Search Results

Search found 8286 results on 332 pages for 'defined'.

Page 28/332 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • Do static / relative divs accept height in %

    - by Crimson
    I have a div which needs to be positioned statically / relatively. When it has both height and width defined in %, the browser (FF) ignores the height set and renders a very small div. However, when I set the height in px (approximately same calculated value), it works smoothly. The width defined in % works perfectly. I need the height to be defined in % as well - due to resolution / scaling issues.

    Read the article

  • Essbase 11.1.2 - JVM_OPTION settings for Essbase

    - by sujata
    When tuning the heap size for Essbase, there are two JVM_OPTIONS settings available for Essbase - one for the Essbase agent and one for the Essbase applications that are using custom-defined functions (CDFs), custom-defined macros (CDMs), data mining, triggers or external authentication. ESS_JVM_OPTION setting is used for the application and mainly for CDFs, CDMs, data mining, triggers, external authentication ESS_CSS_JVM_OPTION setting is used to set the heap size for the Essbase agent

    Read the article

  • AIX: iscsi volumes disappear after reboot

    - by Dan
    We have an IBM P505 AIX box, with two internal disks and a defined iSCSI volume. The iSCSI volume is defined in it's own volume group, and is connected to an IBM iSCSI DS3300 disk array via the secondary onboard ethernet port (ie, we're not using a dedicated HBA, we're using the second onboard ethernet port for iSCSI exclusively.) When we reboot the AIX box, the iSCSI volume doesn't get mounted (which is fine; I've figured out that it fails to mount because AIX tries mounting it's volumes before starting the networking stack.) The problem is, after the server has booted it fails to redetect the iSCSI target as a physical disk. This means the volume group (iscsivg) can't go online. if I run cfgmgr -v to redetect the iscsi volume it successfully detects the iscsi target volume and creates a physical volume reference, but allocates it a different volume ID to what was defined before. eg - rootvg contains hdisk 0 and 1 iscsivg was originally defined with hdisk2 as the physical iSCSI volume. after reboot and running cfgmgr -v, AIX detects physical volumes hdisk0, hdisk11 and hdisk3. As there's no hdisk2, I can't varyon the iscsivg volume group. I can't seem any existing hdisk2 definition in the ODM. I can't easily add or change the definition of the physcial disk in the iscsivg volume group as it won't "varyon". Exporting the volume group deletes it completely, recreating the volume group by "importing" it from the reallocated disk makes it available again, but surely there's a better way? Can I force a specific hdisk drive designation for an iscsi target? How do you bring online iSCSI volumes after a reboot? I assume this "just works" with a dedicated HBA instead of a generic ethernet adapter? By the way, the iSCSI volume works fine once it's mounted; we only have problems getting it working - and only with AIX. The iSCSI array works fine with our Linux and Windows servers; ie the volumes get detected and remounted after boot time without any problems, using generic ethernet adapters. Here's some of the config from the AIX box: defined disks / devices: # lsdev hdisk0 Available 06-08-01-5,0 16 Bit LVD SCSI Disk Drive hdisk1 Available 06-08-01-8,0 16 Bit LVD SCSI Disk Drive hdisk3 Available Other iSCSI Disk Drive iscsi0 Available iSCSI Protocol Device scsi0 Available 06-08-00 PCI-X Dual Channel Ultra320 SCSI Adapter bus scsi1 Available 06-08-01 PCI-X Dual Channel Ultra320 SCSI Adapter bus ses0 Available 06-08-01-15,0 SCSI Enclosure Services Device sisscsia0 Available 06-08 PCI-X Dual Channel Ultra320 SCSI Adapter iscsi target definition in /etc/iscsi/targets: # IBM DS3300 disk array # port 1 on second controller 10.10.xx.xxx 3260 iqn.1992-01.com.lsi:1535.600a0b80005b0a7fxxxxxxxxxxxx physical volumes (after reimporting the volume group) # lspv hdisk0 0003b08a0d4936b6 rootvg active hdisk1 0003b08aaa5cb366 rootvg active hdisk3 0003b08a032d04bb iscsivg active

    Read the article

  • Using Table-Valued Parameters in SQL Server

    - by Jesse
    I work with stored procedures in SQL Server pretty frequently and have often found myself with a need to pass in a list of values at run-time. Quite often this list contains a set of ids on which the stored procedure needs to operate the size and contents of which are not known at design time. In the past I’ve taken the collection of ids (which are usually integers), converted them to a string representation where each value is separated by a comma and passed that string into a VARCHAR parameter of a stored procedure. The body of the stored procedure would then need to parse that string into a table variable which could be easily consumed with set-based logic within the rest of the stored procedure. This approach works pretty well but the VARCHAR variable has always felt like an un-wanted “middle man” in this scenario. Of course, I could use a BULK INSERT operation to load the list of ids into a temporary table that the stored procedure could use, but that approach seems heavy-handed in situations where the list of values is usually going to contain only a few dozen values. Fortunately SQL Server 2008 introduced the concept of table-valued parameters which effectively eliminates the need for the clumsy middle man VARCHAR parameter. Example: Customer Transaction Summary Report Let’s say we have a report that can summarize the the transactions that we’ve conducted with customers over a period of time. The report returns a pretty simple dataset containing one row per customer with some key metrics about how much business that customer has conducted over the date range for which the report is being run. Sometimes the report is run for a single customer, sometimes it’s run for all customers, and sometimes it’s run for a handful of customers (i.e. a salesman runs it for the customers that fall into his sales territory). This report can be invoked from a website on-demand, or it can be scheduled for periodic delivery to certain users via SQL Server Reporting Services. Because the report can be created from different places and the query to generate the report is complex it’s been packed into a stored procedure that accepts three parameters: @startDate – The beginning of the date range for which the report should be run. @endDate – The end of the date range for which the report should be run. @customerIds – The customer Ids for which the report should be run. Obviously, the @startDate and @endDate parameters are DATETIME variables. The @customerIds parameter, however, needs to contain a list of the identity values (primary key) from the Customers table representing the customers that were selected for this particular run of the report. In prior versions of SQL Server we might have made this parameter a VARCHAR variable, but with SQL Server 2008 we can make it into a table-valued parameter. Defining And Using The Table Type In order to use a table-valued parameter, we first need to tell SQL Server about what the table will look like. We do this by creating a user defined type. For the purposes of this stored procedure we need a very simple type to model a table variable with a single integer column. We can create a generic type called ‘IntegerListTableType’ like this: CREATE TYPE IntegerListTableType AS TABLE (Value INT NOT NULL) Once defined, we can use this new type to define the @customerIds parameter in the signature of our stored procedure. The parameter list for the stored procedure definition might look like: 1: CREATE PROCEDURE dbo.rpt_CustomerTransactionSummary 2: @starDate datetime, 3: @endDate datetime, 4: @customerIds IntegerListTableTableType READONLY   Note the ‘READONLY’ statement following the declaration of the @customerIds parameter. SQL Server requires any table-valued parameter be marked as ‘READONLY’ and no DML (INSERT/UPDATE/DELETE) statements can be performed on a table-valued parameter within the routine in which it’s used. Aside from the DML restriction, however, you can do pretty much anything with a table-valued parameter as you could with a normal TABLE variable. With the user defined type and stored procedure defined as above, we could invoke like this: 1: DECLARE @cusomterIdList IntegerListTableType 2: INSERT @customerIdList VALUES (1) 3: INSERT @customerIdList VALUES (2) 4: INSERT @customerIdList VALUES (3) 5:  6: EXEC dbo.rpt_CustomerTransationSummary 7: @startDate = '2012-05-01', 8: @endDate = '2012-06-01' 9: @customerIds = @customerIdList   Note that we can simply declare a variable of type ‘IntegerListTableType’ just like any other normal variable and insert values into it just like a TABLE variable. We could also populate the variable with a SELECT … INTO or INSERT … SELECT statement if desired. Using The Table-Valued Parameter With ADO .NET Invoking a stored procedure with a table-valued parameter from ADO .NET is as simple as building a DataTable and passing it in as the Value of a SqlParameter. Here’s some example code for how we would construct the SqlParameter for the @customerIds parameter in our stored procedure: 1: var customerIdsParameter = new SqlParameter(); 2: customerIdParameter.Direction = ParameterDirection.Input; 3: customerIdParameter.TypeName = "IntegerListTableType"; 4: customerIdParameter.Value = selectedCustomerIds.ToIntegerListDataTable("Value");   All we’re doing here is new’ing up an instance of SqlParameter, setting the pamameters direction, specifying the name of the User Defined Type that this parameter uses, and setting its value. We’re assuming here that we have an IEnumerable<int> variable called ‘selectedCustomerIds’ containing all of the customer Ids for which the report should be run. The ‘ToIntegerListDataTable’ method is an extension method of the IEnumerable<int> type that looks like this: 1: public static DataTable ToIntegerListDataTable(this IEnumerable<int> intValues, string columnName) 2: { 3: var intergerListDataTable = new DataTable(); 4: intergerListDataTable.Columns.Add(columnName); 5: foreach(var intValue in intValues) 6: { 7: var nextRow = intergerListDataTable.NewRow(); 8: nextRow[columnName] = intValue; 9: intergerListDataTable.Rows.Add(nextRow); 10: } 11:  12: return intergerListDataTable; 13: }   Since the ‘IntegerListTableType’ has a single int column called ‘Value’, we pass that in for the ‘columnName’ parameter to the extension method. The method creates a new single-columned DataTable using the provided column name then iterates over the items in the IEnumerable<int> instance adding one row for each value. We can then use this SqlParameter instance when invoking the stored procedure just like we would use any other parameter. Advanced Functionality Using passing a list of integers into a stored procedure is a very simple usage scenario for the table-valued parameters feature, but I’ve found that it covers the majority of situations where I’ve needed to pass a collection of data for use in a query at run-time. I should note that BULK INSERT feature still makes sense for passing large amounts of data to SQL Server for processing. MSDN seems to suggest that 1000 rows of data is the tipping point where the overhead of a BULK INSERT operation can pay dividends. I should also note here that table-valued parameters can be used to deal with more complex data structures than single-columned tables of integers. A User Defined Type that backs a table-valued parameter can use things like identities and computed columns. That said, using some of these more advanced features might require the use the SqlDataRecord and SqlMetaData classes instead of a simple DataTable. Erland Sommarskog has a great article on his website that describes when and how to use these classes for table-valued parameters. What About Reporting Services? Earlier in the post I referenced the fact that our example stored procedure would be called from both a web application and a SQL Server Reporting Services report. Unfortunately, using table-valued parameters from SSRS reports can be a bit tricky and warrants its own blog post which I’ll be putting together and posting sometime in the near future.

    Read the article

  • Changing CSS with jQuery syntax in Silverlight using jLight

    - by Timmy Kokke
    Lately I’ve ran into situations where I had to change elements or had to request a value in the DOM from Silverlight. jLight, which was introduced in an earlier article, can help with that. jQuery offers great ways to change CSS during runtime. Silverlight can access the DOM, but it isn’t as easy as jQuery. All examples shown in this article can be looked at in this online demo. The code can be downloaded here.   Part 1: The easy stuff Selecting and changing properties is pretty straight forward. Setting the text color in all <B> </B> elements can be done using the following code:   jQuery.Select("b").Css("color", "red");   The Css() method is an extension method on jQueryObject which is return by the jQuery.Select() method. The Css() method takes to parameters. The first is the Css style property. All properties used in Css can be entered in this string. The second parameter is the value you want to give the property. In this case the property is “color” and it is changed to “red”. To specify which element you want to select you can add a :selector parameter to the Select() method as shown in the next example.   jQuery.Select("b:first").Css("font-family", "sans-serif");   The “:first” pseudo-class selector selects only the first element. This example changes the “font-family” property of the first <B></B> element to “sans-serif”. To make use of intellisense in Visual Studio I’ve added a extension methods to help with the pseudo-classes. In the example below the “font-weight” of every “Even” <LI></LI> is set to “bold”.   jQuery.Select("li".Even()).Css("font-weight", "bold");   Because the Css() extension method returns a jQueryObject it is possible to chain calls to Css(). The following example show setting the “color”, “background-color” and the “font-size” of all headers in one go.   jQuery.Select(":header").Css("color", "#12FF70") .Css("background-color", "yellow") .Css("font-size", "25px");   Part 2: More complex stuff In only a few cases you need to change only one style property. More often you want to change an entire set op style properties all in one go.  You could chain a lot of Css() methods together. A better way is to add a class to a stylesheet and define all properties in there. With the AddClass() method you can set a style class to a set of elements. This example shows how to add the “demostyle” class to all <B></B> in the document.   jQuery.Select("b").AddClass("demostyle");   Removing the class works in the same way:   jQuery.Select("b").RemoveClass("demostyle");   jLight is build for interacting with to the DOM from Silverlight using jQuery. A jQueryObjectCss object can be used to define different sets of style properties in Silverlight. The over 60 most common Css style properties are defined in the jQueryObjectCss class. A string indexer can be used to access all style properties ( CssObject1[“background-color”] equals CssObject1.BackgroundColor). In the code below, two jQueryObjectCss objects are defined and instantiated.   private jQueryObjectCss CssObject1; private jQueryObjectCss CssObject2;   public Demo2() { CssObject1 = new jQueryObjectCss { BackgroundColor = "Lime", Color="Black", FontSize = "12pt", FontFamily = "sans-serif", FontWeight = "bold", MarginLeft = 150, LineHeight = "28px", Border = "Solid 1px #880000" }; CssObject2 = new jQueryObjectCss { FontStyle = "Italic", FontSize = "48", Color = "#225522" }; InitializeComponent(); }   Now instead of chaining to set all different properties you can just pass one of the jQueryObjectCss objects to the Css() method. In this case all <LI></LI> elements are set to match this object.   jQuery.Select("li").Css(CssObject1); When using the jQueryObjectCss objects chaining is still possible. In the following example all headers are given a blue backgroundcolor and the last is set to match CssObject2.   jQuery.Select(":header").Css(new jQueryObjectCss{BackgroundColor = "Blue"}) .Eq(-1).Css(CssObject2);   Part 3: The fun stuff Having Silverlight call JavaScript and than having JavaScript to call Silverlight requires a lot of plumbing code. Everything has to be registered and strings are passed back and forth to execute the JavaScript. jLight makes this kind of stuff so easy, it becomes fun to use. In a lot of situations jQuery can call a function to decide what to do, setting a style class based on complex expressions for example. jLight can do the same, but the callback methods are defined in Silverlight. This example calls the function() method for each <LI></LI> element. The callback method has to take a jQueryObject, an integer and a string as parameters. In this case jLight differs a bit from the actual jQuery implementation. jQuery uses only the index and the className parameters. A jQueryObject is added to make it simpler to access the attributes and properties of the element. If the text of the listitem starts with a ‘D’ or an ‘M’ the class is set. Otherwise null is returned and nothing happens.   private void button1_Click(object sender, RoutedEventArgs e) { jQuery.Select("li").AddClass(function); }   private string function(jQueryObject obj, int index, string className) { if (obj.Text[0] == 'D' || obj.Text[0] == 'M') return "demostyle"; return null; }   The last thing I would like to demonstrate uses even more Silverlight and less jLight, but demonstrates the power of the combination. Animating a style property using a Storyboard with easing functions. First a dependency property is defined. In this case it is a double named Intensity. By handling the changed event the color is set using jQuery.   public double Intensity { get { return (double)GetValue(IntensityProperty); } set { SetValue(IntensityProperty, value); } }   public static readonly DependencyProperty IntensityProperty = DependencyProperty.Register("Intensity", typeof(double), typeof(Demo3), new PropertyMetadata(0.0, IntensityChanged));   private static void IntensityChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var i = (byte)(double)e.NewValue; jQuery.Select("span").Css("color", string.Format("#{0:X2}{0:X2}{0:X2}", i)); }   An animation has to be created. This code defines a Storyboard with one keyframe that uses a bounce ease as an easing function. The animation is set to target the Intensity dependency property defined earlier.   private Storyboard CreateAnimation(double value) { Storyboard storyboard = new Storyboard(); var da = new DoubleAnimationUsingKeyFrames(); var d = new EasingDoubleKeyFrame { EasingFunction = new BounceEase(), KeyTime = KeyTime.FromTimeSpan(TimeSpan.FromSeconds(1.0)), Value = value }; da.KeyFrames.Add(d); Storyboard.SetTarget(da, this); Storyboard.SetTargetProperty(da, new PropertyPath(Demo3.IntensityProperty)); storyboard.Children.Add(da); return storyboard; }   Initially the Intensity is set to 128 which results in a gray color. When one of the buttons is pressed, a new animation is created an played. One to animate to black, and one to animate to white.   public Demo3() { InitializeComponent(); Intensity = 128; }   private void button2_Click(object sender, RoutedEventArgs e) { CreateAnimation(255).Begin(); }   private void button3_Click(object sender, RoutedEventArgs e) { CreateAnimation(0).Begin(); }   Conclusion As you can see jLight can make the life of a Silverlight developer a lot easier when accessing the DOM. Almost all jQuery functions that are defined in jLight use the same constructions as described above. I’ve tried to stay as close as possible to the real jQuery. Having JavaScript perform callbacks to Silverlight using jLight will be described in more detail in a future tutorial about AJAX or eventing.

    Read the article

  • Array Multiplication and Division

    - by Narfanator
    I came across a question that (eventually) landed me wondering about array arithmetic. I'm thinking specifically in Ruby, but I think the concepts are language independent. So, addition and subtraction are defined, in Ruby, as such: [1,6,8,3,6] + [5,6,7] == [1,6,8,3,6,5,6,7] # All the elements of the first, then all the elements of the second [1,6,8,3,6] - [5,6,7] == [1,8,3] # From the first, remove anything found in the second and array * scalar is defined: [1,2,3] * 2 == [1,2,3,1,2,3] But What, conceptually, should the following be? None of these are (as far as I can find) defined: Array x Array: [1,2,3] * [1,2,3] #=> ? Array / Scalar: [1,2,3,4,5] / 2 #=> ? Array / Scalar: [1,2,3,4,5] % 2 #=> ? Array / Array: [1,2,3,4,5] / [1,2] #=> ? Array / Array: [1,2,3,4,5] % [1,2] #=> ? I've found some mathematical descriptions of these operations for set theory, but I couldn't really follow them, and sets don't have duplicates (arrays do). Edit: Note, I do not mean vector (matrix) arithmetic, which is completely defined. Edit2: If this is the wrong stack exchange, tell me which is the right one and I'll move it. Edit 3: Add mod operators to the list. Edit 4: I figure array / scalar is derivable from array * scalar: a * b = c => a = b / c [1,2,3] * 3 = [1,2,3]+[1,2,3]+[1,2,3] = [1,2,3,1,2,3,1,2,3] => [1,2,3] = [1,2,3,1,2,3,1,2,3] / 3 Which, given that programmer's division ignore the remained and has modulus: [1,2,3,4,5] / 2 = [[1,2], [3,4]] [1,2,3,4,5] % 2 = [5] Except that these are pretty clearly non-reversible operations (not that modulus ever is), which is non-ideal. Edit: I asked a question over on Math that led me to Multisets. I think maybe extensible arrays are "multisets", but I'm not sure yet.

    Read the article

  • Deterministic/Consistent Unique Masking

    - by Dinesh Rajasekharan-Oracle
    One of the key requirements while masking data in large databases or multi database environment is to consistently mask some columns, i.e. for a given input the output should always be the same. At the same time the masked output should not be predictable. Deterministic masking also eliminates the need to spend enormous amount of time spent in identifying data relationships, i.e. parent and child relationships among columns defined in the application tables. In this blog post I will explain different ways of consistently masking the data across databases using Oracle Data Masking and Subsetting The readers of post should have minimal knowledge on Oracle Enterprise Manager 12c, Application Data Modeling, Data Masking concepts. For more information on these concepts, please refer to Oracle Data Masking and Subsetting document Oracle Data Masking and Subsetting 12c provides four methods using which users can consistently yet irreversibly mask their inputs. 1. Substitute 2. SQL Expression 3. Encrypt 4. User Defined Function SUBSTITUTE The substitute masking format replaces the original value with a value from a pre-created database table. As the method uses a hash based algorithm in the back end the mappings are consistent. For example consider DEPARTMENT_ID in EMPLOYEES table is replaced with FAKE_DEPARTMENT_ID from FAKE_TABLE. The substitute masking transformation that all occurrences of DEPARTMENT_ID say ‘101’ will be replaced with ‘502’ provided same substitution table and column is used , i.e. FAKE_TABLE.FAKE_DEPARTMENT_ID. The following screen shot shows the usage of the Substitute masking format with in a masking definition: Note that the uniqueness of the masked value depends on the number of columns being used in the substitution table i.e. if the original table contains 50000 unique values, then for the masked output to be unique and deterministic the substitution column should also contain 50000 unique values without which only consistency is maintained but not uniqueness. SQL EXPRESSION SQL Expression replaces an existing value with the output of a specified SQL Expression. For example while masking an EMPLOYEES table the EMAIL_ID of an employee has to be in the format EMPLOYEE’s [email protected] while FIRST_NAME and LAST_NAME are the actual column names of the EMPLOYEES table then the corresponding SQL Expression will look like %FIRST_NAME%||’.’||%LAST_NAME%||’@COMPANY.COM’. The advantage of this technique is that if you are masking FIRST_NAME and LAST_NAME of the EMPLOYEES table than the corresponding EMAIL ID will be replaced accordingly by the masking scripts. One of the interesting aspect’s of a SQL Expressions is that you can use sub SQL expressions, which means that you can write a nested SQL and use it as SQL Expression to address a complex masking business use cases. SQL Expression can also be used to consistently replace value with hashed value using Oracle’s PL/SQL function ORA_HASH. The following SQL Expression will help in the previous example for replacing the DEPARTMENT_IDs with a hashed number ORA_HASH (%DEPARTMENT_ID%, 1000) The following screen shot shows the usage of encrypt masking format with in the masking definition: ORA_HASH takes three arguments: 1. Expression which can be of any data type except LONG, LOB, User Defined Type [nested table type is allowed]. In the above example I used the Original value as expression. 2. Number of hash buckets which can be number between 0 and 4294967295. The default value is 4294967295. You can also co-relate the number of hash buckets to a range of numbers. In the above example above the bucket value is specified as 1000, so the end result will be a hashed number in between 0 and 1000. 3. Seed, can be any number which decides the consistency, i.e. for a given seed value the output will always be same. The default seed is 0. In the above SQL Expression a seed in not specified, so it to 0. If you have to use a non default seed then the function will look like. ORA_HASH (%DEPARTMENT_ID%, 1000, 1234 The uniqueness depends on the input and the number of hash buckets used. However as ORA_HASH uses a 32 bit algorithm, considering birthday paradox or pigeonhole principle there is a 0.5 probability of collision after 232-1 unique values. ENCRYPT Encrypt masking format uses a blend of 3DES encryption algorithm, hashing, and regular expression to produce a deterministic and unique masked output. The format of the masked output corresponds to the specified regular expression. As this technique uses a key [string] to encrypt the data, the same string can be used to decrypt the data. The key also acts as seed to maintain consistent outputs for a given input. The following screen shot shows the usage of encrypt masking format with in the masking definition: Regular Expressions may look complex for the first time users but you will soon realize that it’s a simple language. There are many resources in internet, oracle documentation, oracle learning library, my oracle support on writing a Regular Expressions, out of all the following My Oracle Support document helped me to get started with Regular Expressions: Oracle SQL Support for Regular Expressions[Video](Doc ID 1369668.1) USER DEFINED FUNCTION [UDF] User Defined Function or UDF provides flexibility for the users to code their own masking logic in PL/SQL, which can be called from masking Defintion. The standard format of an UDF in Oracle Data Masking and Subsetting is: Function udf_func (rowid varchar2, column_name varchar2, original_value varchar2) returns varchar2; Where • rowid is the row identifier of the column that needs to be masked • column_name is the name of the column that needs to be masked • original_value is the column value that needs to be masked You can achieve deterministic masking by using Oracle’s built in hash functions like, ORA_HASH, DBMS_CRYPTO.MD4, DBMS_CRYPTO.MD5, DBMS_UTILITY. GET_HASH_VALUE.Please refers to the Oracle Database Documentation for more information on the Oracle Hash functions. For example the following masking UDF generate deterministic unique hexadecimal values for a given string input: CREATE OR REPLACE FUNCTION RD_DUX (rid varchar2, column_name varchar2, orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2 (26); no_of_characters number(2); BEGIN no_of_characters:=6; stext:=substr(RAWTOHEX(DBMS_CRYPTO.HASH(UTL_RAW.CAST_TO_RAW(text),1)),0,no_of_characters); RETURN stext; END; The uniqueness depends on the input and length of the string and number of bits used by hash algorithm. In the above function MD4 hash is used [denoted by argument 1 in the DBMS_CRYPTO.HASH function which is a 128 bit algorithm which produces 2^128-1 unique hashed values , however this is limited by the length of the input string which is 6, so only 6^6 unique values will be generated. Also do not forget about the birthday paradox/pigeonhole principle mentioned earlier in this post. An another example is to consistently replace characters or numbers preserving the length and special characters as shown below: CREATE OR REPLACE FUNCTION RD_DUS(rid varchar2,column_name varchar2,orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2(26); BEGIN DBMS_RANDOM.SEED(orig_val); stext:=TRANSLATE(orig_val,'ABCDEFGHILKLMNOPQRSTUVWXYZ',DBMS_RANDOM.STRING('U',26)); stext:=TRANSLATE(stext,'abcdefghijklmnopqrstuvwxyz',DBMS_RANDOM.STRING('L',26)); stext:=TRANSLATE(stext,'0123456789',to_char(DBMS_RANDOM.VALUE(1,9))); stext:=REPLACE(stext,'.','0'); RETURN stext; END; The following screen shot shows the usage of an UDF with in a masking definition: To summarize, Oracle Data Masking and Subsetting helps you to consistently mask data across databases using one or all of the methods described in this post. It saves the hassle of identifying the parent-child relationships defined in the application table. Happy Masking

    Read the article

  • Relationship DAO, Servlet, JSP and POJO

    - by John Hendrik
    I want to implement a JSP, POJO, DAO and Servlet in my J2EE program. However, I don't fully understand how the relationship between these elements should be. Is the following (MVC) setup the right way to do it? Main class creates servlet(controller) Servlet has a DAO defined in its class DAO has a POJO defined in its class Servlet communicates with the view (JSP page) Please give your feedback.

    Read the article

  • Relationship DAO, Servlet, JSP and POJO [closed]

    - by John Hendrik
    Possible Duplicate: Relationship DAO, Servlet, JSP and POJO I want to implement a JSP, POJO, DAO and Servlet in my J2EE program. However, I don't fully understand how the relationship between these elements should be. Is the following (MVC) setup the right way to do it? Main class creates servlet(controller) Servlet has a DAO defined in its class DAO has a POJO defined in its class Servlet communicates with the view (JSP page) Please give your feedback.

    Read the article

  • Why don't languages include implication as a logical operator?

    - by Maciej Piechotka
    It might be a strange question, but why there is no implication as a logical operator in many languages (Java, C, C++, Python Haskell - although as last one have user defined operators its trivial to add it)? I find logical implication much clearer to write (particularly in asserts or assert-like expressions) then negation with or: encrypt(buf, key, mode, iv = null) { assert (mode != ECB --> iv != null); assert (mode == ECB || iv != null); assert (implies(mode != ECB, iv != null)); // User-defined function }

    Read the article

  • Configuring Fed Authentication Methods in OIF / IdP

    - by Damien Carru
    In this article, I will provide examples on how to configure OIF/IdP to map OAM Authentication Schemes to Federation Authentication Methods, based on the concepts introduced in my previous entry. I will show examples for the three protocols supported by OIF: SAML 2.0 SSO SAML 1.1 SSO OpenID 2.0 Enjoy the reading! Configuration As I mentioned in my previous article, mapping Federation Authentication Methods to OAM Authentication Schemes is protocol dependent, since the methods are defined in the various protocols (SAML 2.0, SAML 1.1, OpenID 2.0). As such, the WLST commands to set those mappings will involve: Either the SP Partner Profile and affect all Partners referencing that profile, which do not override the Federation Authentication Method to OAM Authentication Scheme mappings Or the SP Partner entry, which will only affect the SP Partner It is important to note that if an SP Partner is configured to define one or more Federation Authentication Method to OAM Authentication Scheme mappings, then all the mappings defined in the SP Partner Profile will be ignored. WLST Commands The two OIF WLST commands that can be used to define mapping Federation Authentication Methods to OAM Authentication Schemes are: addSPPartnerProfileAuthnMethod() to define a mapping on an SP Partner Profile, taking as parameters: The name of the SP Partner Profile The Federation Authentication Method The OAM Authentication Scheme name addSPPartnerAuthnMethod() to define a mapping on an SP Partner , taking as parameters: The name of the SP Partner The Federation Authentication Method The OAM Authentication Scheme name Note: I will discuss in a subsequent article the other parameters of those commands. In the next sections, I will show examples on how to use those methods: For SAML 2.0, I will configure the SP Partner Profile, that will apply all the mappings to SP Partners referencing this profile, unless they override mapping definition For SAML 1.1, I will configure the SP Partner. For OpenID 2.0, I will configure the SP/RP Partner SAML 2.0 Test Setup In this setup, OIF is acting as an IdP and is integrated with a remote SAML 2.0 SP partner identified by AcmeSP. In this test, I will perform Federation SSO with OIF/IdP configured to: Use LDAPScheme as the Authentication Scheme Use BasicScheme as the Authentication Scheme Map BasicSessionScheme  to  the urn:oasis:names:tc:SAML:2.0:ac:classes:Password Federation Authentication Method Use OAMLDAPPluginAuthnScheme as the Authentication Scheme Map OAMLDAPPluginAuthnScheme to  the urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport Federation Authentication Method LDAPScheme as Authentication Scheme Using the OOTB settings regarding user authentication in OAM, the user will be challenged via a FORM based login page based on the LDAPScheme. Also the default Federation Authentication Method mappings configuration maps only the urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport to LDAPScheme (also marked as the default scheme used for authentication), FAAuthScheme, BasicScheme and BasicFAScheme. After authentication via FORM, OIF/IdP would issue an Assertion similar to: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                   urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> BasicScheme as Authentication Scheme For this test, I will switch the default Authentication Scheme for the SP Partner Profile to BasicScheme instead of LDAPScheme. I will use the OIF WLST setSPPartnerProfileDefaultScheme() command and specify which scheme to be used as the default for the SP Partner Profile referenced by AcmeSP (which is saml20-sp-partner-profile in this case: getFedPartnerProfile("AcmeSP", "sp") ): Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the setSPPartnerProfileDefaultScheme() command:setSPPartnerProfileDefaultScheme("saml20-sp-partner-profile", "BasicScheme") Exit the WLST environment:exit() The user will now be challenged via HTTP Basic Authentication defined in the BasicScheme for AcmeSP. Also, as noted earlier, the default Federation Authentication Method mappings configuration maps only the urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport to LDAPScheme (also marked as the default scheme used for authentication), FAAuthScheme, BasicScheme and BasicFAScheme. After authentication via HTTP Basic Authentication, OIF/IdP would issue an Assertion similar to: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                   urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> Mapping BasicScheme To change the Federation Authentication Method mapping for the BasicScheme to urn:oasis:names:tc:SAML:2.0:ac:classes:Password instead of urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport for the saml20-sp-partner-profile SAML 2.0 SP Partner Profile (the profile to which my AcmeSP Partner is bound to), I will execute the addSPPartnerProfileAuthnMethod() method: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the addSPPartnerProfileAuthnMethod() command:addSPPartnerProfileAuthnMethod("saml20-sp-partner-profile", "urn:oasis:names:tc:SAML:2.0:ac:classes:Password", "BasicScheme") Exit the WLST environment:exit() After authentication via HTTP Basic Authentication, OIF/IdP would now issue an Assertion similar to (see that the AuthnContextClassRef was changed from PasswordProtectedTransport to Password): <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                   urn:oasis:names:tc:SAML:2.0:ac:classes:Password                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> OAMLDAPPluginAuthnScheme as Authentication Scheme For this test, I will switch the default Authentication Scheme for the SP Partner Profile to OAMLDAPPluginAuthnScheme instead of BasicScheme. I will use the OIF WLST setSPPartnerProfileDefaultScheme() command and specify which scheme to be used as the default for the SP Partner Profile referenced by AcmeSP (which is saml20-sp-partner-profile in this case: getFedPartnerProfile("AcmeSP", "sp") ): Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the setSPPartnerProfileDefaultScheme() command:setSPPartnerProfileDefaultScheme("saml20-sp-partner-profile", "OAMLDAPPluginAuthnScheme") Exit the WLST environment:exit() The user will now be challenged via FORM defined in the OAMLDAPPluginAuthnScheme for AcmeSP. Contrarily to LDAPScheme and BasicScheme, the OAMLDAPPluginAuthnScheme is not mapped by default to any Federation Authentication Methods. As such, OIF/IdP will not be able to find a Federation Authentication Method and will set the method in the SAML Assertion to the OAM Authentication Scheme name. After authentication via FORM, OIF/IdP would issue an Assertion similar to (see the AuthnContextClassRef set to OAMLDAPPluginAuthnScheme): <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef> OAMLDAPPluginAuthnScheme                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> Mapping OAMLDAPPluginAuthnScheme To add the OAMLDAPPluginAuthnScheme  to the Federation Authentication Method urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport mapping, I will execute the addSPPartnerProfileAuthnMethod() method: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the addSPPartnerProfileAuthnMethod() command:addSPPartnerProfileAuthnMethod("saml20-sp-partner-profile", "urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport", "OAMLDAPPluginAuthnScheme") Exit the WLST environment:exit() After authentication via FORM, OIF/IdP would now issue an Assertion similar to (see that the method was changed from OAMLDAPPluginAuthnScheme to PasswordProtectedTransport): <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                   urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> SAML 1.1 Test Setup In this setup, OIF is acting as an IdP and is integrated with a remote SAML 1.1 SP partner identified by AcmeSP. In this test, I will perform Federation SSO with OIF/IdP configured to: Use LDAPScheme as the Authentication Scheme Use OAMLDAPPluginAuthnScheme as the Authentication Scheme Map OAMLDAPPluginAuthnScheme to  the urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport Federation Authentication Method Use LDAPScheme as the Authentication Scheme Map LDAPScheme to  the urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport Federation Authentication Method LDAPScheme as Authentication Scheme Using the OOTB settings regarding user authentication in OAM, the user will be challenged via a FORM based login page based on the LDAPScheme. Also the default Federation Authentication Method mappings configuration maps only the urn:oasis:names:tc:SAML:1.0:am:password to LDAPScheme (also marked as the default scheme used for authentication), FAAuthScheme, BasicScheme and BasicFAScheme. After authentication via FORM, OIF/IdP would issue an Assertion similar to: <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameIdentifier ...>[email protected]</saml:NameIdentifier>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> OAMLDAPPluginAuthnScheme as Authentication Scheme For this test, I will switch the default Authentication Scheme for the SP Partner to OAMLDAPPluginAuthnScheme instead of LDAPScheme. I will use the OIF WLST setSPPartnerDefaultScheme() command and specify which scheme to be used as the default for the SP Partner: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the setSPPartnerDefaultScheme() command:setSPPartnerDefaultScheme("AcmeSP", "OAMLDAPPluginAuthnScheme") Exit the WLST environment:exit() The user will be challenged via FORM defined in the OAMLDAPPluginAuthnScheme for AcmeSP. Contrarily to LDAPScheme, the OAMLDAPPluginAuthnScheme is not mapped by default to any Federation Authentication Methods (in the SP Partner Profile). As such, OIF/IdP will not be able to find a Federation Authentication Method and will set the method in the SAML Assertion to the OAM Authentication Scheme name. After authentication via FORM, OIF/IdP would issue an Assertion similar to (see the AuthenticationMethod set to OAMLDAPPluginAuthnScheme): <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="OAMLDAPPluginAuthnScheme">            <saml:Subject>                <saml:NameIdentifier ...>[email protected]</saml:NameIdentifier>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Mapping OAMLDAPPluginAuthnScheme To map the OAMLDAPPluginAuthnScheme  to the Federation Authentication Method urn:oasis:names:tc:SAML:1.0:am:password for this SP Partner only, I will execute the addSPPartnerAuthnMethod() method: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the addSPPartnerAuthnMethod() command:addSPPartnerAuthnMethod("AcmeSP", "urn:oasis:names:tc:SAML:1.0:am:password", "OAMLDAPPluginAuthnScheme") Exit the WLST environment:exit() After authentication via FORM, OIF/IdP would now issue an Assertion similar to (see that the method was changed from OAMLDAPPluginAuthnScheme to password): <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameIdentifier ...>[email protected]</saml:NameIdentifier>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> LDAPScheme as Authentication Scheme I will now show that by defining a Federation Authentication Mapping at the Partner level, this now ignores all mappings defined at the SP Partner Profile level. For this test, I will switch the default Authentication Scheme for this SP Partner back to LDAPScheme, and the Assertion issued by OIF/IdP will not be able to map this LDAPScheme to a Federation Authentication Method anymore, since A Federation Authentication Method mapping is defined at the SP Partner level and thus the mappings defined at the SP Partner Profile are ignored The LDAPScheme is not listed in the mapping at the Partner level I will use the OIF WLST setSPPartnerDefaultScheme() command and specify which scheme to be used as the default for this SP Partner: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the setSPPartnerDefaultScheme() command:setSPPartnerDefaultScheme("AcmeSP", "LDAPScheme") Exit the WLST environment:exit() After authentication via FORM, OIF/IdP would issue an Assertion similar to (see the AuthenticationMethod set to LDAPScheme): <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="LDAPScheme">            <saml:Subject>                <saml:NameIdentifier ...>[email protected]</saml:NameIdentifier>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Mapping LDAPScheme at Partner Level To fix this issue, we will need to add the LDAPScheme  to the Federation Authentication Method urn:oasis:names:tc:SAML:1.0:am:password mapping for this SP Partner only. I will execute the addSPPartnerAuthnMethod() method: Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the addSPPartnerAuthnMethod() command:addSPPartnerAuthnMethod("AcmeSP", "urn:oasis:names:tc:SAML:1.0:am:password", "LDAPScheme") Exit the WLST environment:exit() After authentication via FORM, OIF/IdP would now issue an Assertion similar to (see that the method was changed from LDAPScheme to password): <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameIdentifier ...>[email protected]</saml:NameIdentifier>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> OpenID 2.0 In the OpenID 2.0 flows, the RP must request use of PAPE, in order for OIF/IdP/OP to include PAPE information. For OpenID 2.0, the configuration will involve mapping a list of OpenID 2.0 policies to a list of Authentication Schemes. The WLST command will take a list of policies, delimited by the ',' character, instead of SAML 2.0 or SAML 1.1 where a single Federation Authentication Method had to be specified. Test Setup In this setup, OIF is acting as an IdP/OP and is integrated with a remote OpenID 2.0 SP/RP partner identified by AcmeRP. In this test, I will perform Federation SSO with OIF/IdP configured to: Use LDAPScheme as the Authentication Scheme Map LDAPScheme to  the http://schemas.openid.net/pape/policies/2007/06/phishing-resistant and http://openid-policies/password-protected policies Federation Authentication Methods (the second one is a custom for this use case) LDAPScheme as Authentication Scheme Using the OOTB settings regarding user authentication in OAM, the user will be challenged via a FORM based login page based on the LDAPScheme. No Federation Authentication Method is defined OOTB for OpenID 2.0, so if the IdP/OP issue an SSO response with a PAPE Response element, it will specify the scheme name instead of Federation Authentication Methods After authentication via FORM, OIF/IdP would issue an SSO Response similar to: https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=LDAPScheme&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D Mapping LDAPScheme To map the LDAP Scheme to the http://schemas.openid.net/pape/policies/2007/06/phishing-resistant and http://openid-policies/password-protected policies Federation Authentication Methods, I will execute the addSPPartnerAuthnMethod() method (the policies will be comma separated): Enter the WLST environment by executing:$IAM_ORACLE_HOME/common/bin/wlst.sh Connect to the WLS Admin server:connect() Navigate to the Domain Runtime branch:domainRuntime() Execute the addSPPartnerAuthnMethod() command:addSPPartnerAuthnMethod("AcmeRP", "http://schemas.openid.net/pape/policies/2007/06/phishing-resistant,http://openid-policies/password-protected", "LDAPScheme") Exit the WLST environment:exit() After authentication via FORM, OIF/IdP would now issue an Assertion similar to (see that the method was changed from LDAPScheme to the two policies): https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=http%3A%2F%2Fschemas.openid.net%2Fpape%2Fpolicies%2F2007%2F06%2Fphishing-resistant+http%3A%2F%2Fopenid-policies%2Fpassword-protected&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D In the next article, I will cover how OIF/IdP can be configured so that an SP can request a specific Federation Authentication Method to challenge the user during Federation SSO.Cheers,Damien Carru

    Read the article

  • DHCP forwarding behind access list on a Cisco Catalyst

    - by Ásgeir Bjarnason
    I'm having some trouble with forwarding DHCP from a subnet behind an access list on a Cisco Catalyst 4500 switch. I'm hoping somebody can see the mistake I'm making. The subnet is defined like this: (first three octets of IP addresses and vrf name anonymized) interface Vlan40 ip vrf forwarding vrf_name ip address 10.10.10.126 255.255.255.0 secondary ip address 10.10.10.254 255.255.255.0 ip access-group 100 out ip helper-address 10.10.20.36 no ip redirects I tried turning on a VMWare machine on this subnet that was configured to use DHCP, but I never got a DHCP response and the DHCP server didn't receive a request. I tried putting the following in the access-list: access-list 100 permit udp host 10.10.10.254 host 10.10.20.36 eq bootps access-list 100 permit udp host 10.10.10.254 host 10.10.20.36 eq bootpc access-list 100 permit udp host 10.10.20.36 host 10.10.10.254 eq bootps access-list 100 permit udp host 10.10.20.36 host 10.10.10.254 eq bootpc That didn't help. Can anybody see what the problem is? I know that the DHCP server works; our whole network is running off of this DHCP server I also know that the subnet works because we have active servers running on the network The DHCP scope is already defined on the DHCP server The subnet is correctly defined on the VMWare server (already servers running on the subnet on VMWare) Edit 2012-10-19: This is solved! The subnet had formerly been defined as a /25 network, but was then expanded into a /24 network. When the DHCP scope was altered after this change it was done incorrectly; the gateway was moved to .254, the leasable IP range was in the lower half of the /24 subnet but we forgot to change the CIDR prefix from /25 into /24. This happened some 2 years ago, and we didn't need to use DHCP on this server network again until this week. Thank you MDMarra and Jason Seemann for looking at the question and trying to troubleshoot. Now I'm wondering if I should mark Jason's answer as the accepted answer (I am new to the Stack Exchange network, so I don't know the etiquette of what to do if I misstated the question like in this case).

    Read the article

  • memory tuning with rails/unicorn running on ubuntu

    - by user970193
    I am running unicorn on Ubuntu 11, Rails 3.0, and Ruby 1.8.7. It is an 8 core ec2 box, and I am running 15 workers. CPU never seems to get pinned, and I seem to be handling requests pretty nicely. My question concerns memory usage, and what concerns I should have with what I am seeing. (if any) Here is the scenario: Under constant load (about 15 reqs/sec coming in from nginx), over the course of an hour, each server in the 3 server cluster loses about 100MB / hour. This is a linear slope for about 6 hours, then it appears to level out, but still maybe appear to lose about 10MB/hour. If I drop my page caches using the linux command echo 1 /proc/sys/vm/drop_caches, the available free memory shoots back up to what it was when I started the unicorns, and the memory loss pattern begins again over the hours. Before: total used free shared buffers cached Mem: 7130244 5005376 2124868 0 113628 422856 -/+ buffers/cache: 4468892 2661352 Swap: 33554428 0 33554428 After: total used free shared buffers cached Mem: 7130244 4467144 2663100 0 228 11172 -/+ buffers/cache: 4455744 2674500 Swap: 33554428 0 33554428 My Ruby code does use memoizations and I'm assuming Ruby/Rails/Unicorn is keeping its own caches... what I'm wondering is should I be worried about this behaviour? FWIW, my Unicorn config: worker_processes 15 listen "#{CAPISTRANO_ROOT}/shared/pids/unicorn_socket", :backlog = 1024 listen 8080, :tcp_nopush = true timeout 180 pid "#{CAPISTRANO_ROOT}/shared/pids/unicorn.pid" GC.respond_to?(:copy_on_write_friendly=) and GC.copy_on_write_friendly = true before_fork do |server, worker| STDERR.puts "XXXXXXXXXXXXXXXXXXX BEFORE FORK" print_gemfile_location defined?(ActiveRecord::Base) and ActiveRecord::Base.connection.disconnect! defined?(Resque) and Resque.redis.client.disconnect old_pid = "#{CAPISTRANO_ROOT}/shared/pids/unicorn.pid.oldbin" if File.exists?(old_pid) && server.pid != old_pid begin Process.kill("QUIT", File.read(old_pid).to_i) rescue Errno::ENOENT, Errno::ESRCH # already killed end end File.open("#{CAPISTRANO_ROOT}/shared/pids/unicorn.pid.ok", "w"){|f| f.print($$.to_s)} end after_fork do |server, worker| defined?(ActiveRecord::Base) and ActiveRecord::Base.establish_connection defined?(Resque) and Resque.redis.client.connect end Is there a need to experiment enforcing more stringent garbage collection using OobGC (http://unicorn.bogomips.org/Unicorn/OobGC.html)? Or is this just normal behaviour, and when/as the system needs more memory, it will empty the caches by itself, without me manually running that cache command? Basically, is this normal, expected behaviour? tia

    Read the article

  • Windows in StreamInsight: Hopping vs. Snapshot

    - by Roman Schindlauer
    Three weeks ago, we explained the basic concept of windows in StreamInsight: defining sets of events that serve as arguments for set-based operations, like aggregations. Today, we want to discuss the so-called Hopping Windows and compare them with Snapshot Windows. We will compare these two, because they can serve similar purposes with different behaviors; we will discuss the remaining window type, Count Windows, another time. Hopping (and its syntactic-sugar-sister Tumbling) windows are probably the most straightforward windowing concept in StreamInsight. A hopping window is defined by its length, and the offset from one window to the next. They are aligned with some absolute point on the timeline (which can also be given as a parameter to the window) and create sets of events. The diagram below shows an example of a hopping window with length of 1h and hop size (the offset) of 15 minutes, hence creating overlapping windows:   Two aspects in this diagram are important: Since this window is overlapping, an event can fall into more than one windows. If an (interval) event spans a window boundary, its lifetime will be clipped to the window, before it is passed to the set-based operation. That’s the default and currently only available window input policy. (This should only concern you if you are using a time-sensitive user-defined aggregate or operator.) The set-based operation will be applied to each of these sets, yielding a result. This result is: A single scalar value in case of built-in or user-defined aggregates. A subset of the input payloads, in case of the TopK operator. Arbitrary events, when using a user-defined operator. The timestamps of the result are almost always the ones of the windows. Only the user-defined  operator can create new events with timestamps. (However, even these event lifetimes are subject to the window’s output policy, which is currently always to clip to the window end.) Let’s assume we were calculating the sum over some payload field: var result = from window in source.HoppingWindow( TimeSpan.FromHours(1), TimeSpan.FromMinutes(15), HoppingWindowOutputPolicy.ClipToWindowEnd) select new { avg = window.Avg(e => e.Value) }; Now each window is reflected by one result event:   As you can see, the window definition defines the output frequency. No matter how many or few events we got from the input, this hopping window will produce one result every 15 minutes – except for those windows that do not contain any events at all, because StreamInsight window operations are empty-preserving (more about that another time). The “forced” output for every window can become a performance issue if you have a real-time query with many events in a wide group & apply – let me explain: imagine you have a lot of events that you group by and then aggregate within each group – classical streaming pattern. The hopping window produces a result in each group at exactly the same point in time for all groups, since the window boundaries are aligned with the timeline, not with the event timestamps. This means that the query output will become very bursty, delivering the results of all the groups at the same point in time. This becomes especially obvious if the events are long-lasting, spanning multiple windows each, so that the produced result events do not change their value very often. In such a case, a snapshot window can remedy. Snapshot windows are more difficult to explain than hopping windows: they represent those periods in time, when no event changes occur. In other words, if you mark all event start and and times on your timeline, then you are looking at all snapshot window boundaries:   If your events are never overlapping, the snapshot window will not make much sense. It is commonly used together with timestamp modification, which make it a very powerful tool. Or as Allan Mitchell expressed in in a recent tweet: “I used to look at SnapshotWindow() with disdain. Now she is my mistress, the one I turn to in times of trouble and need”. Let’s look at a simple example: I want to compute the average of some value in my events over the last minute. I don’t want this output be produced at fixed intervals, but at soon as it changes (that’s the true event-driven spirit!). The snapshot window will include all currently active event at each point in time, hence we need to extend our original events’ lifetimes into the future: Applying the Snapshot window on these events, it will appear to be “looking back into the past”: If you look at the result produced in this diagram, you can easily prove that, at each point in time, the current event value represents the average of all original input event within the last minute. Here is the LINQ representation of that query, applying the lifetime extension before the snapshot window: var result = from window in source .AlterEventDuration(e => TimeSpan.FromMinutes(1)) .SnapshotWindow(SnapshotWindowOutputPolicy.Clip) select new { avg = window.Avg(e => e.Value) }; With more complex modifications of the event lifetimes you can achieve many more query patterns. For instance “running totals” by keeping the event start times, but snapping their end times to some fixed time, like the end of the day. Each snapshot then “sees” all events that have happened in the respective time period so far. Regards, The StreamInsight Team

    Read the article

  • SOA, Governance, and Drugs

    Why is IT governance important in service oriented architecture (SOA)? IT Governance provides a framework for making appropriate decisions based on company guidelines and accepted standards. This framework also outlines each stakeholder’s responsibilities and authority when making important architectural or design decisions. Furthermore, this framework of governance defines parameters and constraints that are used to give context and perspective when making decisions. The use of governance as it applies to SOA ensures that specific design principles and patterns are used when developing and maintaining services. When governance is consistently applied systems the following benefits are achieved according to Anne Thomas Manes in 2010. Governance makes sure that services conform to standard interface patterns, common data modeling practices, and promotes the incorporation of existing system functionality by building on top of other available services across a system. Governance defines development standards based on proven design principles and patterns that promote reuse and composition. Governance provides developers a set of proven design principles, standards and practices that promote the reduction in system based component dependencies.  By following these guidelines, individual components will be easier to maintain. For me personally, I am a fan of IT governance, and feel that it valuable part of any corporate IT department. However, depending on how it is implemented can really affect the value of using IT governance.  Companies need to find a way to ensure that governance does not become extreme in its policies and procedures. I know for me personally, I would really dislike working under a completely totalitarian or laissez-faire version of governance. Developers need to be able to be creative in their designs and too much governance can really impede the design process and prevent the most optimal design from being developed. On the other hand, with no governance enforced, no standards will be followed and accepted design patterns will be ignored. I have personally had to spend a lot of time working on this particular scenario and I have found that the concept of code reuse and composition is almost nonexistent.  Based on this, too much time and money is wasted on redeveloping existing aspects of an application that already exist within the system as a whole. I think moving forward we will see a staggered form of IT governance, regardless if it is for SOA or IT in general.  Depending on the size of a company and the size of its IT department,  I can see IT governance as a layered approach in that the top layer will be defined by enterprise architects that focus on abstract concepts pertaining to high level design, general  guidelines, acceptable best practices, and recommended design patterns.  The next layer will be defined by solution architects or department managers that further expand on abstracted guidelines defined by the enterprise architects. This layer will contain further definitions as to when various design patterns, coding standards, and best practices are to be applied based on the context of the solutions that are being developed by the department. The final layer will be defined by the system designer or a solutions architect assed to a project in that they will define what design patterns will be used in a solution, naming conventions, as well as outline how a system will function based on the best practices defined by the previous layers. This layered approach allows for IT departments to be flexible in that system designers have creative leeway in designing solutions to meet the needs of the business, but they must operate within the confines of the abstracted IT governance guidelines.  A real world example of this can be seen in the United States as it pertains to governance of the people in that the US government defines rules and regulations in the abstract and then the state governments take these guidelines and applies them based on the will of the people in each individual state. Furthermore, the county or city governments are the ones that actually enforce these rules based on how they are interpreted by local community.  To further define my example, the United States government defines that marijuana is illegal. Each individual state has the option to determine this regulation as it wishes in that the state of Florida determines that all uses of the drug are illegal, but the state of California legally allows the use of marijuana for medicinal purposes only. Based on these accepted practices each local government enforces these rules in that a police officer will arrest anyone in the state of Florida for having this drug on them if they walk down the street, but in California if a person has a medical prescription for the drug they will not get arrested.  REFERENCESThomas Manes, Anne. (2010). Understanding SOA Governance: http://www.soamag.com/I40/0610-2.php

    Read the article

  • Handling inheritance with overriding efficiently

    - by Fyodor Soikin
    I have the following two data structures. First, a list of properties applied to object triples: Object1 Object2 Object3 Property Value O1 O2 O3 P1 "abc" O1 O2 O3 P2 "xyz" O1 O3 O4 P1 "123" O2 O4 O5 P1 "098" Second, an inheritance tree: O1 O2 O4 O3 O5 Or viewed as a relation: Object Parent O2 O1 O4 O2 O3 O1 O5 O3 O1 null The semantics of this being that O2 inherits properties from O1; O4 - from O2 and O1; O3 - from O1; and O5 - from O3 and O1, in that order of precedence. NOTE 1: I have an efficient way to select all children or all parents of a given object. This is currently implemented with left and right indexes, but hierarchyid could also work. This does not seem important right now. NOTE 2: I have tiggers in place that make sure that the "Object" column always contains all possible objects, even when they do not really have to be there (i.e. have no parent or children defined). This makes it possible to use inner joins rather than severely less effiecient outer joins. The objective is: Given a pair of (Property, Value), return all object triples that have that property with that value either defined explicitly or inherited from a parent. NOTE 1: An object triple (X,Y,Z) is considered a "parent" of triple (A,B,C) when it is true that either X = A or X is a parent of A, and the same is true for (Y,B) and (Z,C). NOTE 2: A property defined on a closer parent "overrides" the same property defined on a more distant parent. NOTE 3: When (A,B,C) has two parents - (X1,Y1,Z1) and (X2,Y2,Z2), then (X1,Y1,Z1) is considered a "closer" parent when: (a) X2 is a parent of X1, or (b) X2 = X1 and Y2 is a parent of Y1, or (c) X2 = X1 and Y2 = Y1 and Z2 is a parent of Z1 In other words, the "closeness" in ancestry for triples is defined based on the first components of the triples first, then on the second components, then on the third components. This rule establishes an unambigous partial order for triples in terms of ancestry. For example, given the pair of (P1, "abc"), the result set of triples will be: O1, O2, O3 -- Defined explicitly O1, O2, O5 -- Because O5 inherits from O3 O1, O4, O3 -- Because O4 inherits from O2 O1, O4, O5 -- Because O4 inherits from O2 and O5 inherits from O3 O2, O2, O3 -- Because O2 inherits from O1 O2, O2, O5 -- Because O2 inherits from O1 and O5 inherits from O3 O2, O4, O3 -- Because O2 inherits from O1 and O4 inherits from O2 O3, O2, O3 -- Because O3 inherits from O1 O3, O2, O5 -- Because O3 inherits from O1 and O5 inherits from O3 O3, O4, O3 -- Because O3 inherits from O1 and O4 inherits from O2 O3, O4, O5 -- Because O3 inherits from O1 and O4 inherits from O2 and O5 inherits from O3 O4, O2, O3 -- Because O4 inherits from O1 O4, O2, O5 -- Because O4 inherits from O1 and O5 inherits from O3 O4, O4, O3 -- Because O4 inherits from O1 and O4 inherits from O2 O5, O2, O3 -- Because O5 inherits from O1 O5, O2, O5 -- Because O5 inherits from O1 and O5 inherits from O3 O5, O4, O3 -- Because O5 inherits from O1 and O4 inherits from O2 O5, O4, O5 -- Because O5 inherits from O1 and O4 inherits from O2 and O5 inherits from O3 Note that the triple (O2, O4, O5) is absent from this list. This is because property P1 is defined explicitly for the triple (O2, O4, O5) and this prevents that triple from inheriting that property from (O1, O2, O3). Also note that the triple (O4, O4, O5) is also absent. This is because that triple inherits its value of P1="098" from (O2, O4, O5), because it is a closer parent than (O1, O2, O3). The straightforward way to do it is the following. First, for every triple that a property is defined on, select all possible child triples: select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value from TriplesAndProperties tp -- Select corresponding objects of the triple inner join Objects as Objects1 on Objects1.Id = tp.O1 inner join Objects as Objects2 on Objects2.Id = tp.O2 inner join Objects as Objects3 on Objects3.Id = tp.O3 -- Then add all possible children of all those objects inner join Objects as Children1 on Objects1.Id [isparentof] Children1.Id inner join Objects as Children2 on Objects2.Id [isparentof] Children2.Id inner join Objects as Children3 on Objects3.Id [isparentof] Children3.Id But this is not the whole story: if some triple inherits the same property from several parents, this query will yield conflicting results. Therefore, second step is to select just one of those conflicting results: select * from ( select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value, row_number() over( partition by Children1.Id, Children2.Id, Children3.Id, tp.Property order by Objects1.[depthInTheTree] descending, Objects2.[depthInTheTree] descending, Objects3.[depthInTheTree] descending ) as InheritancePriority from ... (see above) ) where InheritancePriority = 1 The window function row_number() over( ... ) does the following: for every unique combination of objects triple and property, it sorts all values by the ancestral distance from the triple to the parents that the value is inherited from, and then I only select the very first of the resulting list of values. A similar effect can be achieved with a GROUP BY and ORDER BY statements, but I just find the window function semantically cleaner (the execution plans they yield are identical). The point is, I need to select the closest of contributing ancestors, and for that I need to group and then sort within the group. And finally, now I can simply filter the result set by Property and Value. This scheme works. Very reliably and predictably. It has proven to be very powerful for the business task it implements. The only trouble is, it is awfuly slow. One might point out the join of seven tables might be slowing things down, but that is actually not the bottleneck. According to the actual execution plan I'm getting from the SQL Management Studio (as well as SQL Profiler), the bottleneck is the sorting. The problem is, in order to satisfy my window function, the server has to sort by Children1.Id, Children2.Id, Children3.Id, tp.Property, Parents1.[depthInTheTree] descending, Parents2.[depthInTheTree] descending, Parents3.[depthInTheTree] descending, and there can be no indexes it can use, because the values come from a cross join of several tables. EDIT: Per Michael Buen's suggestion (thank you, Michael), I have posted the whole puzzle to sqlfiddle here. One can see in the execution plan that the Sort operation accounts for 32% of the whole query, and that is going to grow with the number of total rows, because all the other operations use indexes. Usually in such cases I would use an indexed view, but not in this case, because indexed views cannot contain self-joins, of which there are six. The only way that I can think of so far is to create six copies of the Objects table and then use them for the joins, thus enabling an indexed view. Did the time come that I shall be reduced to that kind of hacks? The despair sets in.

    Read the article

  • Is it possible to run pgp 6.5.8 freeware on Windows 7 64 bit machine?

    - by Johnny Holmes
    I am trying to get the PGP Command Line -Freeware Version 6.5.8 by Networks Associates working on a Wndows 7 64 bit machine. Does anyone know if it is possible? I installed it in C:\pgp when i run pgp, it keeps telling me that it can't find the pgp.cfg file. My PGPPATH is defined and set to C:\pgp I have also included this path in my Path variable Can anyone tell me what i am doing wrong. The documentation states that: "The first time you start PGP, the software checks to see if the environment variable PGPPATH is defined. If PGPPATH is defined, the software puts the pgp.cfg in the %PGPPATH% directory" Edit: This is most likely a Windows 7 professional folder rights issue, since the file pgp.cfg can't get written. I tried my best given the folder full rights, but im not 100% confident that i did it right. Anyone help me?

    Read the article

  • Failed pinging a LAN card of the server from the client using shared internet connection

    - by bobo
    The server (Windows XP Pro SP3) has two LAN cards (LAN card A and B) and is connected to the internet using ADSL. The ADSL connection is shared to LAN card B using Internet Connection Sharing. The client (Windows XP Pro SP3) has one LAN card, and is connected to LAN card B of the server so that it has access to the internet. The IP address on the LAN cards are defined as follows: Server: LAN card A: 192.168.0.3/24 (manually defined by me) LAN card B: 192.168.0.1/24 (manually defined by Internet Connection Sharing) Client: LAN card: 192.168.0.123/24 (assigned by DHCP) Default gateway: 192.168.0.1 From the server, I can ping 192.168.0.123 successfully. From the client, it can access the internet without any problem. I can also ping 192.168.0.1 successfully but for 192.168.0.3, it failed with the Request Timeout error message. Why did the ping fail, and what should be done to make the ping possible? (all firewalls have been turned off.)

    Read the article

  • How Do I Enable CUPS Browsing Across A Network?

    - by David Mackintosh
    I have a CUPS server with two print queues defined. Once this was defined, all the CUPS clients on the same subnet could see the two print queues automatically, no problem. Now I have a collection of machines on a separate subnet, reachable from the first subnet by a router. How do I enable CUPS browsing on the second set of machines so that they can see the print queues defined on the first machine? Let's call the server A.B.C.7. The first subnet is A.B.C.0/24. The second subnet is A.B.D.0/24, and there is a router with arms on both networks.

    Read the article

  • What is the difference between String and string in C#

    - by SAMIR BHOGAYTA
    string : ------ The string type represents a sequence of zero or more Unicode characters. string is an alias for String in the .NET Framework. 'string' is the intrinsic C# datatype, and is an alias for the system provided type "System.String". The C# specification states that as a matter of style the keyword ('string') is preferred over the full system type name (System.String, or String). Although string is a reference type, the equality operators (== and !=) are defined to compare the values of string objects, not references. This makes testing for string equality more intuitive. For example: String : ------ A String object is called immutable (read-only) because its value cannot be modified once it has been created. Methods that appear to modify a String object actually return a new String object that contains the modification. If it is necessary to modify the actual contents of a string-like object Difference between string & String : ---------- ------- ------ - ------ the string is usually used for declaration while String is used for accessing static string methods we can use 'string' do declare fields, properties etc that use the predefined type 'string', since the C# specification tells me this is good style. we can use 'String' to use system-defined methods, such as String.Compare etc. They are originally defined on 'System.String', not 'string'. 'string' is just an alias in this case. we can also use 'String' or 'System.Int32' when communicating with other system, especially if they are CLR-compliant. I.e. - if I get data from elsewhere, I'd deserialize it into a System.Int32 rather than an 'int', if the origin by definition was something else than a C# system.

    Read the article

  • Getting Started with TypeScript – Classes, Static Types and Interfaces

    - by dwahlin
    I had the opportunity to speak on different JavaScript topics at DevConnections in Las Vegas this fall and heard a lot of interesting comments about JavaScript as I talked with people. The most frequent comment I heard from people was, “I guess it’s time to start learning JavaScript”. Yep – if you don’t already know JavaScript then it’s time to learn it. As HTML5 becomes more and more popular the amount of JavaScript code written will definitely increase. After all, many of the HTML5 features available in browsers have little to do with “tags” and more to do with JavaScript (web workers, web sockets, canvas, local storage, etc.). As the amount of JavaScript code being used in applications increases, it’s more important than ever to structure the code in a way that’s maintainable and easy to debug. While JavaScript patterns can certainly be used (check out my previous posts on the subject or my course on Pluralsight.com), several alternatives have come onto the scene such as CoffeeScript, Dart and TypeScript. In this post I’ll describe some of the features TypeScript offers and the benefits that they can potentially offer enterprise-scale JavaScript applications. It’s important to note that while TypeScript has several great features, it’s definitely not for everyone or every project especially given how new it is. The goal of this post isn’t to convince you to use TypeScript instead of standard JavaScript….I’m a big fan of JavaScript. Instead, I’ll present several TypeScript features and let you make the decision as to whether TypeScript is a good fit for your applications. TypeScript Overview Here’s the official definition of TypeScript from the http://typescriptlang.org site: “TypeScript is a language for application-scale JavaScript development. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any browser. Any host. Any OS. Open Source.” TypeScript was created by Anders Hejlsberg (the creator of the C# language) and his team at Microsoft. To sum it up, TypeScript is a new language that can be compiled to JavaScript much like alternatives such as CoffeeScript or Dart. It isn’t a stand-alone language that’s completely separate from JavaScript’s roots though. It’s a superset of JavaScript which means that standard JavaScript code can be placed in a TypeScript file (a file with a .ts extension) and used directly. That’s a very important point/feature of the language since it means you can use existing code and frameworks with TypeScript without having to do major code conversions to make it all work. Once a TypeScript file is saved it can be compiled to JavaScript using TypeScript’s tsc.exe compiler tool or by using a variety of editors/tools. TypeScript offers several key features. First, it provides built-in type support meaning that you define variables and function parameters as being “string”, “number”, “bool”, and more to avoid incorrect types being assigned to variables or passed to functions. Second, TypeScript provides a way to write modular code by directly supporting class and module definitions and it even provides support for custom interfaces that can be used to drive consistency. Finally, TypeScript integrates with several different tools such as Visual Studio, Sublime Text, Emacs, and Vi to provide syntax highlighting, code help, build support, and more depending on the editor. Find out more about editor support at http://www.typescriptlang.org/#Download. TypeScript can also be used with existing JavaScript frameworks such as Node.js, jQuery, and others and even catch type issues and provide enhanced code help. Special “declaration” files that have a d.ts extension are available for Node.js, jQuery, and other libraries out-of-the-box. Visit http://typescript.codeplex.com/SourceControl/changeset/view/fe3bc0bfce1f#samples%2fjquery%2fjquery.d.ts for an example of a jQuery TypeScript declaration file that can be used with tools such as Visual Studio 2012 to provide additional code help and ensure that a string isn’t passed to a parameter that expects a number. Although declaration files certainly aren’t required, TypeScript’s support for declaration files makes it easier to catch issues upfront while working with existing libraries such as jQuery. In the future I expect TypeScript declaration files will be released for different HTML5 APIs such as canvas, local storage, and others as well as some of the more popular JavaScript libraries and frameworks. Getting Started with TypeScript To get started learning TypeScript visit the TypeScript Playground available at http://www.typescriptlang.org. Using the playground editor you can experiment with TypeScript code, get code help as you type, and see the JavaScript that TypeScript generates once it’s compiled. Here’s an example of the TypeScript playground in action:   One of the first things that may stand out to you about the code shown above is that classes can be defined in TypeScript. This makes it easy to group related variables and functions into a container which helps tremendously with re-use and maintainability especially in enterprise-scale JavaScript applications. While you can certainly simulate classes using JavaScript patterns (note that ECMAScript 6 will support classes directly), TypeScript makes it quite easy especially if you come from an object-oriented programming background. An example of the Greeter class shown in the TypeScript Playground is shown next: class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } Looking through the code you’ll notice that static types can be defined on variables and parameters such as greeting: string, that constructors can be defined, and that functions can be defined such as greet(). The ability to define static types is a key feature of TypeScript (and where its name comes from) that can help identify bugs upfront before even running the code. Many types are supported including primitive types like string, number, bool, undefined, and null as well as object literals and more complex types such as HTMLInputElement (for an <input> tag). Custom types can be defined as well. The JavaScript output by compiling the TypeScript Greeter class (using an editor like Visual Studio, Sublime Text, or the tsc.exe compiler) is shown next: var Greeter = (function () { function Greeter(message) { this.greeting = message; } Greeter.prototype.greet = function () { return "Hello, " + this.greeting; }; return Greeter; })(); Notice that the code is using JavaScript prototyping and closures to simulate a Greeter class in JavaScript. The body of the code is wrapped with a self-invoking function to take the variables and functions out of the global JavaScript scope. This is important feature that helps avoid naming collisions between variables and functions. In cases where you’d like to wrap a class in a naming container (similar to a namespace in C# or a package in Java) you can use TypeScript’s module keyword. The following code shows an example of wrapping an AcmeCorp module around the Greeter class. In order to create a new instance of Greeter the module name must now be used. This can help avoid naming collisions that may occur with the Greeter class.   module AcmeCorp { export class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } } var greeter = new AcmeCorp.Greeter("world"); In addition to being able to define custom classes and modules in TypeScript, you can also take advantage of inheritance by using TypeScript’s extends keyword. The following code shows an example of using inheritance to define two report objects:   class Report { name: string; constructor (name: string) { this.name = name; } print() { alert("Report: " + this.name); } } class FinanceReport extends Report { constructor (name: string) { super(name); } print() { alert("Finance Report: " + this.name); } getLineItems() { alert("5 line items"); } } var report = new FinanceReport("Month's Sales"); report.print(); report.getLineItems();   In this example a base Report class is defined that has a variable (name), a constructor that accepts a name parameter of type string, and a function named print(). The FinanceReport class inherits from Report by using TypeScript’s extends keyword. As a result, it automatically has access to the print() function in the base class. In this example the FinanceReport overrides the base class’s print() method and adds its own. The FinanceReport class also forwards the name value it receives in the constructor to the base class using the super() call. TypeScript also supports the creation of custom interfaces when you need to provide consistency across a set of objects. The following code shows an example of an interface named Thing (from the TypeScript samples) and a class named Plane that implements the interface to drive consistency across the app. Notice that the Plane class includes intersect and normal as a result of implementing the interface.   interface Thing { intersect: (ray: Ray) => Intersection; normal: (pos: Vector) => Vector; surface: Surface; } class Plane implements Thing { normal: (pos: Vector) =>Vector; intersect: (ray: Ray) =>Intersection; constructor (norm: Vector, offset: number, public surface: Surface) { this.normal = function (pos: Vector) { return norm; } this.intersect = function (ray: Ray): Intersection { var denom = Vector.dot(norm, ray.dir); if (denom > 0) { return null; } else { var dist = (Vector.dot(norm, ray.start) + offset) / (-denom); return { thing: this, ray: ray, dist: dist }; } } } }   At first glance it doesn’t appear that the surface member is implemented in Plane but it’s actually included automatically due to the public surface: Surface parameter in the constructor. Adding public varName: Type to a constructor automatically adds a typed variable into the class without having to explicitly write the code as with normal and intersect. TypeScript has additional language features but defining static types and creating classes, modules, and interfaces are some of the key features it offers. So is TypeScript right for you and your applications? That’s a not a question that I or anyone else can answer for you. You’ll need to give it a spin to see what you think. In future posts I’ll discuss additional details about TypeScript and how it can be used with enterprise-scale JavaScript applications. In the meantime, I’m in the process of working with John Papa on a new Typescript course for Pluralsight that we hope to have out in December of 2012.

    Read the article

  • Insurance Outlook: Just Right of Center

    - by Chuck Johnston Admin
    On Tuesday June 21st, PwC lead a session at the International Insurance Society meeting in Toronto focused on the opportunity in insurance.  The scenarios focusing on globalization, regulation and new areas of insurance opportunity were well defined and thought provoking, but the most interesting part of the session was the audience participation. PwC used a favorite strategic planning tool of mine, scenario planning, to highlight the important financial, political, social and technological dimensions that impact the insurance industry. Using wireless polling keypads, the audience was able to participate in scoring a range of possibilities across each dimension using a 1 to 5 ranking; 1 being generally negative or highly pessimistic scenarios and 5 being very positive or more confident scenarios. The results were then displayed on a screen with a line or "center" in the middle. "Left of center" was defined as being highly cautious and conservative, while "right of center" was defined as a more optimistic outlook for the industry's future. This session was attended by insurance carriers' senior leadership, leading insurance academics, senior regulators, and the occasional insurance technology executive. In general, the average answer fell just right of center, i.e. a little more positive or optimistic than center. Three years ago, after the 2008 financial crisis, I suspect the answers would have skewed more sharply to the left of center. This sense that things are generally getting better for insurers and that there is the potential for positive change pervaded the conference. There is still caution and concern around economic factors, regulation (especially the potential pitfalls of regulatory convergence with banking) and talent management, but in general, the industry outlook is more positive than it's been in several years. Chuck Johnston is vice president of industry strategy, Oracle Insurance. 

    Read the article

  • Variant Management– Which Approach fits for my Product?

    - by C. Chadwick
    Jürgen Kunz – Director Product Development – Oracle ORACLE Deutschland B.V. & Co. KG Introduction In a difficult economic environment, it is important for companies to understand the customer requirements in detail and to address them in their products. Customer specific products, however, usually cause increased costs. Variant management helps to find the best combination of standard components and custom components which balances customer’s product requirements and product costs. Depending on the type of product, different approaches to variant management will be applied. For example the automotive product “car” or electronic/high-tech products like a “computer”, with a pre-defined set of options to be combined in the individual configuration (so called “Assembled to Order” products), require a different approach to products in heavy machinery, which are (at least partially) engineered in a customer specific way (so-called “Engineered-to Order” products). This article discusses different approaches to variant management. Starting with the simple Bill of Material (BOM), this article presents three different approaches to variant management, which are provided by Agile PLM. Single level BOM and Variant BOM The single level BOM is the basic form of the BOM. The product structure is defined using assemblies and single parts. A particular product is thus represented by a fixed product structure. As soon as you have to manage product variants, the single level BOM is no longer sufficient. A variant BOM will be needed to manage product variants. The variant BOM is sometimes referred to as 150% BOM, since a variant BOM contains more parts and assemblies than actually needed to assemble the (final) product – just 150% of the parts You can evolve the variant BOM from the single level BOM by replacing single nodes with a placeholder node. The placeholder in this case represents the possible variants of a part or assembly. Product structure nodes, which are part of any product, are so-called “Must-Have” parts. “Optional” parts can be omitted in the final product. Additional attributes allow limiting the quantity of parts/assemblies which can be assigned at a certain position in the Variant BOM. Figure 1 shows the variant BOM of Agile PLM. Figure 1 Variant BOM in Agile PLM During the instantiation of the Variant BOM, the placeholders get replaced by specific variants of the parts and assemblies. The selection of the desired or appropriate variants is either done step by step by the user or by applying pre-defined configuration rules. As a result of the instantiation, an independent BOM will be created (Figure 2). Figure 2 Instantiated BOM in Agile PLM This kind of Variant BOM  can be used for „Assembled –To-Order“ type products as well as for „Engineered-to-Order“-type products. In case of “Assembled –To-Order” type products, typically the instantiation is done automatically with pre-defined configuration rules. For „Engineered- to-Order“-type products at least part of the product is selected manually to make use of customized parts/assemblies, that have been engineered according to the specific custom requirements. Template BOM The Template BOM is used for „Engineered-to-Order“-type products. It is another type of variant BOM. The engineer works in a flexible environment which allows him to build the most creative solutions. At the same time the engineer shall be guided to re-use existing solutions and it shall be assured that product variants of the same product family share the same base structure. The template BOM defines the basic structure of products belonging to the same product family. Let’s take a gearbox as an example. The customer specific configuration of the gearbox is influenced by several parameters (e.g. rpm range, transmitted torque), which are defined in the customer’s requirement document.  Figure 3 shows part of a Template BOM (yellow) and its relation to the product family hierarchy (blue).  Figure 3 Template BOM Every component of the Template BOM has links to the variants that have been engineeried so far for the component (depending on the level in the Template BOM, they are product variants, Assembly Variant or single part variants). This library of solutions, the so-called solution space, can be used by the engineers to build new product variants. In the best case, the engineer selects an existing solution variant, such as the gearbox shown in figure 3. When the existing variants do not fulfill the specific requirements, a new variant will be engineered. This new variant must be compliant with the given Template BOM. If we look at the gearbox in figure 3  it must consist of a transmission housing, a Connecting Plate, a set of Gears and a Planetary transmission – pre-assumed that all components are must have components. The new variant will enhance the solution space and is automatically available for re-use in future variants. The result of the instantiation of the Template BOM is a stand-alone BOM which represents the customer specific product variant. Modular BOM The concept of the modular BOM was invented in the automotive industry. Passenger cars are so-called „Assembled-to-Order“-products. The customer first selects the specific equipment of the car (so-called specifications) – for instance engine, audio equipment, rims, color. Based on this information the required parts will be determined and the customer specific car will be assembled. Certain combinations of specification are not available for the customer, because they are not feasible from technical perspective (e.g. a convertible with sun roof) or because the combination will not be offered for marketing reasons (e.g. steel rims with a sports line car). The modular BOM (yellow structure in figure 4) is defined in the context of a specific product family (in the sample it is product family „Speedstar“). It is the same modular BOM for the different types of cars of the product family (e.g. sedan, station wagon). The assembly or single parts of the car (blue nodes in figure 4) are assigned at the leaf level of the modular BOM. The assignment of assembly and parts to the modular BOM is enriched with a configuration rule (purple elements in figure 4). The configuration rule defines the conditions to use a specific assembly or single part. The configuration rule is valid in the context of a type of car (green elements in figure 4). Color specific parts are assigned to the color independent parts via additional configuration rules (grey elements in figure 4). The configuration rules use Boolean operators to connect the specifications. Additional consistency rules (constraints) may be used to define invalid combinations of specification (so-called exclusions). Furthermore consistency rules may be used to add specifications to the set of specifications. For instance it is important that a car with diesel engine always is build using the high capacity battery.  Figure 4 Modular BOM The calculation of the car configuration consists of several steps. First the consistency rules (constraints) are applied. Resulting from that specification might be added automatically. The second step will determine the assemblies and single parts for the complete structure of the modular BOM, by evaluating the configuration rules in the context of the current type of car. The evaluation of the rules for one component in the modular BOM might result in several rules being fulfilled. In this case the most specific rule (typically the longest rule) will win. Thanks to this approach, it is possible to add a specific variant to the modular BOM without the need to change any other configuration rules.  As a result the whole set of configuration rules is easy to maintain. Finally the color specific assemblies respective parts will be determined and the configuration is completed. Figure 5 Calculated Car Configuration The result of the car configuration is shown in figure 5. It shows the list of assemblies respective single parts (blue components in figure 5), which are required to build the customer specific car. Summary There are different approaches to variant management. Three different approaches have been presented in this article. At the end of the day, it is the type of the product which decides about the best approach.  For „Assembled to Order“-type products it is very likely that you can define the configuration rules and calculate the product variant automatically. Products of type „Engineered-to-Order“ ,however, need to be engineered. Nevertheless in the majority of cases, part of the product structure can be generated automatically in a similar way to „Assembled to Order“-tape products.  That said it is important first to analyze the product portfolio, in order to define the best approach to variant management.

    Read the article

  • Orthographic unit translation mismatch on grid (e.g. 64 pixels translates incorrectly)

    - by Justin Van Horne
    I am looking for some insight into a small problem with unit translations on a grid. Setup 512x448 window 64x64 grid gl_Position = projection * world * position; projection is defined by ortho(-w/2.0f, w/2.0f, -h/2.0f, h/2.0f); This is a textbook orthogonal projection function. world is defined by a fixed camera position at (0, 0) position is defined by the sprite's position. Problem In the screenshot below (1:1 scaling) the grid spacing is 64x64 and I am drawing the unit at (64, 64), however the unit draws roughly ~10px in the wrong position. I've tried uniform window dimensions to prevent any distortion on the pixel size, but now I am a bit lost in the proper way in providing a 1:1 pixel-to-world-unit projection. Anyhow, here are some quick images to aide in the problem. I decided to super-impose a bunch of the sprites at what the engine believes is 64x offsets. When this seemed off place, I went about and did the base case of 1 unit. Which seemed to line up as expected. The yellow shows a 1px difference in the movement. Vertices It would appear that the vertices going into the vertex shader are correct. For example, in reference to the first image the data looks like this in the VBO: x y x y ---------------------------- tl | 0.0 24.0 64.0 24.0 bl | 0.0 0.0 -> 64.0 0.0 tr | 16.0 0.0 80.0 0.0 br | 16.0 24.0 80.0 24.0 With that said, all I am left to believe is that I am munging up my actual projection. So, I am looking for any insight into maintaining the 1:1 pixel-to-world-unit projection.

    Read the article

  • Handy Tool for Code Cleanup: Automated Class Element Reordering

    - by Geertjan
    You're working on an application and this thought occurs to you: "Wouldn't it be cool if I could define rules specifying that all static members, initializers, and fields should always be at the top of the class? And then, whenever I wanted to, I'd start off a process that would actually do the reordering for me, moving class elements around, based on the rules I had defined, automatically, across one or more classes or packages or even complete code bases, all at the same time?" Well, here you go: That's where you can set rules for the ordering of your class members. A new hint (i.e., new in NetBeans IDE 7.3), which you need to enable yourself because by default it is disabled, let's the IDE show a hint in the Java Editor whenever there's code that isn't ordered according to the rules you defined: The first element in a file that the Java Editor identifies as not matching your rules gets a lightbulb hint shown in the left sidebar: Then, when you click the lightbulb, automatically the file is reordered according to your defined rules. However, it's not much fun going through each file individually to fix class elements as shown above. For that reason, you can go to "Refactor | Inspect and Transform". There, in the "Inspect and Transform" dialog, you can choose the hint shown above and then specify that you'd like it to be applied to a scope of your choice, which could be a file, a package, a project, combinations of these, or all of the open projects, as shown below: Then, when Inspect is clicked, the Refactoring window shows all the members that are ordered in ways that don't conform to your rules: Click "Do Refactoring" above and, in one fell swoop, all the class elements within the selected scope are ordered according to your rules.

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >