Search Results

Search found 734 results on 30 pages for 'yield'.

Page 27/30 | < Previous Page | 23 24 25 26 27 28 29 30  | Next Page >

  • What's a clean way to break up a DataTable into chunks of a fixed size with Linq?

    - by Michael Haren
    Update: Here's a similar question Suppose I have a DataTable with a few thousand DataRows in it. I'd like to break up the table into chunks of smaller rows for processing. I thought C#3's improved ability to work with data might help. This is the skeleton I have so far: DataTable Table = GetTonsOfData(); // Chunks should be any IEnumerable<Chunk> type var Chunks = ChunkifyTableIntoSmallerChunksSomehow; // ** help here! ** foreach(var Chunk in Chunks) { // Chunk should be any IEnumerable<DataRow> type ProcessChunk(Chunk); } Any suggestions on what should replace ChunkifyTableIntoSmallerChunksSomehow? I'm really interested in how someone would do this with access C#3 tools. If attempting to apply these tools is inappropriate, please explain! Update 3 (revised chunking as I really want tables, not ienumerables; going with an extension method--thanks Jacob): Final implementation: Extension method to handle the chunking: public static class HarenExtensions { public static IEnumerable<DataTable> Chunkify(this DataTable table, int chunkSize) { for (int i = 0; i < table.Rows.Count; i += chunkSize) { DataTable Chunk = table.Clone(); foreach (DataRow Row in table.Select().Skip(i).Take(chunkSize)) { Chunk.ImportRow(Row); } yield return Chunk; } } } Example consumer of that extension method, with sample output from an ad hoc test: class Program { static void Main(string[] args) { DataTable Table = GetTonsOfData(); foreach (DataTable Chunk in Table.Chunkify(100)) { Console.WriteLine("{0} - {1}", Chunk.Rows[0][0], Chunk.Rows[Chunk.Rows.Count - 1][0]); } Console.ReadLine(); } static DataTable GetTonsOfData() { DataTable Table = new DataTable(); Table.Columns.Add(new DataColumn()); for (int i = 0; i < 1000; i++) { DataRow Row = Table.NewRow(); Row[0] = i; Table.Rows.Add(Row); } return Table; } }

    Read the article

  • Rails render partial with block

    - by brad
    I'm trying to re-use an html component that i've written that provides panel styling. Something like: <div class="v-panel"> <div class="v-panel-tr"></div> <h3>Some Title</h3> <div class="v-panel-c"> .. content goes here </div> <div class="v-panel-b"><div class="v-panel-br"></div><div class="v-panel-bl"></div></div> </div> So I see that render takes a block. I figured then I could do something like this: # /shared/_panel.html.erb <div class="v-panel"> <div class="v-panel-tr"></div> <h3><%= title %></h3> <div class="v-panel-c"> <%= yield %> </div> <div class="v-panel-b"><div class="v-panel-br"></div><div class="v-panel-bl"></div></div> </div> And I want to do something like: #some html view <%= render :partial => '/shared/panel', :locals =>{:title => "Some Title"} do %> <p>Here is some content to be rendered inside the panel</p> <% end %> Unfortunately this doesn't work with this error: ActionView::TemplateError (/Users/bradrobertson/Repos/VeloUltralite/source/trunk/app/views/sessions/new.html.erb:1: , unexpected tRPAREN old_output_buffer = output_buffer;;@output_buffer = ''; __in_erb_template=true ; @output_buffer.concat(( render :partial => '/shared/panel', :locals => {:title => "Welcome"} do ).to_s) on line #1 of app/views/sessions/new.html.erb: 1: <%= render :partial => '/shared/panel', :locals => {:title => "Welcome"} do -%> ... So it doesn't like the = obviously with a block, but if I remove it, then it just doesn't output anything. Does anyone know how to do what I'm trying to achieve here? I'd like to re-use this panel html in many places on my site.

    Read the article

  • Distinct rand() sequences yielding the same results in an expression

    - by suszterpatt
    Ok, this is a really weird one. I have an MPI program, where each process has to generate random numbers in a fixed range (the range is read from file). What happens is that even though I seed each process with a different value, and the numbers generated by rand() are different in each process, the expression to generate the random numbers still yields the same sequence between them. Here's all relevant code: // 'rank' will be unique for each process int rank; MPI_Comm_rank(MPI_COMM_WORLD, &rank); // seed the RNG with a different value for each process srand(time(NULL) + rank); // print some random numbers to see if we get a unique sequence in each process // 'log' is a uniquely named file, each process has its own log << rand() << " " << rand() << " " << rand() << std::endl; // do boring deterministic stuff while (true) { // waitTimeMin and waitTimeMax are integers, Max is always greater than Min waitSecs = waitTimeMin + rand() % (waitTimeMax - waitTimeMin); log << "waiting " << waitSecs << " seconds" << std::endl; sleep(waitSecs); // do more boring deterministic stuff } Here's the output of each process, with 3 processes generating numbers in the range [1,9]. process 1: 15190 28284 3149 waiting 6 seconds waiting 8 seconds waiting 9 seconds waiting 4 seconds process 2: 286 6264 3153 waiting 6 seconds waiting 8 seconds waiting 9 seconds waiting 4 seconds process 3: 18151 17013 3156 waiting 6 seconds waiting 8 seconds waiting 9 seconds waiting 4 seconds So while rand() clearly generates different numbers, the expression to calculate waitSecs still evaluates to the same sequence on all processes. What's even weirder: if I run the program with the same parameteres again, only the first 3 random numbers will change, the rest of the "random" sequence will be exactly the same in each run! Changing the range of numbers will obviously produce a different result from this one, but the same parameters always yield the same sequence, between processes and between executions: except for the first 3 numbers. Just what the hell is going on here?

    Read the article

  • Coroutines in Java

    - by JUST MY correct OPINION
    I would like to do some stuff in Java that would be clearer if written using concurrent routines, but for which full-on threads are serious overkill. The answer, of course, is the use of coroutines, but there doesn't appear to be any coroutine support in the standard Java libraries and a quick Google on it brings up tantalising hints here or there, but nothing substantial. Here's what I've found so far: JSIM has a coroutine class, but it looks pretty heavyweight and conflates, seemingly, with threads at points. The point of this is to reduce the complexity of full-on threading, not to add to it. Further I'm not sure that the class can be extracted from the library and used independently. Xalan has a coroutine set class that does coroutine-like stuff, but again it's dubious if this can be meaningfully extracted from the overall library. It also looks like it's implemented as a tightly-controlled form of thread pool, not as actual coroutines. There's a Google Code project which looks like what I'm after, but if anything it looks more heavyweight than using threads would be. I'm basically nervous of something that requires software to dynamically change the JVM bytecode at runtime to do its work. This looks like overkill and like something that will cause more problems than coroutines would solve. Further it looks like it doesn't implement the whole coroutine concept. By my glance-over it gives a yield feature that just returns to the invoker. Proper coroutines allow yields to transfer control to any known coroutine directly. Basically this library, heavyweight and scary as it is, only gives you support for iterators, not fully-general coroutines. The promisingly-named Coroutine for Java fails because it's a platform-specific (obviously using JNI) solution. And that's about all I've found. I know about the native JVM support for coroutines in the Da Vinci Machine and I also know about the JNI continuations trick for doing this. These are not really good solutions for me, however, as I would not necessarily have control over which VM or platform my code would run on. (Indeed any bytecode manipulation system would suffer similar problems -- it would be best were this pure Java if possible. Runtime bytecode manipulation would restrict me from using this on Android, for example.) So does anybody have any pointers? Is this even possible? If not, will it be possible in Java 7?

    Read the article

  • IP address numbers in MySQL subquery

    - by Iain Collins
    I have a problem with a subquery involving IPV4 addresses stored in MySQL (MySQL 5.0). The IP addresses are stored in two tables, both in network number format - e.g. the format output by MySQL's INET_ATON(). The first table ('events') contains lots of rows with IP addresses associated with them, the second table ('network_providers') contains a list of provider information for given netblocks. events table (~4,000,000 rows): event_id (int) event_name (varchar) ip_address (unsigned 4 byte int) network_providers table (~60,000 rows): ip_start (unsigned 4 byte int) ip_end (unsigned 4 byte int) provider_name (varchar) Simplified for the purposes of the problem I'm having, the goal is to create an export along the lines of: event_id,event_name,ip_address,provider_name If do a query along the lines of either of the following, I get the result I expect: SELECT provider_name FROM network_providers WHERE INET_ATON('192.168.0.1') >= network_providers.ip_start ORDER BY network_providers.ip_start DESC LIMIT 1 SELECT provider_name FROM network_providers WHERE 3232235521 >= network_providers.ip_start ORDER BY network_providers.ip_start DESC LIMIT 1 That is to say, it returns the correct provider_name for whatever IP I look up (of course I'm not really using 192.168.0.1 in my queries). However, when performing this same query as a subquery, in the following manner, it doesn't yield the result I would expect: SELECT event.id, event.event_name, (SELECT provider_name FROM network_providers WHERE event.ip_address >= network_providers.ip_start ORDER BY network_providers.ip_start DESC LIMIT 1) as provider FROM events Instead the a different (incorrect) value for network_provider is returned - over 90% (but curiously not all) values returned in the provider column contain the wrong provider information for that IP. Using event.ip_address in a subquery just to echo out the value confirms it contains the value I'd expect and that the subquery can parse it. Replacing event.ip_address with an actual network number also works, just using it dynamically in the subquery in this manner that doesn't work for me. I suspect the problem is there is something fundamental and important about subqueries in MySQL that I don't get. I've worked with IP addresses like this in MySQL quite a bit before, but haven't previously done lookups for them using a subquery. The question: I'd really appreciate an example of how I could get the output I want, and if someone here knows, some enlightenment as to why what I'm doing doesn't work so I can avoid making this mistake again. Notes: The actual real-world usage I'm trying to do is considerably more complicated (involving joining two or three tables). This is a simplified version, to avoid overly complicating the question. Additionally, I know I'm not using a between on ip_start & ip_end - that's intentional (the DB's can be out of date, and such cases the owner in the DB is almost always in the next specified range and 'best guess' is fine in this context) however I'm grateful for any suggestions for improvement that relate to the question. Efficiency is always nice, but in this case absolutely not essential - any help appreciated.

    Read the article

  • How can I implement NotOfType<T> in LINQ that has a nice calling syntax?

    - by Lette
    I'm trying to come up with an implementation for NotOfType, which has a readable call syntax. NotOfType should be the complement to OfType<T> and would consequently yield all elements that are not of type T My goal was to implement a method which would be called just like OfType<T>, like in the last line of this snippet: public abstract class Animal {} public class Monkey : Animal {} public class Giraffe : Animal {} public class Lion : Animal {} var monkey = new Monkey(); var giraffe = new Giraffe(); var lion = new Lion(); IEnumerable<Animal> animals = new Animal[] { monkey, giraffe, lion }; IEnumerable<Animal> fewerAnimals = animals.NotOfType<Giraffe>(); However, I can not come up with an implementation that supports that specific calling syntax. This is what I've tried so far: public static class EnumerableExtensions { public static IEnumerable<T> NotOfType<T>(this IEnumerable<T> sequence, Type type) { return sequence.Where(x => x.GetType() != type); } public static IEnumerable<T> NotOfType<T, TExclude>(this IEnumerable<T> sequence) { return sequence.Where(x => !(x is TExclude)); } } Calling these methods would look like this: // Animal is inferred IEnumerable<Animal> fewerAnimals = animals.NotOfType(typeof(Giraffe)); and // Not all types could be inferred, so I have to state all types explicitly IEnumerable<Animal> fewerAnimals = animals.NotOfType<Animal, Giraffe>(); I think that there are major drawbacks with the style of both of these calls. The first one suffers from a redundant "of type/type of" construct, and the second one just doesn't make sense (do I want a list of animals that are neither Animals nor Giraffes?). So, is there a way to accomplish what I want? If not, could it be possible in future versions of the language? (I'm thinking that maybe one day we will have named type arguments, or that we only need to explicitly supply type arguments that can't be inferred?) Or am I just being silly?

    Read the article

  • Efficient file buffering & scanning methods for large files in python

    - by eblume
    The description of the problem I am having is a bit complicated, and I will err on the side of providing more complete information. For the impatient, here is the briefest way I can summarize it: What is the fastest (least execution time) way to split a text file in to ALL (overlapping) substrings of size N (bound N, eg 36) while throwing out newline characters. I am writing a module which parses files in the FASTA ascii-based genome format. These files comprise what is known as the 'hg18' human reference genome, which you can download from the UCSC genome browser (go slugs!) if you like. As you will notice, the genome files are composed of chr[1..22].fa and chr[XY].fa, as well as a set of other small files which are not used in this module. Several modules already exist for parsing FASTA files, such as BioPython's SeqIO. (Sorry, I'd post a link, but I don't have the points to do so yet.) Unfortunately, every module I've been able to find doesn't do the specific operation I am trying to do. My module needs to split the genome data ('CAGTACGTCAGACTATACGGAGCTA' could be a line, for instance) in to every single overlapping N-length substring. Let me give an example using a very small file (the actual chromosome files are between 355 and 20 million characters long) and N=8 import cStringIO example_file = cStringIO.StringIO("""\ header CAGTcag TFgcACF """) for read in parse(example_file): ... print read ... CAGTCAGTF AGTCAGTFG GTCAGTFGC TCAGTFGCA CAGTFGCAC AGTFGCACF The function that I found had the absolute best performance from the methods I could think of is this: def parse(file): size = 8 # of course in my code this is a function argument file.readline() # skip past the header buffer = '' for line in file: buffer += line.rstrip().upper() while len(buffer) = size: yield buffer[:size] buffer = buffer[1:] This works, but unfortunately it still takes about 1.5 hours (see note below) to parse the human genome this way. Perhaps this is the very best I am going to see with this method (a complete code refactor might be in order, but I'd like to avoid it as this approach has some very specific advantages in other areas of the code), but I thought I would turn this over to the community. Thanks! Note, this time includes a lot of extra calculation, such as computing the opposing strand read and doing hashtable lookups on a hash of approximately 5G in size. Post-answer conclusion: It turns out that using fileobj.read() and then manipulating the resulting string (string.replace(), etc.) took relatively little time and memory compared to the remainder of the program, and so I used that approach. Thanks everyone!

    Read the article

  • C++: Trouble with Pointers, loop variables, and structs

    - by Rosarch
    Consider the following example: #include <iostream> #include <sstream> #include <vector> #include <wchar.h> #include <stdlib.h> using namespace std; struct odp { int f; wchar_t* pstr; }; int main() { vector<odp> vec; ostringstream ss; wchar_t base[5]; wcscpy_s(base, L"1234"); for (int i = 0; i < 4; i++) { odp foo; foo.f = i; wchar_t loopStr[1]; foo.pstr = loopStr; // wchar_t* = wchar_t ? Why does this work? foo.pstr[0] = base[i]; vec.push_back(foo); } for (vector<odp>::iterator iter = vec.begin(); iter != vec.end(); iter++) { cout << "Vec contains: " << iter->f << ", " << *(iter->pstr) << endl; } } This produces: Vec contains: 0, 52 Vec contains: 1, 52 Vec contains: 2, 52 Vec contains: 3, 52 I would hope that each time, iter->f and iter->pstr would yield a different result. Unfortunately, iter->pstr is always the same. My suspicion is that each time through the loop, a new loopStr is created. Instead of copying it into the struct, I'm only copying a pointer. The location that the pointer writes to is getting overwritten. How can I avoid this? Is it possible to solve this problem without allocating memory on the heap?

    Read the article

  • Use HTTP PUT to create new cache (ehCache) running on the same Tomcat?

    - by socal_javaguy
    I am trying to send a HTTP PUT (in order to create a new cache and populate it with my generated JSON) to ehCache using my webservice which is on the same local tomcat instance. Am new to RESTful Web Services and am using JDK 1.6, Tomcat 7, ehCache, and JSON. I have my POJOs defined like this: Person POJO: import javax.xml.bind.annotation.XmlRootElement; @XmlRootElement public class Person { private String firstName; private String lastName; private List<House> houses; // Getters & Setters } House POJO: import javax.xml.bind.annotation.XmlRootElement; @XmlRootElement public class House { private String address; private String city; private String state; // Getters & Setters } Using a PersonUtil class, I hardcoded the POJOs as follows: public class PersonUtil { public static Person getPerson() { Person person = new Person(); person.setFirstName("John"); person.setLastName("Doe"); List<House> houses = new ArrayList<House>(); House house = new House(); house.setAddress("1234 Elm Street"); house.setCity("Anytown"); house.setState("Maine"); houses.add(house); person.setHouses(houses); return person; } } Am able to create a JSON response per a GET request: @Path("") public class MyWebService{ @GET @Produces(MediaType.APPLICATION_JSON) public Person getPerson() { return PersonUtil.getPerson(); } } When deploying the war to tomcat and pointing the browser to http://localhost:8080/personservice/ Generated JSON: { "firstName" : "John", "lastName" : "Doe", "houses": [ { "address" : "1234 Elmstreet", "city" : "Anytown", "state" : "Maine" } ] } So far, so good, however, I have a different app which is running on the same tomcat instance (and has support for REST): http://localhost:8080/ehcache/rest/ While tomcat is running, I can issue a PUT like this: echo "Hello World" | curl -S -T - http://localhost:8080/ehcache/rest/hello/1 When I "GET" it like this: curl http://localhost:8080/ehcache/rest/hello/1 Will yield: Hello World What I need to do is create a POST which will put my entire Person generated JSON and create a new cache: http://localhost:8080/ehcache/rest/person And when I do a "GET" on this previous URL, it should look like this: { "firstName" : "John", "lastName" : "Doe", "houses": [ { "address" : "1234 Elmstreet", "city" : "Anytown", "state" : "Maine" } ] } So, far, this is what my PUT looks like: @PUT @Path("/ehcache/rest/person") @Produces(MediaType.APPLICATION_JSON) @Consumes(MediaType.APPLICATION_JSON) public Response createCache() { ResponseBuilder response = Response.ok(PersonUtil.getPerson(), MediaType.APPLICATION_JSON); return response.build(); } Question(s): (1) Is this the correct way to write the PUT? (2) What should I write inside the createCache() method to have it PUT my generated JSON into: http://localhost:8080/ehcache/rest/person (3) What would the command line CURL comment look like to use the PUT? Thanks for taking the time to read this...

    Read the article

  • Big O Complexity of a method

    - by timeNomad
    I have this method: public static int what(String str, char start, char end) { int count=0; for(int i=0;i<str.length(); i++) { if(str.charAt(i) == start) { for(int j=i+1;j<str.length(); j++) { if(str.charAt(j) == end) count++; } } } return count; } What I need to find is: 1) What is it doing? Answer: counting the total number of end occurrences after EACH (or is it? Not specified in the assignment, point 3 depends on this) start. 2) What is its complexity? Answer: the first loops iterates over the string completely, so it's at least O(n), the second loop executes only if start char is found and even then partially (index at which start was found + 1). Although, big O is all about worst case no? So in the worst case, start is the 1st char & the inner iteration iterates over the string n-1 times, the -1 is a constant so it's n. But, the inner loop won't be executed every outer iteration pass, statistically, but since big O is about worst case, is it correct to say the complexity of it is O(n^2)? Ignoring any constants and the fact that in 99.99% of times the inner loop won't execute every outer loop pass. 3) Rewrite it so that complexity is lower. What I'm not sure of is whether start occurs at most once or more, if once at most, then method can be rewritten using one loop (having a flag indicating whether start has been encountered and from there on incrementing count at each end occurrence), yielding a complexity of O(n). In case though, that start can appear multiple times, which most likely it is, because assignment is of a Java course and I don't think they would make such ambiguity. Solving, in this case, is not possible using one loop... WAIT! Yes it is..! Just have a variable, say, inc to be incremented each time start is encountered & used to increment count each time end is encountered after the 1st start was found: inc = 0, count = 0 if (current char == start) inc++ if (inc > 0 && current char == end) count += inc This would also yield a complexity of O(n)? Because there is only 1 loop. Yes I realize I wrote a lot hehe, but what I also realized is that I understand a lot better by forming my thoughts into words...

    Read the article

  • Can spliting an access database cause printer and reporting issues?

    - by leeand00
    We have a setup in which our users log into an access database using MS Access 2003 over an RDP connection. The user's login to their own machines first using a roaming profile. They then click an rdp connection file on the desktop and login to the remote server, via RDP, where they use MS Access as the shell; they don't have any access to any of explorer.exe features such as the start menu. The database they are logging into is more of an application, and provides functionality for entering data, querying data, and running reports via form based menus. It all worked pretty well until we split the database as it was nearing 2GBs in size. We moved out the payroll data into a separate partition, a database with the same name in a different folder, both of them on the server. Only two tables were moved into this new database partition, and they were re-linked as external tables in the new partition. Now while everything appears to be working fine data-wise after the split, there's a new issue when our users login via RDP and attempt to run reports: often the report will not display and instead the user sees an error about the click event of the form. At first I didn't even know it was printer-related, as we didn't really change anything related to the printers as far as I knew. Confused about the error, I talked to the guy who previously worked here and who was in charge of splitting the database, and he told me to tell the users to set their default printers (on their local machines, not on the server) to the "printer" Microsoft XPS Document Writer which isn't a physical printer at all. This allowed the user's to display their reports, but if they want to print out reports, they are required to go to the File menu and select Print, clicking the print icon on the toolbar takes them to a Save As... dialog as would be expected when using the Microsoft XPS Document Writer as your default printer. It's easy to tell if the user is having a problem because a quick mouseover of the printer icon will yield a tooltip of (none) when they cannot access their reports, and a tooltip of Microsoft XPS Document Writer when they can view the reports. If the user's printer is set to anything other than Microsoft XPS Document Writer as the default on their local machine, then (none) is always displayed when they rdp to the database. The RDP settings are setup to transfer the local printer to the server. Telling the users to do this to print has been more of a band-aid on the whole situation until we find a better solution and an explanation as to why splitting a database would prevent users from printing or even viewing access database reports. Which is why I'm here asking this question. Also of note all the printers on the network now show up on the server so that when the users do click File->Print to print their reports on a physical printer, they have to look through a huge list of printers to find theirs in the dropdown. So the little band-aid fix we have is not ideal. Previously, only the printers on the user's local machine displayed here, and not all the printers on the network. My co-worker seems to think this has something to do with permissions, I personally think it has to do with roaming profiles, and Group Policies which is what I've been reading up on. I really don't know how to fix this or how it is related to splitting the database.

    Read the article

  • ASP.NET MVC 3 Hosting :: New Features in ASP.NET MVC 3

    - by mbridge
    Razor View Engine The Razor view engine is a new view engine option for ASP.NET MVC that supports the Razor templating syntax. The Razor syntax is a streamlined approach to HTML templating designed with the goal of being a code driven minimalist templating approach that builds on existing C#, VB.NET and HTML knowledge. The result of this approach is that Razor views are very lean and do not contain unnecessary constructs that get in the way of you and your code. ASP.NET MVC 3 Preview 1 only supports C# Razor views which use the .cshtml file extension. VB.NET support will be enabled in later releases of ASP.NET MVC 3. For more information and examples, see Introducing “Razor” – a new view engine for ASP.NET on Scott Guthrie’s blog. Dynamic View and ViewModel Properties A new dynamic View property is available in views, which provides access to the ViewData object using a simpler syntax. For example, imagine two items are added to the ViewData dictionary in the Index controller action using code like the following: public ActionResult Index() {          ViewData["Title"] = "The Title";          ViewData["Message"] = "Hello World!"; } Those properties can be accessed in the Index view using code like this: <h2>View.Title</h2> <p>View.Message</p> There is also a new dynamic ViewModel property in the Controller class that lets you add items to the ViewData dictionary using a simpler syntax. Using the previous controller example, the two values added to the ViewData dictionary can be rewritten using the following code: public ActionResult Index() {     ViewModel.Title = "The Title";     ViewModel.Message = "Hello World!"; } “Add View” Dialog Box Supports Multiple View Engines The Add View dialog box in Visual Studio includes extensibility hooks that allow it to support multiple view engines, as shown in the following figure: Service Location and Dependency Injection Support ASP.NET MVC 3 introduces improved support for applying Dependency Injection (DI) via Inversion of Control (IoC) containers. ASP.NET MVC 3 Preview 1 provides the following hooks for locating services and injecting dependencies: - Creating controller factories. - Creating controllers and setting dependencies. - Setting dependencies on view pages for both the Web Form view engine and the Razor view engine (for types that derive from ViewPage, ViewUserControl, ViewMasterPage, WebViewPage). - Setting dependencies on action filters. Using a Dependency Injection container is not required in order for ASP.NET MVC 3 to function properly. Global Filters ASP.NET MVC 3 allows you to register filters that apply globally to all controller action methods. Adding a filter to the global filters collection ensures that the filter runs for all controller requests. To register an action filter globally, you can make the following call in the Application_Start method in the Global.asax file: GlobalFilters.Filters.Add(new MyActionFilter()); The source of global action filters is abstracted by the new IFilterProvider interface, which can be registered manually or by using Dependency Injection. This allows you to provide your own source of action filters and choose at run time whether to apply a filter to an action in a particular request. New JsonValueProviderFactory Class The new JsonValueProviderFactory class allows action methods to receive JSON-encoded data and model-bind it to an action-method parameter. This is useful in scenarios such as client templating. Client templates enable you to format and display a single data item or set of data items by using a fragment of HTML. ASP.NET MVC 3 lets you connect client templates easily with an action method that both returns and receives JSON data. Support for .NET Framework 4 Validation Attributes and IvalidatableObject The ValidationAttribute class was improved in the .NET Framework 4 to enable richer support for validation. When you write a custom validation attribute, you can use a new IsValid overload that provides a ValidationContext instance. This instance provides information about the current validation context, such as what object is being validated. This change enables scenarios such as validating the current value based on another property of the model. The following example shows a sample custom attribute that ensures that the value of PropertyOne is always larger than the value of PropertyTwo: public class CompareValidationAttribute : ValidationAttribute {     protected override ValidationResult IsValid(object value,              ValidationContext validationContext) {         var model = validationContext.ObjectInstance as SomeModel;         if (model.PropertyOne > model.PropertyTwo) {            return ValidationResult.Success;         }         return new ValidationResult("PropertyOne must be larger than PropertyTwo");     } } Validation in ASP.NET MVC also supports the .NET Framework 4 IValidatableObject interface. This interface allows your model to perform model-level validation, as in the following example: public class SomeModel : IValidatableObject {     public int PropertyOne { get; set; }     public int PropertyTwo { get; set; }     public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {         if (PropertyOne <= PropertyTwo) {            yield return new ValidationResult(                "PropertyOne must be larger than PropertyTwo");         }     } } New IClientValidatable Interface The new IClientValidatable interface allows the validation framework to discover at run time whether a validator has support for client validation. This interface is designed to be independent of the underlying implementation; therefore, where you implement the interface depends on the validation framework in use. For example, for the default data annotations-based validator, the interface would be applied on the validation attribute. Support for .NET Framework 4 Metadata Attributes ASP.NET MVC 3 now supports .NET Framework 4 metadata attributes such as DisplayAttribute. New IMetadataAware Interface The new IMetadataAware interface allows you to write attributes that simplify how you can contribute to the ModelMetadata creation process. Before this interface was available, you needed to write a custom metadata provider in order to have an attribute provide extra metadata. This interface is consumed by the AssociatedMetadataProvider class, so support for the IMetadataAware interface is automatically inherited by all classes that derive from that class (notably, the DataAnnotationsModelMetadataProvider class). New Action Result Types In ASP.NET MVC 3, the Controller class includes two new action result types and corresponding helper methods. HttpNotFoundResult Action The new HttpNotFoundResult action result is used to indicate that a resource requested by the current URL was not found. The status code is 404. This class derives from HttpStatusCodeResult. The Controller class includes an HttpNotFound method that returns an instance of this action result type, as shown in the following example: public ActionResult List(int id) {     if (id < 0) {                 return HttpNotFound();     }     return View(); } HttpStatusCodeResult Action The new HttpStatusCodeResult action result is used to set the response status code and description. Permanent Redirect The HttpRedirectResult class has a new Boolean Permanent property that is used to indicate whether a permanent redirect should occur. A permanent redirect uses the HTTP 301 status code. Corresponding to this change, the Controller class now has several methods for performing permanent redirects: - RedirectPermanent - RedirectToRoutePermanent - RedirectToActionPermanent These methods return an instance of HttpRedirectResult with the Permanent property set to true. Breaking Changes The order of execution for exception filters has changed for exception filters that have the same Order value. In ASP.NET MVC 2 and earlier, exception filters on the controller with the same Order as those on an action method were executed before the exception filters on the action method. This would typically be the case when exception filters were applied without a specified order Order value. In MVC 3, this order has been reversed in order to allow the most specific exception handler to execute first. As in earlier versions, if the Order property is explicitly specified, the filters are run in the specified order. Known Issues When you are editing a Razor view (CSHTML file), the Go To Controller menu item in Visual Studio will not be available, and there are no code snippets.

    Read the article

  • AutoMapper MappingFunction from Source Type of NameValueCollection

    - by REA_ANDREW
    I have had a situation arise today where I need to construct a complex type from a source of a NameValueCollection.  A little while back I submitted a patch for the Agatha Project to include REST (JSON and XML) support for the service contract.  I realized today that as useful as it is, it did not actually support true REST conformance, as REST should support GET so that you can use JSONP from JavaScript directly meaning you can query cross domain services.  My original implementation for POX and JSON used the POST method and this immediately rules out JSONP as from reading, JSONP only works with GET Requests. This then raised another issue.  The current operation contract of Agatha and one of its main benefits is that you can supply an array of Request objects in a single request, limiting the about of server requests you need to make.  Now, at the present time I am thinking that this will not be the case for the REST imlementation but will yield the benefits of the fact that : The same Request objects can be used for SOAP and RST (POX, JSON) The construct of the JavaScript functions will be simpler and more readable It will enable the use of JSONP for cross domain REST Services The current contract for the Agatha WcfRequestProcessor is at time of writing the following: [ServiceContract] public interface IWcfRequestProcessor { [OperationContract(Name = "ProcessRequests")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] Response[] Process(params Request[] requests); [OperationContract(Name = "ProcessOneWayRequests", IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] void ProcessOneWayRequests(params OneWayRequest[] requests); }   My current proposed solution, and at the very early stages of my concept is as follows: [ServiceContract] public interface IWcfRestJsonRequestProcessor { [OperationContract(Name="process")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] [WebGet(UriTemplate = "process/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] Response[] Process(string name, NameValueCollection parameters); [OperationContract(Name="processoneway",IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [WebGet(UriTemplate = "process-one-way/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] void ProcessOneWayRequests(string name, NameValueCollection parameters); }   Now this part I have not yet implemented, it is the preliminart step which I have developed which will allow me to take the name of the Request Type and the NameValueCollection and construct the complex type which is that of the Request which I can then supply to a nested instance of the original IWcfRequestProcessor  and work as it should normally.  To give an example of some of the urls which you I envisage with this method are: http://www.url.com/service.svc/json/process/getweather/?location=london http://www.url.com/service.svc/json/process/getproductsbycategory/?categoryid=1 http://www.url.om/service.svc/json/process/sayhello/?name=andy Another reason why my direction has gone to a single request for the REST implementation is because of restrictions which are imposed by browsers on the length of the url.  From what I have read this is on average 2000 characters.  I think that this is a very acceptable usage limit in the context of using 1 request, but I do not think this is acceptable for accommodating multiple requests chained together.  I would love to be corrected on that one, I really would but unfortunately from what I have read I have come to the conclusion that this is not the case. The mapping function So, as I say this is just the first pass I have made at this, and I am not overly happy with the try catch for detecting types without default constructors.  I know there is a better way but for the minute, it escapes me.  I would also like to know the correct way for adding mapping functions and not using the anonymous way that I have used.  To achieve this I have used recursion which I am sure is what other mapping function use. As you do have to go as deep as the complex type is. public static object RecurseType(NameValueCollection collection, Type type, string prefix) { try { var returnObject = Activator.CreateInstance(type); foreach (var property in type.GetProperties()) { foreach (var key in collection.AllKeys) { if (String.IsNullOrEmpty(prefix) || key.Length > prefix.Length) { var propertyNameToMatch = String.IsNullOrEmpty(prefix) ? key : key.Substring(property.Name.IndexOf(prefix) + prefix.Length + 1); if (property.Name == propertyNameToMatch) { property.SetValue(returnObject, Convert.ChangeType(collection.Get(key), property.PropertyType), null); } else if(property.GetValue(returnObject,null) == null) { property.SetValue(returnObject, RecurseType(collection, property.PropertyType, String.Concat(prefix, property.PropertyType.Name)), null); } } } } return returnObject; } catch (MissingMethodException) { //Quite a blunt way of dealing with Types without default constructor return null; } }   Another thing is performance, I have not measured this in anyway, it is as I say the first pass, so I hope this can be the start of a more perfected implementation.  I tested this out with a complex type of three levels, there is no intended logical meaning to the properties, they are simply for the purposes of example.  You could call this a spiking session, as from here on in, now I know what I am building I would take a more TDD approach.  OK, purists, why did I not do this from the start, well I didn’t, this was a brain dump and now I know what I am building I can. The console test and how I used with AutoMapper is as follows: static void Main(string[] args) { var collection = new NameValueCollection(); collection.Add("Name", "Andrew Rea"); collection.Add("Number", "1"); collection.Add("AddressLine1", "123 Street"); collection.Add("AddressNumber", "2"); collection.Add("AddressPostCodeCountry", "United Kingdom"); collection.Add("AddressPostCodeNumber", "3"); AutoMapper.Mapper.CreateMap<NameValueCollection, Person>() .ConvertUsing(x => { return(Person) RecurseType(x, typeof(Person), null); }); var person = AutoMapper.Mapper.Map<NameValueCollection, Person>(collection); Console.WriteLine(person.Name); Console.WriteLine(person.Number); Console.WriteLine(person.Address.Line1); Console.WriteLine(person.Address.Number); Console.WriteLine(person.Address.PostCode.Country); Console.WriteLine(person.Address.PostCode.Number); Console.ReadLine(); }   Notice the convention that I am using and that this method requires you do use.  Each property is prefixed with the constructed name of its parents combined.  This is the convention used by AutoMapper and it makes sense. I can also think of other uses for this including using with ASP.NET MVC ModelBinders for creating a complex type from the QueryString which is itself is a NameValueCollection. Hope this is of some help to people and I would welcome any code reviews you could give me. References: Agatha : http://code.google.com/p/agatha-rrsl/ AutoMapper : http://automapper.codeplex.com/   Cheers for now, Andrew   P.S. I will have the proposed solution for a more complete REST implementation for AGATHA very soon. 

    Read the article

  • A Guided Tour of Complexity

    - by JoshReuben
    I just re-read Complexity – A Guided Tour by Melanie Mitchell , protégé of Douglas Hofstadter ( author of “Gödel, Escher, Bach”) http://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109/ref=sr_1_1?ie=UTF8&qid=1339744329&sr=8-1 here are some notes and links:   Evolved from Cybernetics, General Systems Theory, Synergetics some interesting transdisciplinary fields to investigate: Chaos Theory - http://en.wikipedia.org/wiki/Chaos_theory – small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction impossible. System Dynamics / Cybernetics - http://en.wikipedia.org/wiki/System_Dynamics – study of how feedback changes system behavior Network Theory - http://en.wikipedia.org/wiki/Network_theory – leverage Graph Theory to analyze symmetric  / asymmetric relations between discrete objects Algebraic Topology - http://en.wikipedia.org/wiki/Algebraic_topology – leverage abstract algebra to analyze topological spaces There are limits to deterministic systems & to computation. Chaos Theory definitely applies to training an ANN (artificial neural network) – different weights will emerge depending upon the random selection of the training set. In recursive Non-Linear systems http://en.wikipedia.org/wiki/Nonlinear_system – output is not directly inferable from input. E.g. a Logistic map: Xt+1 = R Xt(1-Xt) Different types of bifurcations, attractor states and oscillations may occur – e.g. a Lorenz Attractor http://en.wikipedia.org/wiki/Lorenz_system Feigenbaum Constants http://en.wikipedia.org/wiki/Feigenbaum_constants express ratios in a bifurcation diagram for a non-linear map – the convergent limit of R (the rate of period-doubling bifurcations) is 4.6692016 Maxwell’s Demon - http://en.wikipedia.org/wiki/Maxwell%27s_demon - the Second Law of Thermodynamics has only a statistical certainty – the universe (and thus information) tends towards entropy. While any computation can theoretically be done without expending energy, with finite memory, the act of erasing memory is permanent and increases entropy. Life & thought is a counter-example to the universe’s tendency towards entropy. Leo Szilard and later Claude Shannon came up with the Information Theory of Entropy - http://en.wikipedia.org/wiki/Entropy_(information_theory) whereby Shannon entropy quantifies the expected value of a message’s information in bits in order to determine channel capacity and leverage Coding Theory (compression analysis). Ludwig Boltzmann came up with Statistical Mechanics - http://en.wikipedia.org/wiki/Statistical_mechanics – whereby our Newtonian perception of continuous reality is a probabilistic and statistical aggregate of many discrete quantum microstates. This is relevant for Quantum Information Theory http://en.wikipedia.org/wiki/Quantum_information and the Physics of Information - http://en.wikipedia.org/wiki/Physical_information. Hilbert’s Problems http://en.wikipedia.org/wiki/Hilbert's_problems pondered whether mathematics is complete, consistent, and decidable (the Decision Problem – http://en.wikipedia.org/wiki/Entscheidungsproblem – is there always an algorithm that can determine whether a statement is true).  Godel’s Incompleteness Theorems http://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems  proved that mathematics cannot be both complete and consistent (e.g. “This statement is not provable”). Turing through the use of Turing Machines (http://en.wikipedia.org/wiki/Turing_machine symbol processors that can prove mathematical statements) and Universal Turing Machines (http://en.wikipedia.org/wiki/Universal_Turing_machine Turing Machines that can emulate other any Turing Machine via accepting programs as well as data as input symbols) that computation is limited by demonstrating the Halting Problem http://en.wikipedia.org/wiki/Halting_problem (is is not possible to know when a program will complete – you cannot build an infinite loop detector). You may be used to thinking of 1 / 2 / 3 dimensional systems, but Fractal http://en.wikipedia.org/wiki/Fractal systems are defined by self-similarity & have non-integer Hausdorff Dimensions !!!  http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension – the fractal dimension quantifies the number of copies of a self similar object at each level of detail – eg Koch Snowflake - http://en.wikipedia.org/wiki/Koch_snowflake Definitions of complexity: size, Shannon entropy, Algorithmic Information Content (http://en.wikipedia.org/wiki/Algorithmic_information_theory - size of shortest program that can generate a description of an object) Logical depth (amount of info processed), thermodynamic depth (resources required). Complexity is statistical and fractal. John Von Neumann’s other machine was the Self-Reproducing Automaton http://en.wikipedia.org/wiki/Self-replicating_machine  . Cellular Automata http://en.wikipedia.org/wiki/Cellular_automaton are alternative form of Universal Turing machine to traditional Von Neumann machines where grid cells are locally synchronized with their neighbors according to a rule. Conway’s Game of Life http://en.wikipedia.org/wiki/Conway's_Game_of_Life demonstrates various emergent constructs such as “Glider Guns” and “Spaceships”. Cellular Automatons are not practical because logical ops require a large number of cells – wasteful & inefficient. There are no compilers or general program languages available for Cellular Automatons (as far as I am aware). Random Boolean Networks http://en.wikipedia.org/wiki/Boolean_network are extensions of cellular automata where nodes are connected at random (not to spatial neighbors) and each node has its own rule –> they demonstrate the emergence of complex  & self organized behavior. Stephen Wolfram’s (creator of Mathematica, so give him the benefit of the doubt) New Kind of Science http://en.wikipedia.org/wiki/A_New_Kind_of_Science proposes the universe may be a discrete Finite State Automata http://en.wikipedia.org/wiki/Finite-state_machine whereby reality emerges from simple rules. I am 2/3 through this book. It is feasible that the universe is quantum discrete at the plank scale and that it computes itself – Digital Physics: http://en.wikipedia.org/wiki/Digital_physics – a simulated reality? Anyway, all behavior is supposedly derived from simple algorithmic rules & falls into 4 patterns: uniform , nested / cyclical, random (Rule 30 http://en.wikipedia.org/wiki/Rule_30) & mixed (Rule 110 - http://en.wikipedia.org/wiki/Rule_110 localized structures – it is this that is interesting). interaction between colliding propagating signal inputs is then information processing. Wolfram proposes the Principle of Computational Equivalence - http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html - all processes that are not obviously simple can be viewed as computations of equivalent sophistication. Meaning in information may emerge from analogy & conceptual slippages – see the CopyCat program: http://cognitrn.psych.indiana.edu/rgoldsto/courses/concepts/copycat.pdf Scale Free Networks http://en.wikipedia.org/wiki/Scale-free_network have a distribution governed by a Power Law (http://en.wikipedia.org/wiki/Power_law - much more common than Normal Distribution). They are characterized by hubs (resilience to random deletion of nodes), heterogeneity of degree values, self similarity, & small world structure. They grow via preferential attachment http://en.wikipedia.org/wiki/Preferential_attachment – tipping points triggered by positive feedback loops. 2 theories of cascading system failures in complex systems are Self-Organized Criticality http://en.wikipedia.org/wiki/Self-organized_criticality and Highly Optimized Tolerance http://en.wikipedia.org/wiki/Highly_optimized_tolerance. Computational Mechanics http://en.wikipedia.org/wiki/Computational_mechanics – use of computational methods to study phenomena governed by the principles of mechanics. This book is a great intuition pump, but does not cover the more mathematical subject of Computational Complexity Theory – http://en.wikipedia.org/wiki/Computational_complexity_theory I am currently reading this book on this subject: http://www.amazon.com/Computational-Complexity-Christos-H-Papadimitriou/dp/0201530821/ref=pd_sim_b_1   stay tuned for that review!

    Read the article

  • SSIS - XML Source Script

    - by simonsabin
    The XML Source in SSIS is great if you have a 1 to 1 mapping between entity and table. You can do more complex mapping but it becomes very messy and won't perform. What other options do you have? The challenge with XML processing is to not need a huge amount of memory. I remember using the early versions of Biztalk with loaded the whole document into memory to map from one document type to another. This was fine for small documents but was an absolute killer for large documents. You therefore need a streaming approach. For flexibility however you want to be able to generate your rows easily, and if you've ever used the XmlReader you will know its ugly code to write. That brings me on to LINQ. The is an implementation of LINQ over XML which is really nice. You can write nice LINQ queries instead of the XMLReader stuff. The downside is that by default LINQ to XML requires a whole XML document to work with. No streaming. Your code would look like this. We create an XDocument and then enumerate over a set of annoymous types we generate from our LINQ statement XDocument x = XDocument.Load("C:\\TEMP\\CustomerOrders-Attribute.xml");   foreach (var xdata in (from customer in x.Elements("OrderInterface").Elements("Customer")                        from order in customer.Elements("Orders").Elements("Order")                        select new { Account = customer.Attribute("AccountNumber").Value                                   , OrderDate = order.Attribute("OrderDate").Value }                        )) {     Output0Buffer.AddRow();     Output0Buffer.AccountNumber = xdata.Account;     Output0Buffer.OrderDate = Convert.ToDateTime(xdata.OrderDate); } As I said the downside to this is that you are loading the whole document into memory. I did some googling and came across some helpful videos from a nice UK DPE Mike Taulty http://www.microsoft.com/uk/msdn/screencasts/screencast/289/LINQ-to-XML-Streaming-In-Large-Documents.aspx. Which show you how you can combine LINQ and the XmlReader to get a semi streaming approach. I took what he did and implemented it in SSIS. What I found odd was that when I ran it I got different numbers between using the streamed and non streamed versions. I found the cause was a little bug in Mikes code that causes the pointer in the XmlReader to progress past the start of the element and thus foreach (var xdata in (from customer in StreamReader("C:\\TEMP\\CustomerOrders-Attribute.xml","Customer")                                from order in customer.Elements("Orders").Elements("Order")                                select new { Account = customer.Attribute("AccountNumber").Value                                           , OrderDate = order.Attribute("OrderDate").Value }                                ))         {             Output0Buffer.AddRow();             Output0Buffer.AccountNumber = xdata.Account;             Output0Buffer.OrderDate = Convert.ToDateTime(xdata.OrderDate);         } These look very similiar and they are the key element is the method we are calling, StreamReader. This method is what gives us streaming, what it does is return a enumerable list of elements, because of the way that LINQ works this results in the data being streamed in. static IEnumerable<XElement> StreamReader(String filename, string elementName) {     using (XmlReader xr = XmlReader.Create(filename))     {         xr.MoveToContent();         while (xr.Read()) //Reads the first element         {             while (xr.NodeType == XmlNodeType.Element && xr.Name == elementName)             {                 XElement node = (XElement)XElement.ReadFrom(xr);                   yield return node;             }         }         xr.Close();     } } This code is specifically designed to return a list of the elements with a specific name. The first Read reads the root element and then the inner while loop checks to see if the current element is the type we want. If not we do the xr.Read() again until we find the element type we want. We then use the neat function XElement.ReadFrom to read an element and all its sub elements into an XElement. This is what is returned and can be consumed by the LINQ statement. Essentially once one element has been read we need to check if we are still on the same element type and name (the inner loop) This was Mikes mistake, if we called .Read again we would advance the XmlReader beyond the start of the Element and so the ReadFrom method wouldn't work. So with the code above you can use what ever LINQ statement you like to flatten your XML into the rowsets you want. You could even have multiple outputs and generate your own surrogate keys.        

    Read the article

  • On Her Majesty's Secret Source Code: .NET Reflector 7 Early Access Builds Now Available

    - by Bart Read
    Dodgy Bond references aside, I'm extremely happy to be able to tell you that we've just released our first .NET Reflector 7 Early Access build. We're going to make these available over the coming weeks via the main .NET Reflector download page at: http://reflector.red-gate.com/Download.aspx Please have a play and tell us what you think in the forum we've set up. Also, please let us know if you run into any problems in the same place. The new version so far comes with numerous decompilation improvements including (after 5 years!) support for iterator blocks - i.e., the yield statement first seen in .NET 2.0. We've also done a lot of work to solidify the support for .NET 4.0. Clive's written about the work he's done to support iterator blocks in much more detail here, along with the odd problem he's encountered when dealing with compiler generated code: http://www.simple-talk.com/community/blogs/clivet/96199.aspx. On the UI front we've started what will ultimately be a rewrite of the entire front-end, albeit broken into stages over two or three major releases. The most obvious addition at the moment is tabbed browsing, which you can see in Figure 1. Figure 1. .NET Reflector's new tabbed decompilation feature. Use CTRL+Click on any item in the assembly browser tree, or any link in the source code view, to open it in a new tab. This isn't by any means finished. I'll be tying up loose ends for the next few weeks, with a major focus on performance and resource usage. .NET Reflector has historically been a largely single-threaded application which has been fine up until now but, as you might expect, the addition of browser-style tabbing has pushed this approach somewhat beyond its limit. You can see this if you refresh the assemblies list by hitting F5. This shows up another problem: we really need to make Reflector remember everything you had open before you refreshed the list, rather than just the last item you viewed - I discovered that it's always done the latter, but it used to hide all panes apart from the treeview after a Refresh, including the decompiler/disassembler window. Ultimately I've got plans to add the whole VS/Chrome/Firefox style ability to drag a tab into the middle of nowhere to spawn a new window, but I need to be mindful of the add-ins, amongst other things, so it's possible that might slip to a 7.5 or 8.0 release. You'll also notice that .NET Reflector 7 now needs .NET 3.5 or later to run. We made this jump because we wanted to offer ourselves a much better chance of adding some really cool functionality to support newer technologies, such as Silverlight and Windows Phone 7. We've also taken the opportunity to start using WPF for UI development, which has frankly been a godsend. The learning curve is practically vertical but, I kid you not, it's just a far better world. Really. Stop using WinForms. Now. Why are you still using it? I had to go back and work on an old WinForms dialog for an hour or two yesterday and it really made me wince. The point is we'll be able to move the UI in some exciting new directions that will make Reflector easier to use whilst continuing to develop its functionality without (and this is key) cluttering the interface. The 3.5 language enhancements should also enable us to be much more productive over the longer term. I know most of you have .NET Fx 3.5 or 4.0 already but, if you do need to install a new version, I'd recommend you jump straight to 4.0 because, for one thing, it's faster, and if you're starting afresh there's really no reason not to. Despite the Fx version jump the Visual Studio add-in should still work fine in Visual Studio 2005, and obviously will continue to work in Visual Studio 2008 and 2010. If you do run into problems, again, please let us know here. As before, we continue to support every edition of Visual Studio exception the Express Editions. Speaking of Visual Studio, we've also been improving the add-in. You can now open and explore decompiled code for any referenced assembly in any project in your solution. Just right-click on the reference, then click Decompile and Explore on the context menu. Reflector will pop up a progress box whilst it decompiles your assembly (Figure 2) - you can move this out of the way whilst you carry on working. Figure 2. Decompilation progress. This isn't modal so you can just move it out of the way and carry on working. Once it's done you can explore your assembly in the Reflector treeview (Figure 3), also accessible via the .NET Reflector Explore Decompiled Assemblies main menu item. Double-click on any item to open decompiled source in the Visual Studio source code view. Use right-click and Go To Definition on the source view context menu to navigate through the code. Figure 3. Using the .NET Reflector treeview within Visual Studio. Double-click on any item to open decompiled source in the source code view. There are loads of other changes and fixes that have gone in, often under the hood, which I don't have room to talk about here, and plenty more to come over the next few weeks. I'll try to keep you abreast of new functionality and changes as they go in. There are a couple of smaller things worth mentioning now though. Firstly, we've reorganised the menus and toolbar in Reflector itself to more closely mirror what you might be used to in other applications. Secondly, we've tried to make some of the functionality more discoverable. For example, you can now switch decompilation target framework version directly from the toolbar - and the default is now .NET 4.0. I think that about covers it for the moment. As I said, please use the new version, and send us your feedback. Here's that download URL again: http://reflector.red-gate.com/Download.aspx. Until next time! Technorati Tags: .net reflector,7,early access,new version,decompilation,tabbing,visual studio,software development,.net,c#,vb

    Read the article

  • Class-Level Model Validation with EF Code First and ASP.NET MVC 3

    - by ScottGu
    Earlier this week the data team released the CTP5 build of the new Entity Framework Code-First library.  In my blog post a few days ago I talked about a few of the improvements introduced with the new CTP5 build.  Automatic support for enforcing DataAnnotation validation attributes on models was one of the improvements I discussed.  It provides a pretty easy way to enable property-level validation logic within your model layer. You can apply validation attributes like [Required], [Range], and [RegularExpression] – all of which are built-into .NET 4 – to your model classes in order to enforce that the model properties are valid before they are persisted to a database.  You can also create your own custom validation attributes (like this cool [CreditCard] validator) and have them be automatically enforced by EF Code First as well.  This provides a really easy way to validate property values on your models.  I showed some code samples of this in action in my previous post. Class-Level Model Validation using IValidatableObject DataAnnotation attributes provides an easy way to validate individual property values on your model classes.  Several people have asked - “Does EF Code First also support a way to implement class-level validation methods on model objects, for validation rules than need to span multiple property values?”  It does – and one easy way you can enable this is by implementing the IValidatableObject interface on your model classes. IValidatableObject.Validate() Method Below is an example of using the IValidatableObject interface (which is built-into .NET 4 within the System.ComponentModel.DataAnnotations namespace) to implement two custom validation rules on a Product model class.  The two rules ensure that: New units can’t be ordered if the Product is in a discontinued state New units can’t be ordered if there are already more than 100 units in stock We will enforce these business rules by implementing the IValidatableObject interface on our Product class, and by implementing its Validate() method like so: The IValidatableObject.Validate() method can apply validation rules that span across multiple properties, and can yield back multiple validation errors. Each ValidationResult returned can supply both an error message as well as an optional list of property names that caused the violation (which is useful when displaying error messages within UI). Automatic Validation Enforcement EF Code-First (starting with CTP5) now automatically invokes the Validate() method when a model object that implements the IValidatableObject interface is saved.  You do not need to write any code to cause this to happen – this support is now enabled by default. This new support means that the below code – which violates one of our above business rules – will automatically throw an exception (and abort the transaction) when we call the “SaveChanges()” method on our Northwind DbContext: In addition to reactively handling validation exceptions, EF Code First also allows you to proactively check for validation errors.  Starting with CTP5, you can call the “GetValidationErrors()” method on the DbContext base class to retrieve a list of validation errors within the model objects you are working with.  GetValidationErrors() will return a list of all validation errors – regardless of whether they are generated via DataAnnotation attributes or by an IValidatableObject.Validate() implementation.  Below is an example of proactively using the GetValidationErrors() method to check (and handle) errors before trying to call SaveChanges(): ASP.NET MVC 3 and IValidatableObject ASP.NET MVC 2 included support for automatically honoring and enforcing DataAnnotation attributes on model objects that are used with ASP.NET MVC’s model binding infrastructure.  ASP.NET MVC 3 goes further and also honors the IValidatableObject interface.  This combined support for model validation makes it easy to display appropriate error messages within forms when validation errors occur.  To see this in action, let’s consider a simple Create form that allows users to create a new Product: We can implement the above Create functionality using a ProductsController class that has two “Create” action methods like below: The first Create() method implements a version of the /Products/Create URL that handles HTTP-GET requests - and displays the HTML form to fill-out.  The second Create() method implements a version of the /Products/Create URL that handles HTTP-POST requests - and which takes the posted form data, ensures that is is valid, and if it is valid saves it in the database.  If there are validation issues it redisplays the form with the posted values.  The razor view template of our “Create” view (which renders the form) looks like below: One of the nice things about the above Controller + View implementation is that we did not write any validation logic within it.  The validation logic and business rules are instead implemented entirely within our model layer, and the ProductsController simply checks whether it is valid (by calling the ModelState.IsValid helper method) to determine whether to try and save the changes or redisplay the form with errors. The Html.ValidationMessageFor() helper method calls within our view simply display the error messages our Product model’s DataAnnotations and IValidatableObject.Validate() method returned.  We can see the above scenario in action by filling out invalid data within the form and attempting to submit it: Notice above how when we hit the “Create” button we got an error message.  This was because we ticked the “Discontinued” checkbox while also entering a value for the UnitsOnOrder (and so violated one of our business rules).  You might ask – how did ASP.NET MVC know to highlight and display the error message next to the UnitsOnOrder textbox?  It did this because ASP.NET MVC 3 now honors the IValidatableObject interface when performing model binding, and will retrieve the error messages from validation failures with it. The business rule within our Product model class indicated that the “UnitsOnOrder” property should be highlighted when the business rule we hit was violated: Our Html.ValidationMessageFor() helper method knew to display the business rule error message (next to the UnitsOnOrder edit box) because of the above property name hint we supplied: Keeping things DRY ASP.NET MVC and EF Code First enables you to keep your validation and business rules in one place (within your model layer), and avoid having it creep into your Controllers and Views.  Keeping the validation logic in the model layer helps ensure that you do not duplicate validation/business logic as you add more Controllers and Views to your application.  It allows you to quickly change your business rules/validation logic in one single place (within your model layer) – and have all controllers/views across your application immediately reflect it.  This help keep your application code clean and easily maintainable, and makes it much easier to evolve and update your application in the future. Summary EF Code First (starting with CTP5) now has built-in support for both DataAnnotations and the IValidatableObject interface.  This allows you to easily add validation and business rules to your models, and have EF automatically ensure that they are enforced anytime someone tries to persist changes of them to a database.  ASP.NET MVC 3 also now supports both DataAnnotations and IValidatableObject as well, which makes it even easier to use them with your EF Code First model layer – and then have the controllers/views within your web layer automatically honor and support them as well.  This makes it easy to build clean and highly maintainable applications. You don’t have to use DataAnnotations or IValidatableObject to perform your validation/business logic.  You can always roll your own custom validation architecture and/or use other more advanced validation frameworks/patterns if you want.  But for a lot of applications this built-in support will probably be sufficient – and provide a highly productive way to build solutions. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • How Oracle Data Integration Customers Differentiate Their Business in Competitive Markets

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 With data being a central force in driving innovation and competing effectively, data integration has become a key IT approach to remove silos and ensure working with consistent and trusted data. Especially with the release of 12c version, Oracle Data Integrator and Oracle GoldenGate offer easy-to-use and high-performance solutions that help companies with their critical data initiatives, including big data analytics, moving to cloud architectures, modernizing and connecting transactional systems and more. In a recent press release we announced the great momentum and analyst recognition Oracle Data Integration products have achieved in the data integration and replication market. In this press release we described some of the key new features of Oracle Data Integrator 12c and Oracle GoldenGate 12c. In addition, a few from our 4500+ customers explained how Oracle’s data integration platform helped them achieve their business goals. In this blog post I would like to go over what these customers shared about their experience. Land O’Lakes is one of America’s premier member-owned cooperatives, and offers an extensive line of agricultural supplies, as well as production and business services. Rich Bellefeuille, manager, ETL & data warehouse for Land O’Lakes told us how GoldenGate helped them modernize their critical ERP system without impacting service and how they are moving to new projects with Oracle Data Integrator 12c: “With Oracle GoldenGate 11g, we've been able to migrate our enterprise-wide implementation of Oracle’s JD Edwards EnterpriseOne, ERP system, to a new database and application server platform with minimal downtime to our business. Using Oracle GoldenGate 11g we reduced database migration time from nearly 30 hours to less than 30 minutes. Given our quick success, we are considering expansion of our Oracle GoldenGate 12c footprint. We are also in the midst of deploying a solution leveraging Oracle Data Integrator 12c to manage our pricing data to handle orders more effectively and provide a better relationship with our clients. We feel we are gaining higher productivity and flexibility with Oracle's data integration products." ICON, a global provider of outsourced development services to the pharmaceutical, biotechnology and medical device industries, highlighted the competitive advantage that a solid data integration foundation brings. Diarmaid O’Reilly, enterprise data warehouse manager, ICON plc said “Oracle Data Integrator enables us to align clinical trials intelligence with the information needs of our sponsors. It helps differentiate ICON’s services in an increasingly competitive drug-development industry."  You can find more info on ICON's implementation here. A popular use case for Oracle GoldenGate’s real-time data integration is offloading operational reporting from critical transaction processing systems. SolarWorld, one of the world’s largest solar-technology producers and the largest U.S. solar panel manufacturer, implemented Oracle GoldenGate for real-time data integration of manufacturing data for fast analysis. Russ Toyama, U.S. senior database administrator for SolarWorld told us real-time data helps their operations and GoldenGate’s solution supports high performance of their manufacturing systems: “We use Oracle GoldenGate for real-time data integration into our decision support system, which performs real-time analysis for manufacturing operations to continuously improve product quality, yield and efficiency. With reliable and low-impact data movement capabilities, Oracle GoldenGate also helps ensure that our critical manufacturing systems are stable and operate with high performance."  You can watch the full interview with SolarWorld's Russ Toyama here. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Starwood Hotels and Resorts is one of the many customers that found out how well Oracle Data Integration products work with Oracle Exadata. Gordon Light, senior director of information technology for StarWood Hotels, says they had notable performance gain in loading Oracle Exadata reporting environment: “We leverage Oracle GoldenGate to replicate data from our central reservations systems and other OLTP databases – significantly decreasing the overall ETL duration. Moving forward, we plan to use Oracle GoldenGate to help the company achieve near-real-time reporting.”You can listen about Starwood Hotels' implementation here. Many companies combine the power of Oracle GoldenGate with Oracle Data Integrator to have a single, integrated data integration platform for variety of use cases across the enterprise. Ufone is another good example of that. The leading mobile communications service provider of Pakistan has improved customer service using timely customer data in its data warehouse. Atif Aslam, head of management information systems for Ufone says: “Oracle Data Integrator and Oracle GoldenGate help us integrate information from various systems and provide up-to-date and real-time CRM data updates hourly, rather than daily. The applications have simplified data warehouse operations and allowed business users to make faster and better informed decisions to protect revenue in the fast-moving Pakistani telecommunications market.” You can read more about Ufone's use case here. In our Oracle Data Integration 12c launch webcast back in November we also heard from BT’s CTO Surren Parthab about their use of GoldenGate for moving to private cloud architecture. Surren also shared his perspectives on Oracle Data Integrator 12c and Oracle GoldenGate 12c releases. You can watch the video here. These are only a few examples of leading companies that have made data integration and real-time data access a key part of their data governance and IT modernization initiatives. They have seen real improvements in how their businesses operate and differentiate in today’s competitive markets. You can read about other customer examples in our Ebook: The Path to the Future and access resources including white papers, data sheets, podcasts and more via our Oracle Data Integration resource kit. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Prioritizing Product Features

    - by Robert May
    A very common task in Agile Environments is prioritization.  Teams that are functioning well will prioritize new features, old features, the backlog, and any other source of stories for the team, and they’ll do it regularly. Not all teams are good at prioritizing according to the real return on investment that building stories will yield to the company.  This is unfortunate.  Too often, teams end up building features that are less valuable, and everyone seems to know it except perhaps the product owner!  Most features built into software are never even used.  Clearly, not much return for features that go unused. So how does a company avoid building features that add little value to the company?  This is a tough question to answer, but usually, this prioritization starts at the top with the executives of the company.  After all, they’re responsible for the overall vision of the company. Here’s what I recommend: Know your market. Know your customers and users. Know where you’re going and what you want to achieve. Implement the Vision Know Your Market We often see companies that don’t know their market.  Personally, I’m surprised by this.  These companies don’t know who their competitors are, don’t know what features make their product desirable in the market, and in many cases, get by with saying, “I’ve been doing this for XX years.  I know what the market wants!”  In many cases, they equate “marketing” with “advertising” and don’t understand the difference. This is almost never true.  Good companies will spend significant amounts of time and money finding out who they’re competing against and what makes their competitors successful in the marketplace.  Good companies understand that marketing involves more than just advertising.  Often, marketing is mostly research and analysis, not sales.  Until you understand your market, you cannot know what features will give you the best return on your investment dollar. Good companies have a marketing department and can answer the next important step which is to know your customers and your users. Know your Customers and Users First, note that I included both customers and users.  They’re often not the same thing.  Users use the product that you build.  Customers buy the product that you build.  It’s a subtle difference, but too often, I’ve seen companies that focus exclusively on one or the other and are not successful simply because they ignore an important part of the group. If your company is doing appropriate marketing, you know that these are two different aspects of your product and that both deserve attention to have a product that is successful in your target market.  Your marketing department should be spending a lot of time understanding these personas and then conveying that information to the company. I’m always surprised when development teams think that they can build a product that people want to use without understanding the users of that product.  Developers think differently than most people in the world.  They know what the computer is doing.  The computer isn’t magic to them.  So when they assume that they know how to build something, they bring with them quite a bit of baggage.  Never assume that you know your customer unless you’re regularly having interaction with them.  Also, don’t just leave this to Marketing or Product Management.  Take them time to get your developers out with the customers as well.  Developers are very smart people, and often, seeing how someone uses their software inspires them to make a much better product. Very often, because the users and customers aren’t know, teams will spend a significant amount of time building apps that are super flexible and configurable so that any possible combination of feature can be used.  This demonstrates a clear lack of understanding of the customer.  Most configuration questions can quickly be answered by talking to the customer.  In most cases, if your software requires significant setup and configuration before its usable, you probably don’t know your customers and users very well. Until you know your customers, you cannot know what features will be most valuable to your customers and you cannot build those features in a way that your customers can use. Know Where You’re Going and What You Want to Achieve Many companies suffer from not having a plan.  Executives will tell the team to make them a plan.  The team, not knowing their market and customers and users, will come up with a plan that doesn’t reflect reality and doesn’t consider ROI.  Management then wonders why the product is doing poorly in the market place. Instead of leaving this up to the teams, as executives, work with Marketing to understand what broad categories of features will sell the most product in the marketplace.  Then, once you’ve determined that, give this vision to the team and let them run with it.  Revise the vision as needed, but avoid changing streams frequently.  Sure, sometimes you need to, but often, executives will change priorities many times a month, leading to nothing more than confusion.  If the team has a vision, they’ll be able to execute that vision far better than they could otherwise. By knowing what products are most important, you can set budgetary goals and guidelines that will help you achieve the vision that was created. Implement the Vision Creating the vision is often where the general executives stop participating in the plan.  The team is responsible for implementing that vision.  Executives should attend showcases and and should remain aware of the progress that the team is making towards meeting the vision, however. Once a broad vision has been created, the team should break that vision down into minimal market features (MMF).  These MMFs should be sized using story points so that, using the team’s velocity, an estimated cost can be determined for each feature.  The product management team should then try to quantify the relative value of the MMFs based on customer feedback and interviews.  Once the value and cost of creating the feature is understood, a return on investment can be calculated.  The features should then be prioritized with the MMF’s that have the highest value and lowest cost rising to the top of features to implement.  Don’t let politics get in the way! Once the MMF’s have been prioritized, they should go through release planning to schedule them for implementation. Conclusion By having a good grasp on the strategy of the company, your Agile teams can be much more effective.  Each and every story the team is implementing will roll up into features that matter to the company and provide ROI to them.  The steps outlined in this post should be repeated on a regular basis.  I recommend reviewing them at least once per quarter to make sure that the vision hasn’t shifted and that the teams are still working on what matters most to the company. Technorati Tags: Agile,Product Owner,ROI

    Read the article

  • More Fun With Math

    - by PointsToShare
    More Fun with Math   The runaway student – three different ways of solving one problem Here is a problem I read in a Russian site: A student is running away. He is moving at 1 mph. Pursuing him are a lion, a tiger and his math teacher. The lion is 40 miles behind and moving at 6 mph. The tiger is 28 miles behind and moving at 4 mph. His math teacher is 30 miles behind and moving at 5 mph. Who will catch him first? Analysis Obviously we have a set of three problems. They are all basically the same, but the details are different. The problems are of the same class. Here is a little excursion into computer science. One of the things we strive to do is to create solutions for classes of problems rather than individual problems. In your daily routine, you call it re-usability. Not all classes of problems have such solutions. If a class has a general (re-usable) solution, it is called computable. Otherwise it is unsolvable. Within unsolvable classes, we may still solve individual (some but not all) problems, albeit with different approaches to each. Luckily the vast majority of our daily problems are computable, and the 3 problems of our runaway student belong to a computable class. So, let’s solve for the catch-up time by the math teacher, after all she is the most frightening. She might even make the poor runaway solve this very problem – perish the thought! Method 1 – numerical analysis. At 30 miles and 5 mph, it’ll take her 6 hours to come to where the student was to begin with. But by then the student has advanced by 6 miles. 6 miles require 6/5 hours, but by then the student advanced by another 6/5 of a mile as well. And so on and so forth. So what are we to do? One way is to write code and iterate it until we have solved it. But this is an infinite process so we’ll end up with an infinite loop. So what to do? We’ll use the principles of numerical analysis. Any calculator – your computer included – has a limited number of digits. A double floating point number is good for about 14 digits. Nothing can be computed at a greater accuracy than that. This means that we will not iterate ad infinidum, but rather to the point where 2 consecutive iterations yield the same result. When we do financial computations, we don’t even have to go that far. We stop at the 10th of a penny.  It behooves us here to stop at a 10th of a second (100 milliseconds) and this will how we will avoid an infinite loop. Interestingly this alludes to the Zeno paradoxes of motion – in particular “Achilles and the Tortoise”. Zeno says exactly the same. To catch the tortoise, Achilles must always first come to where the tortoise was, but the tortoise keeps moving – hence Achilles will never catch the tortoise and our math teacher (or lion, or tiger) will never catch the student, or the policeman the thief. Here is my resolution to the paradox. The distance and time in each step are smaller and smaller, so the student will be caught. The only thing that is infinite is the iterative solution. The race is a convergent geometric process so the steps are diminishing, but each step in the solution takes the same amount of effort and time so with an infinite number of steps, we’ll spend an eternity solving it.  This BTW is an original thought that I have never seen before. But I digress. Let’s simply write the code to solve the problem. To make sure that it runs everywhere, I’ll do it in JavaScript. function LongCatchUpTime(D, PV, FV) // D is Distance; PV is Pursuers Velocity; FV is Fugitive’ Velocity {     var t = 0;     var T = 0;     var d = parseFloat(D);     var pv = parseFloat (PV);     var fv = parseFloat (FV);     t = d / pv;     while (t > 0.000001) //a 10th of a second is 1/36,000 of an hour, I used 1/100,000     {         T = T + t;         d = t * fv;         t = d / pv;     }     return T;     } By and large, the higher the Pursuer’s velocity relative to the fugitive, the faster the calculation. Solving this with the 10th of a second limit yields: 7.499999232000001 Method 2 – Geometric Series. Each step in the iteration above is smaller than the next. As you saw, we stopped iterating when the last step was small enough, small enough not to really matter.  When we have a sequence of numbers in which the ratio of each number to its predecessor is fixed we call the sequence geometric. When we are looking at the sum of sequence, we call the sequence of sums series.  Now let’s look at our student and teacher. The teacher runs 5 times faster than the student, so with each iteration the distance between them shrinks to a fifth of what it was before. This is a fixed ratio so we deal with a geometric series.  We normally designate this ratio as q and when q is less than 1 (0 < q < 1) the sum of  + … +  is  – 1) / (q – 1). When q is less than 1, it is easier to use ) / (1 - q). Now, the steps are 6 hours then 6/5 hours then 6/5*5 and so on, so q = 1/5. And the whole series is multiplied by 6. Also because q is less than 1 , 1/  diminishes to 0. So the sum is just  / (1 - q). or 1/ (1 – 1/5) = 1 / (4/5) = 5/4. This times 6 yields 7.5 hours. We can now continue with some algebra and take it back to a simpler formula. This is arduous and I am not going to do it here. Instead let’s do some simpler algebra. Method 3 – Simple Algebra. If the time to capture the fugitive is T and the fugitive travels at 1 mph, then by the time the pursuer catches him he travelled additional T miles. Time is distance divided by speed, so…. (D + T)/V = T  thus D + T = VT  and D = VT – T = (V – 1)T  and T = D/(V – 1) This “strangely” coincides with the solution we just got from the geometric sequence. This is simpler ad faster. Here is the corresponding code. function ShortCatchUpTime(D, PV, FV) {     var d = parseFloat(D);     var pv = parseFloat (PV);     var fv = parseFloat (FV);     return d / (pv - fv); } The code above, for both the iterative solution and the algebraic solution are actually for a larger class of problems.  In our original problem the student’s velocity (speed) is 1 mph. In the code it may be anything as long as it is less than the pursuer’s velocity. As long as PV > FV, the pursuer will catch up. Here is the really general formula: T = D / (PV – FV) Finally, let’s run the program for each of the pursuers.  It could not be worse. I know he’d rather be eaten alive than suffering through yet another math lesson. See the code run? Select  “Catch Up Time” in www.mgsltns.com/games.htm The host is running on Unix, so the link is case sensitive. That’s All Folks

    Read the article

  • Package management fails in update-manager with gzip problems and compilation errors. U12.04LTS

    - by HarveyP
    Similar to but not the same as Package management system corrupted. Cannot install or remove packages. U12.04LTS (an earlier problem) with package management system. Followed all of L. D. James suggestions in his answer to no avail. This time as well as the gzip error I am also getting compilation errors. The difference may be due to a lack of compilation in my earlier problem so it may be the same error. The packages concerned are enumerated in the output from update-manager below. Also included below that is the output from apt-get -f install apt-get autoremove gives same output. Tried update without SSL updates - 9 to install and got "Unhandled Error in aptdaemon". Output number 3 below. One at a time - output 4 - is for firefox, first in the list of packages. Falls over at libssl1.0.0 despite deselection of it from update ... Tried apt-get install --reinstall dpkg which succeeded, apt-get install --reinstall tar and apt-get install --reinstall gzip both of which failed at libssl1.0.0 as ever. (as suggested by Subv3rsion elsewhere in this forum) Now cannot apt-get update with complete success even after changing server and apt-get clean - output number 5 below ... 1). Output from update-manager The following packages will be upgraded:<> firefox firefox-globalmenu firefox-locale-en libavcodec-extra-53 libavformat53 libavutil-extra-51 libjson0 libpostproc52 libssl1.0.0 libswscale2 openssl 11 to upgrade, 0 to newly install, 0 to remove and 0 not to upgrade.<br> Need to get 0 B/46.5 MB of archives. After this operation, 1,416 kB of additional disk space will be used.<br> Do you want to continue [Y/n]? y debconf: Perl may be unconfigured (Bareword "gensym" not allowed while "strict subs" in use at /usr/lib/perl/5.14/IO/Handle.pm line 67. BEGIN not safe after errors--compilation aborted at /usr/lib/perl/5.14/IO/Handle.pm line 366. Compilation failed in require at /usr/lib/perl/5.14/IO/Seekable.pm line 9. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/Seekable.pm line 9. Compilation failed in require at /usr/lib/perl/5.14/IO/File.pm line 11. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/File.pm line 11. Compilation failed in require at /usr/share/perl/5.14/FileHandle.pm line 9. Compilation failed in require at (eval 1) line 3. BEGIN failed--compilation aborted at (eval 1) line 3. ) -- aborting (Reading database ... 160575 files and directories currently installed.) Preparing to replace libssl1.0.0 1.0.1-4ubuntu5.14 (using .../libssl1.0.0_1.0.1-4ubuntu5.15_i386.deb) ... Unpacking replacement libssl1.0.0 ... dpkg-deb (subprocess): data: internal gzip read error: '<fd:4>: data error' dpkg-deb: error: subprocess <decompress> returned error exit status 2 dpkg: error processing /var/cache/apt/archives/libssl1.0.0_1.0.1-4ubuntu5.15_i386.deb (--unpack):<br> subprocess dpkg-deb --fsys-tarfile returned error exit status 2 No apport report written because MaxReports has already been reached Bareword "gensym" not allowed while "strict subs" in use at /usr/lib/perl/5.14/IO/Handle.pm line 67. BEGIN not safe after errors--compilation aborted at /usr/lib/perl/5.14/IO/Handle.pm line 366. Compilation failed in require at /usr/lib/perl/5.14/IO/Seekable.pm line 9. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/Seekable.pm line 9. Compilation failed in require at /usr/lib/perl/5.14/IO/File.pm line 11. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/File.pm line 11. Compilation failed in require at /usr/share/perl/5.14/FileHandle.pm line 9. Compilation failed in require at /usr/share/perl5/Debconf/Template.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Template.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Question.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Question.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Config.pm line 7. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Config.pm line 7. Compilation failed in require at /usr/share/perl5/Debconf/Log.pm line 10. Compilation failed in require at /usr/share/perl5/Debconf/Db.pm line 7. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Db.pm line 7. Compilation failed in require at /usr/share/debconf/frontend line 6. BEGIN failed--compilation aborted at /usr/share/debconf/frontend line 6. dpkg: error whale cleanang up: subprgcess installed post-installation script returned error exit status 2 Errors were encountered while processing: /var/cache/apt/archives/libssl1.0.0_1.0.1-4ubuntu5.15_i386.deb E: Sub-process /usr/bin/dpkg returned an error code (1) 2). Output from install -f harveyp@harveyp:~$ sudo apt-get -f install [sudo] password for harveyp: Reading package lists... Done Building dependency tree Reading state information... Done 0 to upgrade, 0 to newly install, 0 to remove and 11 not to upgrade. 1 not fully installed or removed.<br> After this operation, 0 B of additional disk space will be used. E: Internal Error, No file name for libssl1.0.0 3). Unhandled error from aptdaemon Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1045, in _simulate trans.unauthenticated = self.__simulate(trans) File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1160, in __simulate unauthenticated = self._get_unauthenticated() File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 347, in _get_unauthenticated for pkg in self._iterate_packages(): File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1356, in _iterate_packages for enum, pkg in enumerate(self._cache): File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 216, in __iter__ yield self[pkgname] File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 201, in __getitem__ pkg = self._weakref[key] = Package(self, self._cache[key]) KeyError: 'librqrcode-rubq-doc 4). output from update of firefox installArchives() failed: Error in function: < Setting up libssl1.0.0 (1.0.1-4ubuntu5.14) ... Bareword "gensym" not allowed while "strict subs" in use at /usr/lib/perl/5.14/IO/Handle.pm line 67. BEGIN not safe after errors--compilation aborted at /usr/lib/perl/5.14/IO/Handle.pm line 366. Compilation failed in require at /usr/lib/perl/5.14/IO/Seekable.pm line 9. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/Seekable.pm line 9. Compilation failed in require at /usr/lib/perl/5.14/IO/File.pm line 11. BEGIN failed--compilation aborted at /usr/lib/perl/5.14/IO/File.pm line 11. Compilation failed in require at /usr/share/perl/5.14/FileHandle.pm line 9. Compilation failed in require at /usr/share/perl5/Debconf/Template.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Template.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Question.pm line 8. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Question.pm line 8. Compilation failed in require at /usr/share/perl5/Debconf/Config.pm line 7. BEGIN failed--compilation aborted at /usr/share/perl5/Debconf/Config.pm line 7. Compilation failed in require at /usr/share/perl5/Debconf/Log.pm line 10. 5. output from apt-get update ...snip ... Hit http://ubuntu-archive.mirrors.free.org precise-security/multiverse Translation-en Hit http://ubuntu-archive.mirrors.free.org precise-security/restricted Translation-en Hit http://ubuntu-archive.mirrors.free.org precise-security/universe Translation-en Fetched 368 kB in 6s (59.5 kB/s) W: Failed to fetch gzip:/var/lib/apt/lists/partial/ubuntu-archive.mirrors.free.org_ubuntu_dists_precise_universe_source_Sources Hash Sum mismatch E: Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • NVIDIA x server - "sudo nvidia config" does not generate a working 'xorg.config'

    - by Mike
    I am over 18 hours deep on this challenge. I got to this point and am stuck. very stuck. Maybe you can figure it out? Ubuntu Version 12.04 LTS with all the updates installed. Problem: The default settings in "etc/X11/xorg.conf" that are generated by the "nvidia-xconfig" tool, do not allow the NVIDIA x server to connect to the driver in my "System Settings Additional Driver window". (that's how I understand it. Lots of information below). Symptoms of Problem "System Settings Additional Driver" window has drivers, but the nvidia x server cannot connect/utilize any of the 4 drivers. the drivers are activated, but not in use. When I go to "System Tools Administration NVIDIA x server settings" I get an error that basically tells me to create a default file to initialize the NVIDIA X server (screen shot below). This is the messages the terminal gives after running a "sudo nvidia-xconfig" command for the first time. It seems that the generated file by the tool i just ran is generating a bad/unusable file: If I run the "sudo nvidia-xconfig" command again, I wont get an error the second time. However when I reboot, the default file that is generated (etc/X11/xorg.conf) simply puts the screen resolution at 800 x 600 (or something big like that). When I try to go to NVIDIA x server settings I am greeted with the same screen as the screen shot as in symptom 2 (no option to change the resolution). If I try to go to "system settings display" there are no other resolutions to choose from. At this point I must delete the newly minted "xorg.conf" and reinstate the original in its place. Here are the contents of the "xorg.conf" that is generated first (the one missing required information): # nvidia-xconfig: X configuration file generated by nvidia-xconfig # nvidia-xconfig: version 304.88 (buildmeister@swio-display-x86-rhel47-06) Wed Mar 27 15:32:58 PDT 2013 Section "ServerLayout" Identifier "Layout0" Screen 0 "Screen0" InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" EndSection Section "Files" EndSection Section "InputDevice" # generated from default Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psaux" Option "Emulate3Buttons" "no" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" # generated from default Identifier "Keyboard0" Driver "kbd" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Unknown" ModelName "Unknown" HorizSync 28.0 - 33.0 VertRefresh 43.0 - 72.0 Option "DPMS" EndSection Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA Corporation" EndSection Section "Screen" Identifier "Screen0" Device "Device0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Depth 24 EndSubSection EndSection Hardware: I ran the "lspci|grep VGA". There results are: 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 01:00.0 VGA compatible controller: NVIDIA Corporation GF108 [Quadro 1000M] (rev a1) More Hardware info: Ram: 16GB CPU: Intel Core i7-2720QM @2.2GHz * 8 Other: 64 bit. This is a triple boot computer and not a VM. Attempts With Not Success on My End: 1) Tried to append the "xorg.conf" with what I perceive is missing information and obviously it didn't fly. 2) All the other stuff I tried got me to this point. 3) See if this link is helpful to you (I barely get it, but i get enough knowing that a smarter person might find this useful): http://manpages.ubuntu.com/manpages/lucid/man1/nvidia-xconfig.1.html 4) I am completely new to Linux (40 hours over past week), but not to programming. However I am very serious about changing over to Linux. When you respond (I hope someone responds...) please respond in a way that a person new to Linux can understand. 5) By the way, the reason I am in this mess is because I MUST have a second monitor running from my laptop, and "System Settings Display" doesn't recognize my second display. I know it is possible to make the second display work in my system, because when I boot from the install CD, I perform work on the native laptop monitor, but the second monitor shows a purple screen with Ubuntu in the middle, so I know the VGA port is sending a signal out. If this is too much for you to tackle please suggest an alternative method to get a second display. I don't want to go to windows but I cannot have a single display. I am really fudged here. I hope some smart person can help. Thanks in advance. Mike. **********************EDIT #1********************** More Details About Graphics Card I was asked "which brand of nvidia-card do you have exactly?" Here is what I did to provide more info (maybe relevant, maybe not, but here is everything): 1) Took my Lenovo W520 right apart to see if there is an identifier on the actual card. However I realized that if I get deep enough to take a look, the laptop "won't like it". so I put it back together. Figuring out the card this way is not an option for me right now. 2) (My computer is triple boot) I logged into Win7 and ran 'dxdiag' command. here is the screen shot: 3) I tried to look on the lenovo website for more details... but no luck. I took a look at my receipts and here is info form receipt: System Unit: W520 NVIDIA Quadro 1000M 2GB 4) In win7 I went to the NVIDIA website and used the option to have my card 'scanned' by a Java applet to determine the latest update for my card. I tried the same with Ubuntu but I can't get the applet to run. Here is the recommended driver from from the NVIDIA Applet for my card for Win7 (I hope this shines some light on the specifics of the card): Quadro/NVS/Tesla/GRID Desktop Driver Release R319 Version: 320.00 WHQL Release Date: 3.5.2013 5) Also I went on the NVIDIA driver search and looked through every possible combination of product type + product series + product to find all the combinations that yield a 1000M card. My card is: Product Type: Quadro Product Series: Quadro Series (Notebooks) Product: 1000M ***********************EDIT #2******************* Additional Symptoms Another question that generated more symptoms I previously didn't mention was: "After generating xorg.conf by nvidia-xconfig, go to additional drivers, do you see nvidia-304?" 1) I took a screen shot of the "additional drivers" right after generating xorg.conf by nvidia-xconfig. Here it is: 2) Then I did a reboot. Now Ubuntu is 600 x 800 resolution. When I logged in after the computer came up I got an error (which I always get after generating xorg.conf by nvidia-xconfig and rebooting) 3) To finally answer the question - No. There is no "NVIDIA-304" driver. Screen shot of additional drivers after generating xorg.conf by nvidia-xconfig and rebooting : At this point I revert to the original xorg.conf and delete the xorg.conf generated by Nvidia.

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30  | Next Page >