Search Results

Search found 15952 results on 639 pages for 'assembly language'.

Page 29/639 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • How can I create an Assembly program WITHOUT using libraries?

    - by Newbie
    Hello. I've literally only just started looking to learn Assembly language. I'm using the NASM assembler on Windows Vista. Usually, when I begin to learn a new language, I'll copy someone else's Hello World code and try to understand it line-by-line. However, I'm finding it suprisingy difficult to find a Hello World program that doesn't reference other libraries! You see, there's no point trying to understand each line of the code if it is closely linked with a whole library of additional code! One of the reasons I want to learn Assembly is so that I can have near complete control over the programs I write. I don't want to be depending on any libraries. And so my question is this: Can anyone give me NASM-compatible Assembly code to a completely stand-alone Hello World program that can output to the Windows Vista console? Alternatively, I appreciate that a library may be required to tell the pogram WHERE to print the output (ie. the Windows console). Other than that, I can't see why any libraries should be required. Am I overlooking anything?

    Read the article

  • Confusion of the "stack" in Assembly-level programming

    - by Bigyellow Bastion
    What is the "stack" exactly? I've read articles, tried comprehending it through my understanding, experience, and educated guessing of programming and computers, but I'm a bit perplexed here. The "stack" is a region in RAM? Or is it some other space I'm uncertain of here? The processor pushes bits through registers on to the stack in RAM, or do I have it wrong here? Also, the processor moves the bits from the RAM to the register to "process" it, such as maybe a compare, arithmetic, etc. But what actually can help understand, in some visual or verbal description or both, of how to implement the idea of a "stack" here? Is the stack actually the same in terminology with a "machine stack" meaning it's in RAM? I'm sorry, I don't want to solicit debate or arguments, but I really could use some help here if anyone can straighten things out. TO ADD: I know what a software stack is. I know about LIFO, FIFO, etc. I just want to gain a better understanding of the Assembly-level stack, what it is, where it is, how exactly it works, etc. Thanks for reading!

    Read the article

  • Structure of a .NET Assembly

    - by Om Talsania
    Assembly is the smallest unit of deployment in .NET Framework.When you compile your C# code, it will get converted into a managed module. A managed module is a standard EXE or DLL. This managed module will have the IL (Microsoft Intermediate Language) code and the metadata. Apart from this it will also have header information.The following table describes parts of a managed module.PartDescriptionPE HeaderPE32 Header for 32-bit PE32+ Header for 64-bit This is a standard Windows PE header which indicates the type of the file, i.e. whether it is an EXE or a DLL. It also contains the timestamp of the file creation date and time. It also contains some other fields which might be needed for an unmanaged PE (Portable Executable), but not important for a managed one. For managed PE, the next header i.e. CLR header is more importantCLR HeaderContains the version of the CLR required, some flags, token of the entry point method (Main), size and location of the metadata, resources, strong name, etc.MetadataThere can be many metadata tables. They can be categorized into 2 major categories.1. Tables that describe the types and members defined in your code2. Tables that describe the types and members referenced by your codeIL CodeMSIL representation of the C# code. At runtime, the CLR converts it into native instructions

    Read the article

  • NDepend query methods/types in framework assembly being used by other assemblies/types

    - by icelava
    I am trying to determine which types or methods in a base framework assembly are being used by other assemblies in the application system. I cannot seem to find a straight-cut query to do that. What i have to do is first determine which assemblies are directly using the framework assembly, then manually list them in a second query SELECT TYPES FROM ASSEMBLIES "IBM.Data.DB2" WHERE IsDirectlyUsedBy "ASSEMBLY:FirstDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:SecondDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:ThirdDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:FourthDirectUsedByAssebmly" Is there a better/faster way to query for this? Additionally, the query results are focused on the matched types only. The Dependency graph or matrix exported only shows details of those. I do not know how to render a graph that shows those types or methods plus show the dependent types/methods from other assemblies that are consuming them?

    Read the article

  • The maven assembly plugin is not using the finalName for installing with attach=true?

    - by Roland Wiesemann
    I have configured following assembly: <build> <plugins> <plugin> <artifactId>maven-assembly-plugin</artifactId> <version>2.2-beta-5</version> <executions> <execution> <id>${project.name}-test-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> <configuration> <appendAssemblyId>false</appendAssemblyId> <finalName>${project.name}-test</finalName> <filters> <filter>src/assemble/test/distribution.properties</filter> </filters> <descriptors> <descriptor>src/assemble/distribution.xml</descriptor> </descriptors> <attach>true</attach> </configuration> </execution> <execution> <id>${project.name}-prod-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> <configuration> <appendAssemblyId>false</appendAssemblyId> <finalName>${project.name}-prod</finalName> <filters> <filter>src/assemble/prod/distribution.properties</filter> </filters> <descriptors> <descriptor>src/assemble/distribution.xml</descriptor> </descriptors> <attach>true</attach> </configuration> </execution> </executions> </plugin> </plugins> </build> This produced two zip-files: distribution-prod.zip distribution-test.zip My expectation for the property attach=true is, that the two zip-files are installed with the name as given in property finalName. But the result is, only one file is installed (attached) to the artifact. The maven protocol is: distrib-0.1-SNAPSHOT.zip distrib-0.1-SNAPSHOT.zip The plugin is using the artifact-id instead of property finalName! Is this a bug? The last installation is overwriting the first one. What can i do to install this two files with different names? Thanks for your investigation. Roland

    Read the article

  • Are their any suggestions for this new assembly language?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller exit End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Are there any suggestions for these new assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Assembly.CodeBase: when is it no file-URI?

    - by Marc Wittke
    Assembly.Location gives a plain path to the assembly. Unfortunately this is empty when running in a shadowed environment, such as unit test or ASP.NET. Hovever, the Codebase property is available and provides a URI that can be used instead. In which cases it returns no URI starting with file:///? Or in other words: what are the cases in which this won't work or will return unusable results? Assembly assembly = GetType().Assembly; Uri codeBaseUri = new Uri(assembly.CodeBase); string path = codeBaseUri.LocalPath;

    Read the article

  • Hiding an internal interface in a "friend" assembly

    - by dmo
    I have two assemblies: A and B. A has InternalsVisibleTo set for B. I would like to make calls from A to get information that can only be known by a type defined in B in a way that keeps things internal. I can do this using an internal interface defined in A and implemented explicitly in B. Assembly A internal interface IHasData { Data GetData(); } class ClassA { DoSomething(IHasData); } Assembly B public abstract class ClassB : IHasData { Data IHasData.GetData() { /** do something internal **/ } } The trouble comes when someone references assembly B and derives from ClassB - they get the error: "The type 'AssemblyA.IHasData' is defined in an assembly that is not referenced" even though that type should be invisible to them. If I look at the public type definition I see what I expect - ClassB with no interfaces implemented. Why do I get this error? All of the implementation is in assembly B. I could use IHasData internally in ClassB and that wouldn't require assembly A to be referenced. Can someone help me understand what is going on?

    Read the article

  • Why is writing a compiler in a functional language so efficient and easier?

    - by wvd
    Hello all, I've been thinking of this question very long, but really couldn't find the answer on Google as well a similar question on Stackoverflow. If there is a duplicate, I'm sorry for that. A lot of people seem to say that writing compilers and other language tools in functional languages such as OCaml and Haskell is much more efficient and easier then writing them in imperative languages. Is this true? And if so -- why is so efficient and easy to write them in functional languages instead of in an imperative language, like C? Also -- isn't a language tool in a functional language slower then in some low-level language like C? Thanks in advance, William v. Doorn

    Read the article

  • is it better to use a "natural" language to write code?

    - by M.H
    I recently saw a programming language called supernova and they said in the web page : The Supernova Programming language is a modern scripting language and the First one presents the concept of programming with direct Fiction Description using Clear subset of pure Human Language. and you can write code like: i want window and the window title is Hello World. i want button and button caption is Close. and button name is btn1. btn1 mouse click. instructions are you close window end of instructions my question is not about the language itself but it is that are we need such languages and did they make writing code easier or not?

    Read the article

  • Why is writing a compiler in a functional language easier?

    - by wvd
    Hello all, I've been thinking of this question very long, but really couldn't find the answer on Google as well a similar question on Stackoverflow. If there is a duplicate, I'm sorry for that. A lot of people seem to say that writing compilers and other language tools in functional languages such as OCaml and Haskell is much more efficient and easier then writing them in imperative languages. Is this true? And if so -- why is it so efficient and easy to write them in functional languages instead of in an imperative language, like C? Also -- isn't a language tool in a functional language slower then in some low-level language like C? Thanks in advance, William v. Doorn

    Read the article

  • How can I write a "Hello World" app in assembly language?

    - by SLC
    I've often heard of applications written using the language of the gods, assembly language. I've never tried though, and I don't even have a clue how to do it. If I wanted to dabble, how would I go about doing it? I know absolutely nothing about what is required, although presumably some kind of compiler and Notepad. Just purely out of curiousity, what would I need to write a "Hello World!" application?

    Read the article

  • is it better to use a "natural" language to write codes ?

    - by M.H
    I recently saw a programming language called supernova and they said in the web page : The Supernova Programming language is a modern scripting language and the First one presents the concept of programming with direct Fiction Description using Clear subset of pure Human Language. and you can write codes like : i want window and the window title is Hello World. i want button and button caption is Close. and button name is btn1. btn1 mouse click. instructions are you close window end of instructions my question is not about the language itself but it is that are we need such languages and did they make writing codes more easier or not ?

    Read the article

  • jQuery Globalization Plugin from Microsoft

    - by ScottGu
    Last month I blogged about how Microsoft is starting to make code contributions to jQuery, and about some of the first code contributions we were working on: jQuery Templates and Data Linking support. Today, we released a prototype of a new jQuery Globalization Plugin that enables you to add globalization support to your JavaScript applications. This plugin includes globalization information for over 350 cultures ranging from Scottish Gaelic, Frisian, Hungarian, Japanese, to Canadian English.  We will be releasing this plugin to the community as open-source. You can download our prototype for the jQuery Globalization plugin from our Github repository: http://github.com/nje/jquery-glob You can also download a set of samples that demonstrate some simple use-cases with it here. Understanding Globalization The jQuery Globalization plugin enables you to easily parse and format numbers, currencies, and dates for different cultures in JavaScript. For example, you can use the Globalization plugin to display the proper currency symbol for a culture: You also can use the Globalization plugin to format dates so that the day and month appear in the right order and the day and month names are correctly translated: Notice above how the Arabic year is displayed as 1431. This is because the year has been converted to use the Arabic calendar. Some cultural differences, such as different currency or different month names, are obvious. Other cultural differences are surprising and subtle. For example, in some cultures, the grouping of numbers is done unevenly. In the "te-IN" culture (Telugu in India), groups have 3 digits and then 2 digits. The number 1000000 (one million) is written as "10,00,000". Some cultures do not group numbers at all. All of these subtle cultural differences are handled by the jQuery Globalization plugin automatically. Getting dates right can be especially tricky. Different cultures have different calendars such as the Gregorian and UmAlQura calendars. A single culture can even have multiple calendars. For example, the Japanese culture uses both the Gregorian calendar and a Japanese calendar that has eras named after Japanese emperors. The Globalization Plugin includes methods for converting dates between all of these different calendars. Using Language Tags The jQuery Globalization plugin uses the language tags defined in the RFC 4646 and RFC 5646 standards to identity cultures (see http://tools.ietf.org/html/rfc5646). A language tag is composed out of one or more subtags separated by hyphens. For example: Language Tag Language Name (in English) en-AU English (Australia) en-BZ English (Belize) en-CA English (Canada) Id Indonesian zh-CHS Chinese (Simplified) Legacy Zu isiZulu Notice that a single language, such as English, can have several language tags. Speakers of English in Canada format numbers, currencies, and dates using different conventions than speakers of English in Australia or the United States. You can find the language tag for a particular culture by using the Language Subtag Lookup tool located here:  http://rishida.net/utils/subtags/ The jQuery Globalization plugin download includes a folder named globinfo that contains the information for each of the 350 cultures. Actually, this folder contains more than 700 files because the folder includes both minified and un-minified versions of each file. For example, the globinfo folder includes JavaScript files named jQuery.glob.en-AU.js for English Australia, jQuery.glob.id.js for Indonesia, and jQuery.glob.zh-CHS for Chinese (Simplified) Legacy. Example: Setting a Particular Culture Imagine that you have been asked to create a German website and want to format all of the dates, currencies, and numbers using German formatting conventions correctly in JavaScript on the client. The HTML for the page might look like this: Notice the span tags above. They mark the areas of the page that we want to format with the Globalization plugin. We want to format the product price, the date the product is available, and the units of the product in stock. To use the jQuery Globalization plugin, we’ll add three JavaScript files to the page: the jQuery library, the jQuery Globalization plugin, and the culture information for a particular language: In this case, I’ve statically added the jQuery.glob.de-DE.js JavaScript file that contains the culture information for German. The language tag “de-DE” is used for German as spoken in Germany. Now that I have all of the necessary scripts, I can use the Globalization plugin to format the product price, date available, and units in stock values using the following client-side JavaScript: The jQuery Globalization plugin extends the jQuery library with new methods - including new methods named preferCulture() and format(). The preferCulture() method enables you to set the default culture used by the jQuery Globalization plugin methods. Notice that the preferCulture() method accepts a language tag. The method will find the closest culture that matches the language tag. The $.format() method is used to actually format the currencies, dates, and numbers. The second parameter passed to the $.format() method is a format specifier. For example, passing “c” causes the value to be formatted as a currency. The ReadMe file at github details the meaning of all of the various format specifiers: http://github.com/nje/jquery-glob When we open the page in a browser, everything is formatted correctly according to German language conventions. A euro symbol is used for the currency symbol. The date is formatted using German day and month names. Finally, a period instead of a comma is used a number separator: You can see a running example of the above approach with the 3_GermanSite.htm file in this samples download. Example: Enabling a User to Dynamically Select a Culture In the previous example we explicitly said that we wanted to globalize in German (by referencing the jQuery.glob.de-DE.js file). Let’s now look at the first of a few examples that demonstrate how to dynamically set the globalization culture to use. Imagine that you want to display a dropdown list of all of the 350 cultures in a page. When someone selects a culture from the dropdown list, you want all of the dates in the page to be formatted using the selected culture. Here’s the HTML for the page: Notice that all of the dates are contained in a <span> tag with a data-date attribute (data-* attributes are a new feature of HTML 5 that conveniently also still work with older browsers). We’ll format the date represented by the data-date attribute when a user selects a culture from the dropdown list. In order to display dates for any possible culture, we’ll include the jQuery.glob.all.js file like this: The jQuery Globalization plugin includes a JavaScript file named jQuery.glob.all.js. This file contains globalization information for all of the more than 350 cultures supported by the Globalization plugin.  At 367KB minified, this file is not small. Because of the size of this file, unless you really need to use all of these cultures at the same time, we recommend that you add the individual JavaScript files for particular cultures that you intend to support instead of the combined jQuery.glob.all.js to a page. In the next sample I’ll show how to dynamically load just the language files you need. Next, we’ll populate the dropdown list with all of the available cultures. We can use the $.cultures property to get all of the loaded cultures: Finally, we’ll write jQuery code that grabs every span element with a data-date attribute and format the date: The jQuery Globalization plugin’s parseDate() method is used to convert a string representation of a date into a JavaScript date. The plugin’s format() method is used to format the date. The “D” format specifier causes the date to be formatted using the long date format. And now the content will be globalized correctly regardless of which of the 350 languages a user visiting the page selects.  You can see a running example of the above approach with the 4_SelectCulture.htm file in this samples download. Example: Loading Globalization Files Dynamically As mentioned in the previous section, you should avoid adding the jQuery.glob.all.js file to a page whenever possible because the file is so large. A better alternative is to load the globalization information that you need dynamically. For example, imagine that you have created a dropdown list that displays a list of languages: The following jQuery code executes whenever a user selects a new language from the dropdown list. The code checks whether the globalization file associated with the selected language has already been loaded. If the globalization file has not been loaded then the globalization file is loaded dynamically by taking advantage of the jQuery $.getScript() method. The globalizePage() method is called after the requested globalization file has been loaded, and contains the client-side code to perform the globalization. The advantage of this approach is that it enables you to avoid loading the entire jQuery.glob.all.js file. Instead you only need to load the files that you need and you don’t need to load the files more than once. The 5_Dynamic.htm file in this samples download demonstrates how to implement this approach. Example: Setting the User Preferred Language Automatically Many websites detect a user’s preferred language from their browser settings and automatically use it when globalizing content. A user can set a preferred language for their browser. Then, whenever the user requests a page, this language preference is included in the request in the Accept-Language header. When using Microsoft Internet Explorer, you can set your preferred language by following these steps: Select the menu option Tools, Internet Options. Select the General tab. Click the Languages button in the Appearance section. Click the Add button to add a new language to the list of languages. Move your preferred language to the top of the list. Notice that you can list multiple languages in the Language Preference dialog. All of these languages are sent in the order that you listed them in the Accept-Language header: Accept-Language: fr-FR,id-ID;q=0.7,en-US;q=0.3 Strangely, you cannot retrieve the value of the Accept-Language header from client JavaScript. Microsoft Internet Explorer and Mozilla Firefox support a bevy of language related properties exposed by the window.navigator object, such as windows.navigator.browserLanguage and window.navigator.language, but these properties represent either the language set for the operating system or the language edition of the browser. These properties don’t enable you to retrieve the language that the user set as his or her preferred language. The only reliable way to get a user’s preferred language (the value of the Accept-Language header) is to write server code. For example, the following ASP.NET page takes advantage of the server Request.UserLanguages property to assign the user’s preferred language to a client JavaScript variable named acceptLanguage (which then allows you to access the value using client-side JavaScript): In order for this code to work, the culture information associated with the value of acceptLanguage must be included in the page. For example, if someone’s preferred culture is fr-FR (French in France) then you need to include either the jQuery.glob.fr-FR.js or the jQuery.glob.all.js JavaScript file in the page or the culture information won’t be available.  The “6_AcceptLanguages.aspx” sample in this samples download demonstrates how to implement this approach. If the culture information for the user’s preferred language is not included in the page then the $.preferCulture() method will fall back to using the neutral culture (for example, using jQuery.glob.fr.js instead of jQuery.glob.fr-FR.js). If the neutral culture information is not available then the $.preferCulture() method falls back to the default culture (English). Example: Using the Globalization Plugin with the jQuery UI DatePicker One of the goals of the Globalization plugin is to make it easier to build jQuery widgets that can be used with different cultures. We wanted to make sure that the jQuery Globalization plugin could work with existing jQuery UI plugins such as the DatePicker plugin. To that end, we created a patched version of the DatePicker plugin that can take advantage of the Globalization plugin when rendering a calendar. For example, the following figure illustrates what happens when you add the jQuery Globalization and the patched jQuery UI DatePicker plugin to a page and select Indonesian as the preferred culture: Notice that the headers for the days of the week are displayed using Indonesian day name abbreviations. Furthermore, the month names are displayed in Indonesian. You can download the patched version of the jQuery UI DatePicker from our github website. Or you can use the version included in this samples download and used by the 7_DatePicker.htm sample file. Summary I’m excited about our continuing participation in the jQuery community. This Globalization plugin is the third jQuery plugin that we’ve released. We’ve really appreciated all of the great feedback and design suggestions on the jQuery templating and data-linking prototypes that we released earlier this year.  We also want to thank the jQuery and jQuery UI teams for working with us to create these plugins. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. You can follow me at: twitter.com/scottgu

    Read the article

  • How can a Virtual PC with Win XP install the East Asian Language? (or does any browser come with Chi

    - by Jian Lin
    How can a Virtual PC with Win XP on it install the East Asian Language? (or does any browser come with Chinese fonts?) After setting up a virtual PC with Win XP, if Chinese font is needed, then the usual way is to go to the Control Panel, select "Regional and Language" and go to the second tab and check the box "Install Files for East Asian Languages". After clicking OK, it asks for the file cplexe.exe on the XP SP3 CD 3... and is said to be about 230MB... In such case, how can the language pack or fonts be installed? (Update: I found that it is true for Window 7's Virtual PC with XP on it, as well as the XP SP3 with IE 8 that can be downloaded in the link below.) (I downloaded the virtual hard drive file .vhd from http://www.microsoft.com/downloads/details.aspx?FamilyId=21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang=en so there is no "CD 3"... there) Or does any browser come with all the unicode fonts without needing the OS to support it?

    Read the article

  • Goto for the Java Programming Language

    - by darcy
    Work on JDK 8 is well-underway, but we thought this late-breaking JEP for another language change for the platform couldn't wait another day before being published. Title: Goto for the Java Programming Language Author: Joseph D. Darcy Organization: Oracle. Created: 2012/04/01 Type: Feature State: Funded Exposure: Open Component: core/lang Scope: SE JSR: 901 MR Discussion: compiler dash dev at openjdk dot java dot net Start: 2012/Q2 Effort: XS Duration: S Template: 1.0 Reviewed-by: Duke Endorsed-by: Edsger Dijkstra Funded-by: Blue Sun Corporation Summary Provide the benefits of the time-testing goto control structure to Java programs. The Java language has a history of adding new control structures over time, the assert statement in 1.4, the enhanced for-loop in 1.5,and try-with-resources in 7. Having support for goto is long-overdue and simple to implement since the JVM already has goto instructions. Success Metrics The goto statement will allow inefficient and verbose recursive algorithms and explicit loops to be replaced with more compact code. The effort will be a success if at least twenty five percent of the JDK's explicit loops are replaced with goto's. Coordination with IDE vendors is expected to help facilitate this goal. Motivation The goto construct offers numerous benefits to the Java platform, from increased expressiveness, to more compact code, to providing new programming paradigms to appeal to a broader demographic. In JDK 8, there is a renewed focus on using the Java platform on embedded devices with more modest resources than desktop or server environments. In such contexts, static and dynamic memory footprint is a concern. One significant component of footprint is the code attribute of class files and certain classes of important algorithms can be expressed more compactly using goto than using other constructs, saving footprint. For example, to implement state machines recursively, some parties have asked for the JVM to support tail calls, that is, to perform a complex transformation with security implications to turn a method call into a goto. Such complicated machinery should not be assumed for an embedded context. A better solution is just to expose to the programmer the desired functionality, goto. The web has familiarized users with a model of traversing links among different HTML pages in a free-form fashion with some state being maintained on the side, such as login credentials, to effect behavior. This is exactly the programming model of goto and code. While in the past this has been derided as leading to "spaghetti code," spaghetti is a tasty and nutritious meal for programmers, unlike quiche. The invokedynamic instruction added by JSR 292 exposes the JVM's linkage operation to programmers. This is a low-level operation that can be leveraged by sophisticated programmers. Likewise, goto is a also a low-level operation that should not be hidden from programmers who can use more efficient idioms. Some may object that goto was consciously excluded from the original design of Java as one of the removed feature from C and C++. However, the designers of the Java programming languages have revisited these removals before. The enum construct was also left out only to be added in JDK 5 and multiple inheritance was left out, only to be added back by the virtual extension method methods of Project Lambda. As a living language, the needs of the growing Java community today should be used to judge what features are needed in the platform tomorrow; the language should not be forever bound by the decisions of the past. Description From its initial version, the JVM has had two instructions for unconditional transfer of control within a method, goto (0xa7) and goto_w (0xc8). The goto_w instruction is used for larger jumps. All versions of the Java language have supported labeled statements; however, only the break and continue statements were able to specify a particular label as a target with the onerous restriction that the label must be lexically enclosing. The grammar addition for the goto statement is: GotoStatement: goto Identifier ; The new goto statement similar to break except that the target label can be anywhere inside the method and the identifier is mandatory. The compiler simply translates the goto statement into one of the JVM goto instructions targeting the right offset in the method. Therefore, adding the goto statement to the platform is only a small effort since existing compiler and JVM functionality is reused. Other language changes to support goto include obvious updates to definite assignment analysis, reachability analysis, and exception analysis. Possible future extensions include a computed goto as found in gcc, which would replace the identifier in the goto statement with an expression having the type of a label. Testing Since goto will be implemented using largely existing facilities, only light levels of testing are needed. Impact Compatibility: Since goto is already a keyword, there are no source compatibility implications. Performance/scalability: Performance will improve with more compact code. JVMs already need to handle irreducible flow graphs since goto is a VM instruction.

    Read the article

  • Assembly Level Language? Unlock iPhone 3GS with latest Baseband. Need Opinion

    - by getkenny
    Hi Guys, So its more like advice i need. I got 2 iPhone 3GS (Bootloader 06.02 and BB 05.11) which are lying around useless cause it was bought it from US and now i am in Dubai. Cannot use the phone because there is no unlock. Now rather than waiting and relying on other people to provide a unlock for the baseband , i was thinking of learning what it takes to unlock a iPhone. I currently don't even know what i got to learn to do this. I understand from soem reading around that i will need to learn ARM to understand the baseband and try to find a exploit: is it correct? I really want to help people out in getting their iPhones working. Also the iPhones cost was $645 each (16GB) so its not like Apple is going to loose any money of it, the person who bought it for me thought that if your not buying with an AT&T contract it means that it is unlocked but it is not true. I need help, i am willing to learn and you guys are the best bunch around to give me advice. Regards.

    Read the article

  • Why is there no service-oriented language?

    - by Wolfgang
    Edit: To avoid further confusion: I am not talking about web services and such. I am talking about structuring applications internally, it's not about how computers communicate. It's about programming languages, compilers and how the imperative programming paradigm is extended. Original: In the imperative programming field, we saw two paradigms in the past 20 years (or more): object-oriented (OO), and service-oriented (SO) aka. component-based (CB). Both paradigms extend the imperative programming paradigm by introducing their own notion of modules. OO calls them objects (and classes) and lets them encapsulates both data (fields) and procedures (methods) together. SO, in contrast, separates data (records, beans, ...) from code (components, services). However, only OO has programming languages which natively support its paradigm: Smalltalk, C++, Java and all other JVM-compatibles, C# and all other .NET-compatibles, Python etc. SO has no such native language. It only comes into existence on top of procedural languages or OO languages: COM/DCOM (binary, C, C++), CORBA, EJB, Spring, Guice (all Java), ... These SO frameworks clearly suffer from the missing native language support of their concepts. They start using OO classes to represent services and records. This leads to designs where there is a clear distinction between classes that have methods only (services) and those that have fields only (records). Inheritance between services or records is then simulated by inheritance of classes. Technically, its not kept so strictly but in general programmers are adviced to make classes to play only one of the two roles. They use additional, external languages to represent the missing parts: IDL's, XML configurations, Annotations in Java code, or even embedded DSL like in Guice. This is especially needed, but not limited to, since the composition of services is not part of the service code itself. In OO, objects create other objects so there is no need for such facilities but for SO there is because services don't instantiate or configure other services. They establish an inner-platform effect on top of OO (early EJB, CORBA) where the programmer has to write all the code that is needed to "drive" SO. Classes represent only a part of the nature of a service and lots of classes have to be written to form a service together. All that boiler plate is necessary because there is no SO compiler which would do it for the programmer. This is just like some people did it in C for OO when there was no C++. You just pass the record which holds the data of the object as a first parameter to the procedure which is the method. In a OO language this parameter is implicit and the compiler produces all the code that we need for virtual functions etc. For SO, this is clearly missing. Especially the newer frameworks extensively use AOP or introspection to add the missing parts to a OO language. This doesn't bring the necessary language expressiveness but avoids the boiler platform code described in the previous point. Some frameworks use code generation to produce the boiler plate code. Configuration files in XML or annotations in OO code is the source of information for this. Not all of the phenomena that I mentioned above can be attributed to SO but I hope it clearly shows that there is a need for a SO language. Since this paradigm is so popular: why isn't there one? Or maybe there are some academic ones but at least the industry doesn't use one.

    Read the article

  • Globalization, Localization And Why My Application Stopped Launching

    - by Paulo Morgado
    When I was localizing a Windows Phone application I was developing, I set the argument on the constructor of the AssemblyCultureAttribute for the neutral culture (en-US in this particular case) for my application. As it was late at night (or early in the dawn ) I went to sleep and, on the next day, the application wasn’t launching although it compiled just fine. I’ll have to confess that it took me a couple of nights to figure out what I had done to my application. Have you figured out what I did wrong? The documentation for the AssemblyCultureAttribute states that: The attribute is used by compilers to distinguish between a main assembly and a satellite assembly. A main assembly contains code and the neutral culture's resources. A satellite assembly contains only resources for a particular culture, as in [assembly:AssemblyCultureAttribute("de")]. Putting this attribute on an assembly and using something other than the empty string ("") for the culture name will make this assembly look like a satellite assembly, rather than a main assembly that contains executable code. Labeling a traditional code library with this attribute will break it, because no other code will be able to find the library's entry points at runtime. So, what I did was marking the once main assembly as a satellite assembly for the en-US culture which made it impossible to find its entry point. To set the the neutral culture for the assembly resources I should haveused (and eventually did) the NeutralResourcesLanguageAttribute. According to its documentation: The NeutralResourcesLanguageAttribute attribute informs the ResourceManager of the application's default culture, and also informs the ResourceManager that the default culture's resources are found in the main application assembly. When looking up resources in the same culture as the default culture, the ResourceManager automatically uses the resources located in the main assembly instead of searching for a satellite assembly. This improves lookup performance for the first resource you load, and can reduce your working set.

    Read the article

  • Why does the word "Pythonic" exist?

    - by Billy ONeal
    Honestly, I hate the word "Pythonic" -- it's used as a simple synonym of "good" in many circles, and I think that's pretentious. Those who use it are silently saying that good code cannot be written in a language other than Python. Not saying Python is a bad language, but it's certainly not the "end all be all language to solve ALL of everyone's problems forever!" (Because that language does not exist). What it seems like people who use this word really mean is "idiomatic" rather than "Pythonic" -- and of course the word "idiomatic" already exists. Therefore I wonder: Why does the word "Pythonic" exist?

    Read the article

  • What is the exact problem with multiple inheritance?

    - by Totophil
    I can see people asking all the time whether multiple inheritance should be included into the next version of C# or Java and C++ folks, who are fortunate enough to have this ability, say that this is like giving someone a rope to eventually hang themselves. What’s the matter with the multiple inheritance? Are there any concrete samples?

    Read the article

  • Maven: How to create assembly with snapshot artifacts without timestamps file name?

    - by marabol
    I've a repository containing snapshot artifacts with timestamps. I want to create an assembly, that contains the dependencies. This works fine. But the artifact names contains the timestamp. So i wonder how to remove the timestamp from filename for the assembly only. I've used this dependencySet: <outputFileNameMapping>${artifact.artifactId}-${artifact.version}.${artifact.extension}</outputFileNameMapping> But version seams to contain already the timestamp. So is there any chance to get a 1.1.1-SNAPSHOT instead of 1.1.1-20100323.071348-182?

    Read the article

  • How can I programmatically obtain the company info used to digitally sign an assembly in .NET?

    - by chaiguy
    As a means of simple security, I was previously checking the digital signature of a downloaded update package for my program against its public key to ensure that it originated from me. However, as I'm using cheap code signing certs (Tucows), I am unable to renew an existing cert and therefore the keys change every time I need to renew. Therefore, a more reliable means would be to verify the organization information embedded in the signed assembly (which is displayed in the UAC dialog) against my well-known organization string, as this will continue to be the same. Does anyone know how to obtain this information from a digitally-signed assembly?

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >