Search Results

Search found 2886 results on 116 pages for 'std'.

Page 28/116 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • is Boost Library's weighted median broken?

    - by user624188
    I confess that I am no expert in C++. I am looking for a fast way to compute weighted median, which Boost seemed to have. But it seems I am not able to make it work. #include <iostream> #include <boost/accumulators/accumulators.hpp> #include <boost/accumulators/statistics/stats.hpp> #include <boost/accumulators/statistics/median.hpp> #include <boost/accumulators/statistics/weighted_median.hpp> using namespace boost::accumulators; int main() { // Define an accumulator set accumulator_set<double, stats<tag::median > > acc1; accumulator_set<double, stats<tag::median >, float> acc2; // push in some data ... acc1(0.1); acc1(0.2); acc1(0.3); acc1(0.4); acc1(0.5); acc1(0.6); acc2(0.1, weight=0.); acc2(0.2, weight=0.); acc2(0.3, weight=0.); acc2(0.4, weight=1.); acc2(0.5, weight=1.); acc2(0.6, weight=1.); // Display the results ... std::cout << " Median: " << median(acc1) << std::endl; std::cout << "Weighted Median: " << median(acc2) << std::endl; return 0; } produces the following output, which is clearly wrong. Median: 0.3 Weighted Median: 0.3 Am I doing something wrong? Any help will be greatly appreciated. * however, the weighted sum works correctly * @glowcoder: The weighted sum works perfectly fine like this. #include <iostream> #include <boost/accumulators/accumulators.hpp> #include <boost/accumulators/statistics/stats.hpp> #include <boost/accumulators/statistics/sum.hpp> #include <boost/accumulators/statistics/weighted_sum.hpp> using namespace boost::accumulators; int main() { // Define an accumulator set accumulator_set<double, stats<tag::sum > > acc1; accumulator_set<double, stats<tag::sum >, float> acc2; // accumulator_set<double, stats<tag::median >, float> acc2; // push in some data ... acc1(0.1); acc1(0.2); acc1(0.3); acc1(0.4); acc1(0.5); acc1(0.6); acc2(0.1, weight=0.); acc2(0.2, weight=0.); acc2(0.3, weight=0.); acc2(0.4, weight=1.); acc2(0.5, weight=1.); acc2(0.6, weight=1.); // Display the results ... std::cout << " Median: " << sum(acc1) << std::endl; std::cout << "Weighted Median: " << sum(acc2) << std::endl; return 0; } and the result is Sum: 2.1 Weighted Sum: 1.5

    Read the article

  • Problems with passing an anonymous temporary function-object to a templatized constructor.

    - by Akanksh
    I am trying to attach a function-object to be called on destruction of a templatized class. However, I can not seem to be able to pass the function-object as a temporary. The warning I get is (if the comment the line xi.data = 5;): warning C4930: 'X<T> xi2(writer (__cdecl *)(void))': prototyped function not called (was a variable definition intended?) with [ T=int ] and if I try to use the constructed object, I get a compilation error saying: error C2228: left of '.data' must have class/struct/union I apologize for the lengthy piece of code, but I think all the components need to be visible to assess the situation. template<typename T> struct Base { virtual void run( T& ){} virtual ~Base(){} }; template<typename T, typename D> struct Derived : public Base<T> { virtual void run( T& t ) { D d; d(t); } }; template<typename T> struct X { template<typename R> X(const R& r) { std::cout << "X(R)" << std::endl; ptr = new Derived<T,R>(); } X():ptr(0) { std::cout << "X()" << std::endl; } ~X() { if(ptr) { ptr->run(data); delete ptr; } else { std::cout << "no ptr" << std::endl; } } Base<T>* ptr; T data; }; struct writer { template<typename T> void operator()( const T& i ) { std::cout << "T : " << i << std::endl; } }; int main() { { writer w; X<int> xi2(w); //X<int> xi2(writer()); //This does not work! xi2.data = 15; } return 0; }; The reason I am trying this out is so that I can "somehow" attach function-objects types with the objects without keeping an instance of the function-object itself within the class. Thus when I create an object of class X, I do not have to keep an object of class writer within it, but only a pointer to Base<T> (I'm not sure if I need the <T> here, but for now its there). The problem is that I seem to have to create an object of writer and then pass it to the constructor of X rather than call it like X<int> xi(writer(); I might be missing something completely stupid and obvious here, any suggestions?

    Read the article

  • C++ copy-construct construct-and-assign question

    - by Andy
    Blockquote Here is an extract from item 56 of the book "C++ Gotchas": It's not uncommon to see a simple initialization of a Y object written any of three different ways, as if they were equivalent. Y a( 1066 ); Y b = Y(1066); Y c = 1066; In point of fact, all three of these initializations will probably result in the same object code being generated, but they're not equivalent. The initialization of a is known as a direct initialization, and it does precisely what one might expect. The initialization is accomplished through a direct invocation of Y::Y(int). The initializations of b and c are more complex. In fact, they're too complex. These are both copy initializations. In the case of the initialization of b, we're requesting the creation of an anonymous temporary of type Y, initialized with the value 1066. We then use this anonymous temporary as a parameter to the copy constructor for class Y to initialize b. Finally, we call the destructor for the anonymous temporary. To test this, I did a simple class with a data member (program attached at the end) and the results were surprising. It seems that for the case of b, the object was constructed by the copy constructor rather than as suggested in the book. Does anybody know if the language standard has changed or is this simply an optimisation feature of the compiler? I was using Visual Studio 2008. Code sample: #include <iostream> class Widget { std::string name; public: // Constructor Widget(std::string n) { name=n; std::cout << "Constructing Widget " << this->name << std::endl; } // Copy constructor Widget (const Widget& rhs) { std::cout << "Copy constructing Widget from " << rhs.name << std::endl; } // Assignment operator Widget& operator=(const Widget& rhs) { std::cout << "Assigning Widget from " << rhs.name << " to " << this->name << std::endl; return *this; } }; int main(void) { // construct Widget a("a"); // copy construct Widget b(a); // construct and assign Widget c("c"); c = a; // copy construct! Widget d = a; // construct! Widget e = "e"; // construct and assign Widget f = Widget("f"); return 0; } Output: Constructing Widget a Copy constructing Widget from a Constructing Widget c Assigning Widget from a to c Copy constructing Widget from a Constructing Widget e Constructing Widget f Copy constructing Widget from f I was most surprised by the results of constructing d and e.

    Read the article

  • What's the fastest lookup algorithm for a pair data structure (i.e, a map)?

    - by truncheon
    In the following example a std::map structure is filled with 26 values from A - Z (for key) and 0 – 26 for value. The time taken (on my system) to lookup the last entry (10000000 times) is roughly 250 ms for the vector, and 125 ms for the map. (I compiled using release mode, with O3 option turned on for g++ 4.4) But if for some odd reason I wanted better performance than the std::map, what data structures and functions would I need to consider using? I apologize if the answer seems obvious to you, but I haven't had much experience in the performance critical aspects of C++ programming. UPDATE: This example is rather trivial and hides the true complexity of what I'm trying to achieve. My real world project is a simple scripting language that uses a parser, data tree, and interpreter (instead of a VM stack system). I need to use some kind of data structure (perhaps map) to store the variables names created by script programmers. These are likely to be pretty randomly named, so I need a lookup method that can quickly find a particular key within a (probably) fairly large list of names. #include <ctime> #include <map> #include <vector> #include <iostream> struct mystruct { char key; int value; mystruct(char k = 0, int v = 0) : key(k), value(v) { } }; int find(const std::vector<mystruct>& ref, char key) { for (std::vector<mystruct>::const_iterator i = ref.begin(); i != ref.end(); ++i) if (i->key == key) return i->value; return -1; } int main() { std::map<char, int> mymap; std::vector<mystruct> myvec; for (int i = 'a'; i < 'a' + 26; ++i) { mymap[i] = i - 'a'; myvec.push_back(mystruct(i, i - 'a')); } int pre = clock(); for (int i = 0; i < 10000000; ++i) { find(myvec, 'z'); } std::cout << "linear scan: milli " << clock() - pre << "\n"; pre = clock(); for (int i = 0; i < 10000000; ++i) { mymap['z']; } std::cout << "map scan: milli " << clock() - pre << "\n"; return 0; }

    Read the article

  • Can I execute a "variable statements" within a function and without defines.

    - by René Nyffenegger
    I am facing a problem that I cannot see how it is solvable without #defines or incuring a performance impact although I am sure that someone can point me to a solution. I have an algorithm that sort of produces a (large) series of values. For simplicity's sake, in the following I pretend it's a for loop in a for loop, although in my code it's more complex than that. In the core of the loop I need to do calculations with the values being produced. Although the algorithm for the values stays the same, the calculations vary. So basically, what I have is: void normal() { // "Algorithm" producing numbers (x and y): for (int x=0 ; x<1000 ; x++) { for (int y=0 ; y<1000 ; y++) { // Calculation with numbers being produced: if ( x+y == 800 && y > 790) { std::cout << x << ", " << y << std::endl; } // end of calculation }} } So, the only part I need to change is if ( x+y == 800 && y > 790) { std::cout << x << ", " << y << std::endl; } So, in order to solve that, I could construct an abstract base class: class inner_0 { public: virtual void call(int x, int y) = 0; }; and derive a "callable" class from it: class inner : public inner_0 { public: virtual void call(int x, int y) { if ( x+y == 800 && y > 790) { std::cout << x << ", " << y << std::endl; } } }; I can then pass an instance of the class to the "algorithm" like so: void O(inner i) { for (int x=0 ; x<1000 ; x++) { for (int y=0 ; y<1000 ; y++) { i.call(x,y); }} } // somewhere else.... inner I; O(I); In my case, I incur a performance hit because there is an indirect call via virtual function table. So I was thinking about a way around it. It's possible with two #defines: #define OUTER \ for (int x=0 ; x<1000 ; x++) { \ for (int y=0 ; y<1000 ; y++) { \ INNER \ }} // later... #define INNER \ if (x + y == 800 && y > 790) \ std::cout << x << ", " << y << std::endl; OUTER While this certainly works, I am not 100% happy with it because I don't necessarly like #defines. So, my question: is there a better way for what I want to achieve?

    Read the article

  • Cannot convert parameter 1 from 'short *' to 'int *' [closed]

    - by Torben Carrington
    I'm trying to learn pointers and since I recently learned that short int takes up less memory [2 bytes as apposed to the long int's memory usage of 4 which is the default for int] I wanted to create a pointer that uses the memory address of a short integer. I'm following a tutorial in my book about Pointers and it's using the Swap function. The problem is I receive this error the moment I change everything from int to short int: error C2664: 'Swap' : cannot convert parameter 1 from 'short *' to 'int *' 1 Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast Since my code is so small here is the whole thing: void Swap(short int *sipX, short int *sipY) { short int siTemp = *sipX; *sipX = *sipY; *sipY = siTemp; } int main() { short int siBig = 100; short int siSmall = 1; std::cout << "Pre-Swap: " << siBig << " " << siSmall << std::endl; Swap(&siBig, &siSmall); std::cout << "Post-Swap: " << siBig << " " << siSmall << std::endl; return 0; }

    Read the article

  • Why do I get this Debug Assertion Failed? Expression: list iterator not dereferenceable [migrated]

    - by Karel
    I'm trying this example in the (translated to dutch) book of Bjarne Stroustrup (C++): #include <vector> #include <list> #include "complex.h" complex ac[200]; std::vector<complex> vc; std::list<complex> l; template<class In, class Out> void Copy(In from, In too_far, Out to) { while(from != too_far) { *to = *from; ++to; ++from; } } void g(std::vector<complex>& vc , std::list<complex>& lc) { Copy(&ac[0], &ac[200], lc.begin()); // generates debug error Copy(lc.begin(), lc.end(), vc.begin()); // also generates debug error } void f() { ac[0] = complex(10,20); g(vc, l); } int main () { f(); } ** Compiling and Linking goes successful (0 errors/warnings)** But at runtime I get this error: Debug Assertion Failed! Program: path to exe file: \program files\ms vs studio 10.0\vc\include\list Line: 207 Expression: list iterator not dereferenceable For information on how your program can cause an assertion failure, see the Visual C++ documentation on asserts. (Press retry to debug the application)

    Read the article

  • Program instantly closing [migrated]

    - by Ben Clayton
    I made this program and when I compiled it there were no errors but the program just instantly closed, any answers would be appreciated. #include <iostream> //Main commands #include <string> // String commands #include <windows.h> // Sleep using namespace std; int main () { //Declaring variables float a; bool end; std::string input; end = false; // Making sure program doesn't end instantly cout << "Enter start then the number you want to count down from." << ".\n"; while (end = false){ cin >> input; cout << ".\n"; if (input.find("end") != std::string::npos) // Ends the program if user types end end = true; else if (input.find("start" || /* || is or operator*/ "restart") != std::string::npos) // Sets up the countdown timer if the user types start { cin >> a; cout << ".\n"; while (a>0){ Sleep(100); a = a - 0.1; cout << a << ".\n"; } cout << "Finished! Enter restart and then another number, or enter end to close the program" << ".\n"; } else // Tells user to start program cout << "Enter start"; } return 0; // Ends program when (end = true) }

    Read the article

  • Weird behavior when using pointers [migrated]

    - by Kinan Al Sarmini
    When I run this code on MS VS C++ 2010: #include <iostream> int main() { const int a = 10; const int *b = &a; int *c = (int *)b; *c = 10000; std::cout << c << " " << &a << std::endl; std::cout << *c << " " << a << " " << *(&a) << std::endl; return 0; } The output is: 0037F784 0037F784 10000 10 10 The motivation for writing that code was this sentence from "The C++ Programming Language" by Stroustrup: "It is possible to explicitly remove the restrictions on a pointer to const by explicit type conversion". I know that trying to modify a constant is conceptually wrong, but I find this result quite weird. Can anyone explain the reason behind it?

    Read the article

  • pointers to member functions in an event dispatcher

    - by derivative
    For the past few days I've been trying to come up with a robust event handling system for the game (using a component based entity system, C++, OpenGL) I've been toying with. class EventDispatcher { typedef void (*CallbackFunction)(Event* event); typedef std::unordered_map<TypeInfo, std::list<CallbackFunction>, hash_TypeInfo > TypeCallbacksMap; EventQueue* global_queue_; TypeCallbacksMap callbacks_; ... } global_queue_ is a pointer to a wrapper EventQueue of std::queue<Event*> where Event is a pure virtual class. For every type of event I want to handle, I create a new derived class of Event, e.g. SetPositionEvent. TypeInfo is a wrapper on type_info. When I initialize my data, I bind functions to events in an unordered_map using TypeInfo(typeid(Event)) as the key that corresponds to a std::list of function pointers. When an event is dispatched, I iterate over the list calling the functions on that event. Those functions then static_cast the event pointer to the actual event type, so the event dispatcher needs to know very little. The actual functions that are being bound are functions for my component managers. For instance, SetPositionEvent would be handled by void PositionManager::HandleSetPositionEvent(Event* event) { SetPositionEvent* s_p_event = static_cast<SetPositionEvent*>(event); ... } The problem I'm running into is that to store a pointer to this function, it has to be static (or so everything leads me to believe.) In a perfect world, I want to store pointers member functions of a component manager that is defined in a script or whatever. It looks like I can store the instance of the component manager as well, but the typedef for this function is no longer simple and I can't find an example of how to do it. Is there a way to store a pointer to a member function of a class (along with a class instance, or, I guess a pointer to a class instance)? Is there an easier way to address this problem?

    Read the article

  • share code between check and process methods

    - by undu
    My job is to refactor an old library for GIS vector data processing. The main class encapsulates a collection of building outlines, and offers different methods for checking data consistency. Those checking functions have an optional parameter that allows to perform some process. For instance: std::vector<Point> checkIntersections(int process_mode = 0); This method tests if some building outlines are intersecting, and return the intersection points. But if you pass a non null argument, the method will modify the outlines to remove the intersection. I think it's pretty bad (at call site, a reader not familiar with the code base will assume that a method called checkSomething only performs a check and doesn't modifiy data) and I want to change this. I also want to avoid code duplication as check and process methods are mostly similar. So I was thinking to something like this: // a private worker std::vector<Point> workerIntersections(int process_mode = 0) { // it's the equivalent of the current checkIntersections, it may perform // a process depending on process_mode } // public interfaces for check and process std::vector<Point> checkIntersections() /* const */ { workerIntersections(0); } std::vector<Point> processIntersections(int process_mode /*I have different process modes*/) { workerIntersections(process_mode); } But that forces me to break const correctness as workerIntersections is a non-const method. How can I separate check and process, avoiding code duplication and keeping const-correctness?

    Read the article

  • "Expected initializer before '<' token" in header file

    - by Sarah
    I'm pretty new to programming and am generally confused by header files and includes. I would like help with an immediate compile problem and would appreciate general suggestions about cleaner, safer, slicker ways to write my code. I'm currently repackaging a lot of code that used to be in main() into a Simulation class. I'm getting a compile error with the header file for this class. I'm compiling with gcc version 4.2.1. // Simulation.h #ifndef SIMULATION_H #define SIMULATION_H #include <cstdlib> #include <iostream> #include <cmath> #include <string> #include <fstream> #include <set> #include <boost/multi_index_container.hpp> #include <boost/multi_index/hashed_index.hpp> #include <boost/multi_index/member.hpp> #include <boost/multi_index/ordered_index.hpp> #include <boost/multi_index/mem_fun.hpp> #include <boost/multi_index/composite_key.hpp> #include <boost/shared_ptr.hpp> #include <boost/tuple/tuple_comparison.hpp> #include <boost/tuple/tuple_io.hpp> #include "Parameters.h" #include "Host.h" #include "rng.h" #include "Event.h" #include "Rdraws.h" typedef multi_index_container< // line 33 - first error boost::shared_ptr< Host >, indexed_by< hashed_unique< const_mem_fun<Host,int,&Host::getID> >, // 0 - ID index ordered_non_unique< tag<age>,const_mem_fun<Host,int,&Host::getAgeInY> >, // 1 - Age index hashed_non_unique< tag<household>,const_mem_fun<Host,int,&Host::getHousehold> >, // 2 - Household index ordered_non_unique< // 3 - Eligible by age & household tag<aeh>, composite_key< Host, const_mem_fun<Host,int,&Host::getAgeInY>, const_mem_fun<Host,bool,&Host::isEligible>, const_mem_fun<Host,int,&Host::getHousehold> > >, ordered_non_unique< // 4 - Eligible by household (all single adults) tag<eh>, composite_key< Host, const_mem_fun<Host,bool,&Host::isEligible>, const_mem_fun<Host,int,&Host::getHousehold> > >, ordered_non_unique< // 5 - Household & age tag<ah>, composite_key< Host, const_mem_fun<Host,int,&Host::getHousehold>, const_mem_fun<Host,int,&Host::getAgeInY> > > > // end indexed_by > HostContainer; typedef std::set<int> HHSet; class Simulation { public: Simulation( int sid ); ~Simulation(); // MEMBER FUNCTION PROTOTYPES void runDemSim( void ); void runEpidSim( void ); void ageHost( int id ); int calcPartnerAge( int a ); void executeEvent( Event & te ); void killHost( int id ); void pairHost( int id ); void partner2Hosts( int id1, int id2 ); void fledgeHost( int id ); void birthHost( int id ); void calcSI( void ); double beta_ij_h( int ai, int aj, int s ); double beta_ij_nh( int ai, int aj, int s ); private: // SIMULATION OBJECTS double t; double outputStrobe; int idCtr; int hholdCtr; int simID; RNG rgen; HostContainer allHosts; // shared_ptr to Hosts - line 102 - second error HHSet allHouseholds; int numInfecteds[ INIT_NUM_AGE_CATS ][ INIT_NUM_STYPES ]; EventPQ currentEvents; // STREAM MANAGEMENT void writeOutput(); void initOutput(); void closeOutput(); std::ofstream ageDistStream; std::ofstream ageDistTStream; std::ofstream hhDistStream; std::ofstream hhDistTStream; std::string ageDistFile; std::string ageDistTFile; std::string hhDistFile; std::string hhDistTFile; }; #endif I'm hoping the other files aren't so relevant to this problem. When I compile with g++ -g -o -c a.out -I /Applications/boost_1_42_0/ Host.cpp Simulation.cpp rng.cpp main.cpp Rdraws.cpp I get Simulation.h:33: error: expected initializer before '<' token Simulation.h:102: error: 'HostContainer' does not name a type and then a bunch of other errors related to not recognizing the HostContainer. It seems like I have all the right Boost #includes for the HostContainer to be understood. What else could be going wrong? I would appreciate immediate suggestions, troubleshooting tips, and other advice about my code. My plan is to create a "HostContainer.h" file that includes the typedef and structs that define its tags, similar to what I'm doing in "Event.h" for the EventPQ container. I'm assuming this is legal and good form.

    Read the article

  • Signals and threads - good or bad design decision?

    - by Jens
    I have to write a program that performs highly computationally intensive calculations. The program might run for several days. The calculation can be separated easily in different threads without the need of shared data. I want a GUI or a web service that informs me of the current status. My current design uses BOOST::signals2 and BOOST::thread. It compiles and so far works as expected. If a thread finished one iteration and new data is available it calls a signal which is connected to a slot in the GUI class. My question(s): Is this combination of signals and threads a wise idea? I another forum somebody advised someone else not to "go down this road". Are there potential deadly pitfalls nearby that I failed to see? Is my expectation realistic that it will be "easy" to use my GUI class to provide a web interface or a QT, a VTK or a whatever window? Is there a more clever alternative (like other boost libs) that I overlooked? following code compiles with g++ -Wall -o main -lboost_thread-mt <filename>.cpp code follows: #include <boost/signals2.hpp> #include <boost/thread.hpp> #include <boost/bind.hpp> #include <iostream> #include <iterator> #include <string> using std::cout; using std::cerr; using std::string; /** * Called when a CalcThread finished a new bunch of data. */ boost::signals2::signal<void(string)> signal_new_data; /** * The whole data will be stored here. */ class DataCollector { typedef boost::mutex::scoped_lock scoped_lock; boost::mutex mutex; public: /** * Called by CalcThreads call the to store their data. */ void push(const string &s, const string &caller_name) { scoped_lock lock(mutex); _data.push_back(s); signal_new_data(caller_name); } /** * Output everything collected so far to std::out. */ void out() { typedef std::vector<string>::const_iterator iter; for (iter i = _data.begin(); i != _data.end(); ++i) cout << " " << *i << "\n"; } private: std::vector<string> _data; }; /** * Several of those can calculate stuff. * No data sharing needed. */ struct CalcThread { CalcThread(string name, DataCollector &datcol) : _name(name), _datcol(datcol) { } /** * Expensive algorithms will be implemented here. * @param num_results how many data sets are to be calculated by this thread. */ void operator()(int num_results) { for (int i = 1; i <= num_results; ++i) { std::stringstream s; s << "["; if (i == num_results) s << "LAST "; s << "DATA " << i << " from thread " << _name << "]"; _datcol.push(s.str(), _name); } } private: string _name; DataCollector &_datcol; }; /** * Maybe some VTK or QT or both will be used someday. */ class GuiClass { public: GuiClass(DataCollector &datcol) : _datcol(datcol) { } /** * If the GUI wants to present or at least count the data collected so far. * @param caller_name is the name of the thread whose data is new. */ void slot_data_changed(string caller_name) const { cout << "GuiClass knows: new data from " << caller_name << std::endl; } private: DataCollector & _datcol; }; int main() { DataCollector datcol; GuiClass mc(datcol); signal_new_data.connect(boost::bind(&GuiClass::slot_data_changed, &mc, _1)); CalcThread r1("A", datcol), r2("B", datcol), r3("C", datcol), r4("D", datcol), r5("E", datcol); boost::thread t1(r1, 3); boost::thread t2(r2, 1); boost::thread t3(r3, 2); boost::thread t4(r4, 2); boost::thread t5(r5, 3); t1.join(); t2.join(); t3.join(); t4.join(); t5.join(); datcol.out(); cout << "\nDone" << std::endl; return 0; }

    Read the article

  • Fingertip drawing applications on Android?

    - by STD
    Hi, I'm a new user to this interesting forum! I want start developing an application for android and before starting i want learn about some android features... The first android feature is how to correlate finger motion on the screen with java... Are there any source code examples that show how to draw with your finger on an android screen? Can you suggest a good place for me to download an example? thanks

    Read the article

  • Example of application to design with fingers (source code)

    - by STD
    Hi, i'm new user about this interesting forum! I want start develop application for android and before starting i want learn about some android feature... the first android feature is how to correlate finger motion in screen with java... Exist some source code that show how to realize application to draw with finger in android screen? can you suggest me where donwload it? thanks

    Read the article

  • Why is my simple recusive method for this game always off by 1?

    - by FrankTheTank
    I'm attempting to create a text-based version of this game: http://www.cse.nd.edu/java/SameGame.html Here is the code I have so far: #include <iostream> #include <vector> #include <ctime> class Clickomania { public: Clickomania(); std::vector<std::vector<int> > board; int move(int, int); bool isSolved(); void print(); void pushDown(); bool isValid(); }; Clickomania::Clickomania() : board(12, std::vector<int>(8,0)) { srand((unsigned)time(0)); for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { int color = (rand() % 3) + 1; board[i][j] = color; } } } void Clickomania::pushDown() { for(int i = 0; i < 8; i++) { for(int j = 0; j < 12; j++) { if (board[j][i] == 0) { for(int k = j; k > 0; k--) { board[k][i] = board[k-1][i]; } board[0][i] = 0; } } } } int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } void Clickomania::print() { for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { std::cout << board[i][j]; } std::cout << "\n"; } } int main() { Clickomania game; game.print(); int row; int col; std::cout << "Enter row: "; std::cin >> row; std::cout << "Enter col: "; std::cin >> col; int numDestroyed = game.move(row,col); game.print(); std::cout << "Destroyed: " << numDestroyed << "\n"; } The method that is giving me trouble is my "move" method. This method, given a pair of coordinates, should delete all the squares at that coordinate with the same number and likewise with all the squares with the same number connected to it. If you play the link I gave above you'll see how the deletion works on a click. int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } My move() method above works fine, as in, it will delete the appropriate "blocks" and replace them with zeros. However, the number of destroyed (value returned) is always one off (too small). I believe this is because the first call of move() isn't being counted but I don't know how to differentiate between the first call or subsequent calls in that recursive method. How can I modify my move() method so it returns the correct number of destroyed blocks?

    Read the article

  • Why is my simple recusive method's final return value always off by 1?

    - by FrankTheTank
    I'm attempting to create a text-based version of this game: http://www.cse.nd.edu/java/SameGame.html Here is the code I have so far: #include <iostream> #include <vector> #include <ctime> class Clickomania { public: Clickomania(); std::vector<std::vector<int> > board; int move(int, int); bool isSolved(); void print(); void pushDown(); bool isValid(); }; Clickomania::Clickomania() : board(12, std::vector<int>(8,0)) { srand((unsigned)time(0)); for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { int color = (rand() % 3) + 1; board[i][j] = color; } } } void Clickomania::pushDown() { for(int i = 0; i < 8; i++) { for(int j = 0; j < 12; j++) { if (board[j][i] == 0) { for(int k = j; k > 0; k--) { board[k][i] = board[k-1][i]; } board[0][i] = 0; } } } } int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } void Clickomania::print() { for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { std::cout << board[i][j]; } std::cout << "\n"; } } int main() { Clickomania game; game.print(); int row; int col; std::cout << "Enter row: "; std::cin >> row; std::cout << "Enter col: "; std::cin >> col; int numDestroyed = game.move(row,col); game.print(); std::cout << "Destroyed: " << numDestroyed << "\n"; } The method that is giving me trouble is my "move" method. This method, given a pair of coordinates, should delete all the squares at that coordinate with the same number and likewise with all the squares with the same number connected to it. If you play the link I gave above you'll see how the deletion works on a click. int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } My move() method above works fine, as in, it will delete the appropriate "blocks" and replace them with zeros. However, the number of destroyed (value returned) is always one off (too small). I believe this is because the first call of move() isn't being counted but I don't know how to differentiate between the first call or subsequent calls in that recursive method. How can I modify my move() method so it returns the correct number of destroyed blocks?

    Read the article

  • Finding the left-most and right-most points of a list. std::find_if the right way to go?

    - by Tom
    Hi, I have a list of Point objects, (each one with x,y properties) and would like to find the left-most and right-most points. I've been trying to do it with find_if, but i'm not sure its the way to go, because i can't seem to pass a comparator instance. Is find_if the way to go? Seems not. So, is there an algorithm in <algorithm> to achieve this? Thanks in advance. #include <iostream> #include <list> #include <algorithm> using namespace std; typedef struct Point{ float x; float y; } Point; bool left(Point& p1,Point& p2) { return p1.x < p2.x; } int main(){ Point p1 ={-1,0}; Point p2 ={1,0}; Point p3 ={5,0}; Point p4 ={7,0}; list <Point> points; points.push_back(p1); points.push_back(p2); points.push_back(p3); points.push_back(p4); //Should return an interator to p1. find_if(points.begin(),points.end(),left); return 0; }

    Read the article

  • Query on simple C++ threadpool implementation

    - by ticketman
    Stackoverflow has been a tremendous help to me and I'd to give something back to the community. I have been implementing a simple threadpool using the tinythread C++ portable thread library, using what I have learnt from Stackoverflow. I am new to thread programming, so not that comfortable with mutexes, etc. I have a question best asked after presenting the code (which runs quite well under Linux): // ThreadPool.h class ThreadPool { public: ThreadPool(); ~ThreadPool(); // Creates a pool of threads and gets them ready to be used void CreateThreads(int numOfThreads); // Assigns a job to a thread in the pool, but doesn't start the job // Each SubmitJob call will use up one thread of the pool. // This operation can only be undone by calling StartJobs and // then waiting for the jobs to complete. On completion, // new jobs may be submitted. void SubmitJob( void (*workFunc)(void *), void *workData ); // Begins execution of all the jobs in the pool. void StartJobs(); // Waits until all jobs have completed. // The wait will block the caller. // On completion, new jobs may be submitted. void WaitForJobsToComplete(); private: enum typeOfWorkEnum { e_work, e_quit }; class ThreadData { public: bool ready; // thread has been created and is ready for work bool haveWorkToDo; typeOfWorkEnum typeOfWork; // Pointer to the work function each thread has to call. void (*workFunc)(void *); // Pointer to work data void *workData; ThreadData() : ready(false), haveWorkToDo(false) { }; }; struct ThreadArgStruct { ThreadPool *threadPoolInstance; int threadId; }; // Data for each thread ThreadData *m_ThreadData; ThreadPool(ThreadPool const&); // copy ctor hidden ThreadPool& operator=(ThreadPool const&); // assign op. hidden // Static function that provides the function pointer that a thread can call // By including the ThreadPool instance in the void * parameter, // we can use it to access other data and methods in the ThreadPool instance. static void ThreadFuncWrapper(void *arg) { ThreadArgStruct *threadArg = static_cast<ThreadArgStruct *>(arg); threadArg->threadPoolInstance->ThreadFunc(threadArg->threadId); } // The function each thread calls void ThreadFunc( int threadId ); // Called by the thread pool destructor void DestroyThreadPool(); // Total number of threads available // (fixed on creation of thread pool) int m_numOfThreads; int m_NumOfThreadsDoingWork; int m_NumOfThreadsGivenJobs; // List of threads std::vector<tthread::thread *> m_ThreadList; // Condition variable to signal each thread has been created and executing tthread::mutex m_ThreadReady_mutex; tthread::condition_variable m_ThreadReady_condvar; // Condition variable to signal each thread to start work tthread::mutex m_WorkToDo_mutex; tthread::condition_variable m_WorkToDo_condvar; // Condition variable to signal the main thread that // all threads in the pool have completed their work tthread::mutex m_WorkCompleted_mutex; tthread::condition_variable m_WorkCompleted_condvar; }; cpp file: // // ThreadPool.cpp // #include "ThreadPool.h" // This is the thread function for each thread. // All threads remain in this function until // they are asked to quit, which only happens // when terminating the thread pool. void ThreadPool::ThreadFunc( int threadId ) { ThreadData *myThreadData = &m_ThreadData[threadId]; std::cout << "Hello world: Thread " << threadId << std::endl; // Signal that this thread is ready m_ThreadReady_mutex.lock(); myThreadData->ready = true; m_ThreadReady_condvar.notify_one(); // notify the main thread m_ThreadReady_mutex.unlock(); while(true) { //tthread::lock_guard<tthread::mutex> guard(m); m_WorkToDo_mutex.lock(); while(!myThreadData->haveWorkToDo) // check for work to do m_WorkToDo_condvar.wait(m_WorkToDo_mutex); // if no work, wait here myThreadData->haveWorkToDo = false; // need to do this before unlocking the mutex m_WorkToDo_mutex.unlock(); // Do the work switch(myThreadData->typeOfWork) { case e_work: std::cout << "Thread " << threadId << ": Woken with work to do\n"; // Do work myThreadData->workFunc(myThreadData->workData); std::cout << "#Thread " << threadId << ": Work is completed\n"; break; case e_quit: std::cout << "Thread " << threadId << ": Asked to quit\n"; return; // ends the thread } // Now to signal the main thread that my work is completed m_WorkCompleted_mutex.lock(); m_NumOfThreadsDoingWork--; // Unsure if this 'if' would make the program more efficient // if(NumOfThreadsDoingWork == 0) m_WorkCompleted_condvar.notify_one(); // notify the main thread m_WorkCompleted_mutex.unlock(); } } ThreadPool::ThreadPool() { m_numOfThreads = 0; m_NumOfThreadsDoingWork = 0; m_NumOfThreadsGivenJobs = 0; } ThreadPool::~ThreadPool() { if(m_numOfThreads) { DestroyThreadPool(); delete [] m_ThreadData; } } void ThreadPool::CreateThreads(int numOfThreads) { // Check a thread pool has already been created if(m_numOfThreads > 0) return; m_NumOfThreadsGivenJobs = 0; m_NumOfThreadsDoingWork = 0; m_numOfThreads = numOfThreads; m_ThreadData = new ThreadData[m_numOfThreads]; ThreadArgStruct threadArg; for(int i=0; i<m_numOfThreads; ++i) { threadArg.threadId = i; threadArg.threadPoolInstance = this; // Creates the thread and save in a list so we can destroy it later m_ThreadList.push_back( new tthread::thread( ThreadFuncWrapper, (void *)&threadArg ) ); // It takes a little time for a thread to get established. // Best wait until it gets established before creating the next thread. m_ThreadReady_mutex.lock(); while(!m_ThreadData[i].ready) // Check if thread is ready m_ThreadReady_condvar.wait(m_ThreadReady_mutex); // If not, wait here m_ThreadReady_mutex.unlock(); } } // Adds a job to the batch, but doesn't start the job void ThreadPool::SubmitJob(void (*workFunc)(void *), void *workData) { // Check that the thread pool has been created if(!m_numOfThreads) return; if(m_NumOfThreadsGivenJobs >= m_numOfThreads) return; m_ThreadData[m_NumOfThreadsGivenJobs].workFunc = workFunc; m_ThreadData[m_NumOfThreadsGivenJobs].workData = workData; std::cout << "Submitted job " << m_NumOfThreadsGivenJobs << std::endl; m_NumOfThreadsGivenJobs++; } void ThreadPool::StartJobs() { // Check that the thread pool has been created // and some jobs have been assigned if(!m_numOfThreads || !m_NumOfThreadsGivenJobs) return; // Set 'haveworkToDo' flag for all threads m_WorkToDo_mutex.lock(); for(int i=0; i<m_NumOfThreadsGivenJobs; ++i) m_ThreadData[i].haveWorkToDo = true; m_NumOfThreadsDoingWork = m_NumOfThreadsGivenJobs; // Reset this counter so we can resubmit jobs later m_NumOfThreadsGivenJobs = 0; // Notify all threads they have work to do m_WorkToDo_condvar.notify_all(); m_WorkToDo_mutex.unlock(); } void ThreadPool::WaitForJobsToComplete() { // Check that a thread pool has been created if(!m_numOfThreads) return; m_WorkCompleted_mutex.lock(); while(m_NumOfThreadsDoingWork > 0) // Check if all threads have completed their work m_WorkCompleted_condvar.wait(m_WorkCompleted_mutex); // If not, wait here m_WorkCompleted_mutex.unlock(); } void ThreadPool::DestroyThreadPool() { std::cout << "Ask threads to quit\n"; m_WorkToDo_mutex.lock(); for(int i=0; i<m_numOfThreads; ++i) { m_ThreadData[i].haveWorkToDo = true; m_ThreadData[i].typeOfWork = e_quit; } m_WorkToDo_condvar.notify_all(); m_WorkToDo_mutex.unlock(); // As each thread terminates, catch them here for(int i=0; i<m_numOfThreads; ++i) { tthread::thread *t = m_ThreadList[i]; // Wait for thread to complete t->join(); } m_numOfThreads = 0; } Example of usage: (this calculates pi-squared/6) struct CalculationDataStruct { int inputVal; double outputVal; }; void LongCalculation( void *theSums ) { CalculationDataStruct *sums = (CalculationDataStruct *)theSums; int terms = sums->inputVal; double sum; for(int i=1; i<terms; i++) sum += 1.0/( double(i)*double(i) ); sums->outputVal = sum; } int main(int argc, char** argv) { int numThreads = 10; // Create pool ThreadPool threadPool; threadPool.CreateThreads(numThreads); // Create thread workspace CalculationDataStruct sums[numThreads]; // Set up jobs for(int i=0; i<numThreads; i++) { sums[i].inputVal = 3000*(i+1); threadPool.SubmitJob(LongCalculation, &sums[i]); } // Run the jobs threadPool.StartJobs(); threadPool.WaitForJobsToComplete(); // Print results for(int i=0; i<numThreads; i++) std::cout << "Sum of " << sums[i].inputVal << " terms is " << sums[i].outputVal << std::endl; return 0; } Question: In the ThreadPool::ThreadFunc method, would better performance be obtained if the following if statement if(NumOfThreadsDoingWork == 0) was included? Also, I'd be grateful of criticisms and ways to improve the code. At the same time, I hope the code is of use to others.

    Read the article

  • C++ Little Wonders: The C++11 auto keyword redux

    - by James Michael Hare
    I’ve decided to create a sub-series of my Little Wonders posts to focus on C++.  Just like their C# counterparts, these posts will focus on those features of the C++ language that can help improve code by making it easier to write and maintain.  The index of the C# Little Wonders can be found here. This has been a busy week with a rollout of some new website features here at my work, so I don’t have a big post for this week.  But I wanted to write something up, and since lately I’ve been renewing my C++ skills in a separate project, it seemed like a good opportunity to start a C++ Little Wonders series.  Most of my development work still tends to focus on C#, but it was great to get back into the saddle and renew my C++ knowledge.  Today I’m going to focus on a new feature in C++11 (formerly known as C++0x, which is a major move forward in the C++ language standard).  While this small keyword can seem so trivial, I feel it is a big step forward in improving readability in C++ programs. The auto keyword If you’ve worked on C++ for a long time, you probably have some passing familiarity with the old auto keyword as one of those rarely used C++ keywords that was almost never used because it was the default. That is, in the code below (before C++11): 1: int foo() 2: { 3: // automatic variables (allocated and deallocated on stack) 4: int x; 5: auto int y; 6:  7: // static variables (retain their value across calls) 8: static int z; 9:  10: return 0; 11: } The variable x is assumed to be auto because that is the default, thus it is unnecessary to specify it explicitly as in the declaration of y below that.  Basically, an auto variable is one that is allocated and de-allocated on the stack automatically.  Contrast this to static variables, that are allocated statically and exist across the lifetime of the program. Because auto was so rarely (if ever) used since it is the norm, they decided to remove it for this purpose and give it new meaning in C++11.  The new meaning of auto: implicit typing Now, if your compiler supports C++ 11 (or at least a good subset of C++11 or 0x) you can take advantage of type inference in C++.  For those of you from the C# world, this means that the auto keyword in C++ now behaves a lot like the var keyword in C#! For example, many of us have had to declare those massive type declarations for an iterator before.  Let’s say we have a std::map of std::string to int which will map names to ages: 1: std::map<std::string, int> myMap; And then let’s say we want to find the age of a given person: 1: // Egad that's a long type... 2: std::map<std::string, int>::const_iterator pos = myMap.find(targetName); Notice that big ugly type definition to declare variable pos?  Sure, we could shorten this by creating a typedef of our specific map type if we wanted, but now with the auto keyword there’s no need: 1: // much shorter! 2: auto pos = myMap.find(targetName); The auto now tells the compiler to determine what type pos should be based on what it’s being assigned to.  This is not dynamic typing, it still determines the type as if it were explicitly declared and once declared that type cannot be changed.  That is, this is invalid: 1: // x is type int 2: auto x = 42; 3:  4: // can't assign string to int 5: x = "Hello"; Once the compiler determines x is type int it is exactly as if we typed int x = 42; instead, so don’t' confuse it with dynamic typing, it’s still very type-safe. An interesting feature of the auto keyword is that you can modify the inferred type: 1: // declare method that returns int* 2: int* GetPointer(); 3:  4: // p1 is int*, auto inferred type is int 5: auto *p1 = GetPointer(); 6:  7: // ps is int*, auto inferred type is int* 8: auto p2 = GetPointer(); Notice in both of these cases, p1 and p2 are determined to be int* but in each case the inferred type was different.  because we declared p1 as auto *p1 and GetPointer() returns int*, it inferred the type int was needed to complete the declaration.  In the second case, however, we declared p2 as auto p2 which means the inferred type was int*.  Ultimately, this make p1 and p2 the same type, but which type is inferred makes a difference, if you are chaining multiple inferred declarations together.  In these cases, the inferred type of each must match the first: 1: // Type inferred is int 2: // p1 is int* 3: // p2 is int 4: // p3 is int& 5: auto *p1 = GetPointer(), p2 = 42, &p3 = p2; Note that this works because the inferred type was int, if the inferred type was int* instead: 1: // syntax error, p1 was inferred to be int* so p2 and p3 don't make sense 2: auto p1 = GetPointer(), p2 = 42, &p3 = p2; You could also use const or static to modify the inferred type: 1: // inferred type is an int, theAnswer is a const int 2: const auto theAnswer = 42; 3:  4: // inferred type is double, Pi is a static double 5: static auto Pi = 3.1415927; Thus in the examples above it inferred the types int and double respectively, which were then modified to const and static. Summary The auto keyword has gotten new life in C++11 to allow you to infer the type of a variable from it’s initialization.  This simple little keyword can be used to cut down large declarations for complex types into a much more readable form, where appropriate.   Technorati Tags: C++, C++11, Little Wonders, auto

    Read the article

  • How to make Eclipse CDT's Linux GCC toolchain resolve C++ standard library headers?

    - by Muhammad Khan
    In Ubuntu 12.04 LTS I installed the Eclipse CDT plugin and opened the new hello world project to just test everything out. When I was creating the project, I chose the only toolchain: "Linux GCC" When the project is created, however, it says that #include<iostream> #include<cstdlb> are unresolved. Thus, lines with cout and endl can't be used and it cannot find std. using namespace std; is also causing problems. How can I get my #include directives for standard library headers recognized, to support code using the std namespace?

    Read the article

  • Objects won't render when Texture Compression + Mipmapping is Enabled

    - by felipedrl
    I'm optimizing my game and I've just implemented compressed (DXTn) texture loading in OpenGL. I've worked my way removing bugs but I can't figure out this one: objects w/ DXTn + mipmapped textures are not being rendered. It's not like they are appearing with a flat color, they just don't appear at all. DXTn textured objs render and mipmapped non-compressed textures render just fine. The texture in question is 256x256 I generate the mips all the way down 4x4, i.e 1 block. I've checked on gDebugger and it display all the levels (7) just fine. I'm using GL_LINEAR_MIPMAP_NEAREST for min filter and GL_LINEAR for mag one. The texture is being compressed and mipmaps being created offline with Paint.NET tool using super sampling method. (I also tried bilinear just in case) Source follow: [SNIPPET 1: Loading DDS into sys memory + Initializing Object] // Read header DDSHeader header; file.read(reinterpret_cast<char*>(&header), sizeof(DDSHeader)); uint pos = static_cast<uint>(file.tellg()); file.seekg(0, std::ios_base::end); uint dataSizeInBytes = static_cast<uint>(file.tellg()) - pos; file.seekg(pos, std::ios_base::beg); // Read file data mData = new unsigned char[dataSizeInBytes]; file.read(reinterpret_cast<char*>(mData), dataSizeInBytes); file.close(); mMipmapCount = header.mipmapcount; mHeight = header.height; mWidth = header.width; mCompressionType = header.pf.fourCC; // Only support files divisible by 4 (for compression blocks algorithms) massert(mWidth % 4 == 0 && mHeight % 4 == 0); massert(mCompressionType == NO_COMPRESSION || mCompressionType == COMPRESSION_DXT1 || mCompressionType == COMPRESSION_DXT3 || mCompressionType == COMPRESSION_DXT5); // Allow textures up to 65536x65536 massert(header.mipmapcount <= MAX_MIPMAP_LEVELS); mTextureFilter = TextureFilter::LINEAR; if (mMipmapCount > 0) { mMipmapFilter = MipmapFilter::NEAREST; } else { mMipmapFilter = MipmapFilter::NO_MIPMAP; } mBitsPerPixel = header.pf.bitcount; if (mCompressionType == NO_COMPRESSION) { if (header.pf.flags & DDPF_ALPHAPIXELS) { // The only format supported w/ alpha is A8R8G8B8 massert(header.pf.amask == 0xFF000000 && header.pf.rmask == 0xFF0000 && header.pf.gmask == 0xFF00 && header.pf.bmask == 0xFF); mInternalFormat = GL_RGBA8; mFormat = GL_BGRA; mDataType = GL_UNSIGNED_BYTE; } else { massert(header.pf.rmask == 0xFF0000 && header.pf.gmask == 0xFF00 && header.pf.bmask == 0xFF); mInternalFormat = GL_RGB8; mFormat = GL_BGR; mDataType = GL_UNSIGNED_BYTE; } } else { uint blockSizeInBytes = 16; switch (mCompressionType) { case COMPRESSION_DXT1: blockSizeInBytes = 8; if (header.pf.flags & DDPF_ALPHAPIXELS) { mInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; } else { mInternalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; } break; case COMPRESSION_DXT3: mInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case COMPRESSION_DXT5: mInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; default: // Not Supported (DXT2, DXT4 or any compression format) massert(false); } } [SNIPPET 2: Uploading into video memory] massert(mData != NULL); glGenTextures(1, &mHandle); massert(mHandle!=0); glBindTexture(GL_TEXTURE_2D, mHandle); commitFiltering(); uint offset = 0; Renderer* renderer = Renderer::getInstance(); switch (mInternalFormat) { case GL_RGB: case GL_RGBA: case GL_RGB8: case GL_RGBA8: for (uint i = 0; i < mMipmapCount + 1; ++i) { uint width = std::max(1U, mWidth >> i); uint height = std::max(1U, mHeight >> i); glTexImage2D(GL_TEXTURE_2D, i, mInternalFormat, width, height, mHasBorder, mFormat, mDataType, &mData[offset]); offset += width * height * (mBitsPerPixel / 8); } break; case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT: case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: { uint blockSize = 16; if (mInternalFormat == GL_COMPRESSED_RGB_S3TC_DXT1_EXT || mInternalFormat == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) { blockSize = 8; } uint width = mWidth; uint height = mHeight; for (uint i = 0; i < mMipmapCount + 1; ++i) { uint nBlocks = ((width + 3) / 4) * ((height + 3) / 4); // Only POT textures allowed for mipmapping massert(width % 4 == 0 && height % 4 == 0); glCompressedTexImage2D(GL_TEXTURE_2D, i, mInternalFormat, width, height, mHasBorder, nBlocks * blockSize, &mData[offset]); offset += nBlocks * blockSize; if (width <= 4 && height <= 4) { break; } width = std::max(4U, width / 2); height = std::max(4U, height / 2); } break; } default: // Not Supported massert(false); } Also I don't understand the "+3" in the block size computation but looking for a solution for my problema I've encountered people defining it as that. I guess it won't make a differente for POT textures but I put just in case. Thanks.

    Read the article

  • A question on nature of generated assembly in C++ and code Algebra

    - by Reetesh Mukul
    I wrote this code: #include <iostream> int main() { int a; std::cin >> a; if(a*a== 3){ std::cout << a; } return 0; } On MSVC I turned ON all optimization flags. I expected that since a*a can never be 3, so compiler should not generate code for the section: if(a*a== 3){ std::cout << a; } However it generated code for the section. I did not check GCC or LLVM/CLang. What are the limits of expectation from a C++ compiler in these scenarios?

    Read the article

  • C++: Checking if an object faces a point (within a certain range)

    - by bojoradarial
    I have been working on a shooter game in C++, and am trying to add a feature whereby missiles shot must be within 90 degrees (PI/2 radians) of the direction the ship is facing. The missiles will be shot towards the mouse. My idea is that the ship's angle of rotation is compared with the angle between the ship and the mouse (std::atan2(mouseY - shipY, mouseX - shipX)), and if the difference is less than PI/4 (45 degrees) then the missile can be fired. However, I can't seem to get this to work. The ship's angle of rotation is increased and decreased with the A and D keys, so it is possible that it isn't between 0 and 2*PI, hence the use of fmod() below. Code: float userRotation = std::fmod(user->Angle(), 6.28318f); if (std::abs(userRotation - missileAngle) > 0.78f) return; Any help would be appreciated. Thanks!

    Read the article

  • Storing and reading file paths from _TCHAR *argv[]

    - by ArsenArsen
    How to convert from _TCHAR* to "" and to keep all : and /? I tried: int _tmain(int argc, _TCHAR* argv[]) { if(!argv[1]){ std::cout<<"No Variables.\r\n"; system("PAUSE"); return 0; std::exit; } std::cout<<"Path: "<<argv[1]<<"\r\n"; system("PAUSE"); return 0; } But, output is either "No variables." or "Path: C" (when I changed _TCHAR to const char and char) or either "Path: 00038706"

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >