you

    Read the article

  • What Math topics & resources to consider as beginner to indulge the book - Introduction to Algorithm

    - by sector7
    I'm a programmer who's beginning to appreciate the knowledge & usability of Algorithms in my work as I move forward with my skill-set. I don't want to take the short path by learning how to apply algorithms "as-is" but would rather like to know the foundation and fundamentals behind them. For that I need Math, at which I'm pretty "basic". I'm considering getting tuition's for that. What I would like is to have a concise syllabus/set of topics/book which I could hand over to my math tutor to get started. HIGHLY DESIRED: one book. the silver bullet. (fingers crossed!) PS: I've got some leads but want to hear you guys/gurus out: Discrete Math, Combinatorics, Graph theory, Calculus, Linear Algebra, and Number Theory. Looking forward to your answers. Thanks!

    Read the article

  • Comapring pitches with digital audio

    - by user2250569
    I work on application which will compare musical notes with digital audio. My first idea was analyzes wav file (or sound in real-time) with some polyphonic pitch algorithms and gets notes and chords from this file and subsequently compared with notes in dataset. I went through a lot of pages and it seems to be a lot of hard work because existing implementations and algorithms are mainly/only focus on monophonic sound. Now, I got the idea to do this in the opposite way. In dataset I have for example note: A4 or better example chord: A4 B4 H4. And my idea is make some wave (or whatever I don't know what) from this note or chord and then compared with piece of digital audio. Is this good idea? Is it better/harder solution? If yes can you recommend me how to do it?

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Should universities put more emphasis on teaching their students about design patterns?

    - by gablin
    While I've heard about design patterns being mentioned in a few courses at uni, I know of only a single course which actually teaches design patterns. In almost all other areas (algorithms, parallelism, architecture, dynamic languages, paradigms, etc), there are several, often a basic course and an advanced course. Should universities put more emphasis about teaching their students about design patterns and provide more courses in design patters? Are lack of knowledge about design patterns common in just-graduated junior developers?

    Read the article

  • Content Encryption Options in Oracle IRM 11g

    - by martin.abrahams
    Another of the innovations in Oracle IRM 11g is a wider choice of encryption algorithms for protecting content. The choice is now as illustrated below. As you see, three of the choices are marked as FIPS options, where FIPS refers to the Federal Information Processing Standard Publication 140-2, a U.S. government security standard for accreditation of cryptographic modules.

    Read the article

  • The Google Prediction API

    The Google Prediction API The Prediction API enables you to make your smart apps even smarter. The API accesses Google's machine learning algorithms to analyze your historic data and predict likely future outcomes. Using the Google Prediction API, you can build the following intelligence into your applications. Read more at code.google.com From: GoogleDevelopers Views: 15834 113 ratings Time: 01:37 More in Science & Technology

    Read the article

  • Mathematics for Computer Science

    - by jiewmeng
    I am going into university next year. I think maths would be one of the more important aspects of computer science? I recently saw the MIT Intro to Algorithms video on YouTube and the maths required is quite hardcore. I wonder what parts of maths do i need, probability, calculus, trigo etc. Will the book Concrete Mathematics - it claims to be foundation for computer science - on Amazon cover most of whats required?

    Read the article

  • Is an undergraduate degree in CS required?

    - by Girish
    I will complete my undergrad in Material Science this spring. I am not interested in the subject but I am very interested in Computer Science and programming and have decided to make the shift. Do you think I should first get an undergraduate degree in Computer Science or should I apply for a master's program? My programming skills are pretty decent, but I lack a lot of concrete knowledge in algorithms and data structures? Will a master's degree help me with the basics?

    Read the article

  • Breaking down CS courses for freshmen

    - by Avinash
    I'm a student putting together a slide geared towards freshmen level students who are trying to understand what the importance of various classes in the CS curriculum are. Would it be safe to say that this list is fairly accurate? Data structures: how to store stuff in programs Discrete math: how to think logically Bits & bytes: how to ‘speak’ the machine’s language Advanced data structures: how to store stuff in more ways Algorithms: how to compute things efficiently Operating systems: how to do manage different processes/threads Thanks!

    Read the article

  • How to setup IPSec with Amazon EC2

    - by bonzi
    How to setup an IPSec connection from my ubuntu laptop to Amazon EC2 instance? I tried setting it up using elastic IP and VPC with the following openswan configuration but it is not working. conn host-to-host left=%defaultroute leftsubnet=EC2PRIVATEIP/32 # Local netmask leftid=ELASTICIP leftrsasigkey= connaddrfamily=ipv4 right=1laptopip # Remote IP address rightid=laptopip rightrsasigkey= ike=aes128 # IKE algorithms (AES cipher) esp=aes128 # ESP algorithns (AES cipher) auto=add pfs=yes forceencaps=yes type=tunnel

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • How to implement an experience system?

    - by Roflcoptr
    I'm currently writing a small game that is based on earning experiences when killing enemies. As usual, each level requires more experience gain than the level before, and on higher levels killing enemies awards more experience. But I have problem balancing this system. Are there any prebuild algorithms that help to caculate how the experience curve required for each level should look like? And how much experience an average enemy on a specific level should provide?

    Read the article

  • Is Your Website Content Really KING?

    I believe that consistently posting quality original content on your website, on forums, on article submission sites, and so on is absolutely critical to your marketing and SEO strategies. As search engines revamp their algorithms to emphasize relevancy, and as prospects become more computer and Internet savvy, content lays the foundation for every other strategy - from SEO to PPC to social media marketing.

    Read the article

  • Effective SEO Article Tutorials and Guide For Newbie Web Content Creators

    Getting updated knowledge for how to write SEO articles is essential because of the steady changes occurring in the search engine algorithms. There are certain challenges that most newbie content writers are facing when it comes to dealing with the issues like website content creation. With the introduction of Web 2.0, it is necessary to use high quality unique content in marketing products or services on the internet.

    Read the article

  • Silverlight Cream for December 08, 2010 -- #1005

    - by Dave Campbell
    In this Issue: Peter Kuhn, David Anson, Jesse Liberty, Mike Taulty(-2-, -3-), Kunal Chowdhury, Jeremy Likness, Martin Krüger, Beth Massi(-2-, -3-)/ Above the Fold: Silverlight: "Rebuilding the PDC 2010 Silverlight Application (Part 1)" Mike Taulty WP7: "WP7: Glossy text block custom control" Martin Krüger Lightswitch: "How to Create a Screen with Multiple Search Parameters in LightSwitch" Beth Massi From SilverlightCream.com: Requirements of and pitfalls in Windows Phone 7 serialization Peter Kuhn discusses Data Contract Serializer issuses on WP7 and how to work around them. Managed implementation of CRC32 and MD5 algorithms updated; new release of ComputeFileHashes for Silverlight, WPF, and the command-line! David Anson ties up some loose ends from a prior post on hash functions, and updates his CRC32 and MD5 algorithms. Windows Phone From Scratch #9 – Visual State Jesse Liberty's latest Windows Phone from Scratch tutorial up... and is on the Visual State... he extends a Button and codes up the State Transitions. Rebuilding the PDC 2010 Silverlight Application (Part 1) Mike Taulty has taken the time to rebuild the PDC2010 Silverlight App that folks wanted the source for... and he's taking multiple posts to explain the heck out of it. This first one is mostly infrastructure. Rebuilding the PDC 2010 Silverlight Application (Part 2) In the 2nd post of the series, Mike Taulty is handling the In/Out of Browser business because he eventually is going to be going OOB. Rebuilding the PDC 2010 Silverlight Application (Part 3) Part 3 finds Mike Taulty delving into WCF Data Services and getting some data on the screen. Paginating Records in Silverlight DataGrid using PagedCollectionView Kunal Chowdhury continues with his investigation of the PagedCollectionView with this post on Pagination of your data. Old School Silverlight Effects If you haven't seen Jeremy Likness' 'Old School' Effects page yet, go just for the entertainment... you'll find yourself hanging around for the code :) WP7: Glossy text block custom control Martin Krüger's latest post is a very cool custom control for WP7 that displays Glossy text... it ain't Metro, but it looks pretty nice... some of it almost like etched text. How to Create a Screen with Multiple Search Parameters in LightSwitch Looks like Beth Massi got a few Lightswitch posts in while I wasn't looking. First up is this one on a multiple-parameter search screen. Adding Static Images and Logos to LightSwitch Applications In the 2nd post, Beth Massi shows how to add your own static images and logos to Lightswitch apps... in response to reader questions. Getting the Most out of LightSwitch Summary Properties In her latest post, Beth Massi explains what Summary Properties are in Lightswitch and how to use them to get the best results for your users. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Windows Azure Recipe: Big Data

    - by Clint Edmonson
    As the name implies, what we’re talking about here is the explosion of electronic data that comes from huge volumes of transactions, devices, and sensors being captured by businesses today. This data often comes in unstructured formats and/or too fast for us to effectively process in real time. Collectively, we call these the 4 big data V’s: Volume, Velocity, Variety, and Variability. These qualities make this type of data best managed by NoSQL systems like Hadoop, rather than by conventional Relational Database Management System (RDBMS). We know that there are patterns hidden inside this data that might provide competitive insight into market trends.  The key is knowing when and how to leverage these “No SQL” tools combined with traditional business such as SQL-based relational databases and warehouses and other business intelligence tools. Drivers Petabyte scale data collection and storage Business intelligence and insight Solution The sketch below shows one of many big data solutions using Hadoop’s unique highly scalable storage and parallel processing capabilities combined with Microsoft Office’s Business Intelligence Components to access the data in the cluster. Ingredients Hadoop – this big data industry heavyweight provides both large scale data storage infrastructure and a highly parallelized map-reduce processing engine to crunch through the data efficiently. Here are the key pieces of the environment: Pig - a platform for analyzing large data sets that consists of a high-level language for expressing data analysis programs, coupled with infrastructure for evaluating these programs. Mahout - a machine learning library with algorithms for clustering, classification and batch based collaborative filtering that are implemented on top of Apache Hadoop using the map/reduce paradigm. Hive - data warehouse software built on top of Apache Hadoop that facilitates querying and managing large datasets residing in distributed storage. Directly accessible to Microsoft Office and other consumers via add-ins and the Hive ODBC data driver. Pegasus - a Peta-scale graph mining system that runs in parallel, distributed manner on top of Hadoop and that provides algorithms for important graph mining tasks such as Degree, PageRank, Random Walk with Restart (RWR), Radius, and Connected Components. Sqoop - a tool designed for efficiently transferring bulk data between Apache Hadoop and structured data stores such as relational databases. Flume - a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large log data amounts to HDFS. Database – directly accessible to Hadoop via the Sqoop based Microsoft SQL Server Connector for Apache Hadoop, data can be efficiently transferred to traditional relational data stores for replication, reporting, or other needs. Reporting – provides easily consumable reporting when combined with a database being fed from the Hadoop environment. Training These links point to online Windows Azure training labs where you can learn more about the individual ingredients described above. Hadoop Learning Resources (20+ tutorials and labs) Huge collection of resources for learning about all aspects of Apache Hadoop-based development on Windows Azure and the Hadoop and Windows Azure Ecosystems SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • How to setup IPSec with Amazon EC2

    - by bonzi
    How to setup an IPSec connection from my ubuntu laptop to Amazon EC2 instance? I tried setting it up using elastic IP and VPC with the following openswan configuration but it is not working. conn host-to-host left=%defaultroute leftsubnet=EC2PRIVATEIP/32 # Local netmask leftid=ELASTICIP leftrsasigkey= connaddrfamily=ipv4 right=1laptopip # Remote IP address rightid=laptopip rightrsasigkey= ike=aes128 # IKE algorithms (AES cipher) esp=aes128 # ESP algorithns (AES cipher) auto=add pfs=yes forceencaps=yes type=tunnel

    Read the article

  • DTracing TCP congestion control

    - by user12820842
    In a previous post, I showed how we can use DTrace to probe TCP receive and send window events. TCP receive and send windows are in effect both about flow-controlling how much data can be received - the receive window reflects how much data the local TCP is prepared to receive, while the send window simply reflects the size of the receive window of the peer TCP. Both then represent flow control as imposed by the receiver. However, consider that without the sender imposing flow control, and a slow link to a peer, TCP will simply fill up it's window with sent segments. Dealing with multiple TCP implementations filling their peer TCP's receive windows in this manner, busy intermediate routers may drop some of these segments, leading to timeout and retransmission, which may again lead to drops. This is termed congestion, and TCP has multiple congestion control strategies. We can see that in this example, we need to have some way of adjusting how much data we send depending on how quickly we receive acknowledgement - if we get ACKs quickly, we can safely send more segments, but if acknowledgements come slowly, we should proceed with more caution. More generally, we need to implement flow control on the send side also. Slow Start and Congestion Avoidance From RFC2581, let's examine the relevant variables: "The congestion window (cwnd) is a sender-side limit on the amount of data the sender can transmit into the network before receiving an acknowledgment (ACK). Another state variable, the slow start threshold (ssthresh), is used to determine whether the slow start or congestion avoidance algorithm is used to control data transmission" Slow start is used to probe the network's ability to handle transmission bursts both when a connection is first created and when retransmission timers fire. The latter case is important, as the fact that we have effectively lost TCP data acts as a motivator for re-probing how much data the network can handle from the sending TCP. The congestion window (cwnd) is initialized to a relatively small value, generally a low multiple of the sending maximum segment size. When slow start kicks in, we will only send that number of bytes before waiting for acknowledgement. When acknowledgements are received, the congestion window is increased in size until cwnd reaches the slow start threshold ssthresh value. For most congestion control algorithms the window increases exponentially under slow start, assuming we receive acknowledgements. We send 1 segment, receive an ACK, increase the cwnd by 1 MSS to 2*MSS, send 2 segments, receive 2 ACKs, increase the cwnd by 2*MSS to 4*MSS, send 4 segments etc. When the congestion window exceeds the slow start threshold, congestion avoidance is used instead of slow start. During congestion avoidance, the congestion window is generally updated by one MSS for each round-trip-time as opposed to each ACK, and so cwnd growth is linear instead of exponential (we may receive multiple ACKs within a single RTT). This continues until congestion is detected. If a retransmit timer fires, congestion is assumed and the ssthresh value is reset. It is reset to a fraction of the number of bytes outstanding (unacknowledged) in the network. At the same time the congestion window is reset to a single max segment size. Thus, we initiate slow start until we start receiving acknowledgements again, at which point we can eventually flip over to congestion avoidance when cwnd ssthresh. Congestion control algorithms differ most in how they handle the other indication of congestion - duplicate ACKs. A duplicate ACK is a strong indication that data has been lost, since they often come from a receiver explicitly asking for a retransmission. In some cases, a duplicate ACK may be generated at the receiver as a result of packets arriving out-of-order, so it is sensible to wait for multiple duplicate ACKs before assuming packet loss rather than out-of-order delivery. This is termed fast retransmit (i.e. retransmit without waiting for the retransmission timer to expire). Note that on Oracle Solaris 11, the congestion control method used can be customized. See here for more details. In general, 3 or more duplicate ACKs indicate packet loss and should trigger fast retransmit . It's best not to revert to slow start in this case, as the fact that the receiver knew it was missing data suggests it has received data with a higher sequence number, so we know traffic is still flowing. Falling back to slow start would be excessive therefore, so fast recovery is used instead. Observing slow start and congestion avoidance The following script counts TCP segments sent when under slow start (cwnd ssthresh). #!/usr/sbin/dtrace -s #pragma D option quiet tcp:::connect-request / start[args[1]-cs_cid] == 0/ { start[args[1]-cs_cid] = 1; } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd tcps_cwnd_ssthresh / { @c["Slow start", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd args[3]-tcps_cwnd_ssthresh / { @c["Congestion avoidance", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } As we can see the script only works on connections initiated since it is started (using the start[] associative array with the connection ID as index to set whether it's a new connection (start[cid] = 1). From there we simply differentiate send events where cwnd ssthresh (congestion avoidance). Here's the output taken when I accessed a YouTube video (where rport is 80) and from an FTP session where I put a large file onto a remote system. # dtrace -s tcp_slow_start.d ^C ALGORITHM RADDR RPORT #SEG Slow start 10.153.125.222 20 6 Slow start 138.3.237.7 80 14 Slow start 10.153.125.222 21 18 Congestion avoidance 10.153.125.222 20 1164 We see that in the case of the YouTube video, slow start was exclusively used. Most of the segments we sent in that case were likely ACKs. Compare this case - where 14 segments were sent using slow start - to the FTP case, where only 6 segments were sent before we switched to congestion avoidance for 1164 segments. In the case of the FTP session, the FTP data on port 20 was predominantly sent with congestion avoidance in operation, while the FTP session relied exclusively on slow start. For the default congestion control algorithm - "newreno" - on Solaris 11, slow start will increase the cwnd by 1 MSS for every acknowledgement received, and by 1 MSS for each RTT in congestion avoidance mode. Different pluggable congestion control algorithms operate slightly differently. For example "highspeed" will update the slow start cwnd by the number of bytes ACKed rather than the MSS. And to finish, here's a neat oneliner to visually display the distribution of congestion window values for all TCP connections to a given remote port using a quantization. In this example, only port 80 is in use and we see the majority of cwnd values for that port are in the 4096-8191 range. # dtrace -n 'tcp:::send { @q[args[4]-tcp_dport] = quantize(args[3]-tcps_cwnd); }' dtrace: description 'tcp:::send ' matched 10 probes ^C 80 value ------------- Distribution ------------- count -1 | 0 0 |@@@@@@ 5 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 0 512 | 0 1024 | 0 2048 |@@@@@@@@@ 8 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 23 8192 | 0

    Read the article

  • 2D Grid Map Connectivity Check (avoiding stack overflow)

    - by SombreErmine
    I am trying to create a routine in C++ that will run before a more expensive A* algorithm that checks to see if two nodes on a 2D grid map are connected or not. What I need to know is a good way to accomplish this sequentially rather than recursively to avoid overflowing the stack. What I've Done Already I've implemented this with ease using a recursive algorithm; however, depending upon different situations it will generate a stack overflow. Upon researching this, I've come to the conclusion that it is overflowing the stack because of too many recursive function calls. I am sure that my recursion does not enter an infinite loop. I generate connected sets at the beginning of the level, and then I use those connected sets to determine connectivity on the fly later. Basically, the generating algorithm starts from left-to-right top-to-bottom. It skips wall nodes and marks them as visited. Whenever it reaches a walkable node, it recursively checks in all four cardinal directions for connected walkable nodes. Every node that gets checked is marked as visited so they aren't handled twice. After checking a node, it is added to either a walls set, a doors set, or one of multiple walkable nodes sets. Once it fills that area, it continues the original ltr ttb loop skipping already-visited nodes. I've also looked into flood-fill algorithms, but I can't make sense of the sequential algorithms and how to adapt them. Can anyone suggest a better way to accomplish this without causing a stack overflow? The only way I can think of is to do the left-to-right top-to-bottom loop generating connected sets on a row basis. Then check the previous row to see if any of the connected sets are connected and then join the sets that are. I haven't decided on the best data structures to use for that though. I also just thought about having the connected sets pre-generated outside the game, but I wouldn't know where to start with creating a tool for that. Any help is appreciated. Thanks!

    Read the article

  • C++ track or Java track in college?

    - by sq1020
    I'm starting some CS classes at a community college and they have two tracks. Either you take three courses in C++ or three courses in Java. Both cover the same fundamental material e.g. data structures, algorithms etc. Which would you recommend considering that I know python and may be consider doing a masters in CS some time down the road....my undergrad degree is in something else. And advice would be appreciated.

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >