Search Results

Search found 1919 results on 77 pages for 'typeof'.

Page 28/77 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • Explain to me the following VS 2010 Extension Sample code..

    - by ealshabaan
    Coders, I am building a VS 2010 extension and I am experimenting around some of the samples that came with the VS 2010 SDK. One of the sample projects is called TextAdornment. In that project there is a weirdo class that looks like the following: [Export(typeof(IWpfTextViewCreationListener))] [ContentType("text")] [TextViewRole(PredefinedTextViewRoles.Document)] internal sealed class TextAdornment1Factory : IWpfTextViewCreationListener While I was experimenting with this project, I tried to debug the project to see the flow of the program and I noticed that this class gets hit when I first start the debugging. Now my question is the following: what makes this class being the first class to get called when VS starts? In other words, why this class gets active and it runs as of some code instantiate an object of this class type? Here is the only two files in the sample project: TextAdornment1Factory.cs using System.ComponentModel.Composition; using Microsoft.VisualStudio.Text.Editor; using Microsoft.VisualStudio.Utilities; namespace TextAdornment1 { #region Adornment Factory /// /// Establishes an to place the adornment on and exports the /// that instantiates the adornment on the event of a 's creation /// [Export(typeof(IWpfTextViewCreationListener))] [ContentType("text")] [TextViewRole(PredefinedTextViewRoles.Document)] internal sealed class TextAdornment1Factory : IWpfTextViewCreationListener { /// /// Defines the adornment layer for the adornment. This layer is ordered /// after the selection layer in the Z-order /// [Export(typeof(AdornmentLayerDefinition))] [Name("TextAdornment1")] [Order(After = PredefinedAdornmentLayers.Selection, Before = PredefinedAdornmentLayers.Text)] [TextViewRole(PredefinedTextViewRoles.Document)] public AdornmentLayerDefinition editorAdornmentLayer = null; /// <summary> /// Instantiates a TextAdornment1 manager when a textView is created. /// </summary> /// <param name="textView">The <see cref="IWpfTextView"/> upon which the adornment should be placed</param> public void TextViewCreated(IWpfTextView textView) { new TextAdornment1(textView); } } #endregion //Adornment Factory } TextAdornment1.cs using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Microsoft.VisualStudio.Text; using Microsoft.VisualStudio.Text.Editor; using Microsoft.VisualStudio.Text.Formatting; namespace TextAdornment1 { /// ///TextAdornment1 places red boxes behind all the "A"s in the editor window /// public class TextAdornment1 { IAdornmentLayer _layer; IWpfTextView _view; Brush _brush; Pen _pen; ITextView textView; public TextAdornment1(IWpfTextView view) { _view = view; _layer = view.GetAdornmentLayer("TextAdornment1"); textView = view; //Listen to any event that changes the layout (text changes, scrolling, etc) _view.LayoutChanged += OnLayoutChanged; _view.Closed += new System.EventHandler(_view_Closed); //selectedText(); //Create the pen and brush to color the box behind the a's Brush brush = new SolidColorBrush(Color.FromArgb(0x20, 0x00, 0x00, 0xff)); brush.Freeze(); Brush penBrush = new SolidColorBrush(Colors.Red); penBrush.Freeze(); Pen pen = new Pen(penBrush, 0.5); pen.Freeze(); _brush = brush; _pen = pen; } void _view_Closed(object sender, System.EventArgs e) { MessageBox.Show(textView.Selection.IsEmpty.ToString()); } /// <summary> /// On layout change add the adornment to any reformatted lines /// </summary> private void OnLayoutChanged(object sender, TextViewLayoutChangedEventArgs e) { foreach (ITextViewLine line in e.NewOrReformattedLines) { this.CreateVisuals(line); } } private void selectedText() { } /// <summary> /// Within the given line add the scarlet box behind the a /// </summary> private void CreateVisuals(ITextViewLine line) { //grab a reference to the lines in the current TextView IWpfTextViewLineCollection textViewLines = _view.TextViewLines; int start = line.Start; int end = line.End; //Loop through each character, and place a box around any a for (int i = start; (i < end); ++i) { if (_view.TextSnapshot[i] == 'a') { SnapshotSpan span = new SnapshotSpan(_view.TextSnapshot, Span.FromBounds(i, i + 1)); Geometry g = textViewLines.GetMarkerGeometry(span); if (g != null) { GeometryDrawing drawing = new GeometryDrawing(_brush, _pen, g); drawing.Freeze(); DrawingImage drawingImage = new DrawingImage(drawing); drawingImage.Freeze(); Image image = new Image(); image.Source = drawingImage; //Align the image with the top of the bounds of the text geometry Canvas.SetLeft(image, g.Bounds.Left); Canvas.SetTop(image, g.Bounds.Top); _layer.AddAdornment(AdornmentPositioningBehavior.TextRelative, span, null, image, null); } } } } } }

    Read the article

  • How to fix Monogame WP8 Touch Position bug?

    - by Moses Aprico
    Normally below code will result in X:Infinity, Y:Infinity TouchCollection touchState = TouchPanel.GetState(); foreach (TouchLocation t in touchState) { if (t.State == TouchLocationState.Pressed) { vb.ButtonTouched((int)t.Position.X, (int)t.Position.Y); } } Then, I followed this https://github.com/mono/MonoGame/issues/1046 and added below code at the first line in update method. (I still don't know how it's worked, but it fixed the problem) if (_firstUpdate) { typeof(Microsoft.Xna.Framework.Input.Touch.TouchPanel).GetField("_touchScale",System.Reflection.BindingFlags.NonPublic | System.Reflection.BindingFlags.Static).SetValue(null, Vector2.One); _firstUpdate = false; } And then, when I randomly testing something, there are several area that won't read the user touch. The tile with the purple dude is the area which won't receive user input (It don't even detect "Pressed", the TouchCollection.Count = 0) Any idea how to fix this? UPDATE 1 : The second attempt in recompiling The difference is weird. Dunno why the consistent clickable area is just 2/3 area to the left UPDATE 2 : After trying to rotate to landscape and back to portrait to randomly testing, then the outcome become :

    Read the article

  • Guarding against CSRF Attacks in ASP.NET MVC2

    - by srkirkland
    Alongside XSS (Cross Site Scripting) and SQL Injection, Cross-site Request Forgery (CSRF) attacks represent the three most common and dangerous vulnerabilities to common web applications today. CSRF attacks are probably the least well known but they are relatively easy to exploit and extremely and increasingly dangerous. For more information on CSRF attacks, see these posts by Phil Haack and Steve Sanderson. The recognized solution for preventing CSRF attacks is to put a user-specific token as a hidden field inside your forms, then check that the right value was submitted. It's best to use a random value which you’ve stored in the visitor’s Session collection or into a Cookie (so an attacker can't guess the value). ASP.NET MVC to the rescue ASP.NET MVC provides an HTMLHelper called AntiForgeryToken(). When you call <%= Html.AntiForgeryToken() %> in a form on your page you will get a hidden input and a Cookie with a random string assigned. Next, on your target Action you need to include [ValidateAntiForgeryToken], which handles the verification that the correct token was supplied. Good, but we can do better Using the AntiForgeryToken is actually quite an elegant solution, but adding [ValidateAntiForgeryToken] on all of your POST methods is not very DRY, and worse can be easily forgotten. Let's see if we can make this easier on the program but moving from an "Opt-In" model of protection to an "Opt-Out" model. Using AntiForgeryToken by default In order to mandate the use of the AntiForgeryToken, we're going to create an ActionFilterAttribute which will do the anti-forgery validation on every POST request. First, we need to create a way to Opt-Out of this behavior, so let's create a quick action filter called BypassAntiForgeryToken: [AttributeUsage(AttributeTargets.Method, AllowMultiple=false)] public class BypassAntiForgeryTokenAttribute : ActionFilterAttribute { } Now we are ready to implement the main action filter which will force anti forgery validation on all post actions within any class it is defined on: [AttributeUsage(AttributeTargets.Class, AllowMultiple = false)] public class UseAntiForgeryTokenOnPostByDefault : ActionFilterAttribute { public override void OnActionExecuting(ActionExecutingContext filterContext) { if (ShouldValidateAntiForgeryTokenManually(filterContext)) { var authorizationContext = new AuthorizationContext(filterContext.Controller.ControllerContext);   //Use the authorization of the anti forgery token, //which can't be inhereted from because it is sealed new ValidateAntiForgeryTokenAttribute().OnAuthorization(authorizationContext); }   base.OnActionExecuting(filterContext); }   /// <summary> /// We should validate the anti forgery token manually if the following criteria are met: /// 1. The http method must be POST /// 2. There is not an existing [ValidateAntiForgeryToken] attribute on the action /// 3. There is no [BypassAntiForgeryToken] attribute on the action /// </summary> private static bool ShouldValidateAntiForgeryTokenManually(ActionExecutingContext filterContext) { var httpMethod = filterContext.HttpContext.Request.HttpMethod;   //1. The http method must be POST if (httpMethod != "POST") return false;   // 2. There is not an existing anti forgery token attribute on the action var antiForgeryAttributes = filterContext.ActionDescriptor.GetCustomAttributes(typeof(ValidateAntiForgeryTokenAttribute), false);   if (antiForgeryAttributes.Length > 0) return false;   // 3. There is no [BypassAntiForgeryToken] attribute on the action var ignoreAntiForgeryAttributes = filterContext.ActionDescriptor.GetCustomAttributes(typeof(BypassAntiForgeryTokenAttribute), false);   if (ignoreAntiForgeryAttributes.Length > 0) return false;   return true; } } The code above is pretty straight forward -- first we check to make sure this is a POST request, then we make sure there aren't any overriding *AntiForgeryTokenAttributes on the action being executed. If we have a candidate then we call the ValidateAntiForgeryTokenAttribute class directly and execute OnAuthorization() on the current authorization context. Now on our base controller, you could use this new attribute to start protecting your site from CSRF vulnerabilities. [UseAntiForgeryTokenOnPostByDefault] public class ApplicationController : System.Web.Mvc.Controller { }   //Then for all of your controllers public class HomeController : ApplicationController {} What we accomplished If your base controller has the new default anti-forgery token attribute on it, when you don't use <%= Html.AntiForgeryToken() %> in a form (or of course when an attacker doesn't supply one), the POST action will throw the descriptive error message "A required anti-forgery token was not supplied or was invalid". Attack foiled! In summary, I think having an anti-CSRF policy by default is an effective way to protect your websites, and it turns out it is pretty easy to accomplish as well. Enjoy!

    Read the article

  • WPF ListView as a DataGrid – Part 3

    - by psheriff
    I have had a lot of great feedback on the blog post about turning the ListView into a DataGrid by creating GridViewColumn objects on the fly. So, in the last 2 parts, I showed a couple of different methods for accomplishing this. Let’s now look at one more and that is use Reflection to extract the properties from a Product, Customer, or Employee object to create the columns. Yes, Reflection is a slower approach, but you could create the columns one time then cache the View object for re-use. Another potential drawback is you may have columns in your object that you do not wish to display on your ListView. But, just because so many people asked, here is how to accomplish this using Reflection.   Figure 1: Use Reflection to create GridViewColumns. Using Reflection to gather property names is actually quite simple. First you need to pass any type (Product, Customer, Employee, etc.) to a method like I did in my last two blog posts on this subject. Below is the method that I created in the WPFListViewCommon class that now uses reflection. C#public static GridView CreateGridViewColumns(Type anyType){  // Create the GridView  GridView gv = new GridView();  GridViewColumn gvc;   // Get the public properties.  PropertyInfo[] propInfo =          anyType.GetProperties(BindingFlags.Public |                                BindingFlags.Instance);   foreach (PropertyInfo item in propInfo)  {    gvc = new GridViewColumn();    gvc.DisplayMemberBinding = new Binding(item.Name);    gvc.Header = item.Name;    gvc.Width = Double.NaN;    gv.Columns.Add(gvc);  }   return gv;} VB.NETPublic Shared Function CreateGridViewColumns( _  ByVal anyType As Type) As GridView  ' Create the GridView   Dim gv As New GridView()  Dim gvc As GridViewColumn   ' Get the public properties.   Dim propInfo As PropertyInfo() = _    anyType.GetProperties(BindingFlags.Public Or _                          BindingFlags.Instance)   For Each item As PropertyInfo In propInfo    gvc = New GridViewColumn()    gvc.DisplayMemberBinding = New Binding(item.Name)    gvc.Header = item.Name    gvc.Width = [Double].NaN    gv.Columns.Add(gvc)  Next   Return gvEnd Function The key to using Relection is using the GetProperties method on the type you pass in. When you pass in a Product object as Type, you can now use the GetProperties method and specify, via flags, which properties you wish to return. In the code that I wrote, I am just retrieving the Public properties and only those that are Instance properties. I do not want any static/Shared properties or private properties. GetProperties returns an array of PropertyInfo objects. You can loop through this array and build your GridViewColumn objects by reading the Name property from the PropertyInfo object. Build the Product Screen To populate the ListView shown in Figure 1, you might write code like the following: C#private void CollectionSample(){  Product prod = new Product();   // Setup the GridView Columns  lstData.View =      WPFListViewCommon.CreateGridViewColumns(typeOf(Product));  lstData.DataContext = prod.GetProducts();} VB.NETPrivate Sub CollectionSample()  Dim prod As New Product()   ' Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns( _       GetType(Product))  lstData.DataContext = prod.GetProducts()End Sub All you need to do now is to pass in a Type object from your Product class that you can get by using the typeOf() function in C# or the GetType() function in VB. That’s all there is to it! Summary There are so many different ways to approach the same problem in programming. That is what makes programming so much fun! In this blog post I showed you how to create ListView columns on the fly using Reflection. This gives you a lot of flexibility without having to write extra code as was done previously. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "WPF ListView as a DataGrid – Part 3" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".  

    Read the article

  • jQuery 1.4 Opacity and IE Filters

    - by Rick Strahl
    Ran into a small problem today with my client side jQuery library after switching to jQuery 1.4. I ran into a problem with a shadow plugin that I use to provide drop shadows for absolute elements – for Mozilla WebKit browsers the –moz-box-shadow and –webkit-box-shadow CSS attributes are used but for IE a manual element is created to provide the shadow that underlays the original element along with a blur filter to provide the fuzziness in the shadow. Some of the key pieces are: var vis = el.is(":visible"); if (!vis) el.show(); // must be visible to get .position var pos = el.position(); if (typeof shEl.style.filter == "string") sh.css("filter", 'progid:DXImageTransform.Microsoft.Blur(makeShadow=true, pixelradius=3, shadowOpacity=' + opt.opacity.toString() + ')'); sh.show() .css({ position: "absolute", width: el.outerWidth(), height: el.outerHeight(), opacity: opt.opacity, background: opt.color, left: pos.left + opt.offset, top: pos.top + opt.offset }); This has always worked in previous versions of jQuery, but with 1.4 the original filter no longer works. It appears that applying the opacity after the original filter wipes out the original filter. IOW, the opacity filter is not applied incrementally, but absolutely which is a real bummer. Luckily the workaround is relatively easy by just switching the order in which the opacity and filter are applied. If I apply the blur after the opacity I get my correct behavior back with both opacity: sh.show() .css({ position: "absolute", width: el.outerWidth(), height: el.outerHeight(), opacity: opt.opacity, background: opt.color, left: pos.left + opt.offset, top: pos.top + opt.offset }); if (typeof shEl.style.filter == "string") sh.css("filter", 'progid:DXImageTransform.Microsoft.Blur(makeShadow=true, pixelradius=3, shadowOpacity=' + opt.opacity.toString() + ')'); While this works this still causes problems in other areas where opacity is implicitly set in code such as for fade operations or in the case of my shadow component the style/property watcher that keeps the shadow and main object linked. Both of these may set the opacity explicitly and that is still broken as it will effectively kill the blur filter. This seems like a really strange design decision by the jQuery team, since clearly the jquery css function does the right thing for setting filters. Internally however, the opacity setting doesn’t use .css instead hardcoding the filter which given jQuery’s usual flexibility and smart code seems really inappropriate. The following is from jQuery.js 1.4: var style = elem.style || elem, set = value !== undefined; // IE uses filters for opacity if ( !jQuery.support.opacity && name === "opacity" ) { if ( set ) { // IE has trouble with opacity if it does not have layout // Force it by setting the zoom level style.zoom = 1; // Set the alpha filter to set the opacity var opacity = parseInt( value, 10 ) + "" === "NaN" ? "" : "alpha(opacity=" + value * 100 + ")"; var filter = style.filter || jQuery.curCSS( elem, "filter" ) || ""; style.filter = ralpha.test(filter) ? filter.replace(ralpha, opacity) : opacity; } return style.filter && style.filter.indexOf("opacity=") >= 0 ? (parseFloat( ropacity.exec(style.filter)[1] ) / 100) + "": ""; } You can see here that the style is explicitly set in code rather than relying on $.css() to assign the value resulting in the old filter getting wiped out. jQuery 1.32 looks a little different: // IE uses filters for opacity if ( !jQuery.support.opacity && name == "opacity" ) { if ( set ) { // IE has trouble with opacity if it does not have layout // Force it by setting the zoom level elem.zoom = 1; // Set the alpha filter to set the opacity elem.filter = (elem.filter || "").replace( /alpha\([^)]*\)/, "" ) + (parseInt( value ) + '' == "NaN" ? "" : "alpha(opacity=" + value * 100 + ")"); } return elem.filter && elem.filter.indexOf("opacity=") >= 0 ? (parseFloat( elem.filter.match(/opacity=([^)]*)/)[1] ) / 100) + '': ""; } Offhand I’m not sure why the latter works better since it too is assigning the filter. However, when checking with the IE script debugger I can see that there are actually a couple of filter tags assigned when using jQuery 1.32 but only one when I use jQuery 1.4. Note also that the jQuery 1.3 compatibility plugin for jQUery 1.4 doesn’t address this issue either. Resources ww.jquery.js (shadow plug-in $.fn.shadow) © Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  

    Read the article

  • TDD and WCF behavior

    - by Frederic Hautecoeur
    Some weeks ago I wanted to develop a WCF behavior using TDD. I have lost some time trying to use mocks. After a while i decided to just use a host and a client. I don’t like this approach but so far I haven’t found a good and fast solution to use Unit Test for testing a WCF behavior. To Implement my solution I had to : Create a Dummy Service Definition; Create the Dummy Service Implementation; Create a host; Create a client in my test; Create and Add the behavior; Dummy Service Definition This is just a simple service, composed of an Interface and a simple implementation. The structure is aimed to be easily customizable for my future needs.   Using Clauses : 1: using System.Runtime.Serialization; 2: using System.ServiceModel; 3: using System.ServiceModel.Channels; The DataContract: 1: [DataContract()] 2: public class MyMessage 3: { 4: [DataMember()] 5: public string MessageString; 6: } The request MessageContract: 1: [MessageContract()] 2: public class RequestMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myRequest; 9: } The response MessageContract: 1: [MessageContract()] 2: public class ResponseMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myResponse; 9: } The ServiceContract: 1: [ServiceContract(Name="DummyService", Namespace="http://dummyservice",SessionMode=SessionMode.Allowed )] 2: interface IDummyService 3: { 4: [OperationContract(Action="Perform", IsOneWay=false, ProtectionLevel=System.Net.Security.ProtectionLevel.None )] 5: ResponseMessage DoThis(RequestMessage request); 6: } Dummy Service Implementation 1: public class DummyService:IDummyService 2: { 3: #region IDummyService Members 4: public ResponseMessage DoThis(RequestMessage request) 5: { 6: ResponseMessage response = new ResponseMessage(); 7: response.myHeader = "Response"; 8: response.myResponse = new MyMessage(); 9: response.myResponse.MessageString = 10: string.Format("Header:<{0}> and Request was <{1}>", 11: request.myHeader, request.myRequest.MessageString); 12: return response; 13: } 14: #endregion 15: } Host Creation The most simple host implementation using a Named Pipe binding. The GetBinding method will create a binding for the host and can be used to create the same binding for the client. 1: public static class TestHost 2: { 3: 4: internal static string hostUri = "net.pipe://localhost/dummy"; 5:  6: // Create Host method. 7: internal static ServiceHost CreateHost() 8: { 9: ServiceHost host = new ServiceHost(typeof(DummyService)); 10:  11: // Creating Endpoint 12: Uri namedPipeAddress = new Uri(hostUri); 13: host.AddServiceEndpoint(typeof(IDummyService), GetBinding(), namedPipeAddress); 14:  15: return host; 16: } 17:  18: // Binding Creation method. 19: internal static Binding GetBinding() 20: { 21: NamedPipeTransportBindingElement namedPipeTransport = new NamedPipeTransportBindingElement(); 22: TextMessageEncodingBindingElement textEncoding = new TextMessageEncodingBindingElement(); 23:  24: return new CustomBinding(textEncoding, namedPipeTransport); 25: } 26:  27: // Close Method. 28: internal static void Close(ServiceHost host) 29: { 30: if (null != host) 31: { 32: host.Close(); 33: host = null; 34: } 35: } 36: } Checking the service A simple test tool check the plumbing. 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Open(); 7:  8: using (ChannelFactory<IDummyService> channel = 9: new ChannelFactory<IDummyService>(TestHost.GetBinding() 10: , new EndpointAddress(TestHost.hostUri))) 11: { 12: IDummyService svc = channel.CreateChannel(); 13: try 14: { 15: RequestMessage request = new RequestMessage(); 16: request.myHeader = Guid.NewGuid().ToString(); 17: request.myRequest = new MyMessage(); 18: request.myRequest.MessageString = "I want some beer."; 19:  20: ResponseMessage response = svc.DoThis(request); 21: } 22: catch (Exception ex) 23: { 24: Assert.Fail(ex.Message); 25: } 26: } 27: host.Close(); 28: } 29: } Running the service should show that the client and the host are running fine. So far so good. Adding the Behavior Add a reference to the Behavior project and add the using entry in the test class. We just need to add the behavior to the service host : 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Description.Behaviors.Add(new MyBehavior()); 7: host.Open();¨ 8: …  If you set a breakpoint in your behavior and run the test in debug mode, you will hit the breakpoint. In this case I used a ServiceBehavior. To add an Endpoint behavior you have to add it to the endpoints. 1: host.Description.Endpoints[0].Behaviors.Add(new MyEndpointBehavior()) To add a contract or an operation behavior a custom attribute should work on the service contract definition. I haven’t tried that yet.   All the code provided in this blog and in the following files are for sample use. Improvements I don’t like to instantiate a client and a service to test my behaviors. But so far I have' not found an easy way to do it. Today I am passing a type of endpoint to the host creator and it creates the right binding type. This allows me to easily switch between bindings at will. I have used the same approach to test Mex Endpoints, another post should come later for this. Enjoy !

    Read the article

  • [Windows 8] Application bar popup button

    - by Benjamin Roux
    Here is a small control to create an application bar button which will display a content in a popup when the button is clicked. Visually it gives this So how to create this? First you have to use the AppBarPopupButton control below.   namespace Indeed.Controls { public class AppBarPopupButton : Button { public FrameworkElement PopupContent { get { return (FrameworkElement)GetValue(PopupContentProperty); } set { SetValue(PopupContentProperty, value); } } public static readonly DependencyProperty PopupContentProperty = DependencyProperty.Register("PopupContent", typeof(FrameworkElement), typeof(AppBarPopupButton), new PropertyMetadata(null, (o, e) => (o as AppBarPopupButton).CreatePopup())); private Popup popup; private SerialDisposable sizeChanged = new SerialDisposable(); protected override void OnTapped(Windows.UI.Xaml.Input.TappedRoutedEventArgs e) { base.OnTapped(e); if (popup != null) { var transform = this.TransformToVisual(Window.Current.Content); var offset = transform.TransformPoint(default(Point)); sizeChanged.Disposable = PopupContent.ObserveSizeChanged().Do(_ => popup.VerticalOffset = offset.Y - (PopupContent.ActualHeight + 20)).Subscribe(); popup.HorizontalOffset = offset.X + 24; popup.DataContext = this.DataContext; popup.IsOpen = true; } } private void CreatePopup() { popup = new Popup { IsLightDismissEnabled = true }; popup.Closed += (o, e) => this.GetParentOfType<AppBar>().IsOpen = false; popup.ChildTransitions = new Windows.UI.Xaml.Media.Animation.TransitionCollection(); popup.ChildTransitions.Add(new Windows.UI.Xaml.Media.Animation.PopupThemeTransition()); var container = new Grid(); container.Children.Add(PopupContent); popup.Child = container; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ObserveSizeChanged method is just an extension method which observe the SizeChanged event (using Reactive Extensions - Rx-Metro package in Nuget). If you’re not familiar with Rx, you can replace this line (and the SerialDisposable stuff) by a simple subscription to the SizeChanged event (using +=) but don’t forget to unsubscribe to it ! public static IObservable<Unit> ObserveSizeChanged(this FrameworkElement element) { return Observable.FromEventPattern<SizeChangedEventHandler, SizeChangedEventArgs>( o => element.SizeChanged += o, o => element.SizeChanged -= o) .Select(_ => Unit.Default); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The GetParentOfType extension method just retrieve the first parent of type (it’s a common extension method that every Windows 8 developer should have created !). You can of course tweak to control (for example if you want to center the content to the button or anything else) to fit your needs. How to use this control? It’s very simple, in an AppBar control just add it and define the PopupContent property. <ic:AppBarPopupButton Style="{StaticResource RefreshAppBarButtonStyle}" HorizontalAlignment="Left"> <ic:AppBarPopupButton.PopupContent> <Grid> [...] </Grid> </ic:AppBarPopupButton.PopupContent> </ic:AppBarPopupButton> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When the button is clicked the popup is displayed. When the popup is closed, the app bar is closed too. I hope this will help you !

    Read the article

  • KnownType Not sufficient for Inclusion

    - by Kate at LittleCollie
    Why isn't the use of KnownType attribute in C# sufficient for inclusion of a DLL? Working with Visual Studio 2012 with TFS responsible for builds, I am on a project in which a service required use of this attribute as in the following: using Project.That.Contains.RequiredClassName; [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall, Namespace="SomeNamespace")] [KnownType(typeof(RequiredClassName))] public class Service : IService { } But to get the required DLL to be included in the bin output and therefore the installer from our production build, I had to add the follow to the constructor for Service: public Service() { // Exists only to force inclusion var ignore = new RequiredClassName(); } So, given that the project that contains RequiredClassName is itself referenced by the project that contains Service, why isn't the use of the KnownType attribute sufficient for inclusion of DLL in the output?

    Read the article

  • assigning values to shader parameters in the XNA content pipeline

    - by Nick
    I have tried creating a simple content processor that assigns the custom effect I created to models instead of the default BasicEffect. [ContentProcessor(DisplayName = "Shadow Mapping Model")] public class ShadowMappingModelProcessor : ModelProcessor { protected override MaterialContent ConvertMaterial(MaterialContent material, ContentProcessorContext context) { EffectMaterialContent shadowMappingMaterial = new EffectMaterialContent(); shadowMappingMaterial.Effect = new ExternalReference<EffectContent>("Effects/MultipassShadowMapping.fx"); return context.Convert<MaterialContent, MaterialContent>(shadowMappingMaterial, typeof(MaterialProcessor).Name); } } This works, but when I go to draw a model in a game, the effect has no material properties assigned. How would I go about assigning, say, my DiffuseColor or SpecularColor shader parameter to white or (better) can I assign it to some value specified by the artist in the model? (I think this may have something to do with the OpaqueDataDictionary but I am confused on how to use it--the content pipeline has always been a black box to me.)

    Read the article

  • Get Unity to read in objects name without the need to hard code

    - by N0xus
    I'm trying to get away from having to hard code in the names of objects I want my code to use. For example, I'm use to do it this way: TextAsset test = new TextAsset(); test = (TextAsset)Resources.Load("test.txt", typeof(TextAsset)); What I want to know, is there a way to have so that when I drag my test.txt file onto my object in Unity, my code automatically gets the name of that object? I'm wanting to do this so once I write the code, I don't need to back in and change it should I wish re-use it.

    Read the article

  • ASP.NET Web Forms Extensibility: Control Adapters

    - by Ricardo Peres
    All ASP.NET controls from version 2.0 can be associated with a control adapter. A control adapter is a class that inherits from ControlAdapter and it has the chance to interact with the control(s) it is targeting so as to change some of its properties or alter its output. I talked about control adapters before and they really a cool feature. The ControlAdapter class exposes virtual methods for some well known lifecycle events, OnInit, OnLoad, OnPreRender and OnUnload that closely match their Control counterparts, but are fired before them. Because the control adapter has a reference to its target Control, it can cast it to its concrete class and do something with it before its lifecycle events are actually fired. The adapter is also notified before the control is rendered (BeginRender), after their children are renderes (RenderChildren) and after itself is rendered (Render): this way the adapter can modify the control’s output. Control adapters may be specified for any class inheriting from Control, including abstract classes, web server controls and even pages. You can, for example, specify a control adapter for the WebControl and UserControl classes, but, curiously, not for Control itself. When specifying a control adapter for a page, it must inherit from PageAdapter instead of ControlAdapter. The adapter for a control, if specified, can be found on the protected Adapter property, and for a page, on the PageAdapter property. The first use of control adapters that came to my attention was for changing the output of standard ASP.NET web controls so that they were more based on CSS and less on HTML tables: it was the CSS Friendly Control Adapters project, now available at http://code.google.com/p/aspnetcontroladapters/. They are interesting because you specify them in one location and they apply anywhere a control of the target type is created. Mind you, it applies to controls declared on markup as well as controls created by code with the new operator. So, how do you use control adapters? The most usual way is through a browser definition file. In it, you specify a set of control adapters and their target controls, for a given browser. This browser definition file is a XML file with extension .Browser, and can either be global (%WINDIR%\Microsoft.NET\Framework64\vXXXX\Config\Browsers) or local to the web application, in which case, it must be placed inside the App_Browsers folder at the root of the web site. It looks like this: 1: <browsers> 2: <browser refID="Default"> 3: <controlAdapters> 4: <adapter controlType="System.Web.UI.WebControls.TextBox" adapterType="MyNamespace.TextBoxAdapter, MyAssembly" /> 5: </controlAdapters> 6: </browser> 7: </browsers> A browser definition file targets a specific browser, so you can have different definitions for Chrome, IE, Firefox, Opera, as well as for specific version of each of those (like IE8, Firefox3). Alternatively, if you set the target to Default, it will apply to all. The reason to pick a specific browser and version might be, for example, in order to circumvent some limitation present in that specific version, so that on markup you don’t need to be concerned with that. Another option is through the the current Browser object of the request: 1: this.Context.Request.Browser.Adapters.Add(typeof(TextBox).FullName, typeof(TextBoxAdapter).FullName); This must go very early on the page lifecycle, for example, on the OnPreInit event, or even on Application_Start. You have to specify the full class name for both the target control and the adapter. Of course, you have to do this for every request, because it won’t be persisted. As an example, you may know that the classic TextBox control renders an HTML input tag if its TextMode is set to SingleLine and a textarea if set to MultiLine. Because the textarea has no notion of maximum length, unlike the input, something must be done in order to enforce this. Here’s a simple suggestion: 1: public class TextBoxControlAdapter : ControlAdapter 2: { 3: protected TextBox Target 4: { 5: get 6: { 7: return (this.Control as TextBox); 8: } 9: } 10:  11: protected override void OnLoad(EventArgs e) 12: { 13: if ((this.Target.MaxLength > 0) && (this.Target.TextMode == TextBoxMode.MultiLine)) 14: { 15: if (this.Target.Page.ClientScript.IsClientScriptBlockRegistered("TextBox_KeyUp") == false) 16: { 17: if (this.Target.Page.ClientScript.IsClientScriptBlockRegistered(this.Target.Page.GetType(), "TextBox_KeyUp") == false) 18: { 19: String script = String.Concat("function TextBox_KeyUp(sender) { if (sender.value.length > ", this.Target.MaxLength, ") { sender.value = sender.value.substr(0, ", this.Target.MaxLength, "); } }\n"); 20:  21: this.Target.Page.ClientScript.RegisterClientScriptBlock(this.Target.Page.GetType(), "TextBox_KeyUp", script, true); 22: } 23:  24: this.Target.Attributes["onkeyup"] = "TextBox_KeyUp(this)"; 25: } 26: } 27: 28: base.OnLoad(e); 29: } 30: } What it does is, for every TextBox control, if it is set for multi line and has a defined maximum length, it injects some JavaScript that will filter out any content that exceeds this maximum length. This will occur for any TextBox that you may have on your site, or any class that inherits from it. You can use any of the previous options to register this adapter. Stay tuned for more ASP.NET Web Forms extensibility tips!

    Read the article

  • unit testing variable state explicit tests in dynamically typed languages

    - by kris welsh
    I have heard that a desirable quality of unit tests is that they test for each scenario independently. I realised whilst writing tests today that when you compare a variable with another value in a statement like: assertEquals("foo", otherObject.stringFoo); You are really testing three things: The variable you are testing exists and is within scope. The variable you are testing is the expected type. The variable you are testing's value is what you expect it to be. Which to me raises the question of whether you should test for each of these implicitly so that a test fail would occur on the specific line that tests for that problem: assertTrue(stringFoo); assertTrue(stringFoo.typeOf() == "String"); assertEquals("foo", otherObject.stringFoo); For example if the variable was an integer instead of a string the test case failure would be on line 2 which would give you more feedback on what went wrong. Should you test for this kind of thing explicitly or am i overthinking this?

    Read the article

  • XNA Deferred Shading, Replace BasicEffect

    - by Alex
    I have implemented deferred shading in my XNA 4.0 project, meaning that I need all objects to start out with the same shader "RenderGBuffer.fx". How can I use a custom Content Processor to: Not load any textures by default (I want to manually do this) Use "RenderGBuffer.fx" as the default shader instead of BasicEffect Below is the progress so far public class DeferredModelProcessor : ModelProcessor { EffectMaterialContent deferredShader; public DeferredModelProcessor() { } protected override MaterialContent ConvertMaterial(MaterialContent material, ContentProcessorContext context) { deferredShader = new EffectMaterialContent(); deferredShader.Effect = new ExternalReference<EffectContent>("DeferredShading/RenderGBuffer.fx"); return context.Convert<MaterialContent, MaterialContent>(deferredShader, typeof(MaterialProcessor).Name); } }

    Read the article

  • JQuery + WCF + HTTP 404 Error

    - by hangar18
    HI All, I've searched high and low and finally decided to post a query here. I'm writing a very basic HTML page from which I'm trying to call a WCF service using jQuery and parse it using JSON. Service: IMyDemo.cs [ServiceContract] public interface IMyDemo { [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.WrappedRequest, ResponseFormat = WebMessageFormat.Json)] Employee DoWork(); [OperationContract] [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.WrappedRequest, ResponseFormat = WebMessageFormat.Json)] Employee GetEmp(int age, string name); } [DataContract] public class Employee { [DataMember] public int EmpId { get; set; } [DataMember] public string EmpName { get; set; } [DataMember] public int EmpSalary { get; set; } } MyDemo.svc.cs public Employee DoWork() { // Add your operation implementation here Employee obj = new Employee() { EmpSalary = 12, EmpName = "SomeName" }; return obj; } public Employee GetEmp(int age, string name) { Employee emp = new Employee(); if (age > 0) emp.EmpSalary = 12 + age; if (!string.IsNullOrEmpty(name)) emp.EmpName = "Server" + name; return emp; } WEb.Config <system.serviceModel> <services> <service behaviorConfiguration="EmployeesBehavior" name="MySample.MyDemo"> <endpoint address="" binding="webHttpBinding" contract="MySample.IMyDemo" behaviorConfiguration="EmployeesBehavior"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="EmployeesBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="true" /> </behavior> </serviceBehaviors> <endpointBehaviors> <behavior name="EmployeesBehavior"> <webHttp/> </behavior> </endpointBehaviors> </behaviors> <serviceHostingEnvironment multipleSiteBindingsEnabled="true" /> </system.serviceModel> MyDemo.htm <head> <title></title> <script type="text/javascript" language="javascript" src="Scripts/jquery-1.4.1.js"></script> <script type="text/javascript" language="javascript" src="Scripts/json.js"></script> <script type="text/javascript"> //create a global javascript object for the AJAX defaults. debugger; var ajaxDefaults = {}; ajaxDefaults.base = { type: "POST", timeout : 1000, dataFilter: function (data) { //see http://encosia.com/2009/06/29/never-worry-about-asp-net-ajaxs-d-again/ data = JSON.parse(data); //use the JSON2 library if you aren’t using FF3+, IE8, Safari 3/Google Chrome return data.hasOwnProperty("d") ? data.d : data; }, error: function (xhr) { //see if (!xhr) return; if (xhr.responseText) { var response = JSON.parse(xhr.responseText); //console.log works in FF + Firebug only, replace this code if (response) alert(response); else alert("Unknown server error"); } } }; ajaxDefaults.json = $.extend(ajaxDefaults.base, { //see http://encosia.com/2008/03/27/using-jquery-to-consume-aspnet-json-web-services/ contentType: "application/json; charset=utf-8", dataType: "json" }); var ops = { baseUrl: "/MyService/MySample/MyDemo.svc/", doWork: function () { //see http://api.jquery.com/jQuery.extend/ var ajaxOptions = $.extend(ajaxDefaults.json, { url: ops.baseUrl + "DoWork", data: "{}", success: function (msg) { console.log("success"); console.log(typeof msg); if (typeof msg !== "undefined") { console.log(msg); } } }); $.ajax(ajaxOptions); return false; }, getEmp: function () { var ajaxOpts = $.extend(ajaxDefaults.json, { url: ops.baseUrl + "GetEmp", data: JSON.stringify({ age: 12, name: "NameName" }), success: function (msg) { $("span#lbl").html("age: " + msg.Age + "name:" + msg.Name); } }); $.ajax(ajaxOpts); return false; } } </script> </head> <body> <span id="lbl">abc</span> <br /><br /> <input type="button" value="GetEmployee" id="btnGetEmployee" onclick="javascript:ops.getEmp();" /> </body> I'm just not able to get this running. When I debug, I see the error being returned from the call is " Server Error in '/jQuerySample' Application. <h2> <i>HTTP Error 404 - Not Found.</i> </h2></span> " Looks like I'm missing something basic here. My sample is based on this I've been trying to fix the code for sometime now so I'd like you to take a look and see if you can figure out what is it that I'm doing wrong here. I'm able to see that the service is created when I browse the service in IE. I've also tried changing the setting as mentioned here Appreciate your help. I'm gonna blog about this as soon as the issue is resolved for the benefit of other devs Thanks -Soni

    Read the article

  • Is it a good idea to put all assembly: WebResource in the same cs file?

    - by Guilherme J Santos
    I have a .NET library, with some WebControls. These webControls have Embed Resources. And we declare them like it, in all webcontrols for each cs file: Something like this: [assembly: WebResource("IO.Css.MyCSS.css", "text/css")] namespace MyNamespace.MyClass { [ParseChildren(true)] [PersistChildren(false)] [Designer(typeof(MyNamespace.MyClassDesigner))] public class QuickTip : Control, INamingContainer { //My code... } } Would it be a good idea to create a cs file and include all WebResource declarations there? Example a cs file with just: [assembly: WebResource("IO.Css.MyCSS.css", "text/css")] [assembly: WebResource("IO.Image.MyImage.png", "image/png")] //And many other WebResources of all WebControls of the Assembly

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ResponseStatusLine protocol violation

    - by Tom Hines
    I parse/scrape a few web page every now and then and recently ran across an error that stated: "The server committed a protocol violation. Section=ResponseStatusLine".   After a few web searches, I found a couple of suggestions – one of which said the problem could be fixed by changing the HttpWebRequest ProtocolVersion to 1.0 with the command: 1: HttpWebRequest req = (HttpWebRequest)HttpWebRequest.Create(strURI); 2: req.ProtocolVersion = HttpVersion.Version10;   …but that did not work in my particular case.   What DID work was the next suggestion I found that suggested the use of the setting: “useUnsafeHeaderParsing” either in the app.config file or programmatically. If added to the app.config, it would be: 1: <!-- after the applicationSettings --> 2: <system.net> 3: <settings> 4: <httpWebRequest useUnsafeHeaderParsing ="true"/> 5: </settings> 6: </system.net>   If done programmatically, it would look like this: C++: 1: // UUHP_CPP.h 2: #pragma once 3: using namespace System; 4: using namespace System::Reflection; 5:   6: namespace UUHP_CPP 7: { 8: public ref class CUUHP_CPP 9: { 10: public: 11: static bool UseUnsafeHeaderParsing(String^% strError) 12: { 13: Assembly^ assembly = Assembly::GetAssembly(System::Net::Configuration::SettingsSection::typeid); //__typeof 14: if (nullptr==assembly) 15: { 16: strError = "Could not access Assembly"; 17: return false; 18: } 19:   20: Type^ type = assembly->GetType("System.Net.Configuration.SettingsSectionInternal"); 21: if (nullptr==type) 22: { 23: strError = "Could not access internal settings"; 24: return false; 25: } 26:   27: Object^ obj = type->InvokeMember("Section", 28: BindingFlags::Static | BindingFlags::GetProperty | BindingFlags::NonPublic, 29: nullptr, nullptr, gcnew array<Object^,1>(0)); 30:   31: if(nullptr == obj) 32: { 33: strError = "Could not invoke Section member"; 34: return false; 35: } 36:   37: FieldInfo^ fi = type->GetField("useUnsafeHeaderParsing", BindingFlags::NonPublic | BindingFlags::Instance); 38: if(nullptr == fi) 39: { 40: strError = "Could not access useUnsafeHeaderParsing field"; 41: return false; 42: } 43:   44: if (!(bool)fi->GetValue(obj)) 45: { 46: fi->SetValue(obj, true); 47: } 48:   49: return true; 50: } 51: }; 52: } C# (CSharp): 1: using System; 2: using System.Reflection; 3:   4: namespace UUHP_CS 5: { 6: public class CUUHP_CS 7: { 8: public static bool UseUnsafeHeaderParsing(ref string strError) 9: { 10: Assembly assembly = Assembly.GetAssembly(typeof(System.Net.Configuration.SettingsSection)); 11: if (null == assembly) 12: { 13: strError = "Could not access Assembly"; 14: return false; 15: } 16:   17: Type type = assembly.GetType("System.Net.Configuration.SettingsSectionInternal"); 18: if (null == type) 19: { 20: strError = "Could not access internal settings"; 21: return false; 22: } 23:   24: object obj = type.InvokeMember("Section", 25: BindingFlags.Static | BindingFlags.GetProperty | BindingFlags.NonPublic, 26: null, null, new object[] { }); 27:   28: if (null == obj) 29: { 30: strError = "Could not invoke Section member"; 31: return false; 32: } 33:   34: // If it's not already set, set it. 35: FieldInfo fi = type.GetField("useUnsafeHeaderParsing", BindingFlags.NonPublic | BindingFlags.Instance); 36: if (null == fi) 37: { 38: strError = "Could not access useUnsafeHeaderParsing field"; 39: return false; 40: } 41:   42: if (!Convert.ToBoolean(fi.GetValue(obj))) 43: { 44: fi.SetValue(obj, true); 45: } 46:   47: return true; 48: } 49: } 50: }   F# (FSharp): 1: namespace UUHP_FS 2: open System 3: open System.Reflection 4: module CUUHP_FS = 5: let UseUnsafeHeaderParsing(strError : byref<string>) : bool = 6: // 7: let assembly : Assembly = Assembly.GetAssembly(typeof<System.Net.Configuration.SettingsSection>) 8: if (null = assembly) then 9: strError <- "Could not access Assembly" 10: false 11: else 12: 13: let myType : Type = assembly.GetType("System.Net.Configuration.SettingsSectionInternal") 14: if (null = myType) then 15: strError <- "Could not access internal settings" 16: false 17: else 18: 19: let obj : Object = myType.InvokeMember("Section", BindingFlags.Static ||| BindingFlags.GetProperty ||| BindingFlags.NonPublic, null, null, Array.zeroCreate 0) 20: if (null = obj) then 21: strError <- "Could not invoke Section member" 22: false 23: else 24: 25: // If it's not already set, set it. 26: let fi : FieldInfo = myType.GetField("useUnsafeHeaderParsing", BindingFlags.NonPublic ||| BindingFlags.Instance) 27: if(null = fi) then 28: strError <- "Could not access useUnsafeHeaderParsing field" 29: false 30: else 31: 32: if (not(Convert.ToBoolean(fi.GetValue(obj)))) then 33: fi.SetValue(obj, true) 34: 35: // Now return true 36: true VB (Visual Basic): 1: Option Explicit On 2: Option Strict On 3: Imports System 4: Imports System.Reflection 5:   6: Public Class CUUHP_VB 7: Public Shared Function UseUnsafeHeaderParsing(ByRef strError As String) As Boolean 8:   9: Dim assembly As [Assembly] 10: assembly = [assembly].GetAssembly(GetType(System.Net.Configuration.SettingsSection)) 11:   12: If (assembly Is Nothing) Then 13: strError = "Could not access Assembly" 14: Return False 15: End If 16:   17: Dim type As Type 18: type = [assembly].GetType("System.Net.Configuration.SettingsSectionInternal") 19: If (type Is Nothing) Then 20: strError = "Could not access internal settings" 21: Return False 22: End If 23:   24: Dim obj As Object 25: obj = [type].InvokeMember("Section", _ 26: BindingFlags.Static Or BindingFlags.GetProperty Or BindingFlags.NonPublic, _ 27: Nothing, Nothing, New [Object]() {}) 28:   29: If (obj Is Nothing) Then 30: strError = "Could not invoke Section member" 31: Return False 32: End If 33:   34: ' If it's not already set, set it. 35: Dim fi As FieldInfo 36: fi = [type].GetField("useUnsafeHeaderParsing", BindingFlags.NonPublic Or BindingFlags.Instance) 37: If (fi Is Nothing) Then 38: strError = "Could not access useUnsafeHeaderParsing field" 39: Return False 40: End If 41:   42: If (Not Convert.ToBoolean(fi.GetValue(obj))) Then 43: fi.SetValue(obj, True) 44: End If 45:   46: Return True 47: End Function 48: End Class   Technorati Tags: C++,CPP,VB,Visual Basic,F#,FSharp,C#,CSharp,ResponseStatusLine,protocol violation

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Unity3d: Box collider attached to animated FBX models through scripts at run-time have wrong dimension

    - by Heisenbug
    I have several scripts attached to static and non static models of my scene. All models are instantiated at run-time (and must be instantiated at run-time because I'm procedural building the scene). I'd like to add a BoxCollider or SphereCollider to my FBX models at runtime. With non animated models it works simply requiring BoxCollider component from the script attached to my GameObject. BoxCollider is created of the right dimension. Something like: [RequireComponent(typeof(BoxCollider))] public class AScript: MonoBehavior { } If I do the same thing with animated models, BoxCollider are created of the wrong dimension. For example if attach the script above to penelopeFBX model of the standard asset, BoxCollider is created smaller than the mesh itself. How can I solve this?

    Read the article

  • Generically correcting data before save with Entity Framework

    - by koevoeter
    Been working with Entity Framework (.NET 4.0) for a week now for a data migration job and needed some code that generically corrects string values in the database. You probably also have seen things like empty strings instead of NULL or non-trimmed texts ("United States       ") in "old" databases, and you don't want to apply a correcting function on every column you migrate. Here's how I've done this (extending the partial class of my ObjectContext):public partial class MyDatacontext{    partial void OnContextCreated()    {        SavingChanges += OnSavingChanges;    }     private void OnSavingChanges(object sender, EventArgs e)    {        foreach (var entity in GetPersistingEntities(sender))        {            foreach (var propertyInfo in GetStringProperties(entity))            {                var value = (string)propertyInfo.GetValue(entity, null);                 if (value == null)                {                    continue;                }                 if (value.Trim().Length == 0 && IsNullable(propertyInfo))                {                    propertyInfo.SetValue(entity, null, null);                }                else if (value != value.Trim())                {                    propertyInfo.SetValue(entity, value.Trim(), null);                }            }        }    }     private IEnumerable<object> GetPersistingEntities(object sender)    {        return ((ObjectContext)sender).ObjectStateManager            .GetObjectStateEntries(EntityState.Added | EntityState.Modified)             .Select(e => e.Entity);    }    private IEnumerable<PropertyInfo> GetStringProperties(object entity)    {        return entity.GetType().GetProperties()            .Where(pi => pi.PropertyType == typeof(string));    }    private bool IsNullable(PropertyInfo propertyInfo)    {        return ((EdmScalarPropertyAttribute)propertyInfo             .GetCustomAttributes(typeof(EdmScalarPropertyAttribute), false)            .Single()).IsNullable;    }}   Obviously you can use similar code for other generic corrections.

    Read the article

  • How to Inspect Javascript Object

    - by Madhan ayyasamy
    You can inspect any JavaScript objects and list them as indented, ordered by levels.It shows you type and property name. If an object property can't be accessed, an error message will be shown.Here the snippets for inspect javascript object.function inspect(obj, maxLevels, level){  var str = '', type, msg;    // Start Input Validations    // Don't touch, we start iterating at level zero    if(level == null)  level = 0;    // At least you want to show the first level    if(maxLevels == null) maxLevels = 1;    if(maxLevels < 1)             return '<font color="red">Error: Levels number must be > 0</font>';    // We start with a non null object    if(obj == null)    return '<font color="red">Error: Object <b>NULL</b></font>';    // End Input Validations    // Each Iteration must be indented    str += '<ul>';    // Start iterations for all objects in obj    for(property in obj)    {      try      {          // Show "property" and "type property"          type =  typeof(obj[property]);          str += '<li>(' + type + ') ' + property +                  ( (obj[property]==null)?(': <b>null</b>'):('')) + '</li>';          // We keep iterating if this property is an Object, non null          // and we are inside the required number of levels          if((type == 'object') && (obj[property] != null) && (level+1 < maxLevels))          str += inspect(obj[property], maxLevels, level+1);      }      catch(err)      {        // Is there some properties in obj we can't access? Print it red.        if(typeof(err) == 'string') msg = err;        else if(err.message)        msg = err.message;        else if(err.description)    msg = err.description;        else                        msg = 'Unknown';        str += '<li><font color="red">(Error) ' + property + ': ' + msg +'</font></li>';      }    }      // Close indent      str += '</ul>';    return str;}Method Call:function inspect(obj [, maxLevels [, level]]) Input Vars * obj: Object to inspect * maxLevels: Optional. Number of levels you will inspect inside the object. Default MaxLevels=1 * level: RESERVED for internal use of the functionReturn ValueHTML formatted string containing all values of inspected object obj.

    Read the article

  • Extending Expression Blend 4 &amp; Blend for Visual Studio 2012

    - by Chris Skardon
    Just getting this off the bat, I presume this will also work for Blend 5, but I can’t confirm it… Anyhews, I imagine you’re here because you want to know how to create an addin for Blend, so let’s jump right in there! First, and foremost, we’re going to need to ensure our development environment has the right setup, so the checklist: Visual Studio 2012 Blend for Visual Studio 2012 OK, let’s create a new project (class library, .NET 4.5): Hello.Extension The ‘.Extension’ bit is very very important. The addin will not work unless it is named in this way. You can put whatever you want at the front, but it has to have the extension bit. OK, so now we have a solution with one project. To this project we need to add references to the following things: Microsoft.Expression.Extensibility (from c:\program files\Microsoft Visual Studio 11.0\Blend\   -- x86 folder if you are on an x64 windows install) Microsoft.Expression.Framework (same location as above) PresentationCore PresentationFramework WindowsBase System.ComponentModel.Composition Got them? ACE. Let’s now add a project to contain our control, so, create a new WPF Application project, cunningly named something like ‘Hello.Control’… (I’m creating a WPF application here, because I’m too lazy to dig up the correct references, and this will add all the ones I need ) Once that is created, delete the App.xaml and MainWindow.xaml files, we won’t be needing them. You will also need to change the properties of the project itself, so it is only a class library. Once that is done, let’s add a new UserControl, which will be this: <UserControl x:Class="Hello.Control.HelloControl" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="300"> <Grid> <TextBlock Text="HELLO!!!"/> </Grid> </UserControl> Impressive eh? Now, let’s reference the WPF project from the Extension library. All that’s left now is to code up our extension… So, add a class to the Extension project (name wise doesn’t matter), and make it implement the IPackage interface from the Microsoft.Expression.Extensibility library: public class HelloExtension : IPackage { /**/ } We’ll implement the two methods we need to: public class HelloExtension : IPackage { public void Load(IServices services) { } public void Unload() { } } We’re only really concerned about the Load method in this case, as let’s face it, the extension we have doesn’t need to do a lot to bog off. The interesting thing about the Load method is that it receives an IServices instance. This allows us to get access to all the services that Expression provides, in this case we’re interested in one in particular, the ‘IWindowService’ So, let’s get that bad boy… private IWindowService _windowService; public void Load(IServices services) { _windowService = services.GetService<IWindowService>(); } Nailed it… But why? The WindowService allows us to register our UserControl with Blend, which in turn allows people to activate and see it, which is a big plus point. So, let’s do that… We’ll create an ‘Initialize’ method to create our new control, and add it to the WindowService: private HelloControl _helloControl; public void Initialize() { _helloControl = new HelloControl(); if (_windowService.PaletteRegistry["HelloPanel"] == null) _windowService.RegisterPalette("HelloPanel", _helloControl, "Hello Window"); } First we check that we’re not already registered, and if we’re not we register, the first argument is the identifier used by the service to, well, identify your extension. The second argument is the actual control, the third argument is the name that people will see in the ‘Windows’ menu of Blend itself (so important note here – don’t put anything embarrassing or (need I say it?) sweary…) There are only two things to do now - Call ‘Initialize()’ from our Load method, and Export the class This is easy money – add [Export(typeof(IPackage))] to the top of our class… The full code will (should) look like this: [Export(typeof (IPackage))] public class HelloExtension : IPackage { private HelloControl _helloControl; private IWindowService _windowService; public void Load(IServices services) { _windowService = services.GetService<IWindowService>(); Initialize(); } public void Unload() { } public void Initialize() { _helloControl = new HelloControl(); if (_windowService.PaletteRegistry["HelloControl"] == null) _windowService.RegisterPalette("HelloControl", _helloControl, "Hello Window"); } } If you build this and copy it to your ‘Extensions’ folder in Blend (c:\program files\microsoft visual studio 11.0\blend\) and start Blend, you should see ‘Hello Window’ listed in the Window menu: That as they say is it!

    Read the article

  • Fluent MVC Route Testing Helper

    - by Nettuce
    static class GetUrlFromController<T> where T : Controller     {         public static string WithAction(Expression<Func<T, ActionResult>> expression)         {             var controllerName = typeof(T).Name.Replace("Controller", string.Empty);             var methodCall = (MethodCallExpression)expression.Body;             var actionName = methodCall.Method.Name;             var routeValueDictionary = new RouteValueDictionary();             for (var i = 0; i < methodCall.Arguments.Count; i++)             {                 routeValueDictionary.Add(methodCall.Method.GetParameters()[i].Name, methodCall.Arguments[i]);             }             var routes = new RouteCollection();             MvcApplication.RegisterRoutes(routes);             return UrlHelper.GenerateUrl(null, actionName, controllerName, routeValueDictionary, routes, ContextMocks.RequestContext, true);         }     } I'm using FluentAssertions too, so you get this: GetUrlFromController<HomeController>.WithAction(x => x.Edit(1)).Should().Be("/Home/Edit/1");

    Read the article

  • How can I make my generic comparer (IComparer) handle nulls? [closed]

    - by Nick G
    Hi, I'm trying to write a generic object comparer for sorting, but I have noticed it does not handle the instance where one of the values it's comparing is null. When an object is null, I want it to treat it the same as the empty string. I've tried setting the null values to String.Empty but then I get an error of "Object must be of type String" when calling CompareTo() on it. public int Compare(T x, T y) { PropertyInfo propertyInfo = typeof(T).GetProperty(sortExpression); IComparable obj1 = (IComparable)propertyInfo.GetValue(x, null); IComparable obj2 = (IComparable)propertyInfo.GetValue(y, null); if (obj1 == null) obj1 = String.Empty; // This doesn't work! if (obj2 == null) obj2 = String.Empty; // This doesn't work! if (SortDirection == SortDirection.Ascending) return obj1.CompareTo(obj2); else return obj2.CompareTo(obj1); } I'm pretty stuck with this now! Any help would be appreciated.

    Read the article

  • what does square bracket syntax mean above a method in C#, ASP.NET

    - by Alexander
    I am just looking a bunch of codes that I am trying to learn from an open source project and sometimes I see a square brackets above a function such as: [EdmFunction("NerdDinnerModel.Store", "DistanceBetween")] public static double DistanceBetween(double lat1, double long1, double lat2, double long2) or [Bind(Include = "Title,Description,EventDate,Address,Country,ContactPhone,Latitude,Longitude")] [MetadataType(typeof(Dinner_Validation))] public partial class Dinner

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >