Search Results

Search found 2155 results on 87 pages for 'mathematical expressions'.

Page 28/87 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • Weblogic JMS System Error

    - by Jeune
    We're getting a JMS error which we don't have a lot to go with: org.springframework.jms.UncategorizedJmsException: Uncategorized exception occured during JMS processing; nested exception is weblogic.jms.common.JMSException:[JMSClientExceptions:055039] A system error has occurred. The error is java.lang.NullPointerException; nested exception is java.lang.NullPointerException at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:131) at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:115) at com.pg.ecom.jms.producer.FormsCRRProducer.sendMessage(FormsCRRProducer.java:56) at com.pg.ecom.cpgt.processruleagent.managerbean.forms.GenerateFormsManagerBean.useNewGetTemplateData(GenerateFormsManagerBean.java:522) at com.pg.ecom.cpgt.processruleagent.managerbean.forms.GenerateFormsManagerBean.doService(GenerateFormsManagerBean.java:114) at com.pg.ecom.fw.processcontainer.AbstractManagerBean.doServiceWrapper(AbstractManagerBean.java:175) at com.pg.ecom.fw.processcontainer.AbstractManagerBean.doServiceRequest(AbstractManagerBean.java:151) at com.pg.ecom.fw.processcontainer.AbstractServlet.doManagerBeanServiceAndPresentation(AbstractServlet.java:1911) at com.pg.ecom.cpgt.processunit.servlet.CportalParamServlet.doService(CportalParamServlet.java:107) at com.pg.ecom.fw.processcontainer.AbstractServlet.service(AbstractServlet.java:983) at javax.servlet.http.HttpServlet.service(HttpServlet.java:856) at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:227) at weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:125) at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:283) at weblogic.servlet.internal.TailFilter.doFilter(TailFilter.java:26) at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42) at com.pg.ecom.cpgt.processunit.filter.UploadMultipartFilter.doFilter(UploadMultipartFilter.java:28) at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42) at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3229) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:121) at weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2002) at weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:1908) at weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1362) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:209) at weblogic.work.ExecuteThread.run(ExecuteThread.java:181) The only lead I have is line 127 in the code which is indicated by this error: Caused by: weblogic.jms.common.JMSException: [JMSClientExceptions:055039]A system error has occurred. The error is java.lang.Nul lPointerException at weblogic.jms.client.JMSSession.handleException(JMSSession.java:2853) at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:629) at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:488) at weblogic.jms.client.WLConsumerImpl.receive(WLConsumerImpl.java:155) at org.springframework.jms.core.JmsTemplate.doReceive(JmsTemplate.java:734) at org.springframework.jms.core.JmsTemplate.doReceive(JmsTemplate.java:706) at org.springframework.jms.core.JmsTemplate$9.doInJms(JmsTemplate.java:681) at org.springframework.jms.core.JmsTemplate.execute(JmsTemplate.java:447) at org.springframework.jms.core.JmsTemplate.receiveSelected(JmsTemplate.java:679) at org.springframework.jms.core.JmsTemplate.receiveSelectedAndConvert(JmsTemplate.java:784) at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:127) ... 25 more This is line 127: try { Thread.yield(); //line 127 below status=(StatusMessageBean)getJmsTemplate.receiveSelectedAndConvert(statusDestination, "JMSCorrelationID='"+ producerMsg.getProcessID() +"'"); Thread.yield(); } catch (Exception e) { Thread.yield(); loggingInterface.doErrorLogging(e.fillInStackTrace()); } According to the BEA documentation, we should contact BEA about error 055039 but I would like to try asking here first before bringing this to them? Some more errors: Caused by: java.lang.NullPointerException at weblogic.jms.common.JMSVariableBinder$JMSCorrelationIDVariable.get(JMSVariableBinder.java:127) at weblogic.utils.expressions.Expression.evaluateExpr(Expression.java:271) at weblogic.utils.expressions.Expression.evaluateExpr(Expression.java:298) at weblogic.utils.expressions.Expression.evaluateBoolean(Expression.java:209) at weblogic.utils.expressions.Expression.evaluate(Expression.java:167) at weblogic.jms.common.JMSSQLFilter$Exp.evaluate(JMSSQLFilter.java:304) at weblogic.messaging.common.SQLFilter.match(SQLFilter.java:158) at weblogic.messaging.kernel.internal.MessageList.findNextVisible(MessageList.java:274) at weblogic.messaging.kernel.internal.QueueImpl.nextFromIteratorOrGroup(QueueImpl.java:441) at weblogic.messaging.kernel.internal.QueueImpl.nextMatchFromIteratorOrGroup(QueueImpl.java:350) at weblogic.messaging.kernel.internal.QueueImpl.get(QueueImpl.java:233) at weblogic.messaging.kernel.internal.QueueImpl.addReader(QueueImpl.java:1069) at weblogic.messaging.kernel.internal.ReceiveRequestImpl.start(ReceiveRequestImpl.java:178) at weblogic.messaging.kernel.internal.ReceiveRequestImpl.<init>(ReceiveRequestImpl.java:86) at weblogic.messaging.kernel.internal.QueueImpl.receive(QueueImpl.java:820) at weblogic.jms.backend.BEConsumerImpl.blockingReceiveStart(BEConsumerImpl.java:1172) at weblogic.jms.backend.BEConsumerImpl.receive(BEConsumerImpl.java:1383) at weblogic.jms.backend.BEConsumerImpl.invoke(BEConsumerImpl.java:1088) at weblogic.messaging.dispatcher.Request.wrappedFiniteStateMachine(Request.java:759) at weblogic.messaging.dispatcher.DispatcherImpl.dispatchAsyncInternal(DispatcherImpl.java:129) at weblogic.messaging.dispatcher.DispatcherImpl.dispatchAsync(DispatcherImpl.java:112) at weblogic.messaging.dispatcher.Request.dispatchAsync(Request.java:1046) at weblogic.jms.dispatcher.Request.dispatchAsync(Request.java:72) at weblogic.jms.frontend.FEConsumer.receive(FEConsumer.java:557) at weblogic.jms.frontend.FEConsumer.invoke(FEConsumer.java:806) at weblogic.messaging.dispatcher.Request.wrappedFiniteStateMachine(Request.java:759) at weblogic.messaging.dispatcher.DispatcherServerRef.invoke(DispatcherServerRef.java:276) at weblogic.messaging.dispatcher.DispatcherServerRef.handleRequest(DispatcherServerRef.java:141) at weblogic.messaging.dispatcher.DispatcherServerRef.access$000(DispatcherServerRef.java:36) at weblogic.messaging.dispatcher.DispatcherServerRef$2.run(DispatcherServerRef.java:112) ... 2 more Any ideas?

    Read the article

  • How to use objects as modules/functors in Scala?

    - by Jeff
    Hi. I want to use object instances as modules/functors, more or less as shown below: abstract class Lattice[E] extends Set[E] { val minimum: E val maximum: E def meet(x: E, y: E): E def join(x: E, y: E): E def neg(x: E): E } class Calculus[E](val lat: Lattice[E]) { abstract class Expr case class Var(name: String) extends Expr {...} case class Val(value: E) extends Expr {...} case class Neg(e1: Expr) extends Expr {...} case class Cnj(e1: Expr, e2: Expr) extends Expr {...} case class Dsj(e1: Expr, e2: Expr) extends Expr {...} } So that I can create a different calculus instance for each lattice (the operations I will perform need the information of which are the maximum and minimum values of the lattice). I want to be able to mix expressions of the same calculus but not be allowed to mix expressions of different ones. So far, so good. I can create my calculus instances, but problem is that I can not write functions in other classes that manipulate them. For example, I am trying to create a parser to read expressions from a file and return them; I also was trying to write an random expression generator to use in my tests with ScalaCheck. Turns out that every time a function generates an Expr object I can't use it outside the function. Even if I create the Calculus instance and pass it as an argument to the function that will in turn generate the Expr objects, the return of the function is not recognized as being of the same type of the objects created outside the function. Maybe my english is not clear enough, let me try a toy example of what I would like to do (not the real ScalaCheck generator, but close enough). def genRndExpr[E](c: Calculus[E], level: Int): Calculus[E]#Expr = { if (level > MAX_LEVEL) { val select = util.Random.nextInt(2) select match { case 0 => genRndVar(c) case 1 => genRndVal(c) } } else { val select = util.Random.nextInt(3) select match { case 0 => new c.Neg(genRndExpr(c, level+1)) case 1 => new c.Dsj(genRndExpr(c, level+1), genRndExpr(c, level+1)) case 2 => new c.Cnj(genRndExpr(c, level+1), genRndExpr(c, level+1)) } } } Now, if I try to compile the above code I get lots of error: type mismatch; found : plg.mvfml.Calculus[E]#Expr required: c.Expr case 0 = new c.Neg(genRndExpr(c, level+1)) And the same happens if I try to do something like: val boolCalc = new Calculus(Bool) val e1: boolCalc.Expr = genRndExpr(boolCalc) Please note that the generator itself is not of concern, but I will need to do similar things (i.e. create and manipulate calculus instance expressions) a lot on the rest of the system. Am I doing something wrong? Is it possible to do what I want to do? Help on this matter is highly needed and appreciated. Thanks a lot in advance. After receiving an answer from Apocalisp and trying it. Thanks a lot for the answer, but there are still some issues. The proposed solution was to change the signature of the function to: def genRndExpr[E, C <: Calculus[E]](c: C, level: Int): C#Expr I changed the signature for all the functions involved: getRndExpr, getRndVal and getRndVar. And I got the same error message everywhere I call these functions and got the following error message: error: inferred type arguments [Nothing,C] do not conform to method genRndVar's type parameter bounds [E,C genRndVar(c) Since the compiler seemed to be unable to figure out the right types I changed all function call to be like below: case 0 => new c.Neg(genRndExpr[E,C](c, level+1)) After this, on the first 2 function calls (genRndVal and genRndVar) there were no compiling error, but on the following 3 calls (recursive calls to genRndExpr), where the return of the function is used to build a new Expr object I got the following error: error: type mismatch; found : C#Expr required: c.Expr case 0 = new c.Neg(genRndExpr[E,C](c, level+1)) So, again, I'm stuck. Any help will be appreciated.

    Read the article

  • Why are there 3 conflicting OpenCV camera calibration formulas?

    - by John
    I'm having a problem with OpenCV's various parameterization of coordinates used for camera calibration purposes. The problem is that three different sources of information on image distortion formulae apparently give three non-equivalent description of the parameters and equations involved: (1) In their book "Learning OpenCV…" Bradski and Kaehler write regarding lens distortion (page 376): xcorrected = x * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ 2 * p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ], ycorrected = y * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ p1 * ( r^2 + 2 * y^2 ) + 2 * p2 * x * y ], where r = sqrt( x^2 + y^2 ). Assumably, (x, y) are the coordinates of pixels in the uncorrected captured image corresponding to world-point objects with coordinates (X, Y, Z), camera-frame referenced, for which xcorrected = fx * ( X / Z ) + cx and ycorrected = fy * ( Y / Z ) + cy, where fx, fy, cx, and cy, are the camera's intrinsic parameters. So, having (x, y) from a captured image, we can obtain the desired coordinates ( xcorrected, ycorrected ) to produced an undistorted image of the captured world scene by applying the above first two correction expressions. However... (2) The complication arises as we look at OpenCV 2.0 C Reference entry under the Camera Calibration and 3D Reconstruction section. For ease of comparison we start with all world-point (X, Y, Z) coordinates being expressed with respect to the camera's reference frame, just as in #1. Consequently, the transformation matrix [ R | t ] is of no concern. In the C reference, it is expressed that: x' = X / Z, y' = Y / Z, x'' = x' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ 2 * p1 * x' * y' + p2 * ( r'^2 + 2 * x'^2 ) ], y'' = y' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ p1 * ( r'^2 + 2 * y'^2 ) + 2 * p2 * x' * y' ], where r' = sqrt( x'^2 + y'^2 ), and finally that u = fx * x'' + cx, v = fy * y'' + cy. As one can see these expressions are not equivalent to those presented in #1, with the result that the two sets of corrected coordinates ( xcorrected, ycorrected ) and ( u, v ) are not the same. Why the contradiction? It seems to me the first set makes more sense as I can attach physical meaning to each and every x and y in there, while I find no physical meaning in x' = X / Z and y' = Y / Z when the camera focal length is not exactly 1. Furthermore, one cannot compute x' and y' for we don't know (X, Y, Z). (3) Unfortunately, things get even murkier when we refer to the writings in Intel's Open Source Computer Vision Library Reference Manual's section Lens Distortion (page 6-4), which states in part: "Let ( u, v ) be true pixel image coordinates, that is, coordinates with ideal projection, and ( u ~, v ~ ) be corresponding real observed (distorted) image coordinates. Similarly, ( x, y ) are ideal (distortion-free) and ( x ~, y ~ ) are real (distorted) image physical coordinates. Taking into account two expansion terms gives the following: x ~ = x * ( 1 + k1 * r^2 + k2 * r^4 ) + [ 2 p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ] y ~ = y * ( 1 + k1 * r^2 + k2 * r^4 ] + [ 2 p2 * x * y + p2 * ( r^2 + 2 * y^2 ) ], where r = sqrt( x^2 + y^2 ). ... "Because u ~ = cx + fx * u and v ~ = cy + fy * v , … the resultant system can be rewritten as follows: u ~ = u + ( u – cx ) * [ k1 * r^2 + k2 * r^4 + 2 * p1 * y + p2 * ( r^2 / x + 2 * x ) ] v ~ = v + ( v – cy ) * [ k1 * r^2 + k2 * r^4 + 2 * p2 * x + p1 * ( r^2 / y + 2 * y ) ] The latter relations are used to undistort images from the camera." Well, it would appear that the expressions involving x ~ and y ~ coincided with the two expressions given at the top of this writing involving xcorrected and ycorrected. However, x ~ and y ~ do not refer to corrected coordinates, according to the given description. I don't understand the distinction between the meaning of the coordinates ( x ~, y ~ ) and ( u ~, v ~ ), or for that matter, between the pairs ( x, y ) and ( u, v ). From their descriptions it appears their only distinction is that ( x ~, y ~ ) and ( x, y ) refer to 'physical' coordinates while ( u ~, v ~ ) and ( u, v ) do not. What is this distinction all about? Aren't they all physical coordinates? I'm lost! Thanks for any input!

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by joycsharp
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves all major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by Mohammad Ashraful Alam
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves most of the major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • Parsing HTML Documents with the Html Agility Pack

    Screen scraping is the process of programmatically accessing and processing information from an external website. For example, a price comparison website might screen scrape a variety of online retailers to build a database of products and what various retailers are selling them for. Typically, screen scraping is performed by mimicking the behavior of a browser - namely, by making an HTTP request from code and then parsing and analyzing the returned HTML. The .NET Framework offers a variety of classes for accessing data from a remote website, namely the WebClient class and the HttpWebRequest class. These classes are useful for making an HTTP request to a remote website and pulling down the markup from a particular URL, but they offer no assistance in parsing the returned HTML. Instead, developers commonly rely on string parsing methods like String.IndexOf, String.Substring, and the like, or through the use of regular expressions. Another option for parsing HTML documents is to use the Html Agility Pack, a free, open-source library designed to simplify reading from and writing to HTML documents. The Html Agility Pack constructs a Document Object Model (DOM) view of the HTML document being parsed. With a few lines of code, developers can walk through the DOM, moving from a node to its children, or vice versa. Also, the Html Agility Pack can return specific nodes in the DOM through the use of XPath expressions. (The Html Agility Pack also includes a class for downloading an HTML document from a remote website; this means you can both download and parse an external web page using the Html Agility Pack.) This article shows how to get started using the Html Agility Pack and includes a number of real-world examples that illustrate this library's utility. A complete, working demo is available for download at the end of this article. Read on to learn more! Read More >

    Read the article

  • Investigation: Can different combinations of components effect Dataflow performance?

    - by jamiet
    Introduction The Dataflow task is one of the core components (if not the core component) of SQL Server Integration Services (SSIS) and often the most misunderstood. This is not surprising, its an incredibly complicated beast and we’re abstracted away from that complexity via some boxes that go yellow red or green and that have some lines drawn between them. Example dataflow In this blog post I intend to look under that facade and get into some of the nuts and bolts of the Dataflow Task by investigating how the decisions we make when building our packages can affect performance. I will do this by comparing the performance of three dataflows that all have the same input, all produce the same output, but which all operate slightly differently by way of having different transformation components. I also want to use this blog post to challenge a common held opinion that I see perpetuated over and over again on the SSIS forum. That is, that people assume adding components to a dataflow will be detrimental to overall performance. Its not surprising that people think this –it is intuitive to think that more components means more work- however this is not a view that I share. I have always been of the opinion that there are many factors affecting dataflow duration and the number of components is actually one of the less important ones; having said that I have never proven that assertion and that is one reason for this investigation. I have actually seen evidence that some people think dataflow duration is simply a function of number of rows and number of components. I’ll happily call that one out as a myth even without any investigation!  The Setup I have a 2GB datafile which is a list of 4731904 (~4.7million) customer records with various attributes against them and it contains 2 columns that I am going to use for categorisation: [YearlyIncome] [BirthDate] The data file is a SSIS raw format file which I chose to use because it is the quickest way of getting data into a dataflow and given that I am testing the transformations, not the source or destination adapters, I want to minimise external influences as much as possible. In the test I will split the customers according to month of birth (12 of those) and whether or not their yearly income is above or below 50000 (2 of those); in other words I will be splitting them into 24 discrete categories and in order to do it I shall be using different combinations of SSIS’ Conditional Split and Derived Column transformation components. The 24 datapaths that occur will each input to a rowcount component, again because this is the least resource intensive means of terminating a datapath. The test is being carried out on a Dell XPS Studio laptop with a quad core (8 logical Procs) Intel Core i7 at 1.73GHz and Samsung SSD hard drive. Its running SQL Server 2008 R2 on Windows 7. The Variables Here are the three combinations of components that I am going to test:     One Conditional Split - A single Conditional Split component CSPL Split by Month of Birth and income category that will use expressions on [YearlyIncome] & [BirthDate] to send each row to one of 24 outputs. This next screenshot displays the expression logic in use: Derived Column & Conditional Split - A Derived Column component DER Income Category that adds a new column [IncomeCategory] which will contain one of two possible text values {“LessThan50000”,”GreaterThan50000”} and uses [YearlyIncome] to determine which value each row should get. A Conditional Split component CSPL Split by Month of Birth and Income Category then uses that new column in conjunction with [BirthDate] to determine which of the same 24 outputs to send each row to. Put more simply, I am separating the Conditional Split of #1 into a Derived Column and a Conditional Split. The next screenshots display the expression logic in use: DER Income Category         CSPL Split by Month of Birth and Income Category       Three Conditional Splits - A Conditional Split component that produces two outputs based on [YearlyIncome], one for each Income Category. Each of those outputs will go to a further Conditional Split that splits the input into 12 outputs, one for each month of birth (identical logic in each). In this case then I am separating the single Conditional Split of #1 into three Conditional Split components. The next screenshots display the expression logic in use: CSPL Split by Income Category         CSPL Split by Month of Birth 1& 2       Each of these combinations will provide an input to one of the 24 rowcount components, just the same as before. For illustration here is a screenshot of the dataflow containing three Conditional Split components: As you can these dataflows have a fair bit of work to do and remember that they’re doing that work for 4.7million rows. I will execute each dataflow 10 times and use the average for comparison. I foresee three possible outcomes: The dataflow containing just one Conditional Split (i.e. #1) will be quicker There is no significant difference between any of them One of the two dataflows containing multiple transformation components will be quicker Regardless of which of those outcomes come to pass we will have learnt something and that makes this an interesting test to carry out. Note that I will be executing the dataflows using dtexec.exe rather than hitting F5 within BIDS. The Results and Analysis The table below shows all of the executions, 10 for each dataflow. It also shows the average for each along with a standard deviation. All durations are in seconds. I’m pasting a screenshot because I frankly can’t be bothered with the faffing about needed to make a presentable HTML table. It is plain to see from the average that the dataflow containing three conditional splits is significantly faster, the other two taking 43% and 52% longer respectively. This seems strange though, right? Why does the dataflow containing the most components outperform the other two by such a big margin? The answer is actually quite logical when you put some thought into it and I’ll explain that below. Before progressing, a side note. The standard deviation for the “Three Conditional Splits” dataflow is orders of magnitude smaller – indicating that performance for this dataflow can be predicted with much greater confidence too. The Explanation I refer you to the screenshot above that shows how CSPL Split by Month of Birth and salary category in the first dataflow is setup. Observe that there is a case for each combination of Month Of Date and Income Category – 24 in total. These expressions get evaluated in the order that they appear and hence if we assume that Month of Date and Income Category are uniformly distributed in the dataset we can deduce that the expected number of expression evaluations for each row is 12.5 i.e. 1 (the minimum) + 24 (the maximum) divided by 2 = 12.5. Now take a look at the screenshots for the second dataflow. We are doing one expression evaluation in DER Income Category and we have the same 24 cases in CSPL Split by Month of Birth and Income Category as we had before, only the expression differs slightly. In this case then we have 1 + 12.5 = 13.5 expected evaluations for each row – that would account for the slightly longer average execution time for this dataflow. Now onto the third dataflow, the quick one. CSPL Split by Income Category does a maximum of 2 expression evaluations thus the expected number of evaluations per row is 1.5. CSPL Split by Month of Birth 1 & CSPL Split by Month of Birth 2 both have less work to do than the previous Conditional Split components because they only have 12 cases to test for thus the expected number of expression evaluations is 6.5 There are two of them so total expected number of expression evaluations for this dataflow is 6.5 + 6.5 + 1.5 = 14.5. 14.5 is still more than 12.5 & 13.5 though so why is the third dataflow so much quicker? Simple, the conditional expressions in the first two dataflows have two boolean predicates to evaluate – one for Income Category and one for Month of Birth; the expressions in the Conditional Split in the third dataflow however only have one predicate thus they are doing a lot less work. To sum up, the difference in execution times can be attributed to the difference between: MONTH(BirthDate) == 1 && YearlyIncome <= 50000 and MONTH(BirthDate) == 1 In the first two dataflows YearlyIncome <= 50000 gets evaluated an average of 12.5 times for every row whereas in the third dataflow it is evaluated once and once only. Multiply those 11.5 extra operations by 4.7million rows and you get a significant amount of extra CPU cycles – that’s where our duration difference comes from. The Wrap-up The obvious point here is that adding new components to a dataflow isn’t necessarily going to make it go any slower, moreover you may be able to achieve significant improvements by splitting logic over multiple components rather than one. Performance tuning is all about reducing the amount of work that needs to be done and that doesn’t necessarily mean use less components, indeed sometimes you may be able to reduce workload in ways that aren’t immediately obvious as I think I have proven here. Of course there are many variables in play here and your mileage will most definitely vary. I encourage you to download the package and see if you get similar results – let me know in the comments. The package contains all three dataflows plus a fourth dataflow that will create the 2GB raw file for you (you will also need the [AdventureWorksDW2008] sample database from which to source the data); simply disable all dataflows except the one you want to test before executing the package and remember, execute using dtexec, not within BIDS. If you want to explore dataflow performance tuning in more detail then here are some links you might want to check out: Inequality joins, Asynchronous transformations and Lookups Destination Adapter Comparison Don’t turn the dataflow into a cursor SSIS Dataflow – Designing for performance (webinar) Any comments? Let me know! @Jamiet

    Read the article

  • Multiline Replacement With Visual Studio

    - by Alois Kraus
    I had to remove some file headers in a bigger project which were all of the form #region File Header /*[ Compilation unit ----------------------------------------------------------       Name            : Class1.cs       Language        : C#     Creation Date   :      Description     : -----------------------------------------------------------------------------*/ /*] END */ #endregion I know that would be a cool thing to write a simple C# program use a recursive file search, read all lines skip the first n lines and write the files back to disc. But I wanted to test things first before I ruin my source files with one little typo. There comes the Visual Studio Search and Replace in Files dialog into the game. I can test my regular expression to do a multiline match with the Find button before actually breaking anything. And if something goes wrong I have the Undo button.   There is a nice blog post from Paulo Morgado online who deals with Multiline Regular expressions. The Visual Studio Regular expressions are non standard so you have to adapt your usual Regex know how to the other patterns. The pattern I cam finally up with is \#region File Header:b*(.*\n)@\#endregion The Regular expression can be read as \#region File Header Match “#region File Header” \# Escapes the # character since it is a quantifier. :b* After this none or more spaces or tabs can follow (:b stands for space or tab) (.*\n)@ Match anything across lines in a non greedy way (the @ character makes it non greedy) to prevent matching too much until the #endregion somewhere in our source file. \#endregion Match everything until “#endregion” is found I had always knew that Visual Studio can do it but I never bothered to learn the non standard Regex syntax. This is powerful and it is inside Visual Studio since 2005!

    Read the article

  • Groovy Debugging

    - by Vijay Allen Raj
    Groovy Debugging - An Overview:ADF BC developers may express snippets of business logic (like the following) as embedded groovy expressions: default / calculated attribute valuesvalidation rules / conditionserror message tokensLOV input values (VO) This approach has the advantages that: Groovy has a compact, EL-like syntax for expressing simple logicADF has extended this syntax to provide useful built-insembedded Groovy expressions are customizableGroovy debugging support helps improve maintainability of business logic expressed in Groovy.Following is an example how groovy debugging works.Example:This example shows how a script expression validator can be created and the groovy script debugged. It shows Step over, breakpoint functionalities as well as syntax coloring.Let us create a ADFBC application based on Emp and Dept tables, and add a script expression validator based on the script:  if (Sal >= 5000){ //If EmpSal is greater than a property value set on the custom //properties on the root AM //raise a custom exception else raise a custom warning if (Sal >= source.DBTransaction.rootApplicationModule.propertiesMap.salHigh) { adf.error.raise("ExcGreaterThanApplicationLimit"); } else { adf.error.warn("WarnGreaterThan5000"); } } else if (EmpSal <= 1000) { adf.error.raise("ExcTooLow"); }return true;In the Emp.xml Flat editor, place breakpoints at various locations as shown below:Right click the appmodule and click Debug. Enter a value greater than 5000 and click next. You can see the debugging work as shown below:  The code can be also be stepped over and debugged.

    Read the article

  • OLL Live webcast - Using SQL for Pattern Matching in Oracle Database

    - by KLaker
    If you are interested in learning about our exciting new 12c SQL pattern matching feature then mark your diaries. On Wednesday, October 30th at 8:00 am (US/Pacific time zone) Supriya Ananth, who is one of our top curriculum developers at Oracle, will be hosting an OLL webcast on our new SQL pattern matching feature. The ability to recognize patterns in a sequence of rows has been a capability that was widely desired, but not possible with SQL until now. Row pattern matching in native SQL improves application and development productivity and query efficiency for row-sequence analysis. With Oracle Database 12c you can use the new MATCH_RECOGNIZE clause to perform pattern matching in SQL to do the following: Logically partition and order the data using the PARTITION BY and ORDER BY clauses Use regular expressions syntax to define patterns of rows to seek using the PATTERN clause. These patterns a powerful and expressive feature, applied to the pattern variables you define. Specify the logical conditions required to map a row to a row pattern variable in the DEFINE clause. Define measures, which are expressions usable in the MEASURES clause of the SQL query. For more information and to register for this exciting webcast please visit the OLL Live website, see here: https://apex.oracle.com/pls/apex/f?p=44785:145:116820049307135::::P145_EVENT_ID,P145_PREV_PAGE:461,143.  Please note - if the above link does not work then go to OLL (https://apex.oracle.com/pls/apex/f?p=44785:1:) and click the OLL Live icon (upper right, beneath the Login link or logout link if you are already logged in). The pattern matching webcast is listed on the calendar of events on 30 October.

    Read the article

  • OOW content for Pattern Matching....

    - by KLaker
    If you missed my sessions at OpenWorld then don't worry - all the content we used for pattern matching (presentation and hands-on lab) is now available for download. My presentation "SQL: The Best Development Language for Big Data?" is available for download from the OOW Content Catalog, see here: https://oracleus.activeevents.com/2013/connect/sessionDetail.ww?SESSION_ID=9101 For the hands-on lab ("Pattern Matching at the Speed of Thought with Oracle Database 12c") we used the Oracle-By-Example content. The OOW hands-on lab uses Oracle Database 12c Release 1 (12.1) and uses the MATCH_RECOGNIZE clause to perform some basic pattern matching examples in SQL. This lab is broken down into four main steps: Logically partition and order the data that is used in the MATCH_RECOGNIZE clause with its PARTITION BY and ORDER BY clauses. Define patterns of rows to seek using the PATTERN clause of the MATCH_RECOGNIZE clause. These patterns use regular expressions syntax, a powerful and expressive feature, applied to the pattern variables you define. Specify the logical conditions required to map a row to a row pattern variable in the DEFINE clause. Define measures, which are expressions usable in the MEASURES clause of the SQL query. You can download the setup files to build the ticker schema and the student notes from the Oracle Learning Library. The direct link to the example on using pattern matching is here: http://apex.oracle.com/pls/apex/f?p=44785:24:0::NO:24:P24_CONTENT_ID,P24_PREV_PAGE:6781,2.

    Read the article

  • How often is seq used in Haskell production code?

    - by Giorgio
    I have some experience writing small tools in Haskell and I find it very intuitive to use, especially for writing filters (using interact) that process their standard input and pipe it to standard output. Recently I tried to use one such filter on a file that was about 10 times larger than usual and I got a Stack space overflow error. After doing some reading (e.g. here and here) I have identified two guidelines to save stack space (experienced Haskellers, please correct me if I write something that is not correct): Avoid recursive function calls that are not tail-recursive (this is valid for all functional languages that support tail-call optimization). Introduce seq to force early evaluation of sub-expressions so that expressions do not grow to large before they are reduced (this is specific to Haskell, or at least to languages using lazy evaluation). After introducing five or six seq calls in my code my tool runs smoothly again (also on the larger data). However, I find the original code was a bit more readable. Since I am not an experienced Haskell programmer I wanted to ask if introducing seq in this way is a common practice, and how often one will normally see seq in Haskell production code. Or are there any techniques that allow to avoid using seq too often and still use little stack space?

    Read the article

  • Java Magazine: Growing on Open

    - by Tori Wieldt
    The November/December issue of Java Magazine is now out, with several great Java stories, including: Growing on Open AgroSense provides an all-Java open source platform for sustainable farming and precision agriculture. An Engine for Big Data Hadoop uses Java for large-scale analytics. JavaFX in SpringStephen Chin shows you why to use the Spring framework on the client. JCP Executive Q&A: Mike MilinkovichThe Eclipse Foundation’s executive director assesses the state of Java and the JCP. Exploring Lambda Expressions for the Java Language and the JVMBen Evans, Martijn Verburg, and Trisha Gee help you get ready for lambda expressions in Java SE 8. Get Started with Java SE for Embedded Devices on Raspberry PiWe walk you through getting Linux and Java SE for Embedded Devices to run on the Raspberry Pi in less than an hour. Java NationGet the news from JavaOne 2012 in San Francisco. Java Magazine is a bi-monthly online publication. It includes technical articles on the Java language and platform; Java innovations and innovators; JUG and JCP news; Java events; links to online Java communities; and videos and multimedia demos. Subscriptions are free. Do you have feedback about Java Magazine? Send a tweet to @oraclejavamag.

    Read the article

  • Stylecop 4.7.36.0 is out!

    - by TATWORTH
    Stylecop 4.7.36.0 has been released at http://stylecop.codeplex.com/releases/view/79972This is an update to coincide with the latest ReSharper. The full fix list is:4.7.36.0 (508dbac00ffc)=======================Fix for 7344. Don't throw 1126 inside default expressions.Fix for 7371. Compare Namespace parts using the CurrentCulture and not InvariantCulture.Fix for 7386. Don't throw casing violations for filed names in languages that do not support case (like Chinese). Added new tests.fix for 7380. Catch Exception caused by CRM Toolkit.Update ReSharper 7.0 dependency to 7.0.1 (7.0.1098.2760)Fix for 7358. Use the RuleId in the call to MSBuild Logging.Fix for 7348. Update suggestion text for constructors.Fix for 7364. Don't throw 1126 for New Array Expressions.Fix for 7372. Throw 1126 inside catch blocks wasn't working. Add new tests.Fix for 7369. Await is allowed to be inside parenthesis. Add new tests.Fix testsCorrect styling issues.Fix for 7373. Typeparam violations were not being thrown in all cases. Added new tests.Fix for 7361. Rule 1120 was logging against the root element and so Suppressions wouldn't work. Fixed and added tests.Updating de-DE resources - from Michael Diermeier - thank you.Change for 7368. Add the violation count into the Task outputs.Fix for 7383. Fix for memory leak in plugins.Update environment to detect ReSharper 7Fix for 7378. Null reference exception from command line run in message output.Update release history.

    Read the article

  • Replacement Text Syntax for JavaScript’s String.replace()

    - by Jan Goyvaerts
    A RegexBuddy user told me that he couldn’t easily find a detailed explanation of the replacement text syntax supported by the String.replace() function in JavaScript. I had to admin that my own web page about JavaScript’s regular expression support was also lacking. I’ve now added a new Replacement Syntax section that has all the details. I’ll summarize it here: $1: Text matched by the first capturing group or the literal text $1 if the regex has no capturing groups. $99: Text matched by the 99th capturing group if the regex has 99 or more groups. Text matched by the 9th capturing group followed by a literal 9 if the regex has 9 or more but less than 99 groups. The literal text $99 if the regex has fewer than 9 groups. $+: Text matched by the highest-numbered capturing group. Replaced with nothing if the highest-numbered group didn’t participate in the match. $&: Text matched by the entire regex. You cannot use $0 for this. $` (backtick): Text to the left of the regex match. $' (single quote): Text to the right of the regex match. $_: The entire subject string.

    Read the article

  • Python 3.4 adds re.fullmatch()

    - by Jan Goyvaerts
    Python 3.4 does not bring any changes to its regular expression syntax compared to previous 3.x releases. It does add one new function to the re module called fullmatch(). This function takes a regular expression and a subject string as its parameters. It returns True if the regular expression can match the string entirely. It returns False if the string cannot be matched or if it can only be matched partially. This is useful when using a regular expression to validate user input. Do note that fullmatch() will return True if the subject string is the empty string and the regular expression can find zero-length matches. A zero-length match of a zero-length string is a complete match. So if you want to check whether the user entered a sequence of digits, use \d+ rather than \d* as the regex.

    Read the article

  • Bug in Delphi XE RegularExpressions Unit

    - by Jan Goyvaerts
    Using the new RegularExpressions unit in Delphi XE, you can iterate over all the matches that a regex finds in a string like this: procedure TForm1.Button1Click(Sender: TObject); var RegEx: TRegEx; Match: TMatch; begin RegEx := TRegex.Create('\w+'); Match := RegEx.Match('One two three four'); while Match.Success do begin Memo1.Lines.Add(Match.Value); Match := Match.NextMatch; end end; Or you could save yourself two lines of code by using the static TRegEx.Match call: procedure TForm1.Button2Click(Sender: TObject); var Match: TMatch; begin Match := TRegEx.Match('One two three four', '\w+'); while Match.Success do begin Memo1.Lines.Add(Match.Value); Match := Match.NextMatch; end end; Unfortunately, due to a bug in the RegularExpressions unit, the static call doesn’t work. Depending on your exact code, you may get fewer matches or blank matches than you should, or your application may crash with an access violation. The RegularExpressions unit defines TRegEx and TMatch as records. That way you don’t have to explicitly create and destroy them. Internally, TRegEx uses TPerlRegEx to do the heavy lifting. TPerlRegEx is a class that needs to be created and destroyed like any other class. If you look at the TRegEx source code, you’ll notice that it uses an interface to destroy the TPerlRegEx instance when TRegEx goes out of scope. Interfaces are reference counted in Delphi, making them usable for automatic memory management. The bug is that TMatch and TGroupCollection also need the TPerlRegEx instance to do their work. TRegEx passes its TPerlRegEx instance to TMatch and TGroupCollection, but it does not pass the instance of the interface that is responsible for destroying TPerlRegEx. This is not a problem in our first code sample. TRegEx stays in scope until we’re done with TMatch. The interface is destroyed when Button1Click exits. In the second code sample, the static TRegEx.Match call creates a local variable of type TRegEx. This local variable goes out of scope when TRegEx.Match returns. Thus the reference count on the interface reaches zero and TPerlRegEx is destroyed when TRegEx.Match returns. When we call MatchAgain the TMatch record tries to use a TPerlRegEx instance that has already been destroyed. To fix this bug, delete or rename the two RegularExpressions.dcu files and copy RegularExpressions.pas into your source code folder. Make these changes to both the TMatch and TGroupCollection records in this unit: Declare FNotifier: IInterface; in the private section. Add the parameter ANotifier: IInterface; to the Create constructor. Assign FNotifier := ANotifier; in the constructor’s implementation. You also need to add the ANotifier: IInterface; parameter to the TMatchCollection.Create constructor. Now try to compile some code that uses the RegularExpressions unit. The compiler will flag all calls to TMatch.Create, TGroupCollection.Create and TMatchCollection.Create. Fix them by adding the ANotifier or FNotifier parameter, depending on whether ARegEx or FRegEx is being passed. With these fixes, the TPerlRegEx instance won’t be destroyed until the last TRegEx, TMatch, or TGroupCollection that uses it goes out of scope or is used with a different regular expression.

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sam Drake
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sherry LaMonica
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • .NET HTML Sanitation for rich HTML Input

    - by Rick Strahl
    Recently I was working on updating a legacy application to MVC 4 that included free form text input. When I set up the new site my initial approach was to not allow any rich HTML input, only simple text formatting that would respect a few simple HTML commands for bold, lists etc. and automatically handles line break processing for new lines and paragraphs. This is typical for what I do with most multi-line text input in my apps and it works very well with very little development effort involved. Then the client sprung another note: Oh by the way we have a bunch of customers (real estate agents) who need to post complete HTML documents. Oh uh! There goes the simple theory. After some discussion and pleading on my part (<snicker>) to try and avoid this type of raw HTML input because of potential XSS issues, the client decided to go ahead and allow raw HTML input anyway. There has been lots of discussions on this subject on StackOverFlow (and here and here) but to after reading through some of the solutions I didn't really find anything that would work even closely for what I needed. Specifically we need to be able to allow just about any HTML markup, with the exception of script code. Remote CSS and Images need to be loaded, links need to work and so. While the 'legit' HTML posted by these agents is basic in nature it does span most of the full gamut of HTML (4). Most of the solutions XSS prevention/sanitizer solutions I found were way to aggressive and rendered the posted output unusable mostly because they tend to strip any externally loaded content. In short I needed a custom solution. I thought the best solution to this would be to use an HTML parser - in this case the Html Agility Pack - and then to run through all the HTML markup provided and remove any of the blacklisted tags and a number of attributes that are prone to JavaScript injection. There's much discussion on whether to use blacklists vs. whitelists in the discussions mentioned above, but I found that whitelists can make sense in simple scenarios where you might allow manual HTML input, but when you need to allow a larger array of HTML functionality a blacklist is probably easier to manage as the vast majority of elements and attributes could be allowed. Also white listing gets a bit more complex with HTML5 and the new proliferation of new HTML tags and most new tags generally don't affect XSS issues directly. Pure whitelisting based on elements and attributes also doesn't capture many edge cases (see some of the XSS cheat sheets listed below) so even with a white list, custom logic is still required to handle many of those edge cases. The Microsoft Web Protection Library (AntiXSS) My first thought was to check out the Microsoft AntiXSS library. Microsoft has an HTML Encoding and Sanitation library in the Microsoft Web Protection Library (formerly AntiXSS Library) on CodePlex, which provides stricter functions for whitelist encoding and sanitation. Initially I thought the Sanitation class and its static members would do the trick for me,but I found that this library is way too restrictive for my needs. Specifically the Sanitation class strips out images and links which rendered the full HTML from our real estate clients completely useless. I didn't spend much time with it, but apparently I'm not alone if feeling this library is not really useful without some way to configure operation. To give you an example of what didn't work for me with the library here's a small and simple HTML fragment that includes script, img and anchor tags. I would expect the script to be stripped and everything else to be left intact. Here's the original HTML:var value = "<b>Here</b> <script>alert('hello')</script> we go. Visit the " + "<a href='http://west-wind.com'>West Wind</a> site. " + "<img src='http://west-wind.com/images/new.gif' /> " ; and the code to sanitize it with the AntiXSS Sanitize class:@Html.Raw(Microsoft.Security.Application.Sanitizer.GetSafeHtmlFragment(value)) This produced a not so useful sanitized string: Here we go. Visit the <a>West Wind</a> site. While it removed the <script> tag (good) it also removed the href from the link and the image tag altogether (bad). In some situations this might be useful, but for most tasks I doubt this is the desired behavior. While links can contain javascript: references and images can 'broadcast' information to a server, without configuration to tell the library what to restrict this becomes useless to me. I couldn't find any way to customize the white list, nor is there code available in this 'open source' library on CodePlex. Using Html Agility Pack for HTML Parsing The WPL library wasn't going to cut it. After doing a bit of research I decided the best approach for a custom solution would be to use an HTML parser and inspect the HTML fragment/document I'm trying to import. I've used the HTML Agility Pack before for a number of apps where I needed an HTML parser without requiring an instance of a full browser like the Internet Explorer Application object which is inadequate in Web apps. In case you haven't checked out the Html Agility Pack before, it's a powerful HTML parser library that you can use from your .NET code. It provides a simple, parsable HTML DOM model to full HTML documents or HTML fragments that let you walk through each of the elements in your document. If you've used the HTML or XML DOM in a browser before you'll feel right at home with the Agility Pack. Blacklist based HTML Parsing to strip XSS Code For my purposes of HTML sanitation, the process involved is to walk the HTML document one element at a time and then check each element and attribute against a blacklist. There's quite a bit of argument of what's better: A whitelist of allowed items or a blacklist of denied items. While whitelists tend to be more secure, they also require a lot more configuration. In the case of HTML5 a whitelist could be very extensive. For what I need, I only want to ensure that no JavaScript is executed, so a blacklist includes the obvious <script> tag plus any tag that allows loading of external content including <iframe>, <object>, <embed> and <link> etc. <form>  is also excluded to avoid posting content to a different location. I also disallow <head> and <meta> tags in particular for my case, since I'm only allowing posting of HTML fragments. There is also some internal logic to exclude some attributes or attributes that include references to JavaScript or CSS expressions. The default tag blacklist reflects my use case, but is customizable and can be added to. Here's my HtmlSanitizer implementation:using System.Collections.Generic; using System.IO; using System.Xml; using HtmlAgilityPack; namespace Westwind.Web.Utilities { public class HtmlSanitizer { public HashSet<string> BlackList = new HashSet<string>() { { "script" }, { "iframe" }, { "form" }, { "object" }, { "embed" }, { "link" }, { "head" }, { "meta" } }; /// <summary> /// Cleans up an HTML string and removes HTML tags in blacklist /// </summary> /// <param name="html"></param> /// <returns></returns> public static string SanitizeHtml(string html, params string[] blackList) { var sanitizer = new HtmlSanitizer(); if (blackList != null && blackList.Length > 0) { sanitizer.BlackList.Clear(); foreach (string item in blackList) sanitizer.BlackList.Add(item); } return sanitizer.Sanitize(html); } /// <summary> /// Cleans up an HTML string by removing elements /// on the blacklist and all elements that start /// with onXXX . /// </summary> /// <param name="html"></param> /// <returns></returns> public string Sanitize(string html) { var doc = new HtmlDocument(); doc.LoadHtml(html); SanitizeHtmlNode(doc.DocumentNode); //return doc.DocumentNode.WriteTo(); string output = null; // Use an XmlTextWriter to create self-closing tags using (StringWriter sw = new StringWriter()) { XmlWriter writer = new XmlTextWriter(sw); doc.DocumentNode.WriteTo(writer); output = sw.ToString(); // strip off XML doc header if (!string.IsNullOrEmpty(output)) { int at = output.IndexOf("?>"); output = output.Substring(at + 2); } writer.Close(); } doc = null; return output; } private void SanitizeHtmlNode(HtmlNode node) { if (node.NodeType == HtmlNodeType.Element) { // check for blacklist items and remove if (BlackList.Contains(node.Name)) { node.Remove(); return; } // remove CSS Expressions and embedded script links if (node.Name == "style") { if (string.IsNullOrEmpty(node.InnerText)) { if (node.InnerHtml.Contains("expression") || node.InnerHtml.Contains("javascript:")) node.ParentNode.RemoveChild(node); } } // remove script attributes if (node.HasAttributes) { for (int i = node.Attributes.Count - 1; i >= 0; i--) { HtmlAttribute currentAttribute = node.Attributes[i]; var attr = currentAttribute.Name.ToLower(); var val = currentAttribute.Value.ToLower(); span style="background: white; color: green">// remove event handlers if (attr.StartsWith("on")) node.Attributes.Remove(currentAttribute); // remove script links else if ( //(attr == "href" || attr== "src" || attr == "dynsrc" || attr == "lowsrc") && val != null && val.Contains("javascript:")) node.Attributes.Remove(currentAttribute); // Remove CSS Expressions else if (attr == "style" && val != null && val.Contains("expression") || val.Contains("javascript:") || val.Contains("vbscript:")) node.Attributes.Remove(currentAttribute); } } } // Look through child nodes recursively if (node.HasChildNodes) { for (int i = node.ChildNodes.Count - 1; i >= 0; i--) { SanitizeHtmlNode(node.ChildNodes[i]); } } } } } Please note: Use this as a starting point only for your own parsing and review the code for your specific use case! If your needs are less lenient than mine were you can you can make this much stricter by not allowing src and href attributes or CSS links if your HTML doesn't allow it. You can also check links for external URLs and disallow those - lots of options.  The code is simple enough to make it easy to extend to fit your use cases more specifically. It's also quite easy to make this code work using a WhiteList approach if you want to go that route. The code above is semi-generic for allowing full featured HTML fragments that only disallow script related content. The Sanitize method walks through each node of the document and then recursively drills into all of its children until the entire document has been traversed. Note that the code here uses an XmlTextWriter to write output - this is done to preserve XHTML style self-closing tags which are otherwise left as non-self-closing tags. The sanitizer code scans for blacklist elements and removes those elements not allowed. Note that the blacklist is configurable either in the instance class as a property or in the static method via the string parameter list. Additionally the code goes through each element's attributes and looks for a host of rules gleaned from some of the XSS cheat sheets listed at the end of the post. Clearly there are a lot more XSS vulnerabilities, but a lot of them apply to ancient browsers (IE6 and versions of Netscape) - many of these glaring holes (like CSS expressions - WTF IE?) have been removed in modern browsers. What a Pain To be honest this is NOT a piece of code that I wanted to write. I think building anything related to XSS is better left to people who have far more knowledge of the topic than I do. Unfortunately, I was unable to find a tool that worked even closely for me, or even provided a working base. For the project I was working on I had no choice and I'm sharing the code here merely as a base line to start with and potentially expand on for specific needs. It's sad that Microsoft Web Protection Library is currently such a train wreck - this is really something that should come from Microsoft as the systems vendor or possibly a third party that provides security tools. Luckily for my application we are dealing with a authenticated and validated users so the user base is fairly well known, and relatively small - this is not a wide open Internet application that's directly public facing. As I mentioned earlier in the post, if I had my way I would simply not allow this type of raw HTML input in the first place, and instead rely on a more controlled HTML input mechanism like MarkDown or even a good HTML Edit control that can provide some limits on what types of input are allowed. Alas in this case I was overridden and we had to go forward and allow *any* raw HTML posted. Sometimes I really feel sad that it's come this far - how many good applications and tools have been thwarted by fear of XSS (or worse) attacks? So many things that could be done *if* we had a more secure browser experience and didn't have to deal with every little script twerp trying to hack into Web pages and obscure browser bugs. So much time wasted building secure apps, so much time wasted by others trying to hack apps… We're a funny species - no other species manages to waste as much time, effort and resources as we humans do :-) Resources Code on GitHub Html Agility Pack XSS Cheat Sheet XSS Prevention Cheat Sheet Microsoft Web Protection Library (AntiXss) StackOverflow Links: http://stackoverflow.com/questions/341872/html-sanitizer-for-net http://blog.stackoverflow.com/2008/06/safe-html-and-xss/ http://code.google.com/p/subsonicforums/source/browse/trunk/SubSonic.Forums.Data/HtmlScrubber.cs?r=61© Rick Strahl, West Wind Technologies, 2005-2012Posted in Security  HTML  ASP.NET  JavaScript   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • The Execute SQL Task

    In this article we are going to take you through the Execute SQL Task in SQL Server Integration Services for SQL Server 2005 (although it appies just as well to SQL Server 2008).  We will be covering all the essentials that you will need to know to effectively use this task and make it as flexible as possible. The things we will be looking at are as follows: A tour of the Task. The properties of the Task. After looking at these introductory topics we will then get into some examples. The examples will show different types of usage for the task: Returning a single value from a SQL query with two input parameters. Returning a rowset from a SQL query. Executing a stored procedure and retrieveing a rowset, a return value, an output parameter value and passing in an input parameter. Passing in the SQL Statement from a variable. Passing in the SQL Statement from a file. Tour Of The Task Before we can start to use the Execute SQL Task in our packages we are going to need to locate it in the toolbox. Let's do that now. Whilst in the Control Flow section of the package expand your toolbox and locate the Execute SQL Task. Below is how we found ours. Now drag the task onto the designer. As you can see from the following image we have a validation error appear telling us that no connection manager has been assigned to the task. This can be easily remedied by creating a connection manager. There are certain types of connection manager that are compatable with this task so we cannot just create any connection manager and these are detailed in a few graphics time. Double click on the task itself to take a look at the custom user interface provided to us for this task. The task will open on the general tab as shown below. Take a bit of time to have a look around here as throughout this article we will be revisting this page many times. Whilst on the general tab, drop down the combobox next to the ConnectionType property. In here you will see the types of connection manager which this task will accept. As with SQL Server 2000 DTS, SSIS allows you to output values from this task in a number of formats. Have a look at the combobox next to the Resultset property. The major difference here is the ability to output into XML. If you drop down the combobox next to the SQLSourceType property you will see the ways in which you can pass a SQL Statement into the task itself. We will have examples of each of these later on but certainly when we saw these for the first time we were very excited. Next to the SQLStatement property if you click in the empty box next to it you will see ellipses appear. Click on them and you will see the very basic query editor that becomes available to you. Alternatively after you have specified a connection manager for the task you can click on the Build Query button to bring up a completely different query editor. This is slightly inconsistent. Once you've finished looking around the general tab, move on to the next tab which is the parameter mapping tab. We shall, again, be visiting this tab throughout the article but to give you an initial heads up this is where you define the input, output and return values from your task. Note this is not where you specify the resultset. If however you now move on to the ResultSet tab this is where you define what variable will receive the output from your SQL Statement in whatever form that is. Property Expressions are one of the most amazing things to happen in SSIS and they will not be covered here as they deserve a whole article to themselves. Watch out for this as their usefulness will astound you. For a more detailed discussion of what should be the parameter markers in the SQL Statements on the General tab and how to map them to variables on the Parameter Mapping tab see Working with Parameters and Return Codes in the Execute SQL Task. Task Properties There are two places where you can specify the properties for your task. One is in the task UI itself and the other is in the property pane which will appear if you right click on your task and select Properties from the context menu. We will be doing plenty of property setting in the UI later so let's take a moment to have a look at the property pane. Below is a graphic showing our properties pane. Now we shall take you through all the properties and tell you exactly what they mean. A lot of these properties you will see across all tasks as well as the package because of everything's base structure The Container. BypassPrepare Should the statement be prepared before sending to the connection manager destination (True/False) Connection This is simply the name of the connection manager that the task will use. We can get this from the connection manager tray at the bottom of the package. DelayValidation Really interesting property and it tells the task to not validate until it actually executes. A usage for this may be that you are operating on table yet to be created but at runtime you know the table will be there. Description Very simply the description of your Task. Disable Should the task be enabled or not? You can also set this through a context menu by right clicking on the task itself. DisableEventHandlers As a result of events that happen in the task, should the event handlers for the container fire? ExecValueVariable The variable assigned here will get or set the execution value of the task. Expressions Expressions as we mentioned earlier are a really powerful tool in SSIS and this graphic below shows us a small peek of what you can do. We select a property on the left and assign an expression to the value of that property on the right causing the value to be dynamically changed at runtime. One of the most obvious uses of this is that the property value can be built dynamically from within the package allowing you a great deal of flexibility FailPackageOnFailure If this task fails does the package? FailParentOnFailure If this task fails does the parent container? A task can he hosted inside another container i.e. the For Each Loop Container and this would then be the parent. ForcedExecutionValue This property allows you to hard code an execution value for the task. ForcedExecutionValueType What is the datatype of the ForcedExecutionValue? ForceExecutionResult Force the task to return a certain execution result. This could then be used by the workflow constraints. Possible values are None, Success, Failure and Completion. ForceExecutionValue Should we force the execution result? IsolationLevel This is the transaction isolation level of the task. IsStoredProcedure Certain optimisations are made by the task if it knows that the query is a Stored Procedure invocation. The docs say this will always be false unless the connection is an ADO connection. LocaleID Gets or sets the LocaleID of the container. LoggingMode Should we log for this container and what settings should we use? The value choices are UseParentSetting, Enabled and Disabled. MaximumErrorCount How many times can the task fail before we call it a day? Name Very simply the name of the task. ResultSetType How do you want the results of your query returned? The choices are ResultSetType_None, ResultSetType_SingleRow, ResultSetType_Rowset and ResultSetType_XML. SqlStatementSource Your Query/SQL Statement. SqlStatementSourceType The method of specifying the query. Your choices here are DirectInput, FileConnection and Variables TimeOut How long should the task wait to receive results? TransactionOption How should the task handle being asked to join a transaction? Usage Examples As we move through the examples we will only cover in them what we think you must know and what we think you should see. This means that some of the more elementary steps like setting up variables will be covered in the early examples but skipped and simply referred to in later ones. All these examples used the AventureWorks database that comes with SQL Server 2005. Returning a Single Value, Passing in Two Input Parameters So the first thing we are going to do is add some variables to our package. The graphic below shows us those variables having been defined. Here the CountOfEmployees variable will be used as the output from the query and EndDate and StartDate will be used as input parameters. As you can see all these variables have been scoped to the package. Scoping allows us to have domains for variables. Each container has a scope and remember a package is a container as well. Variable values of the parent container can be seen in child containers but cannot be passed back up to the parent from a child. Our following graphic has had a number of changes made. The first of those changes is that we have created and assigned an OLEDB connection manager to this Task ExecuteSQL Task Connection. The next thing is we have made sure that the SQLSourceType property is set to Direct Input as we will be writing in our statement ourselves. We have also specified that only a single row will be returned from this query. The expressions we typed in was: SELECT COUNT(*) AS CountOfEmployees FROM HumanResources.Employee WHERE (HireDate BETWEEN ? AND ?) Moving on now to the Parameter Mapping tab this is where we are going to tell the task about our input paramaters. We Add them to the window specifying their direction and datatype. A quick word here about the structure of the variable name. As you can see SSIS has preceeded the variable with the word user. This is a default namespace for variables but you can create your own. When defining your variables if you look at the variables window title bar you will see some icons. If you hover over the last one on the right you will see it says "Choose Variable Columns". If you click the button you will see a list of checkbox options and one of them is namespace. after checking this you will see now where you can define your own namespace. The next tab, result set, is where we need to get back the value(s) returned from our statement and assign to a variable which in our case is CountOfEmployees so we can use it later perhaps. Because we are only returning a single value then if you remember from earlier we are allowed to assign a name to the resultset but it must be the name of the column (or alias) from the query. A really cool feature of Business Intelligence Studio being hosted by Visual Studio is that we get breakpoint support for free. In our package we set a Breakpoint so we can break the package and have a look in a watch window at the variable values as they appear to our task and what the variable value of our resultset is after the task has done the assignment. Here's that window now. As you can see the count of employess that matched the data range was 2. Returning a Rowset In this example we are going to return a resultset back to a variable after the task has executed not just a single row single value. There are no input parameters required so the variables window is nice and straight forward. One variable of type object. Here is the statement that will form the soure for our Resultset. select p.ProductNumber, p.name, pc.Name as ProductCategoryNameFROM Production.ProductCategory pcJOIN Production.ProductSubCategory pscON pc.ProductCategoryID = psc.ProductCategoryIDJOIN Production.Product pON psc.ProductSubCategoryID = p.ProductSubCategoryID We need to make sure that we have selected Full result set as the ResultSet as shown below on the task's General tab. Because there are no input parameters we can skip the parameter mapping tab and move straight to the Result Set tab. Here we need to Add our variable defined earlier and map it to the result name of 0 (remember we covered this earlier) Once we run the task we can again set a breakpoint and have a look at the values coming back from the task. In the following graphic you can see the result set returned to us as a COM object. We can do some pretty interesting things with this COM object and in later articles that is exactly what we shall be doing. Return Values, Input/Output Parameters and Returning a Rowset from a Stored Procedure This example is pretty much going to give us a taste of everything. We have already covered in the previous example how to specify the ResultSet to be a Full result set so we will not cover it again here. For this example we are going to need 4 variables. One for the return value, one for the input parameter, one for the output parameter and one for the result set. Here is the statement we want to execute. Note how much cleaner it is than if you wanted to do it using the current version of DTS. In the Parameter Mapping tab we are going to Add our variables and specify their direction and datatypes. In the Result Set tab we can now map our final variable to the rowset returned from the stored procedure. It really is as simple as that and we were amazed at how much easier it is than in DTS 2000. Passing in the SQL Statement from a Variable SSIS as we have mentioned is hugely more flexible than its predecessor and one of the things you will notice when moving around the tasks and the adapters is that a lot of them accept a variable as an input for something they need. The ExecuteSQL task is no different. It will allow us to pass in a string variable as the SQL Statement. This variable value could have been set earlier on from inside the package or it could have been populated from outside using a configuration. The ResultSet property is set to single row and we'll show you why in a second when we look at the variables. Note also the SQLSourceType property. Here's the General Tab again. Looking at the variable we have in this package you can see we have only two. One for the return value from the statement and one which is obviously for the statement itself. Again we need to map the Result name to our variable and this can be a named Result Name (The column name or alias returned by the query) and not 0. The expected result into our variable should be the amount of rows in the Person.Contact table and if we look in the watch window we see that it is.   Passing in the SQL Statement from a File The final example we are going to show is a really interesting one. We are going to pass in the SQL statement to the task by using a file connection manager. The file itself contains the statement to run. The first thing we are going to need to do is create our file connection mananger to point to our file. Click in the connections tray at the bottom of the designer, right click and choose "New File Connection" As you can see in the graphic below we have chosen to use an existing file and have passed in the name as well. Have a look around at the other "Usage Type" values available whilst you are here. Having set that up we can now see in the connection manager tray our file connection manager sitting alongside our OLE-DB connection we have been using for the rest of these examples. Now we can go back to the familiar General Tab to set up how the task will accept our file connection as the source. All the other properties in this task are set up exactly as we have been doing for other examples depending on the options chosen so we will not cover them again here.   We hope you will agree that the Execute SQL Task has changed considerably in this release from its DTS predecessor. It has a lot of options available but once you have configured it a few times you get to learn what needs to go where. We hope you have found this article useful.

    Read the article

  • Understanding RTF and edit it with vb.net

    - by Jacob Kofoed
    I have this RichTextbox in my vb.net form and I would like to when a user click a button, for example to embold the selected text, how would I do this. Also, I do NOT want to use the standard vb.net expressions such as RichTextBox1.SelectedText.Font.Bold = true. I want to do something like RichTextbox1.SelectedRTF="[bold]" & RichTextBox1.SelectedRTF & "[/bold]" or whatever RTF looks like. Can I just add the RTF options random places or can a RichTextBox return an error if the text is in wrong format. I'm mostly looking for info on how to work with RTF without using the standard vb expressions. Thank you very much for any help provided

    Read the article

  • How to use SQL Expression Fields of Crystal Report 11.5 from VB.NET 2008

    - by Tareq
    I have the following SQL Expression Field in my Crystal Report 11.5 {fn CONCAT({fn CONCAT("SPR_PRODUCT"."PRODUCT_ID","SPR_PRODUCT_SUB_ITEM"."P_SUB_ITEM_ID" )},{fn CONCAT("SPR_PRODUCT_ITEM"."P_ITEM_ID","SPR_PRODUCT_GROUP"."P_GROUP_ID" )} )} It works well in the Preview Mode. But when I use the report in my VB.NET 2008 Project it says the following: Error in compiling SQL Expression : SQL Expressions can not be used in this report.. Error in File <...>.rpt: SQL Expression error: Error in compiling SQL Expression : SQL Expressions can not be used in this report... Please help me by telling how can I use the SQL Expression field in VB.NET ? Thanks in Advance.

    Read the article

  • Handle "Cannot access a closed resource set"

    - by Philip
    I have a website with several languages in a database. From the database I use ResXResourceWriter to create my .resx files. This is working really good but sometimes I get this exception: MESSAGE: Cannot access a closed resource set. SOURCE: mscorlib FORM: QUERYSTRING: TARGETSITE: System.Object GetObject(System.String, Boolean, Boolean) STACKTRACE: at System.Resources.RuntimeResourceSet.GetObject(String key, Boolean ignoreCase, Boolean isString) at System.Resources.RuntimeResourceSet.GetString(String key, Boolean ignoreCase) at System.Resources.ResourceManager.GetString(String name, CultureInfo culture) at System.Linq.Expressions.Expression.ValidateStaticOrInstanceMethod(Expression instance, MethodInfo method) at System.Linq.Expressions.Expression.Call(Expression instance, MethodInfo method, IEnumerable`1 arguments) at System.Data.Linq.DataContext.GetMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at System.Data.Linq.DataContext.ExecuteMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at Business.DatabaseModelDataContext.Web_GetMostPlayedEvents(String cultureCode) at Presentation.Default.Page_Load(Object sender, EventArgs e) at System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) I don't know why this is happening or how to solve it. Does anyone know anything about this? Thanks, Philip

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >