Search Results

Search found 10693 results on 428 pages for 'max requests'.

Page 28/428 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • SQL command to get field of a maximum value, without making two select

    - by António Capelo
    I'm starting to learn SQL and I'm working on this exercise: I have a "books" table which holds the info on every book (including price and genre ID). I need to get the name of the genre which has the highest average price. I suppose that I first need to group the prices by genre and then retrieve the name of the highest.. I know that I can get the results GENRE VS COST with the following: select b.genre, round(avg(b.price),2) as cost from books b group by b.genre; My question is, to get the genre with the highest AVG price from that result, do I have to make: select aux.genre from ( select b.genre, round(avg(b.price),2) as cost from books b group by b.genre ) aux where aux.cost = (select max(aux.cost) from ( select b.genre, round(avg(b.price),2) as cost from books l group by b.genre ) aux); Is it bad practice or isn't there another way? I get the correct result but I'm not confortable with creating two times the same selection. I'm not using PL SQL so I can't use variables or anything like that.. Any help will be appreciated. Thanks in advance!

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Adding an user to samba

    - by JustMaximumPower
    I'm trying to setup some samba shares in my home network on an Ubuntu 12.04 machine. Everything works fine for my user account (max) but I can not add any new user. Every time I try to add new user they can not use the shares. It's likely that the error is very basic to the concept of samba but please don't just tell me to read the docs. I've been trying that for about 2 weeks now. I've set up the server with my user max who can mount transfer and the share max. Than I added the user simon with sudo adduser --no-create-home --disabled-login --shell /bin/false simon because the user should not be able to ssh into the machine. I did an sudo smbpasswd -a simon and set an (samba) password for simon and added an share for simon. I also added simon to transferusers to give him access to the share transfer. But simon can't connect to transfer or simons. ---- output of testparam: ------- Load smb config files from /etc/samba/smb.conf rlimit_max: increasing rlimit_max (1024) to minimum Windows limit (16384) Processing section "[printers]" Processing section "[print$]" Processing section "[max]" Processing section "[simons]" Processing section "[transfer]" Loaded services file OK. Server role: ROLE_STANDALONE Press enter to see a dump of your service definitions [global] server string = %h server (Samba, Ubuntu) map to guest = Bad User obey pam restrictions = Yes pam password change = Yes passwd program = /usr/bin/passwd %u passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:* %n\n *password\supdated\ssuccessfully* . unix password sync = Yes syslog = 0 log file = /var/log/samba/log.%m max log size = 1000 dns proxy = No usershare allow guests = Yes panic action = /usr/share/samba/panic-action %d idmap config * : backend = tdb [printers] comment = All Printers path = /var/spool/samba create mask = 0700 printable = Yes print ok = Yes browseable = No [print$] comment = Printer Drivers path = /var/lib/samba/printers [max] comment = Privater share von Max path = /media/Main/max read only = No create mask = 0700 [simons] comment = Privater share von Simon path = /media/Main/simon read only = No create mask = 0700 [transfer] comment = Transferlaufwerk path = /media/Main/transfer read only = No create mask = 0755 ---- The files in /media/Main: ------ drwxrwxr-x 17 max max 4096 Oct 4 19:13 max/ drwx------ 5 simon max 4096 Aug 4 15:18 simon/ drwxrwxr-x 7 max transferusers 258048 Oct 1 22:55 transfer/

    Read the article

  • Memory leak involving jQuery Ajax requests

    - by Eli Courtwright
    I have a webpage that's leaking memory in both IE8 and Firefox; the memory usage displayed in the Windows Process Explorer just keeps growing over time. The following page requests the "unplanned.json" url, which is a static file that never changes (though I do set my Cache-control HTTP header to no-cache to make sure that the Ajax request always goes through). When it gets the results, it clears out an HTML table, loops over the json array it got back from the server, and dynamically adds a row to an HTML table for each entry in the array. Then it waits 2 seconds and repeats this process. Here's the entire webpage: <html> <head> <title>Test Page</title> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.3/jquery.min.js"></script> </head> <body> <script type="text/javascript"> function kickoff() { $.getJSON("unplanned.json", resetTable); } function resetTable(rows) { $("#content tbody").empty(); for(var i=0; i<rows.length; i++) { $("<tr>" + "<td>" + rows[i].mpe_name + "</td>" + "<td>" + rows[i].bin + "</td>" + "<td>" + rows[i].request_time + "</td>" + "<td>" + rows[i].filtered_delta + "</td>" + "<td>" + rows[i].failed_delta + "</td>" + "</tr>").appendTo("#content tbody"); } setTimeout(kickoff, 2000); } $(kickoff); </script> <table id="content" border="1" style="width:100% ; text-align:center"> <thead><tr> <th>MPE</th> <th>Bin</th> <th>When</th> <th>Filtered</th> <th>Failed</th> </tr></thead> <tbody></tbody> </table> </body> </html> If it helps, here's an example of the json I'm sending back (it's this exact array wuith thousands of entries instead of just one): [ { mpe_name: "DBOSS-995", request_time: "09/18/2009 11:51:06", bin: 4, filtered_delta: 1, failed_delta: 1 } ] EDIT: I've accepted Toran's extremely helpful answer, but I feel I should post some additional code, since his removefromdom jQuery plugin has some limitations: It only removes individual elements. So you can't give it a query like `$("#content tbody tr")` and expect it to remove all of the elements you've specified. Any element that you remove with it must have an `id` attribute. So if I want to remove my `tbody`, then I must assign an `id` to my `tbody` tag or else it will give an error. It removes the element itself and all of its descendants, so if you simply want to empty that element then you'll have to re-create it afterwards (or modify the plugin to empty instead of remove). So here's my page above modified to use Toran's plugin. For the sake of simplicity I didn't apply any of the general performance advice offered by Peter. Here's the page which now no longer memory leaks: <html> <head> <title>Test Page</title> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.3/jquery.min.js"></script> </head> <body> <script type="text/javascript"> <!-- $.fn.removefromdom = function(s) { if (!this) return; var el = document.getElementById(this.attr("id")); if (!el) return; var bin = document.getElementById("IELeakGarbageBin"); //before deleting el, recursively delete all of its children. while (el.childNodes.length > 0) { if (!bin) { bin = document.createElement("DIV"); bin.id = "IELeakGarbageBin"; document.body.appendChild(bin); } bin.appendChild(el.childNodes[el.childNodes.length - 1]); bin.innerHTML = ""; } el.parentNode.removeChild(el); if (!bin) { bin = document.createElement("DIV"); bin.id = "IELeakGarbageBin"; document.body.appendChild(bin); } bin.appendChild(el); bin.innerHTML = ""; }; var resets = 0; function kickoff() { $.getJSON("unplanned.json", resetTable); } function resetTable(rows) { $("#content tbody").removefromdom(); $("#content").append('<tbody id="id_field_required"></tbody>'); for(var i=0; i<rows.length; i++) { $("#content tbody").append("<tr><td>" + rows[i].mpe_name + "</td>" + "<td>" + rows[i].bin + "</td>" + "<td>" + rows[i].request_time + "</td>" + "<td>" + rows[i].filtered_delta + "</td>" + "<td>" + rows[i].failed_delta + "</td></tr>"); } resets++; $("#message").html("Content set this many times: " + resets); setTimeout(kickoff, 2000); } $(kickoff); // --> </script> <div id="message" style="color:red"></div> <table id="content" border="1" style="width:100% ; text-align:center"> <thead><tr> <th>MPE</th> <th>Bin</th> <th>When</th> <th>Filtered</th> <th>Failed</th> </tr></thead> <tbody id="id_field_required"></tbody> </table> </body> </html> FURTHER EDIT: I'll leave my question unchanged, though it's worth noting that this memory leak has nothing to do with Ajax. In fact, the following code would memory leak just the same and be just as easily solved with Toran's removefromdom jQuery plugin: function resetTable() { $("#content tbody").empty(); for(var i=0; i<1000; i++) { $("#content tbody").append("<tr><td>" + "DBOSS-095" + "</td>" + "<td>" + 4 + "</td>" + "<td>" + "09/18/2009 11:51:06" + "</td>" + "<td>" + 1 + "</td>" + "<td>" + 1 + "</td></tr>"); } setTimeout(resetTable, 2000); } $(resetTable);

    Read the article

  • Should I deal with files longer than MAX_PATH?

    - by John
    Just had an interesting case. My software reported back a failure caused by a path being longer than MAX_PATH. The path was just a plain old document in My Documents, e.g.: C:\Documents and Settings\Bill\Some Stupid FOlder Name\A really ridiculously long file thats really very very very..........very long.pdf Total length 269 characters (MAX_PATH==260). The user wasn't using a external hard drive or anything like that. This was a file on an Windows managed drive. So my question is this. Should I care? I'm not saying can I deal with the long paths, I'm asking should I. Yes I'm aware of the "\?\" unicode hack on some Win32 APIs, but it seems this hack is not without risk (as it's changing the behaviour of the way the APIs parse paths) and also isn't supported by all APIs . So anyway, let me just state my position/assertions: First presumably the only way the user was able to break this limit is if the app she used uses the special Unicode hack. It's a PDF file, so maybe the PDF tool she used uses this hack. I tried to reproduce this (by using the unicode hack) and experimented. What I found was that although the file appears in Explorer, I can do nothing with it. I can't open it, I can't choose "Properties" (Windows 7). Other common apps can't open the file (e.g. IE, Firefox, Notepad). Explorer will also not let me create files/dirs which are too long - it just refuses. Ditto for command line tool cmd.exe. So basically, one could look at it this way: a rouge tool has allowed the user to create a file which is not accessible by a lot of Windows (e.g. Explorer). I could take the view that I shouldn't have to deal with this. (As an aside, this isn't an vote of approval for a short max path length: I think 260 chars is a joke, I'm just saying that if Windows shell and some APIs can't handle 260 then why should I?). So, is this a fair view? Should I say "Not my problem"? Thanks! John

    Read the article

  • PHP given a series of arbitrary numbers, how can I choose a logical max value on a line graph?

    - by stormist
    I am constructing a line graph in PHP. I was setting the max value of the line graph to the max value of my collection of items, but this ended up making the graph less readable you are unable to view the highest line on the graph as it intersects with the top of it. So what I need is basically a formula to take a set of numbers and calculate what the logical max value of on the line graph should be.. so some examples 3500 250 10049 45394 434 312 Max value on line graph should probably be 50000 493 412 194 783 457 344 max value on line graph would ideally be 1000 545 649 6854 5485 11545 In this case, 12000 makes sense as max value So something as simple as rounding upward to the nearest thousandth might work but I'd need it to progressively increase as the numbers got bigger. (50000 instead of 46,000 in first example) The maximum these numbers will ever be is about a million. Any recommendations would be greatly appreciated, thank you.

    Read the article

  • Is it bad idea to use flag variable to search MAX element in array?

    - by Boris Treukhov
    Over my programming career I formed a habit to introduce a flag variable that indicates that the first comparison has occured, just like Msft does in its linq Max() extension method implementation public static int Max(this IEnumerable<int> source) { if (source == null) { throw Error.ArgumentNull("source"); } int num = 0; bool flag = false; foreach (int num2 in source) { if (flag) { if (num2 > num) { num = num2; } } else { num = num2; flag = true; } } if (!flag) { throw Error.NoElements(); } return num; } However I have met some heretics lately, who implement this by just starting with the first element and assigning it to result, and oh no - it turned out that STL and Java authors have preferred the latter method. Java: public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) { Iterator<? extends T> i = coll.iterator(); T candidate = i.next(); while (i.hasNext()) { T next = i.next(); if (next.compareTo(candidate) > 0) candidate = next; } return candidate; } STL: template<class _FwdIt> inline _FwdIt _Max_element(_FwdIt _First, _FwdIt _Last) { // find largest element, using operator< _FwdIt _Found = _First; if (_First != _Last) for (; ++_First != _Last; ) if (_DEBUG_LT(*_Found, *_First)) _Found = _First; return (_Found); } Are there any preferences between one method or another? Are there any historical reasons for this? Is one method more dangerous than another?

    Read the article

  • West Wind WebSurge - an easy way to Load Test Web Applications

    - by Rick Strahl
    A few months ago on a project the subject of load testing came up. We were having some serious issues with a Web application that would start spewing SQL lock errors under somewhat heavy load. These sort of errors can be tough to catch, precisely because they only occur under load and not during typical development testing. To replicate this error more reliably we needed to put a load on the application and run it for a while before these SQL errors would flare up. It’s been a while since I’d looked at load testing tools, so I spent a bit of time looking at different tools and frankly didn’t really find anything that was a good fit. A lot of tools were either a pain to use, didn’t have the basic features I needed, or are extravagantly expensive. In  the end I got frustrated enough to build an initially small custom load test solution that then morphed into a more generic library, then gained a console front end and eventually turned into a full blown Web load testing tool that is now called West Wind WebSurge. I got seriously frustrated looking for tools every time I needed some quick and dirty load testing for an application. If my aim is to just put an application under heavy enough load to find a scalability problem in code, or to simply try and push an application to its limits on the hardware it’s running I shouldn’t have to have to struggle to set up tests. It should be easy enough to get going in a few minutes, so that the testing can be set up quickly so that it can be done on a regular basis without a lot of hassle. And that was the goal when I started to build out my initial custom load tester into a more widely usable tool. If you’re in a hurry and you want to check it out, you can find more information and download links here: West Wind WebSurge Product Page Walk through Video Download link (zip) Install from Chocolatey Source on GitHub For a more detailed discussion of the why’s and how’s and some background continue reading. How did I get here? When I started out on this path, I wasn’t planning on building a tool like this myself – but I got frustrated enough looking at what’s out there to think that I can do better than what’s available for the most common simple load testing scenarios. When we ran into the SQL lock problems I mentioned, I started looking around what’s available for Web load testing solutions that would work for our whole team which consisted of a few developers and a couple of IT guys both of which needed to be able to run the tests. It had been a while since I looked at tools and I figured that by now there should be some good solutions out there, but as it turns out I didn’t really find anything that fit our relatively simple needs without costing an arm and a leg… I spent the better part of a day installing and trying various load testing tools and to be frank most of them were either terrible at what they do, incredibly unfriendly to use, used some terminology I couldn’t even parse, or were extremely expensive (and I mean in the ‘sell your liver’ range of expensive). Pick your poison. There are also a number of online solutions for load testing and they actually looked more promising, but those wouldn’t work well for our scenario as the application is running inside of a private VPN with no outside access into the VPN. Most of those online solutions also ended up being very pricey as well – presumably because of the bandwidth required to test over the open Web can be enormous. When I asked around on Twitter what people were using– I got mostly… crickets. Several people mentioned Visual Studio Load Test, and most other suggestions pointed to online solutions. I did get a bunch of responses though with people asking to let them know what I found – apparently I’m not alone when it comes to finding load testing tools that are effective and easy to use. As to Visual Studio, the higher end skus of Visual Studio and the test edition include a Web load testing tool, which is quite powerful, but there are a number of issues with that: First it’s tied to Visual Studio so it’s not very portable – you need a VS install. I also find the test setup and terminology used by the VS test runner extremely confusing. Heck, it’s complicated enough that there’s even a Pluralsight course on using the Visual Studio Web test from Steve Smith. And of course you need to have one of the high end Visual Studio Skus, and those are mucho Dinero ($$$) – just for the load testing that’s rarely an option. Some of the tools are ultra extensive and let you run analysis tools on the target serves which is useful, but in most cases – just plain overkill and only distracts from what I tend to be ultimately interested in: Reproducing problems that occur at high load, and finding the upper limits and ‘what if’ scenarios as load is ramped up increasingly against a site. Yes it’s useful to have Web app instrumentation, but often that’s not what you’re interested in. I still fondly remember early days of Web testing when Microsoft had the WAST (Web Application Stress Tool) tool, which was rather simple – and also somewhat limited – but easily allowed you to create stress tests very quickly. It had some serious limitations (mainly that it didn’t work with SSL),  but the idea behind it was excellent: Create tests quickly and easily and provide a decent engine to run it locally with minimal setup. You could get set up and run tests within a few minutes. Unfortunately, that tool died a quiet death as so many of Microsoft’s tools that probably were built by an intern and then abandoned, even though there was a lot of potential and it was actually fairly widely used. Eventually the tools was no longer downloadable and now it simply doesn’t work anymore on higher end hardware. West Wind Web Surge – Making Load Testing Quick and Easy So I ended up creating West Wind WebSurge out of rebellious frustration… The goal of WebSurge is to make it drop dead simple to create load tests. It’s super easy to capture sessions either using the built in capture tool (big props to Eric Lawrence, Telerik and FiddlerCore which made that piece a snap), using the full version of Fiddler and exporting sessions, or by manually or programmatically creating text files based on plain HTTP headers to create requests. I’ve been using this tool for 4 months now on a regular basis on various projects as a reality check for performance and scalability and it’s worked extremely well for finding small performance issues. I also use it regularly as a simple URL tester, as it allows me to quickly enter a URL plus headers and content and test that URL and its results along with the ability to easily save one or more of those URLs. A few weeks back I made a walk through video that goes over most of the features of WebSurge in some detail: Note that the UI has slightly changed since then, so there are some UI improvements. Most notably the test results screen has been updated recently to a different layout and to provide more information about each URL in a session at a glance. The video and the main WebSurge site has a lot of info of basic operations. For the rest of this post I’ll talk about a few deeper aspects that may be of interest while also giving a glance at how WebSurge works. Session Capturing As you would expect, WebSurge works with Sessions of Urls that are played back under load. Here’s what the main Session View looks like: You can create session entries manually by individually adding URLs to test (on the Request tab on the right) and saving them, or you can capture output from Web Browsers, Windows Desktop applications that call services, your own applications using the built in Capture tool. With this tool you can capture anything HTTP -SSL requests and content from Web pages, AJAX calls, SOAP or REST services – again anything that uses Windows or .NET HTTP APIs. Behind the scenes the capture tool uses FiddlerCore so basically anything you can capture with Fiddler you can also capture with Web Surge Session capture tool. Alternately you can actually use Fiddler as well, and then export the captured Fiddler trace to a file, which can then be imported into WebSurge. This is a nice way to let somebody capture session without having to actually install WebSurge or for your customers to provide an exact playback scenario for a given set of URLs that cause a problem perhaps. Note that not all applications work with Fiddler’s proxy unless you configure a proxy. For example, .NET Web applications that make HTTP calls usually don’t show up in Fiddler by default. For those .NET applications you can explicitly override proxy settings to capture those requests to service calls. The capture tool also has handy optional filters that allow you to filter by domain, to help block out noise that you typically don’t want to include in your requests. For example, if your pages include links to CDNs, or Google Analytics or social links you typically don’t want to include those in your load test, so by capturing just from a specific domain you are guaranteed content from only that one domain. Additionally you can provide url filters in the configuration file – filters allow to provide filter strings that if contained in a url will cause requests to be ignored. Again this is useful if you don’t filter by domain but you want to filter out things like static image, css and script files etc. Often you’re not interested in the load characteristics of these static and usually cached resources as they just add noise to tests and often skew the overall url performance results. In my testing I tend to care only about my dynamic requests. SSL Captures require Fiddler Note, that in order to capture SSL requests you’ll have to install the Fiddler’s SSL certificate. The easiest way to do this is to install Fiddler and use its SSL configuration options to get the certificate into the local certificate store. There’s a document on the Telerik site that provides the exact steps to get SSL captures to work with Fiddler and therefore with WebSurge. Session Storage A group of URLs entered or captured make up a Session. Sessions can be saved and restored easily as they use a very simple text format that simply stored on disk. The format is slightly customized HTTP header traces separated by a separator line. The headers are standard HTTP headers except that the full URL instead of just the domain relative path is stored as part of the 1st HTTP header line for easier parsing. Because it’s just text and uses the same format that Fiddler uses for exports, it’s super easy to create Sessions by hand manually or under program control writing out to a simple text file. You can see what this format looks like in the Capture window figure above – the raw captured format is also what’s stored to disk and what WebSurge parses from. The only ‘custom’ part of these headers is that 1st line contains the full URL instead of the domain relative path and Host: header. The rest of each header are just plain standard HTTP headers with each individual URL isolated by a separator line. The format used here also uses what Fiddler produces for exports, so it’s easy to exchange or view data either in Fiddler or WebSurge. Urls can also be edited interactively so you can modify the headers easily as well: Again – it’s just plain HTTP headers so anything you can do with HTTP can be added here. Use it for single URL Testing Incidentally I’ve also found this form as an excellent way to test and replay individual URLs for simple non-load testing purposes. Because you can capture a single or many URLs and store them on disk, this also provides a nice HTTP playground where you can record URLs with their headers, and fire them one at a time or as a session and see results immediately. It’s actually an easy way for REST presentations and I find the simple UI flow actually easier than using Fiddler natively. Finally you can save one or more URLs as a session for later retrieval. I’m using this more and more for simple URL checks. Overriding Cookies and Domains Speaking of HTTP headers – you can also overwrite cookies used as part of the options. One thing that happens with modern Web applications is that you have session cookies in use for authorization. These cookies tend to expire at some point which would invalidate a test. Using the Options dialog you can actually override the cookie: which replaces the cookie for all requests with the cookie value specified here. You can capture a valid cookie from a manual HTTP request in your browser and then paste into the cookie field, to replace the existing Cookie with the new one that is now valid. Likewise you can easily replace the domain so if you captured urls on west-wind.com and now you want to test on localhost you can do that easily easily as well. You could even do something like capture on store.west-wind.com and then test on localhost/store which would also work. Running Load Tests Once you’ve created a Session you can specify the length of the test in seconds, and specify the number of simultaneous threads to run each session on. Sessions run through each of the URLs in the session sequentially by default. One option in the options list above is that you can also randomize the URLs so each thread runs requests in a different order. This avoids bunching up URLs initially when tests start as all threads run the same requests simultaneously which can sometimes skew the results of the first few minutes of a test. While sessions run some progress information is displayed: By default there’s a live view of requests displayed in a Console-like window. On the bottom of the window there’s a running total summary that displays where you’re at in the test, how many requests have been processed and what the requests per second count is currently for all requests. Note that for tests that run over a thousand requests a second it’s a good idea to turn off the console display. While the console display is nice to see that something is happening and also gives you slight idea what’s happening with actual requests, once a lot of requests are processed, this UI updating actually adds a lot of CPU overhead to the application which may cause the actual load generated to be reduced. If you are running a 1000 requests a second there’s not much to see anyway as requests roll by way too fast to see individual lines anyway. If you look on the options panel, there is a NoProgressEvents option that disables the console display. Note that the summary display is still updated approximately once a second so you can always tell that the test is still running. Test Results When the test is done you get a simple Results display: On the right you get an overall summary as well as breakdown by each URL in the session. Both success and failures are highlighted so it’s easy to see what’s breaking in your load test. The report can be printed or you can also open the HTML document in your default Web Browser for printing to PDF or saving the HTML document to disk. The list on the right shows you a partial list of the URLs that were fired so you can look in detail at the request and response data. The list can be filtered by success and failure requests. Each list is partial only (at the moment) and limited to a max of 1000 items in order to render reasonably quickly. Each item in the list can be clicked to see the full request and response data: This particularly useful for errors so you can quickly see and copy what request data was used and in the case of a GET request you can also just click the link to quickly jump to the page. For non-GET requests you can find the URL in the Session list, and use the context menu to Test the URL as configured including any HTTP content data to send. You get to see the full HTTP request and response as well as a link in the Request header to go visit the actual page. Not so useful for a POST as above, but definitely useful for GET requests. Finally you can also get a few charts. The most useful one is probably the Request per Second chart which can be accessed from the Charts menu or shortcut. Here’s what it looks like:   Results can also be exported to JSON, XML and HTML. Keep in mind that these files can get very large rather quickly though, so exports can end up taking a while to complete. Command Line Interface WebSurge runs with a small core load engine and this engine is plugged into the front end application I’ve shown so far. There’s also a command line interface available to run WebSurge from the Windows command prompt. Using the command line you can run tests for either an individual URL (similar to AB.exe for example) or a full Session file. By default when it runs WebSurgeCli shows progress every second showing total request count, failures and the requests per second for the entire test. A silent option can turn off this progress display and display only the results. The command line interface can be useful for build integration which allows checking for failures perhaps or hitting a specific requests per second count etc. It’s also nice to use this as quick and dirty URL test facility similar to the way you’d use Apache Bench (ab.exe). Unlike ab.exe though, WebSurgeCli supports SSL and makes it much easier to create multi-URL tests using either manual editing or the WebSurge UI. Current Status Currently West Wind WebSurge is still in Beta status. I’m still adding small new features and tweaking the UI in an attempt to make it as easy and self-explanatory as possible to run. Documentation for the UI and specialty features is also still a work in progress. I plan on open-sourcing this product, but it won’t be free. There’s a free version available that provides a limited number of threads and request URLs to run. A relatively low cost license  removes the thread and request limitations. Pricing info can be found on the Web site – there’s an introductory price which is $99 at the moment which I think is reasonable compared to most other for pay solutions out there that are exorbitant by comparison… The reason code is not available yet is – well, the UI portion of the app is a bit embarrassing in its current monolithic state. The UI started as a very simple interface originally that later got a lot more complex – yeah, that never happens, right? Unless there’s a lot of interest I don’t foresee re-writing the UI entirely (which would be ideal), but in the meantime at least some cleanup is required before I dare to publish it :-). The code will likely be released with version 1.0. I’m very interested in feedback. Do you think this could be useful to you and provide value over other tools you may or may not have used before? I hope so – it already has provided a ton of value for me and the work I do that made the development worthwhile at this point. You can leave a comment below, or for more extensive discussions you can post a message on the West Wind Message Board in the WebSurge section Microsoft MVPs and Insiders get a free License If you’re a Microsoft MVP or a Microsoft Insider you can get a full license for free. Send me a link to your current, official Microsoft profile and I’ll send you a not-for resale license. Send any messages to [email protected]. Resources For more info on WebSurge and to download it to try it out, use the following links. West Wind WebSurge Home Download West Wind WebSurge Getting Started with West Wind WebSurge Video© Rick Strahl, West Wind Technologies, 2005-2014Posted in ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Mixing AJAX requests with Flash scope objects not working

    - by AlanObject
    I have a JSF page that displays a table from an object called TableQuery that supports stateful pagination, sorting, etc. The bean that accesses the object is a RequestScoped object, and it attempts to preserve the TableQuery by storing it the flash map. The accessor method looks like this: public TableQuery<SysLog> getQuery() { if (query != null) return query; Flash flash = FacesContext.getCurrentInstance(). getExternalContext().getFlash(); query = (TableQuery) flash.get("Query"); if (query != null) System.out.println("TableSysLog.getQuery() Got query from flash!"); if (query == null) { query = slc.getNewTableQuery(); System.out.println("TableSysLog.getQuery() Created new query"); } flash.put("Query", query); return query; } The Links to go between pages are implemented with *p:commandLInk*s. I use Primefaces command link in AJAX mode so just the link gets processed when it is clicked. The action listener looks like this: public void doNextPage(ActionEvent evt) { getQuery().doNextPage(); } When it doesn't work I get the error message: WARNING: JSF1095: The response was already committed by the time we tried to set the outgoing cookie for the flash. Any values stored to the flash will not be available on the next request. I found this thread when looking up this problem. When I turned of HTTP chunking as the article suggests, the error message went away but the problem remained. Does anyone know what is going on and how this might be fixed?

    Read the article

  • How do HttpOnly cookies work with AJAX requests?

    - by Shawn Simon
    JavaScript needs access to cookies if AJAX is used on a site with access restrictions based on cookies. Will HttpOnly cookies work on an AJAX site? Edit: Microsoft created a way to prevent XSS attacks by disallowing JavaScript access to cookies if HttpOnly is specified. FireFox later adopted this. So my question is: If you are using AJAX on a site, like StackOverflow, are Http-Only cookies an option? Edit 2: Question 2. If the purpose of HttpOnly is to prevent JavaScript access to cookies, and you can still retrieve the cookies via JavaScript through the XmlHttpRequest Object, what is the point of HttpOnly? Edit 3: Here is a quote from Wikipedia: When the browser receives such a cookie, it is supposed to use it as usual in the following HTTP exchanges, but not to make it visible to client-side scripts.[32] The HttpOnly flag is not part of any standard, and is not implemented in all browsers. Note that there is currently no prevention of reading or writing the session cookie via a XMLHTTPRequest. [33]. I understand that document.cookie is blocked when you use HttpOnly. But it seems that you can still read cookie values in the XMLHttpRequest object, allowing for XSS. How does HttpOnly make you any safer than? By making cookies essentially read only? In your example, I cannot write to your document.cookie, but I can still steal your cookie and post it to my domain using the XMLHttpRequest object. <script type="text/javascript"> var req = null; try { req = new XMLHttpRequest(); } catch(e) {} if (!req) try { req = new ActiveXObject("Msxml2.XMLHTTP"); } catch(e) {} if (!req) try { req = new ActiveXObject("Microsoft.XMLHTTP"); } catch(e) {} req.open('GET', 'http://beta.stackoverflow.com/', false); req.send(null); alert(req.getAllResponseHeaders()); </script> Edit 4: Sorry, I meant that you could send the XMLHttpRequest to the StackOverflow domain, and then save the result of getAllResponseHeaders() to a string, regex out the cookie, and then post that to an external domain. It appears that Wikipedia and ha.ckers concur with me on this one, but I would love be re-educated... Final Edit: Ahh, apparently both sites are wrong, this is actually a bug in FireFox. IE6 & 7 are actually the only browsers that currently fully support HttpOnly. To reiterate everything I've learned: HttpOnly restricts all access to document.cookie in IE7 & and FireFox (not sure about other browsers) HttpOnly removes cookie information from the response headers in XMLHttpObject.getAllResponseHeaders() in IE7. XMLHttpObjects may only be submitted to the domain they originated from, so there is no cross-domain posting of the cookies. edit: This information is likely no longer up to date.

    Read the article

  • Passing parameter to SOAP Web Service Requests Using Visual Studio Team System 2008

    - by Nicholas
    How can I pass in the current datetime parameter to a SOAP request? I know you can pass in parameters by adding a datasource to the web test project and reference it like this {{DataSource.TableName.FieldName}}. But I want to pass in current datetime parameter as a dynamic value (something like DateTime.Now). How do I go about doing this? Below is sample SOAP request that I put into String Body: <soap:body> <MyQuery xmlns="http://something.com"> <req> <QueryType>{{DataSource.Table.QueryType}}</QueryType> <Name>{{DataSource.Table.Name}}</Name> <RequestDateTime>{{insert DateTime.Now here}}</RequestDatetime> </req> </MyQuery> </soap:body> P.S. Running web test by adding Web Service Request in Visual Studio Team System 2008

    Read the article

  • Http requests / concurrency?

    - by maxp
    Say a website on my localhost takes about 3 seconds to do each request. This is fine, and as expected (as it is doing some fancy networking behind the scenes). However, if i open the same url in tabs (in firefox), then reload them all at the same time, it appears to load each page sequentially rather than all at the same time. What is this all about? Have tried it on windows server 2008 iis and windows 7 iis

    Read the article

  • Apache2 benchmarks - very poor performance

    - by andrzejp
    I have two servers on which I test the configuration of apache2. The first server: 4GB of RAM, AMD Athlon (tm) 64 X2 Dual Core Processor 5600 + Apache 2.2.3, mod_php, mpm prefork: Settings: Timeout 100 KeepAlive On MaxKeepAliveRequests 150 KeepAliveTimeout 4 <IfModule Mpm_prefork_module> StartServers 7 MinSpareServers 15 MaxSpareServers 30 MaxClients 250 MaxRequestsPerChild 2000 </ IfModule> Compiled in modules: core.c mod_log_config.c mod_logio.c prefork.c http_core.c mod_so.c Second server: 8GB of RAM, Intel (R) Core (TM) i7 CPU [email protected] Apache 2.2.9, **fcgid, mpm worker, suexec** PHP scripts are running via fcgi-wrapper Settings: Timeout 100 KeepAlive On MaxKeepAliveRequests 100 KeepAliveTimeout 4 <IfModule Mpm_worker_module> StartServers 10 MaxClients 200 MinSpareThreads 25 MaxSpareThreads 75 ThreadsPerChild 25 MaxRequestsPerChild 1000 </ IfModule> Compiled in modules: core.c mod_log_config.c mod_logio.c worker.c http_core.c mod_so.c The following test results, which are very strange! New server (dynamic content - php via fcgid+suexec): Server Software: Apache/2.2.9 Server Hostname: XXXXXXXX Server Port: 80 Document Path: XXXXXXX Document Length: 179512 bytes Concurrency Level: 10 Time taken for tests: 0.26276 seconds Complete requests: 1000 Failed requests: 0 Total transferred: 179935000 bytes HTML transferred: 179512000 bytes Requests per second: 38.06 Transfer rate: 6847.88 kb/s received Connnection Times (ms) min avg max Connect: 2 4 54 Processing: 161 257 449 Total: 163 261 503 Old server (dynamic content - mod_php): Server Software: Apache/2.2.3 Server Hostname: XXXXXX Server Port: 80 Document Path: XXXXXX Document Length: 187537 bytes Concurrency Level: 10 Time taken for tests: 173.073 seconds Complete requests: 1000 Failed requests: 22 (Connect: 0, Length: 22, Exceptions: 0) Total transferred: 188003372 bytes HTML transferred: 187546372 bytes Requests per second: 5777.91 Transfer rate: 1086267.40 kb/s received Connnection Times (ms) min avg max Connect: 3 3 28 Processing: 298 1724 26615 Total: 301 1727 26643 Old server: Static content (jpg file) Server Software: Apache/2.2.3 Server Hostname: xxxxxxxxx Server Port: 80 Document Path: /images/top2.gif Document Length: 40486 bytes Concurrency Level: 100 Time taken for tests: 3.558 seconds Complete requests: 1000 Failed requests: 0 Write errors: 0 Total transferred: 40864400 bytes HTML transferred: 40557482 bytes Requests per second: 281.09 [#/sec] (mean) Time per request: 355.753 [ms] (mean) Time per request: 3.558 [ms] (mean, across all concurrent requests) Transfer rate: 11217.51 [Kbytes/sec] received Connection Times (ms) min mean[+/-sd] median max Connect: 3 11 4.5 12 23 Processing: 40 329 61.4 339 1009 Waiting: 6 282 55.2 293 737 Total: 43 340 63.0 351 1020 New server - static content (jpg file) Server Software: Apache/2.2.9 Server Hostname: XXXXX Server Port: 80 Document Path: /images/top2.gif Document Length: 40486 bytes Concurrency Level: 100 Time taken for tests: 3.571531 seconds Complete requests: 1000 Failed requests: 0 Write errors: 0 Total transferred: 41282792 bytes HTML transferred: 41030080 bytes Requests per second: 279.99 [#/sec] (mean) Time per request: 357.153 [ms] (mean) Time per request: 3.572 [ms] (mean, across all concurrent requests) Transfer rate: 11287.88 [Kbytes/sec] received Connection Times (ms) min mean[+/-sd] median max Connect: 2 63 24.8 66 119 Processing: 124 278 31.8 282 391 Waiting: 3 70 28.5 66 164 Total: 126 341 35.9 350 443 I noticed that in the apache error.log is a lot of entries: [notice] mod_fcgid: call /www/XXXXX/public_html/forum/index.php with wrapper /www/php-fcgi-scripts/XXXXXX/php-fcgi-starter What I have omitted, or do not understand? Such a difference in requests per second? Is it possible? What could be the cause?

    Read the article

  • Increasing Max Upload File Size on IIS7/Win7 Pro

    - by Jay Querido
    I'm setting up a server for a client (something I don't typically do), and I'm running into issues with uploading larger files (11MB). The server is running Windows 7 Professional with IIS added. In web.config I've tried setting <system.web> <httpRuntime maxRequestLength="65536" /> <!-- 64MB --> </system.web> ... and that doesn't work. I've set <system.webSecurity> <security> <requestFiltering> <requestLimits maxAllowedContentLength="68157440" /> </requestFiltering> </security> </system.webSecurity> ... and that doesn't work either. What am I missing here? As I've said, I don't typically set up servers, so I may be missing something obvious... no suggestion will be scoffed at! Thanks in advance.

    Read the article

  • Max TCP Connections to a machine

    - by A9S6
    I am creating a Windows Service in .NET to which N number of client can connect. The service starts a TCP listener and accepts the client connections. The problem I am facing is that I can only open 10 connections to this service. The listener::AcceptTcpClient() method accepts only 10 connection and throws an exception for 11th one. The client application uses the System.Net.Sockets.TcpClient class and the service is using System.Net.Sockets.TcpListener class. This is the exception that I am getting when I try to make a number of connections in a for loop to this service (after the 10th connection is made): "Unable to read data from Transport connection: An exsting connection was forcibly closed by remote host"

    Read the article

  • Cross domain AJAX requests using YQL

    - by nav
    Hi , I need to query a locations WOEID and grab the WOEID value from the xml returned. So the user would type e.g. London, UK and I need to load the query as below: http://query.yahooapis.com/v1/public/yql?q=select%20woeid%20from%20geo.places%20where%20text%20%3D%20%22London%2C%20UK%2C%20UK%22&format=xml After which I need to grab the WOEID value from the XML content returned. I know this can be done when HTML content is returned as this link shows - http://ajaxian.com/archives/using-yql-as-a-proxy-for-cross-domain-ajax Is there a way to use similar code to query the XML data returned? Thanks alot

    Read the article

  • Spring Security Issue: Controller, Anonymous Requests...

    - by Srirangan
    Hey guys, I have an app that uses Spring security and BlazeDS. Flex 3.2 is used for the client app. Generally client app makes service calls using RemoteObjects. However, for certain cases client app is sending a request to a URL. We're using Annotated Controllers for URL mapping. Here's where the "Access is denied" exception comes up: 2010-04-12 11:43:23,486 [qtp5138683-16] ERROR fr.plasticomnium.gpoc.utils.ServiceExceptionInterceptor - Unexpected RuntimeException : Access is denied org.springframework.security.access.AccessDeniedException: Access is denied at org.springframework.security.access.vote.AffirmativeBased.decide(AffirmativeBased.java:71) at org.springframework.security.access.intercept.AbstractSecurityInterceptor.beforeInvocation(AbstractSecurityInterceptor.java:203) at org.springframework.security.access.intercept.aopalliance.MethodSecurityInterceptor.invoke(MethodSecurityInterceptor.java:64) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at fr.plasticomnium.gpoc.utils.ServiceExceptionInterceptor.invoke(ServiceExceptionInterceptor.java:15) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.interceptor.ExposeInvocationInterceptor.invoke(ExposeInvocationInterceptor.java:89) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) ... ...

    Read the article

  • Some animation requests in a Silverlight application

    - by Mohit Deshpande
    I am making a flash card application. It shows the question and then a textbox for user input, all wrapped in a border or rectangle. So what I want is an animation that "flips" the rectangle or border upside-down and then their is text on the "back". Also, I want my application to APPEAR transition from one card to another by "flying off" the screen then "another" card comes in to replace the other one in the opposite direction. But actually I'm want just a little animation of the border or rectangle moving off the screen then coming back in, but in the opposite direction.

    Read the article

  • Good Async pattern for sequential WebClient requests

    - by Omar Shahine
    Most of the code I've written in .NET to make REST calls have been synchronous. Since Silverlight on Windows Phone only supports Async WebClient and HttpWebRequest calls, I was wondering what a good async pattern is for a Class that exposes methods that make REST calls. For example, I have an app that needs to do the following. Login and get token Using token from #1, get a list of albums Using token from #1 get a list of categories etc my class exposes a few methods: Login() GetAlbums() GetCategories() since each method needs to call WebClient using Async calls what I need to do is essentially block calling Login till it returns so that I can call GetAlbums(). What is a good way to go about this in my class that exposes those methods?

    Read the article

  • Access control for cross site requests in Internet Explorer

    - by Aleksandar
    I am trying to make an AJAX call from several domains to a single one which will handle the request. Enabling Cross domain in Firefox and Chrome was easy by setting the header on the handling server: header("Access-Control-Allow-Origin: *"); But this doesn't help enabling it in Internet Explorer. When I try: httpreq.send(''); it stops with error Access denied. How can this be enabled in Internet Explorer?

    Read the article

  • IHttpAsyncHandler and IObservable web requests

    - by McLovin
    Within Async handler I'm creating an IObservable from webrequest which returns a redirect string. I'm subscribing to that observable and calling AsyncResult.CompleteCall() but I'm forced to use Thread.Sleep(100) in order to get it executed. And it doesn't work every time. I'm pretty sure this is not correct. Could you please shine some light. Thank you! public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object state) { _context = context; _ar = new AsyncResult(cb, state); _tweet = context.Request["tweet"]; string url = context.Request["url"]; if(String.IsNullOrEmpty(_tweet) || String.IsNullOrEmpty(url)) { DisplayError("<h2>Tweet or url cannot be empty</h2>"); return _ar; } _oAuth = new oAuthTwitterRx(); using (_oAuth.AuthorizationLinkGet().Subscribe(p => { _context.Response.Redirect(p); _ar.CompleteCall(); }, exception => DisplayError("<h2>Unable to connect to twitter, please try again</h2>") )) return _ar; } public class AsyncResult : IAsyncResult { private AsyncCallback _cb; private object _state; private ManualResetEvent _event; private bool _completed = false; private object _lock = new object(); public AsyncResult(AsyncCallback cb, object state) { _cb = cb; _state = state; } public Object AsyncState { get { return _state; } } public bool CompletedSynchronously { get { return false; } } public bool IsCompleted { get { return _completed; } } public WaitHandle AsyncWaitHandle { get { lock (_lock) { if (_event == null) _event = new ManualResetEvent(IsCompleted); return _event; } } } public void CompleteCall() { lock (_lock) { _completed = true; if (_event != null) _event.Set(); } if (_cb != null) _cb(this); } }

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >