Search Results

Search found 2287 results on 92 pages for 'reads'.

Page 28/92 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • Integer to Character conversion in C

    - by nthrgeek
    Lets us consider this snippet: int s; scanf("%c",&s); Here I have used int, and not char, for variable s, now for using s for character conversion safely I have to make it char again because when scanf reads a character it only overwrites one byte of the variable it is assigning it to, and not all four that int has. For conversion I could use s = (char)s; as the next line, but is it possible to implement the same by subtracting something from s ?

    Read the article

  • How to read file.xml from resources to NSString with format?

    - by falkon
    Actually I have such a code: NSString *path = [[NSBundle mainBundle] pathForResource: @"connect" ofType: @"xml"]; NSError *error = nil; NSString *data = [NSString stringWithContentsOfFile: path encoding: NSUTF8StringEncoding error: &error]; NSString *message = [NSString stringWithFormat:data, KEY, COUNTRY_ID]; which reads the connect.xml from resources. But on the formating the string (message) APP quits without displaying any errors. How can I read file.xml from resources to NSString with format?

    Read the article

  • How to monitor a directory for files in C++?

    - by sand
    I need to monitor a directory which contains many files and a process reads and deletes the .txt files from the directory; once all the .txt files are consumed, the consuming process needs to be killed. How do I check if all the .txt files are consumed using C++? I am developing my application on Visual Studio on windows platform.

    Read the article

  • How can I limit the number of registrants to an event?

    - by user356900
    I've set up a basic html/php submission form where people can register for our event, but need a way to replace the submission form webpage with one that reads something like "We have reached our registration limit" when we reach a certain number of submitted forms. Our database is MySQL (if that makes a difference) I've looked around on the web but people either say to count the entries by hand, or the ones that do have an automated system use CMS like drupal or joomla. Is it possible to setup an automated script that will do this?

    Read the article

  • C forking program [closed]

    - by walas
    I need to write a C program that has a parent and n children that act as follows: Parent process: Reads a value n from the user Forks n children Waits to receive exit code from the first child and prints it Loops forever

    Read the article

  • How to get values of atributes on a XML file using C++ ?

    - by Reversed
    Need to write some C++ code that reads XML string and if i do something like: get valueofElement("ACTION_ON_CARD") it returns 3 get valueofElement("ACTION_ON_ENVELOPE") it returns YES XML String: <ACTION_ON_CARD>3</ACTION_ON_CARD> <ACTION_ON_ENVELOPE>YES</ACTION_ON_ENVELOPE> Any code example would be helpfull Thanks

    Read the article

  • CPU Utilization LAMP stack

    - by Max
    We've got an ec2 m2.4xlarge running Magento (centos 5.6, httpd 2.2, php 5.2.17 with eaccelerator 0.9.5.3, mysql 5.1.52). Right now we're getting a large traffic spike, and our top looks like this: top - 09:41:29 up 31 days, 1:12, 1 user, load average: 120.01, 129.03, 113.23 Tasks: 1190 total, 18 running, 1172 sleeping, 0 stopped, 0 zombie Cpu(s): 97.3%us, 1.8%sy, 0.0%ni, 0.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.4%st Mem: 71687720k total, 36898928k used, 34788792k free, 49692k buffers Swap: 880737784k total, 0k used, 880737784k free, 1586524k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2433 mysql 15 0 23.6g 4.5g 7112 S 564.7 6.6 33607:34 mysqld 24046 apache 16 0 411m 65m 28m S 26.4 0.1 0:09.05 httpd 24360 apache 15 0 410m 60m 25m S 26.4 0.1 0:03.65 httpd 24993 apache 16 0 410m 57m 21m S 26.1 0.1 0:01.41 httpd 24838 apache 16 0 428m 74m 20m S 24.8 0.1 0:02.37 httpd 24359 apache 16 0 411m 62m 26m R 22.3 0.1 0:08.12 httpd 23850 apache 15 0 411m 64m 27m S 16.8 0.1 0:14.54 httpd 25229 apache 16 0 404m 46m 17m R 10.2 0.1 0:00.71 httpd 14594 apache 15 0 404m 63m 34m S 8.4 0.1 1:10.26 httpd 24955 apache 16 0 404m 50m 21m R 8.4 0.1 0:01.66 httpd 24313 apache 16 0 399m 46m 22m R 8.1 0.1 0:02.30 httpd 25119 apache 16 0 411m 59m 23m S 6.8 0.1 0:01.45 httpd Questions: Would giving msyqld more memory help it cache queries and react faster? If so, how? Other than splitting mysql and php to separate servers (which we're about to do) is there anything else we could/should be doing? Thanks! UPDATE: Here's our my.cnf along with the output of mysqltuner. It looks like a cache problem. Thanks again! # cat /etc/my.cnf [client] port = **** socket = /var/lib/mysql/mysql.sock [mysqld] datadir=/mnt/persistent/mysql port=**** socket=/var/lib/mysql/mysql.sock key_buffer = 512M max_allowed_packet = 64M table_cache = 1024 sort_buffer_size = 8M read_buffer_size = 4M read_rnd_buffer_size = 2M myisam_sort_buffer_size = 64M thread_cache_size = 128M tmp_table_size = 128M join_buffer_size = 1M query_cache_limit = 2M query_cache_size= 64M query_cache_type = 1 max_connections = 1000 thread_stack = 128K thread_concurrency = 48 log-bin=mysql-bin server-id = 1 wait_timeout = 300 innodb_data_home_dir = /mnt/persistent/mysql/ innodb_data_file_path = ibdata1:10M:autoextend innodb_buffer_pool_size = 20G innodb_additional_mem_pool_size = 20M innodb_log_file_size = 64M innodb_log_buffer_size = 8M innodb_flush_log_at_trx_commit = 1 innodb_lock_wait_timeout = 50 innodb_thread_concurrency = 48 ft_min_word_len=3 [myisamchk] ft_min_word_len=3 key_buffer = 128M sort_buffer_size = 128M read_buffer = 2M write_buffer = 2M # ./mysqltuner.pl >> MySQLTuner 1.2.0 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.1.52-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +Archive -BDB +Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 2G (Tables: 26) [--] Data in InnoDB tables: 749M (Tables: 250) [!!] Total fragmented tables: 262 -------- Security Recommendations ------------------------------------------- -------- Performance Metrics ------------------------------------------------- [--] Up for: 31d 2h 30m 38s (680M q [253.371 qps], 2M conn, TX: 4825B, RX: 236B) [--] Reads / Writes: 89% / 11% [--] Total buffers: 20.6G global + 15.1M per thread (1000 max threads) [OK] Maximum possible memory usage: 35.4G (51% of installed RAM) [OK] Slow queries: 0% (35K/680M) [OK] Highest usage of available connections: 53% (537/1000) [OK] Key buffer size / total MyISAM indexes: 512.0M/457.2M [OK] Key buffer hit rate: 100.0% (9B cached / 264K reads) [OK] Query cache efficiency: 42.3% (260M cached / 615M selects) [!!] Query cache prunes per day: 4384652 [OK] Sorts requiring temporary tables: 0% (1K temp sorts / 38M sorts) [!!] Joins performed without indexes: 100404 [OK] Temporary tables created on disk: 17% (7M on disk / 45M total) [OK] Thread cache hit rate: 99% (537 created / 2M connections) [!!] Table cache hit rate: 0% (1K open / 946K opened) [OK] Open file limit used: 9% (453/5K) [OK] Table locks acquired immediately: 99% (758M immediate / 758M locks) [OK] InnoDB data size / buffer pool: 749.3M/20.0G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance Enable the slow query log to troubleshoot bad queries Adjust your join queries to always utilize indexes Increase table_cache gradually to avoid file descriptor limits Variables to adjust: query_cache_size (> 64M) join_buffer_size (> 1.0M, or always use indexes with joins) table_cache (> 1024)

    Read the article

  • mySQL Optimization Suggestions

    - by Brian Schroeter
    I'm trying to optimize our mySQL configuration for our large Magento website. The reason I believe that mySQL needs to be configured further is because New Relic has shown that our SELECT queries are taking a long time (20,000+ ms) in some categories. I ran MySQLTuner 1.3.0 and got the following results... (Disclaimer: I restarted mySQL earlier after tweaking some settings, and so the results here may not be 100% accurate): >> MySQLTuner 1.3.0 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering [OK] Currently running supported MySQL version 5.5.37-35.0 [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +ARCHIVE +BLACKHOLE +CSV -FEDERATED +InnoDB +MRG_MYISAM [--] Data in MyISAM tables: 7G (Tables: 332) [--] Data in InnoDB tables: 213G (Tables: 8714) [--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 17) [--] Data in MEMORY tables: 0B (Tables: 353) [!!] Total fragmented tables: 5492 -------- Security Recommendations ------------------------------------------- [!!] User '@host5.server1.autopartsnetwork.com' has no password set. [!!] User '@localhost' has no password set. [!!] User 'root@%' has no password set. -------- Performance Metrics ------------------------------------------------- [--] Up for: 5h 3m 4s (5M q [317.443 qps], 42K conn, TX: 18B, RX: 2B) [--] Reads / Writes: 95% / 5% [--] Total buffers: 35.5G global + 184.5M per thread (1024 max threads) [!!] Maximum possible memory usage: 220.0G (174% of installed RAM) [OK] Slow queries: 0% (6K/5M) [OK] Highest usage of available connections: 5% (61/1024) [OK] Key buffer size / total MyISAM indexes: 512.0M/3.1G [OK] Key buffer hit rate: 100.0% (102M cached / 45K reads) [OK] Query cache efficiency: 66.9% (3M cached / 5M selects) [!!] Query cache prunes per day: 3486361 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 812K sorts) [!!] Joins performed without indexes: 1328 [OK] Temporary tables created on disk: 11% (126K on disk / 1M total) [OK] Thread cache hit rate: 99% (61 created / 42K connections) [!!] Table cache hit rate: 19% (9K open / 49K opened) [OK] Open file limit used: 2% (712/25K) [OK] Table locks acquired immediately: 100% (5M immediate / 5M locks) [!!] InnoDB buffer pool / data size: 32.0G/213.4G [OK] InnoDB log waits: 0 -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Reduce your overall MySQL memory footprint for system stability Enable the slow query log to troubleshoot bad queries Increasing the query_cache size over 128M may reduce performance Adjust your join queries to always utilize indexes Increase table_cache gradually to avoid file descriptor limits Read this before increasing table_cache over 64: http://bit.ly/1mi7c4C Variables to adjust: *** MySQL's maximum memory usage is dangerously high *** *** Add RAM before increasing MySQL buffer variables *** query_cache_size (> 512M) [see warning above] join_buffer_size (> 128.0M, or always use indexes with joins) table_cache (> 12288) innodb_buffer_pool_size (>= 213G) My my.cnf configuration is as follows... [client] port = 3306 [mysqld_safe] nice = 0 [mysqld] tmpdir = /var/lib/mysql/tmp user = mysql port = 3306 skip-external-locking character-set-server = utf8 collation-server = utf8_general_ci event_scheduler = 0 key_buffer = 512M max_allowed_packet = 64M thread_stack = 512K thread_cache_size = 512 sort_buffer_size = 24M read_buffer_size = 8M read_rnd_buffer_size = 24M join_buffer_size = 128M # for some nightly processes client sessions set the join buffer to 8 GB auto-increment-increment = 1 auto-increment-offset = 1 myisam-recover = BACKUP max_connections = 1024 # max connect errors artificially high to support behaviors of NetScaler monitors max_connect_errors = 999999 concurrent_insert = 2 connect_timeout = 5 wait_timeout = 180 net_read_timeout = 120 net_write_timeout = 120 back_log = 128 # this table_open_cache might be too low because of MySQL bugs #16244691 and #65384) table_open_cache = 12288 tmp_table_size = 512M max_heap_table_size = 512M bulk_insert_buffer_size = 512M open-files-limit = 8192 open-files = 1024 query_cache_type = 1 # large query limit supports SOAP and REST API integrations query_cache_limit = 4M # larger than 512 MB query cache size is problematic; this is typically ~60% full query_cache_size = 512M # set to true on read slaves read_only = false slow_query_log_file = /var/log/mysql/slow.log slow_query_log = 0 long_query_time = 0.2 expire_logs_days = 10 max_binlog_size = 1024M binlog_cache_size = 32K sync_binlog = 0 # SSD RAID10 technically has a write capacity of 10000 IOPS innodb_io_capacity = 400 innodb_file_per_table innodb_table_locks = true innodb_lock_wait_timeout = 30 # These servers have 80 CPU threads; match 1:1 innodb_thread_concurrency = 48 innodb_commit_concurrency = 2 innodb_support_xa = true innodb_buffer_pool_size = 32G innodb_file_per_table innodb_flush_log_at_trx_commit = 1 innodb_log_buffer_size = 2G skip-federated [mysqldump] quick quote-names single-transaction max_allowed_packet = 64M I have a monster of a server here to power our site because our catalog is very large (300,000 simple SKUs), and I'm just wondering if I'm missing anything that I can configure further. :-) Thanks!

    Read the article

  • need assistance with my.cnf - 1500% CPU usage

    - by Alan Long
    I'm running into a few issues with our new database server. It is a HP G8 with 2 INTEL XEON E5-2650 processors and 32GB of ram. This server is dedicated as a MySQL server (5.1.69) for our intranet portal. I have been having issues with this server staying alive - I notice high CPU usage during certain times of day (8% ~ 1500%+) and see very low memory usage (7 ~ 15%) based on using the 'top' command. When the CPU usage passes 1000%, that is when the app usually dies. I'm trying to see what I'm doing wrong with the config file, hopefully one of the experts can chime in and let me know what they think. See below for my.cnf file: [mysqld] default-storage-engine=InnoDB datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock #user=mysql large-pages # Disabling symbolic-links is recommended to prevent assorted security risks symbolic-links=0 max_connections=275 tmp_table_size=1G key_buffer_size=384M key_buffer=384M thread_cache_size=1024 long_query_time=5 low_priority_updates=1 max_heap_table_size=1G myisam_sort_buffer_size=8M concurrent_insert=2 table_cache=1024 sort_buffer_size=8M read_buffer_size=5M read_rnd_buffer_size=6M join_buffer_size=16M table_definition_cache=6k open_files_limit=8k slow_query_log #skip-name-resolve # Innodb Settings innodb_buffer_pool_size=18G innodb_thread_concurrency=0 innodb_log_file_size=1G innodb_log_buffer_size=16M innodb_flush_log_at_trx_commit=2 innodb_lock_wait_timeout=50 innodb_file_per_table #innodb_buffer_pool_instances=4 #eliminating double buffering innodb_flush_method = O_DIRECT flush_time=86400 innodb_additional_mem_pool_size=40M #innodb_io_capacity = 5000 #innodb_read_io_threads = 64 #innodb_write_io_threads = 64 # increase until threads_created doesnt grow anymore thread_cache=1024 query_cache_type=1 query_cache_limit=4M query_cache_size=256M # Try number of CPU's*2 for thread_concurrency thread_concurrency = 0 wait_timeout = 1800 connect_timeout = 10 interactive_timeout = 60 [mysqldump] max_allowed_packet=32M [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid log-slow-queries=/var/log/mysql/slow-queries.log long_query_time = 1 log-queries-not-using-indexes we connect to one database with 75 tables, the largest table has 1,150,000 entries and the second largest has 128,036 entries. I have also verified that our PHP queries are optimized as best as possible. Reference - MySQLtuner: >> MySQLTuner 1.2.0 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.1.69-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: -Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in InnoDB tables: 420M (Tables: 75) [!!] Total fragmented tables: 75 -------- Security Recommendations ------------------------------------------- [!!] User '[email protected]' has no password set. -------- Performance Metrics ------------------------------------------------- [--] Up for: 1h 14m 50s (8M q [1K qps], 705 conn, TX: 6B, RX: 892M) [--] Reads / Writes: 68% / 32% [--] Total buffers: 19.7G global + 35.2M per thread (275 max threads) [!!] Maximum possible memory usage: 29.1G (93% of installed RAM) [OK] Slow queries: 0% (472/8M) [OK] Highest usage of available connections: 66% (183/275) [OK] Key buffer size / total MyISAM indexes: 384.0M/91.0K [OK] Key buffer hit rate: 100.0% (173 cached / 0 reads) [OK] Query cache efficiency: 96.2% (7M cached / 7M selects) [!!] Query cache prunes per day: 553614 [OK] Sorts requiring temporary tables: 0% (3 temp sorts / 1K sorts) [!!] Temporary tables created on disk: 49% (3K on disk / 7K total) [OK] Thread cache hit rate: 74% (183 created / 705 connections) [OK] Table cache hit rate: 97% (231 open / 238 opened) [OK] Open file limit used: 0% (17/8K) [OK] Table locks acquired immediately: 100% (432K immediate / 432K locks) [OK] InnoDB data size / buffer pool: 420.9M/18.0G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Reduce your overall MySQL memory footprint for system stability Increasing the query_cache size over 128M may reduce performance Temporary table size is already large - reduce result set size Reduce your SELECT DISTINCT queries without LIMIT clauses Variables to adjust: *** MySQL's maximum memory usage is dangerously high *** *** Add RAM before increasing MySQL buffer variables *** query_cache_size (> 256M) [see warning above] Thanks in advanced for your help!

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • SSIS - XML Source Script

    - by simonsabin
    The XML Source in SSIS is great if you have a 1 to 1 mapping between entity and table. You can do more complex mapping but it becomes very messy and won't perform. What other options do you have? The challenge with XML processing is to not need a huge amount of memory. I remember using the early versions of Biztalk with loaded the whole document into memory to map from one document type to another. This was fine for small documents but was an absolute killer for large documents. You therefore need a streaming approach. For flexibility however you want to be able to generate your rows easily, and if you've ever used the XmlReader you will know its ugly code to write. That brings me on to LINQ. The is an implementation of LINQ over XML which is really nice. You can write nice LINQ queries instead of the XMLReader stuff. The downside is that by default LINQ to XML requires a whole XML document to work with. No streaming. Your code would look like this. We create an XDocument and then enumerate over a set of annoymous types we generate from our LINQ statement XDocument x = XDocument.Load("C:\\TEMP\\CustomerOrders-Attribute.xml");   foreach (var xdata in (from customer in x.Elements("OrderInterface").Elements("Customer")                        from order in customer.Elements("Orders").Elements("Order")                        select new { Account = customer.Attribute("AccountNumber").Value                                   , OrderDate = order.Attribute("OrderDate").Value }                        )) {     Output0Buffer.AddRow();     Output0Buffer.AccountNumber = xdata.Account;     Output0Buffer.OrderDate = Convert.ToDateTime(xdata.OrderDate); } As I said the downside to this is that you are loading the whole document into memory. I did some googling and came across some helpful videos from a nice UK DPE Mike Taulty http://www.microsoft.com/uk/msdn/screencasts/screencast/289/LINQ-to-XML-Streaming-In-Large-Documents.aspx. Which show you how you can combine LINQ and the XmlReader to get a semi streaming approach. I took what he did and implemented it in SSIS. What I found odd was that when I ran it I got different numbers between using the streamed and non streamed versions. I found the cause was a little bug in Mikes code that causes the pointer in the XmlReader to progress past the start of the element and thus foreach (var xdata in (from customer in StreamReader("C:\\TEMP\\CustomerOrders-Attribute.xml","Customer")                                from order in customer.Elements("Orders").Elements("Order")                                select new { Account = customer.Attribute("AccountNumber").Value                                           , OrderDate = order.Attribute("OrderDate").Value }                                ))         {             Output0Buffer.AddRow();             Output0Buffer.AccountNumber = xdata.Account;             Output0Buffer.OrderDate = Convert.ToDateTime(xdata.OrderDate);         } These look very similiar and they are the key element is the method we are calling, StreamReader. This method is what gives us streaming, what it does is return a enumerable list of elements, because of the way that LINQ works this results in the data being streamed in. static IEnumerable<XElement> StreamReader(String filename, string elementName) {     using (XmlReader xr = XmlReader.Create(filename))     {         xr.MoveToContent();         while (xr.Read()) //Reads the first element         {             while (xr.NodeType == XmlNodeType.Element && xr.Name == elementName)             {                 XElement node = (XElement)XElement.ReadFrom(xr);                   yield return node;             }         }         xr.Close();     } } This code is specifically designed to return a list of the elements with a specific name. The first Read reads the root element and then the inner while loop checks to see if the current element is the type we want. If not we do the xr.Read() again until we find the element type we want. We then use the neat function XElement.ReadFrom to read an element and all its sub elements into an XElement. This is what is returned and can be consumed by the LINQ statement. Essentially once one element has been read we need to check if we are still on the same element type and name (the inner loop) This was Mikes mistake, if we called .Read again we would advance the XmlReader beyond the start of the Element and so the ReadFrom method wouldn't work. So with the code above you can use what ever LINQ statement you like to flatten your XML into the rowsets you want. You could even have multiple outputs and generate your own surrogate keys.        

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • Guide to MySQL & NoSQL, Webinar Q&A

    - by Mat Keep
    0 0 1 959 5469 Homework 45 12 6416 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Yesterday we ran a webinar discussing the demands of next generation web services and how blending the best of relational and NoSQL technologies enables developers and architects to deliver the agility, performance and availability needed to be successful. Attendees posted a number of great questions to the MySQL developers, serving to provide additional insights into areas like auto-sharding and cross-shard JOINs, replication, performance, client libraries, etc. So I thought it would be useful to post those below, for the benefit of those unable to attend the webinar. Before getting to the Q&A, there are a couple of other resources that maybe useful to those looking at NoSQL capabilities within MySQL: - On-Demand webinar (coming soon!) - Slides used during the webinar - Guide to MySQL and NoSQL whitepaper  - MySQL Cluster demo, including NoSQL interfaces, auto-sharing, high availability, etc.  So here is the Q&A from the event  Q. Where does MySQL Cluster fit in to the CAP theorem? A. MySQL Cluster is flexible. A single Cluster will prefer consistency over availability in the presence of network partitions. A pair of Clusters can be configured to prefer availability over consistency. A full explanation can be found on the MySQL Cluster & CAP Theorem blog post.  Q. Can you configure the number of replicas? (the slide used a replication factor of 1) Yes. A cluster is configured by an .ini file. The option NoOfReplicas sets the number of originals and replicas: 1 = no data redundancy, 2 = one copy etc. Usually there's no benefit in setting it >2. Q. Interestingly most (if not all) of the NoSQL databases recommend having 3 copies of data (the replication factor).    Yes, with configurable quorum based Reads and writes. MySQL Cluster does not need a quorum of replicas online to provide service. Systems that require a quorum need > 2 replicas to be able to tolerate a single failure. Additionally, many NoSQL systems take liberal inspiration from the original GFS paper which described a 3 replica configuration. MySQL Cluster avoids the need for a quorum by using a lightweight arbitrator. You can configure more than 2 replicas, but this is a tradeoff between incrementally improved availability, and linearly increased cost. Q. Can you have cross node group JOINS? Wouldn't that run into the risk of flooding the network? MySQL Cluster 7.2 supports cross nodegroup joins. A full cross-join can require a large amount of data transfer, which may bottleneck on network bandwidth. However, for more selective joins, typically seen with OLTP and light analytic applications, cross node-group joins give a great performance boost and network bandwidth saving over having the MySQL Server perform the join. Q. Are the details of the benchmark available anywhere? According to my calculations it results in approx. 350k ops/sec per processor which is the largest number I've seen lately The details are linked from Mikael Ronstrom's blog The benchmark uses a benchmarking tool we call flexAsynch which runs parallel asynchronous transactions. It involved 100 byte reads, of 25 columns each. Regarding the per-processor ops/s, MySQL Cluster is particularly efficient in terms of throughput/node. It uses lock-free minimal copy message passing internally, and maximizes ID cache reuse. Note also that these are in-memory tables, there is no need to read anything from disk. Q. Is access control (like table) planned to be supported for NoSQL access mode? Currently we have not seen much need for full SQL-like access control (which has always been overkill for web apps and telco apps). So we have no plans, though especially with memcached it is certainly possible to turn-on connection-level access control. But specifically table level controls are not planned. Q. How is the performance of memcached APi with MySQL against memcached+MySQL or any other Object Cache like Ecache with MySQL DB? With the memcache API we generally see a memcached response in less than 1 ms. and a small cluster with one memcached server can handle tens of thousands of operations per second. Q. Can .NET can access MemcachedAPI? Yes, just use a .Net memcache client such as the enyim or BeIT memcache libraries. Q. Is the row level locking applicable when you update a column through memcached API? An update that comes through memcached uses a row lock and then releases it immediately. Memcached operations like "INCREMENT" are actually pushed down to the data nodes. In most cases the locks are not even held long enough for a network round trip. Q. Has anyone published an example using something like PHP? I am assuming that you just use the PHP memcached extension to hook into the memcached API. Is that correct? Not that I'm aware of but absolutely you can use it with php or any of the other drivers Q. For beginner we need more examples. Take a look here for a fully worked example Q. Can I access MySQL using Cobol (Open Cobol) or C and if so where can I find the coding libraries etc? A. There is a cobol implementation that works well with MySQL, but I do not think it is Open Cobol. Also there is a MySQL C client library that is a standard part of every mysql distribution Q. Is there a place to go to find help when testing and/implementing the NoSQL access? If using Cluster then you can use the [email protected] alias or post on the MySQL Cluster forum Q. Are there any white papers on this?  Yes - there is more detail in the MySQL Guide to NoSQL whitepaper If you have further questions, please don’t hesitate to use the comments below!

    Read the article

  • SQL Server Table Polling by Multiple Subscribers

    - by Daniel Hester
    Background Designing Stored Procedures that are safe for multiple subscribers (to call simultaneously) can be challenging.  For example let’s say that you want multiple worker processes to poll a shared work queue that’s encapsulated as a SQL Table. This is a common scenario and through experience you’ll find that you want to use Table Hints to prevent unwanted locking when performing simultaneous queries on the same table. There are three table hints to consider: NOLOCK, READPAST and UPDLOCK. Both NOLOCK and READPAST table hints allow you to SELECT from a table without placing a LOCK on that table. However, SELECTs with the READPAST hint will ignore any records that are locked due to being updated/inserted (or otherwise “dirty”), whereas a SELECT with NOLOCK ignores all locks including dirty reads. For the initial update of the flag (that marks the record as available for subscription) I don’t use the NOLOCK Table Hint because I want to be sensitive to the “active” records in the table and I want to exclude them.  I use an Update Lock (UPDLOCK) in conjunction with a WHERE clause that uses a sub-select with a READPAST Table Hint in order to explicitly lock the records I’m updating (UPDLOCK) but not place a lock on the table when selecting the records that I’m going to update (READPAST). UPDATES should be allowed to lock the rows affected because we’re probably changing a flag on a record so that it is not included in a SELECT from another subscriber. On the UPDATE statement we should explicitly use the UPDLOCK to guard against lock escalation. A SELECT to check for the next record(s) to process can result in a shared read lock being held by more than one subscriber polling the shared work queue (SQL table). It is expected that more than one worker process (or server) might try to process the same new record(s) at the same time. When each process then tries to obtain the update lock, none of them can because another process has a shared read lock in place. Thus without the UPDLOCK hint the result would be a lock escalation deadlock; however with the UPDLOCK hint this condition is mitigated against. Note that using the READPAST table hint requires that you also set the ISOLATION LEVEL of the transaction to be READ COMMITTED (rather than the default of SERIALIZABLE). Guidance In the Stored Procedure that returns records to the multiple subscribers: Perform the UPDATE first. Change the flag that makes the record available to subscribers.  Additionally, you may want to update a LastUpdated datetime field in order to be able to check for records that “got stuck” in an intermediate state or for other auditing purposes. In the UPDATE statement use the (UPDLOCK) Table Hint on the UPDATE statement to prevent lock escalation. In the UPDATE statement also use a WHERE Clause that uses a sub-select with a (READPAST) Table Hint to select the records that you’re going to update. In the UPDATE statement use the OUTPUT clause in conjunction with a Temporary Table to isolate the record(s) that you’ve just updated and intend to return to the subscriber. This is the fastest way to update the record(s) and to get the records’ identifiers within the same operation. Finally do a set-based SELECT on the main Table (using the Temporary Table to identify the records in the set) with either a READPAST or NOLOCK table hint.  Use NOLOCK if there are other processes (besides the multiple subscribers) that might be changing the data that you want to return to the multiple subscribers; or use READPAST if you're sure there are no other processes (besides the multiple subscribers) that might be updating column data in the table for other purposes (e.g. changes to a person’s last name).  NOLOCK is generally the better fit in this part of the scenario. See the following as an example: CREATE PROCEDURE [dbo].[usp_NewCustomersSelect] AS BEGIN -- OVERRIDE THE DEFAULT ISOLATION LEVEL SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- SET NOCOUNT ON SET NOCOUNT ON -- DECLARE TEMP TABLE -- Note that this example uses CustomerId as an identifier; -- you could just use the Identity column Id if that’s all you need. DECLARE @CustomersTempTable TABLE ( CustomerId NVARCHAR(255) ) -- PERFORM UPDATE FIRST -- [Customers] is the name of the table -- [Id] is the Identity Column on the table -- [CustomerId] is the business document key used to identify the -- record globally, i.e. in other systems or across SQL tables -- [Status] is INT or BIT field (if the status is a binary state) -- [LastUpdated] is a datetime field used to record the time of the -- last update UPDATE [Customers] WITH (UPDLOCK) SET [Status] = 1, [LastUpdated] = GETDATE() OUTPUT [INSERTED].[CustomerId] INTO @CustomersTempTable WHERE ([Id] = (SELECT TOP 100 [Id] FROM [Customers] WITH (READPAST) WHERE ([Status] = 0) ORDER BY [Id] ASC)) -- PERFORM SELECT FROM ENTITY TABLE SELECT [C].[CustomerId], [C].[FirstName], [C].[LastName], [C].[Address1], [C].[Address2], [C].[City], [C].[State], [C].[Zip], [C].[ShippingMethod], [C].[Id] FROM [Customers] AS [C] WITH (NOLOCK), @CustomersTempTable AS [TEMP] WHERE ([C].[CustomerId] = [TEMP].[CustomerId]) END In a system that has been designed to have multiple status values for records that need to be processed in the Work Queue it is necessary to have a “Watch Dog” process by which “stale” records in intermediate states (such as “In Progress”) are detected, i.e. a [Status] of 0 = New or Unprocessed; a [Status] of 1 = In Progress; a [Status] of 2 = Processed; etc.. Thus, if you have a business rule that states that the application should only process new records if all of the old records have been processed successfully (or marked as an error), then it will be necessary to build a monitoring process to detect stalled or stale records in the Work Queue, hence the use of the LastUpdated column in the example above. The Status field along with the LastUpdated field can be used as the criteria to detect stalled / stale records. It is possible to put this watchdog logic into the stored procedure above, but I would recommend making it a separate monitoring function. In writing the stored procedure that checks for stale records I would recommend using the same kind of lock semantics as suggested above. The example below looks for records that have been in the “In Progress” state ([Status] = 1) for greater than 60 seconds: CREATE PROCEDURE [dbo].[usp_NewCustomersWatchDog] AS BEGIN -- TO OVERRIDE THE DEFAULT ISOLATION LEVEL SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- SET NOCOUNT ON SET NOCOUNT ON DECLARE @MaxWait int; SET @MaxWait = 60 IF EXISTS (SELECT 1 FROM [dbo].[Customers] WITH (READPAST) WHERE ([Status] = 1) AND (DATEDIFF(s, [LastUpdated], GETDATE()) > @MaxWait)) BEGIN SELECT 1 AS [IsWatchDogError] END ELSE BEGIN SELECT 0 AS [IsWatchDogError] END END Downloads The zip file below contains two SQL scripts: one to create a sample database with the above stored procedures and one to populate the sample database with 10,000 sample records.  I am very grateful to Red-Gate software for their excellent SQL Data Generator tool which enabled me to create these sample records in no time at all. References http://msdn.microsoft.com/en-us/library/ms187373.aspx http://www.techrepublic.com/article/using-nolock-and-readpast-table-hints-in-sql-server/6185492 http://geekswithblogs.net/gwiele/archive/2004/11/25/15974.aspx http://grounding.co.za/blogs/romiko/archive/2009/03/09/biztalk-sql-receive-location-deadlocks-dirty-reads-and-isolation-levels.aspx

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Cache Simulator in C

    - by DuffDuff
    Ok this is only my second question, and it's quite a doozy. It's for a school assignment, but no one (including the TAs) seems to be able to help me. It's kind of a tall order but I'm not sure where else to turn. Essentially the assignment was to make a cache simulator. This version is direct mapping and is actually only a small portion of the whole project, but if I can't even get this down I have no chance with other associativities. I'm posting my whole code because I don't want to make any assumptions about where the problem is. This is the test case: http://www.mediafire.com/?ty5dnihydnw And you run the following command: ./sims 512 direct 32 fifo wt pinatrace.out You're supposed to get: hits: 604037 misses 138349 writes: 239269 reads: 138349 But I get: Hits: 587148 Misses: 155222 Writes: 239261 Reads: 155222 If anyone could at least point me in the right direction it would be greatly appreciated. I've been stuck on this for about 12 hours. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> struct myCache { int valid; char *tag; char *block; }; /* sim [-h] <cache size> <associativity> <block size> <replace alg> <write policy> <trace file> */ //God willing I come up with a better Hex to Bin convertion that maintains the beginning 0s... void hex2bin(char input[], char output[]) { int i; int a = 0; int b = 1; int c = 2; int d = 3; int x = 4; int size; size = strlen(input); for (i = 0; i < size; i++) { if (input[i] =='0') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='1') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='2') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='3') { output[i*x +a] = '0'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '1'; } else if (input[i] =='x') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='5') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='6') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='7') { output[i*x +a] = '0'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '1'; } else if (input[i] =='8') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='9') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='a') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='b') { output[i*x +a] = '1'; output[i*x +b] = '0'; output[i*x +c] = '1'; output[i*x +d] = '1'; } else if (input[i] =='c') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '0'; } else if (input[i] =='d') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '0'; output[i*x +d] = '1'; } else if (input[i] =='e') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '0'; } else if (input[i] =='f') { output[i*x +a] = '1'; output[i*x +b] = '1'; output[i*x +c] = '1'; output[i*x +d] = '1'; } } output[32] = '\0'; } int main(int argc, char* argv[]) { FILE *tracefile; char readwrite; int trash; int cachesize; int blocksize; int setnumber; int blockbytes; int setbits; int blockbits; int tagsize; int m; int count = 0; int count2 = 0; int count3 = 0; int i; int j; int xindex; int jindex; int kindex; int lindex; int setadd; int totalset; int writeMiss = 0; int writeHit = 0; int cacheMiss = 0; int cacheHit = 0; int read = 0; int write = 0; int size; int extra; char bbits[100]; char sbits[100]; char tbits[100]; char output[100]; char input[100]; char origtag[100]; if (argc != 7) { if (strcmp(argv[0], "-h")) { printf("./sim2 <cache size> <associativity> <block size> <replace alg> <write policy> <trace file>\n"); return 0; } else { fprintf(stderr, "Error: wrong number of parameters.\n"); return -1; } } tracefile = fopen(argv[6], "r"); if(tracefile == NULL) { fprintf(stderr, "Error: File is NULL.\n"); return -1; } //Determining size of sbits, bbits, and tag cachesize = atoi(argv[1]); blocksize = atoi(argv[3]); setnumber = (cachesize/blocksize); printf("setnumber: %d\n", setnumber); setbits = (round((log(setnumber))/(log(2)))); printf("sbits: %d\n", setbits); blockbits = log(blocksize)/log(2); printf("bbits: %d\n", blockbits); tagsize = 32 - (blockbits + setbits); printf("t: %d\n", tagsize); struct myCache newCache[setnumber]; //Allocating Space for Tag Bits, initiating tag and valid to 0s for(i=0;i<setnumber;i++) { newCache[i].tag = (char *)malloc(sizeof(char)*(tagsize+1)); for(j=0;j<tagsize;j++) { newCache[i].tag[j] = '0'; } newCache[i].valid = 0; } while(fgetc(tracefile)!='#') { setadd = 0; totalset = 0; //read in file fseek(tracefile,-1,SEEK_CUR); fscanf(tracefile, "%x: %c %s\n", &trash, &readwrite, origtag); //shift input Hex size = strlen(origtag); extra = (10 - size); for(i=0; i<extra; i++) input[i] = '0'; for(i=extra, j=0; i<(size-(2-extra)); j++, i++) input[i]=origtag[j+2]; input[8] = '\0'; // Convert Hex to Binary hex2bin(input, output); //Resolving the Address into tbits, sbits, bbits for (xindex=0, jindex=(32-blockbits); jindex<32; jindex++, xindex++) { bbits[xindex] = output[jindex]; } bbits[xindex]='\0'; for (xindex=0, kindex=(32-(blockbits+setbits)); kindex<32-(blockbits); kindex++, xindex++){ sbits[xindex] = output[kindex]; } sbits[xindex]='\0'; for (xindex=0, lindex=0; lindex<(32-(blockbits+setbits)); lindex++, xindex++){ tbits[xindex] = output[lindex]; } tbits[xindex]='\0'; //Convert set bits from char array into ints for(xindex = 0, kindex = (setbits -1); xindex < setbits; xindex ++, kindex--) { if (sbits[xindex] == '1') setadd = 1; if (sbits[xindex] == '0') setadd = 0; setadd = setadd * pow(2, kindex); totalset += setadd; } //Calculating Hits and Misses if (newCache[totalset].valid == 0) { newCache[totalset].valid = 1; strcpy(newCache[totalset].tag, tbits); } else if (newCache[totalset].valid == 1) { if(strcmp(newCache[totalset].tag, tbits) == 0) { if (readwrite == 'W') { cacheHit++; write++; } if (readwrite == 'R') cacheHit++; } else { if (readwrite == 'R') { cacheMiss++; read++; } if (readwrite == 'W') { cacheMiss++; read++; write++; } strcpy(newCache[totalset].tag, tbits); } } } printf("Hits: %d\n", cacheHit); printf("Misses: %d\n", cacheMiss); printf("Writes: %d\n", write); printf("Reads: %d\n", read); }

    Read the article

  • RAID 0 Volatile Volume Cache Mode configuration

    - by SnippetSpace
    I discovered that in IRST there is an option to set a cache mode for my 3 ssd raid 0 array. I've read the documentation by Intel and have some questions: Are there any overall benefits/risks from enabling cache mode? As I'm on a laptop, would write back be recommended? I read it increases chance of data loss on power interruption. What is the difference between how windows handles data integrity and the intel driver? Read only mode seems to have the benefit of faster reads, does it have any downsides? Thanks for your help guys!

    Read the article

  • Windows Server 2003 - Handling hundreds of simultaneous downloads

    - by Paul Hinett
    At the moment I have a single server with 4 1TB hard disks, daily I haver over 150 MP3 music files uploaded (around 80mb each). At busy periods there is over 300 people streaming / downloading these mixes all at once, 75% of the activity is on the most recently uploaded stuff which is all on a single hard disk. My read speads on the hard disk are very low due to such high activity of 200+ reads all happening at the same time on a single hard disk (ran some tests with HDTach). What would be a logical solution to solve this, a couple of ideas I had are: Load balance with another server Install faster hard disks (what are best these days? SCSI / SATA) Spread the most accessed files over the 4 drives so it is sharing the load between all 4 disks, instead of all the most accessed (most recent) all on the most recently installed drive. Obviouslly load balance is the most expensive option, but would it dramatically help? Some help on this situation would be great!

    Read the article

  • How to migrate from Natara DayNotez for Pocket PC / Windows Mobile

    - by piggymouse
    I've been using DayNotez as my notes manager since the old Palm PDA days. When I moved to Windows Mobile, I installed DayNotez there and migrated from the Palm version. Now I wish to move from DayNotez altogether (I currently consider Evernote as a decent cross-platform tool). Problem is, DayNotez doesn't let me export the notes (unless I want to transfer them one by one, which is a pain). Natara offers an export tool for Windows, but it only works for Palm HotSync (as it reads from the backed-up PDB file). DayNotez Desktop for Windows stores its local DB under "My Documents\Natara\DayNotez\" directory in a file named "[device name] DayNotez.dnz". Quick look within the file spots a string "Standard Jet DB" near the beginning, but I couldn't open it as a regular JET/MDB file. Any help would be greatly appreciated.

    Read the article

  • Crash when attempting to install 32bit delphi service on 2008 r2

    - by Oded
    I have an old 32bit delphi application (with no source code), that is used as a windows service. It runs fine on windows 2003 32bit. I do not know if it has been created as a service originally, or converted to one later on. It is supposed to get installed to the server using a /install flag on the command line. When attempting to install it on a Windows 2008 R2 virtual machine, I am getting an APPCRASH event in the event log. The service is supposed to read a blob from a remote SQL Server instance and write it out to the local HD. It also reads some initialization data from the registry. Is there any way I can install this application as a service on windows 2008 r2 64bit? If not, are there any workarounds I can try? What are your suggestions?

    Read the article

  • Error: "failed to connect to wpa_supplicant - wpa_ctrl_open no such file or directory" using netcfg with wpa_supplicant

    - by user1576628
    I'm trying to set up netcfg so that I can finish installing Arch Linux (using the instructions from the Beginners' Guide and netcfg) and I passed over what was meant to be a short step. Open wifi-menu, select network, enter password. After multiple attempts, I decided to edit the profile manually, which yielded no improvement. Eventually I decided to use netfcg with the more familiar wpa_supplicant. My /etc/wpa_supplicant.conf file is as follows: network={ ssid="my_ssid" #psk="my_wireless_passcode" psk="my_wireless_passcode_hex" } (Replacing generic names with my actual ssid and psk.) And my /etc/network.d/wpa_suppl file reads: CONNECTION='wireless' DESCRIPTION='A wpa_supplicant configuration based wireless connection' INTERFACE='wlan0' SECURITY='wpa-config' WPA_CONF='/etc/wpa_supplicant.conf' IP='dhcp' My ssid is not hidden, wlan0 is the proper interface, and wpa_supplicant works fine on its own, but using netcfg wpa_suppl, it returns failed to connect to wpa_supplicant - wpa_ctrl_open no such file or directory about twelve times before finally telling me the authentication failed. What can I do to fix this?

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >