Search Results

Search found 816 results on 33 pages for 'buffers'.

Page 29/33 | < Previous Page | 25 26 27 28 29 30 31 32 33  | Next Page >

  • fatal error C1014: too many include files : depth = 1024

    - by numerical25
    I have no idea what this means. But here is the code that it supposely is happening in. //======================================================================================= // d3dApp.cpp by Frank Luna (C) 2008 All Rights Reserved. //======================================================================================= #include "d3dApp.h" #include <stream> LRESULT CALLBACK MainWndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) { static D3DApp* app = 0; switch( msg ) { case WM_CREATE: { // Get the 'this' pointer we passed to CreateWindow via the lpParam parameter. CREATESTRUCT* cs = (CREATESTRUCT*)lParam; app = (D3DApp*)cs->lpCreateParams; return 0; } } // Don't start processing messages until after WM_CREATE. if( app ) return app->msgProc(msg, wParam, lParam); else return DefWindowProc(hwnd, msg, wParam, lParam); } D3DApp::D3DApp(HINSTANCE hInstance) { mhAppInst = hInstance; mhMainWnd = 0; mAppPaused = false; mMinimized = false; mMaximized = false; mResizing = false; mFrameStats = L""; md3dDevice = 0; mSwapChain = 0; mDepthStencilBuffer = 0; mRenderTargetView = 0; mDepthStencilView = 0; mFont = 0; mMainWndCaption = L"D3D10 Application"; md3dDriverType = D3D10_DRIVER_TYPE_HARDWARE; mClearColor = D3DXCOLOR(0.0f, 0.0f, 1.0f, 1.0f); mClientWidth = 800; mClientHeight = 600; } D3DApp::~D3DApp() { ReleaseCOM(mRenderTargetView); ReleaseCOM(mDepthStencilView); ReleaseCOM(mSwapChain); ReleaseCOM(mDepthStencilBuffer); ReleaseCOM(md3dDevice); ReleaseCOM(mFont); } HINSTANCE D3DApp::getAppInst() { return mhAppInst; } HWND D3DApp::getMainWnd() { return mhMainWnd; } int D3DApp::run() { MSG msg = {0}; mTimer.reset(); while(msg.message != WM_QUIT) { // If there are Window messages then process them. if(PeekMessage( &msg, 0, 0, 0, PM_REMOVE )) { TranslateMessage( &msg ); DispatchMessage( &msg ); } // Otherwise, do animation/game stuff. else { mTimer.tick(); if( !mAppPaused ) updateScene(mTimer.getDeltaTime()); else Sleep(50); drawScene(); } } return (int)msg.wParam; } void D3DApp::initApp() { initMainWindow(); initDirect3D(); D3DX10_FONT_DESC fontDesc; fontDesc.Height = 24; fontDesc.Width = 0; fontDesc.Weight = 0; fontDesc.MipLevels = 1; fontDesc.Italic = false; fontDesc.CharSet = DEFAULT_CHARSET; fontDesc.OutputPrecision = OUT_DEFAULT_PRECIS; fontDesc.Quality = DEFAULT_QUALITY; fontDesc.PitchAndFamily = DEFAULT_PITCH | FF_DONTCARE; wcscpy(fontDesc.FaceName, L"Times New Roman"); D3DX10CreateFontIndirect(md3dDevice, &fontDesc, &mFont); } void D3DApp::onResize() { // Release the old views, as they hold references to the buffers we // will be destroying. Also release the old depth/stencil buffer. ReleaseCOM(mRenderTargetView); ReleaseCOM(mDepthStencilView); ReleaseCOM(mDepthStencilBuffer); // Resize the swap chain and recreate the render target view. HR(mSwapChain->ResizeBuffers(1, mClientWidth, mClientHeight, DXGI_FORMAT_R8G8B8A8_UNORM, 0)); ID3D10Texture2D* backBuffer; HR(mSwapChain->GetBuffer(0, __uuidof(ID3D10Texture2D), reinterpret_cast<void**>(&backBuffer))); HR(md3dDevice->CreateRenderTargetView(backBuffer, 0, &mRenderTargetView)); ReleaseCOM(backBuffer); // Create the depth/stencil buffer and view. D3D10_TEXTURE2D_DESC depthStencilDesc; depthStencilDesc.Width = mClientWidth; depthStencilDesc.Height = mClientHeight; depthStencilDesc.MipLevels = 1; depthStencilDesc.ArraySize = 1; depthStencilDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilDesc.SampleDesc.Count = 1; // multisampling must match depthStencilDesc.SampleDesc.Quality = 0; // swap chain values. depthStencilDesc.Usage = D3D10_USAGE_DEFAULT; depthStencilDesc.BindFlags = D3D10_BIND_DEPTH_STENCIL; depthStencilDesc.CPUAccessFlags = 0; depthStencilDesc.MiscFlags = 0; HR(md3dDevice->CreateTexture2D(&depthStencilDesc, 0, &mDepthStencilBuffer)); HR(md3dDevice->CreateDepthStencilView(mDepthStencilBuffer, 0, &mDepthStencilView)); // Bind the render target view and depth/stencil view to the pipeline. md3dDevice->OMSetRenderTargets(1, &mRenderTargetView, mDepthStencilView); // Set the viewport transform. D3D10_VIEWPORT vp; vp.TopLeftX = 0; vp.TopLeftY = 0; vp.Width = mClientWidth; vp.Height = mClientHeight; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; md3dDevice->RSSetViewports(1, &vp); } void D3DApp::updateScene(float dt) { // Code computes the average frames per second, and also the // average time it takes to render one frame. static int frameCnt = 0; static float t_base = 0.0f; frameCnt++; // Compute averages over one second period. if( (mTimer.getGameTime() - t_base) >= 1.0f ) { float fps = (float)frameCnt; // fps = frameCnt / 1 float mspf = 1000.0f / fps; std::wostringstream outs; outs.precision(6); outs << L"FPS: " << fps << L"\n" << "Milliseconds: Per Frame: " << mspf; mFrameStats = outs.str(); // Reset for next average. frameCnt = 0; t_base += 1.0f; } } void D3DApp::drawScene() { md3dDevice->ClearRenderTargetView(mRenderTargetView, mClearColor); md3dDevice->ClearDepthStencilView(mDepthStencilView, D3D10_CLEAR_DEPTH|D3D10_CLEAR_STENCIL, 1.0f, 0); } LRESULT D3DApp::msgProc(UINT msg, WPARAM wParam, LPARAM lParam) { switch( msg ) { // WM_ACTIVATE is sent when the window is activated or deactivated. // We pause the game when the window is deactivated and unpause it // when it becomes active. case WM_ACTIVATE: if( LOWORD(wParam) == WA_INACTIVE ) { mAppPaused = true; mTimer.stop(); } else { mAppPaused = false; mTimer.start(); } return 0; // WM_SIZE is sent when the user resizes the window. case WM_SIZE: // Save the new client area dimensions. mClientWidth = LOWORD(lParam); mClientHeight = HIWORD(lParam); if( md3dDevice ) { if( wParam == SIZE_MINIMIZED ) { mAppPaused = true; mMinimized = true; mMaximized = false; } else if( wParam == SIZE_MAXIMIZED ) { mAppPaused = false; mMinimized = false; mMaximized = true; onResize(); } else if( wParam == SIZE_RESTORED ) { // Restoring from minimized state? if( mMinimized ) { mAppPaused = false; mMinimized = false; onResize(); } // Restoring from maximized state? else if( mMaximized ) { mAppPaused = false; mMaximized = false; onResize(); } else if( mResizing ) { // If user is dragging the resize bars, we do not resize // the buffers here because as the user continuously // drags the resize bars, a stream of WM_SIZE messages are // sent to the window, and it would be pointless (and slow) // to resize for each WM_SIZE message received from dragging // the resize bars. So instead, we reset after the user is // done resizing the window and releases the resize bars, which // sends a WM_EXITSIZEMOVE message. } else // API call such as SetWindowPos or mSwapChain->SetFullscreenState. { onResize(); } } } return 0; // WM_EXITSIZEMOVE is sent when the user grabs the resize bars. case WM_ENTERSIZEMOVE: mAppPaused = true; mResizing = true; mTimer.stop(); return 0; // WM_EXITSIZEMOVE is sent when the user releases the resize bars. // Here we reset everything based on the new window dimensions. case WM_EXITSIZEMOVE: mAppPaused = false; mResizing = false; mTimer.start(); onResize(); return 0; // WM_DESTROY is sent when the window is being destroyed. case WM_DESTROY: PostQuitMessage(0); return 0; // The WM_MENUCHAR message is sent when a menu is active and the user presses // a key that does not correspond to any mnemonic or accelerator key. case WM_MENUCHAR: // Don't beep when we alt-enter. return MAKELRESULT(0, MNC_CLOSE); // Catch this message so to prevent the window from becoming too small. case WM_GETMINMAXINFO: ((MINMAXINFO*)lParam)->ptMinTrackSize.x = 200; ((MINMAXINFO*)lParam)->ptMinTrackSize.y = 200; return 0; } return DefWindowProc(mhMainWnd, msg, wParam, lParam); } void D3DApp::initMainWindow() { WNDCLASS wc; wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = MainWndProc; wc.cbClsExtra = 0; wc.cbWndExtra = 0; wc.hInstance = mhAppInst; wc.hIcon = LoadIcon(0, IDI_APPLICATION); wc.hCursor = LoadCursor(0, IDC_ARROW); wc.hbrBackground = (HBRUSH)GetStockObject(NULL_BRUSH); wc.lpszMenuName = 0; wc.lpszClassName = L"D3DWndClassName"; if( !RegisterClass(&wc) ) { MessageBox(0, L"RegisterClass FAILED", 0, 0); PostQuitMessage(0); } // Compute window rectangle dimensions based on requested client area dimensions. RECT R = { 0, 0, mClientWidth, mClientHeight }; AdjustWindowRect(&R, WS_OVERLAPPEDWINDOW, false); int width = R.right - R.left; int height = R.bottom - R.top; mhMainWnd = CreateWindow(L"D3DWndClassName", mMainWndCaption.c_str(), WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, width, height, 0, 0, mhAppInst, this); if( !mhMainWnd ) { MessageBox(0, L"CreateWindow FAILED", 0, 0); PostQuitMessage(0); } ShowWindow(mhMainWnd, SW_SHOW); UpdateWindow(mhMainWnd); } void D3DApp::initDirect3D() { // Fill out a DXGI_SWAP_CHAIN_DESC to describe our swap chain. DXGI_SWAP_CHAIN_DESC sd; sd.BufferDesc.Width = mClientWidth; sd.BufferDesc.Height = mClientHeight; sd.BufferDesc.RefreshRate.Numerator = 60; sd.BufferDesc.RefreshRate.Denominator = 1; sd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; sd.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED; sd.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED; // No multisampling. sd.SampleDesc.Count = 1; sd.SampleDesc.Quality = 0; sd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; sd.BufferCount = 1; sd.OutputWindow = mhMainWnd; sd.Windowed = true; sd.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; sd.Flags = 0; // Create the device. UINT createDeviceFlags = 0; #if defined(DEBUG) || defined(_DEBUG) createDeviceFlags |= D3D10_CREATE_DEVICE_DEBUG; #endif HR( D3D10CreateDeviceAndSwapChain( 0, //default adapter md3dDriverType, 0, // no software device createDeviceFlags, D3D10_SDK_VERSION, &sd, &mSwapChain, &md3dDevice) ); // The remaining steps that need to be carried out for d3d creation // also need to be executed every time the window is resized. So // just call the onResize method here to avoid code duplication. onResize(); }

    Read the article

  • Choosing a VS project type (C++)

    - by typoknig
    Hi all, I do not use C++ much (I try to stick to the easier stuff like Java and VB.NET), but the lately I have not had a choice. When I am picking a project type in VS for some C++ source I download, what project type should I pick? I had just been sticking with Win32 Console Applications, but I just downloaded some code (below) that will not work right even when it compiles with out errors. I have tried to use a CLR Console Application and an empty project too, and have changed many variables along the way, but I cannot get this code to work. I noticed that this code does not have "int main()" at its beginning, does that have something to do with it? Anyways, here is the code, got it from here: /* Demo of modified Lucas-Kanade optical flow algorithm. See the printf below */ #ifdef _CH_ #pragma package <opencv> #endif #ifndef _EiC #include "cv.h" #include "highgui.h" #include <stdio.h> #include <ctype.h> #endif #include <windows.h> #define FULL_IMAGE_AS_OUTPUT_FILE #define cvMirror cvFlip //IplImage *image = 0, *grey = 0, *prev_grey = 0, *pyramid = 0, *prev_pyramid = 0, *swap_temp; IplImage **buf = 0; IplImage *image1 = 0; IplImage *imageCopy=0; IplImage *image = 0; int win_size = 10; const int MAX_COUNT = 500; CvPoint2D32f* points[2] = {0,0}, *swap_points; char* status = 0; //int count = 0; //int need_to_init = 0; //int night_mode = 0; int flags = 0; //int add_remove_pt = 0; bool bLButtonDown = false; //bool bstopLoop = false; CvPoint pt, pt1,pt2; //IplImage* img1; FILE* FileDest; char* strImageDir = "E:\\Projects\\TSCreator\\Images"; char* strItemName = "b"; int imageCount=0; int bFirstFace = 1; // flag for first face int mode = 1; // Mode 1 - Haar Traing Sample Creation, 2 - HMM sample creation, Mode = 3 - Both Harr and HMM. //int startImgeNo = 1; bool isEqualRation = false; //Weidth to height ratio is equal //Selected Image data IplImage *selectedImage = 0; int selectedX = 0, selectedY = 0, currentImageNo = 0, selectedWidth = 0, selectedHeight= 0; CvRect selectedROI; void saveFroHarrTraining(IplImage *src, int x, int y, int width, int height, int imageCount); void saveForHMMTraining(IplImage *src, CvRect roi,int imageCount); // Code for draw ROI Cropping Image void on_mouse( int event, int x, int y, int flags, void* param ) { char f[200]; CvRect reg; if( !image ) return; if( event == CV_EVENT_LBUTTONDOWN ) { bLButtonDown = true; pt1.x = x; pt1.y = y; } else if ( event == CV_EVENT_MOUSEMOVE ) //Draw the selected area rectangle { pt2.x = x; pt2.y = y; if(bLButtonDown) { if( !image1 ) { /* allocate all the buffers */ image1 = cvCreateImage( cvGetSize(image), 8, 3 ); image1->origin = image->origin; points[0] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); points[1] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); status = (char*)cvAlloc(MAX_COUNT); flags = 0; } cvCopy( image, image1, 0 ); //Equal Weight-Height Ratio if(isEqualRation) { pt2.y = pt1.y + (pt2.x-pt1.x); } //Max Height and Width is the image width and height if(pt2.x>image->width) { pt2.x = image->width; } if(pt2.y>image->height) { pt2.y = image->height; } CvPoint InnerPt1 = pt1; CvPoint InnerPt2 = pt2; if ( InnerPt1.x > InnerPt2.x) { int tempX = InnerPt1.x; InnerPt1.x = InnerPt2.x; InnerPt2.x = tempX; } if ( pt2.y < InnerPt1.y ) { int tempY = InnerPt1.y; InnerPt1.y = InnerPt2.y; InnerPt2.y = tempY; } InnerPt1.y = image->height - InnerPt1.y; InnerPt2.y = image->height - InnerPt2.y; CvFont font; double hScale=1.0; double vScale=1.0; int lineWidth=1; cvInitFont(&font,CV_FONT_HERSHEY_SIMPLEX|CV_FONT_ITALIC, hScale,vScale,0,lineWidth); char size [200]; reg.x = pt1.x; reg.y = image->height - pt2.y; reg.height = abs (pt2.y - pt1.y); reg.width = InnerPt2.x -InnerPt1.x; //print width and heght of the selected reagion sprintf(size, "(%dx%d)",reg.width, reg.height); cvPutText (image1,size,cvPoint(10,10), &font, cvScalar(255,255,0)); cvRectangle(image1, InnerPt1, InnerPt2, CV_RGB(255,0,0), 1); //Mark Selected Reagion selectedImage = image; selectedX = pt1.x; selectedY = pt1.y; selectedWidth = reg.width; selectedHeight = reg.height; selectedROI = reg; //Show the modified image cvShowImage("HMM-Harr Positive Image Creator",image1); } } else if ( event == CV_EVENT_LBUTTONUP ) { bLButtonDown = false; // pt2.x = x; // pt2.y = y; // // if ( pt1.x > pt2.x) // { // int tempX = pt1.x; // pt1.x = pt2.x; // pt2.x = tempX; // } // // if ( pt2.y < pt1.y ) // { // int tempY = pt1.y; // pt1.y = pt2.y; // pt2.y = tempY; // // } // //reg.x = pt1.x; //reg.y = image->height - pt2.y; // //reg.height = abs (pt2.y - pt1.y); ////reg.width = reg.height/3; //reg.width = pt2.x -pt1.x; ////reg.height = (2 * reg.width)/3; #ifdef FULL_IMAGE_AS_OUTPUT_FILE CvRect FullImageRect; FullImageRect.x = 0; FullImageRect.y = 0; FullImageRect.width = image->width; FullImageRect.height = image->height; IplImage *regionFullImage =0; regionFullImage = cvCreateImage(cvSize (FullImageRect.width, FullImageRect.height), image->depth, image->nChannels); image->roi = NULL; //cvSetImageROI (image, FullImageRect); //cvCopy (image, regionFullImage, 0); #else IplImage *region =0; region = cvCreateImage(cvSize (reg.width, reg.height), image1->depth, image1->nChannels); image->roi = NULL; cvSetImageROI (image1, reg); cvCopy (image1, region, 0); #endif //cvNamedWindow("Result", CV_WINDOW_AUTOSIZE); //selectedImage = image; //selectedX = pt1.x; //selectedY = pt1.y; //selectedWidth = reg.width; //selectedHeight = reg.height; ////currentImageNo = startImgeNo; //selectedROI = reg; /*if(mode == 1) { saveFroHarrTraining(image,pt1.x,pt1.y,reg.width,reg.height,startImgeNo); } else if(mode == 2) { saveForHMMTraining(image,reg,startImgeNo); } else if(mode ==3) { saveFroHarrTraining(image,pt1.x,pt1.y,reg.width,reg.height,startImgeNo); saveForHMMTraining(image,reg,startImgeNo); } else { printf("Invalid mode."); } startImgeNo++;*/ } } /* Save popsitive samples for Harr Training. Also add an entry to the PositiveSample.txt with the location of the item of interest. */ void saveFroHarrTraining(IplImage *src, int x, int y, int width, int height, int imageCount) { char f[255] ; sprintf(f,"%s\\%s\\harr_%s%d%d.jpg",strImageDir,strItemName,strItemName,imageCount/10, imageCount%10); cvNamedWindow("Harr", CV_WINDOW_AUTOSIZE); cvShowImage("Harr", src); cvSaveImage(f, src); printf("output%d%d \t ", imageCount/10, imageCount%10); printf("width %d \t", width); printf("height %d \t", height); printf("x1 %d \t", x); printf("y1 %d \t\n", y); char f1[255]; sprintf(f1,"%s\\PositiveSample.txt",strImageDir); FileDest = fopen(f1, "a"); fprintf(FileDest, "%s\\harr_%s%d.jpg 1 %d %d %d %d \n",strItemName,strItemName, imageCount, x, y, width, height); fclose(FileDest); } /* Create Sample Images for HMM recognition algorythm trai ning. */ void saveForHMMTraining(IplImage *src, CvRect roi,int imageCount) { char f[255] ; printf("x=%d, y=%d, w= %d, h= %d\n",roi.x,roi.y,roi.width,roi.height); //Create the file name sprintf(f,"%s\\%s\\hmm_%s%d.pgm",strImageDir,strItemName,strItemName, imageCount); //Create storage for grayscale image IplImage* gray = cvCreateImage(cvSize(roi.width,roi.height), 8, 1); //Create storage for croped reagon IplImage* regionFullImage = cvCreateImage(cvSize(roi.width,roi.height),8,3); //Croped marked region cvSetImageROI(src,roi); cvCopy(src,regionFullImage); cvResetImageROI(src); //Flip croped image - otherwise it will saved upside down cvConvertImage(regionFullImage, regionFullImage, CV_CVTIMG_FLIP); //Convert croped image to gray scale cvCvtColor(regionFullImage,gray, CV_BGR2GRAY); //Show final grayscale image cvNamedWindow("HMM", CV_WINDOW_AUTOSIZE); cvShowImage("HMM", gray); //Save final grayscale image cvSaveImage(f, gray); } int maina( int argc, char** argv ) { CvCapture* capture = 0; //if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0]))) // capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 ); //else if( argc == 2 ) // capture = cvCaptureFromAVI( argv[1] ); char* video; if(argc ==7) { mode = atoi(argv[1]); strImageDir = argv[2]; strItemName = argv[3]; video = argv[4]; currentImageNo = atoi(argv[5]); int a = atoi(argv[6]); if(a==1) { isEqualRation = true; } else { isEqualRation = false; } } else { printf("\nUsage: TSCreator.exe <Mode> <Sample Image Save Path> <Sample Image Save Directory> <Video File Location> <Start Image No> <Is Equal Ratio>\n"); printf("Mode = 1 - Haar Traing Sample Creation. \nMode = 2 - HMM sample creation.\nMode = 3 - Both Harr and HMM\n"); printf("Is Equal Ratio = 0 or 1. 1 - Equal weidth and height, 0 - custom."); printf("Note: You have to create the image save directory in correct path first.\n"); printf("Eg: TSCreator.exe 1 E:\Projects\TSCreator\Images A 11.avi 1 1\n\n"); return 0; } capture = cvCaptureFromAVI(video); if( !capture ) { fprintf(stderr,"Could not initialize capturing...\n"); return -1; } cvNamedWindow("HMM-Harr Positive Image Creator", CV_WINDOW_AUTOSIZE); cvSetMouseCallback("HMM-Harr Positive Image Creator", on_mouse, 0); //cvShowImage("Test", image1); for(;;) { IplImage* frame = 0; int i, k, c; frame = cvQueryFrame( capture ); if( !frame ) break; if( !image ) { /* allocate all the buffers */ image = cvCreateImage( cvGetSize(frame), 8, 3 ); image->origin = frame->origin; //grey = cvCreateImage( cvGetSize(frame), 8, 1 ); //prev_grey = cvCreateImage( cvGetSize(frame), 8, 1 ); //pyramid = cvCreateImage( cvGetSize(frame), 8, 1 ); // prev_pyramid = cvCreateImage( cvGetSize(frame), 8, 1 ); points[0] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); points[1] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); status = (char*)cvAlloc(MAX_COUNT); flags = 0; } cvCopy( frame, image, 0 ); // cvCvtColor( image, grey, CV_BGR2GRAY ); cvShowImage("HMM-Harr Positive Image Creator", image); cvSetMouseCallback("HMM-Harr Positive Image Creator", on_mouse, 0); c = cvWaitKey(0); if((char)c == 's') { //Save selected reagion as training data if(selectedImage) { printf("Selected Reagion Saved\n"); if(mode == 1) { saveFroHarrTraining(selectedImage,selectedX,selectedY,selectedWidth,selectedHeight,currentImageNo); } else if(mode == 2) { saveForHMMTraining(selectedImage,selectedROI,currentImageNo); } else if(mode ==3) { saveFroHarrTraining(selectedImage,selectedX,selectedY,selectedWidth,selectedHeight,currentImageNo); saveForHMMTraining(selectedImage,selectedROI,currentImageNo); } else { printf("Invalid mode."); } currentImageNo++; } } } cvReleaseCapture( &capture ); //cvDestroyWindow("HMM-Harr Positive Image Creator"); cvDestroyAllWindows(); return 0; } #ifdef _EiC main(1,"lkdemo.c"); #endif If I put... #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { return 0; } ... before the previous code (and link it to the correct OpenCV .lib files) it compiles without errors, but does nothing at the command line. How do I make it work?

    Read the article

  • Back Up to Tape the Way You Shop For Groceries

    - by rickramsey
    Imagine if this was how you shopped for groceries: From the end of the aisle sprint to the point where you reach the ketchup. Pull a bottle from the shelf and yell at the top of your lungs, “Got it!” Sprint back to the end of the aisle. Start again and sprint down the same aisle to the mustard, pull a bottle from the shelf and again yell for the whole store to hear, “Got it!” Sprint back to the end of the aisle. Repeat this procedure for every item you need in the aisle. Proceed to the next aisle and follow the same steps for the list of items you need from that aisle. Sounds ridiculous, doesn’t it? Not only is it horribly inefficient, it’s exhausting and can lead to wear out failures on your grocery cart, or worse, yourself. This is essentially how NetApp and some other applications write NDMP backups to tape. In the analogy, the ketchup and mustard are the files to be written, yelling “Got it!” is the equivalent of a sync mark at the end of a file, and the sprint back to the end of an aisle is the process most commonly called a “backhitch” where the drive has to back up on a tape to start writing again. Writing to tape in this way results in very slow tape drive performance and imposes unnecessary wear on the tape drive and the media, especially when writing small files. The good news is not all tape drives behave this way when writing small files. Unlike midrange LTO drives, Oracle’s StorageTek T10000D tape drive is designed to handle this scenario efficiently. The difference between the two drive types is that the T10000D drive gives you the ability to write files in a NetApp NDMP backup environment the way you would normally shop for groceries. With grocery shopping, you essentially stream through aisles picking up items as you go, and then after checking out, yell, “Got it!”, though you might do that last step silently. With the T10000D, it has a feature called the Tape Application Accelerator, which prevents the drive from having to stop after each file is written to notify NetApp or another application that the write was successful. When enabled in the T10000D tape drive, Tape Application Accelerator causes the tape drive to respond to tape mark and file sync commands differently than when disabled: A tape mark received by the tape drive is treated as a buffered tape mark. A file sync received by the tape drive is treated as a no op command. Since buffered tape marks and no op commands do not cause the tape drive to empty the contents of its buffer to tape and backhitch, the data is written to tape in significantly less time. Oracle has emulated NetApp environments with a number of different file sizes and found the following when comparing the T10000D with the Tape Application Accelerator enabled versus LTO6 tape drives. Notice how the T10000D is not only monumentally faster, but also remarkably consistent? In addition, the writing of the 50 GB of files is done without a single backhitch. The LTO6 drive, meanwhile, will perform as many as 3,800 backhitches! At the end of writing the entire set of files, the T10000D tape drive reports back to the application, in this case NetApp, that the write was successful via a tape mark. So if the Tape Application Accelerator dramatically improves performance and reliability, why wouldn’t you always have it enabled? The reason is because tape drive buffers are meant to be just temporary data repositories so in the event of a power loss, there could be data loss in certain environments for the files that resided in the buffer. Fortunately, we do have best practices depending on your environment to avoid this from happening. I highly recommend reading Maximizing Tape Performance with StorageTek T10000 Tape Drives (pdf) to decide which best practice is right for you. The white paper also digs deeper into the benefits of the Tape Application Accelerator. The white paper is free, and after downloading it you can decide for yourself whether you want to yell “Got it!” out loud or just silently to yourself. Customer Advisory Panel One final link: Oracle has started up a Customer Advisory Panel program to collect feedback from customers on their current experiences with Oracle products, as well as desires for future product development. If you would like to participate in the program, go to this link at oracle.com. photo taken on Idaho's Sacajewea Historic Biway by Rick Ramsey - Brian Zents Follow OTN on Blog | Facebook | Twitter | YouTube

    Read the article

  • Slow boot on Ubuntu 12.04

    - by Hailwood
    My Ubuntu is booting really slow (Windows is booting faster...). I am using Ubuntu a Dell Inspiron 1545 Pentium(R) Dual-Core CPU T4300 @ 2.10GHz, 4GB Ram, 500GB HDD running Ubuntu 12.04 with gnome-shell 3.4.1. After running dmesg the culprit seems to be this section, in particular the last three lines: [26.557659] ADDRCONF(NETDEV_UP): eth0: link is not ready [26.565414] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.355355] Console: switching to colour frame buffer device 170x48 [27.362346] fb0: radeondrmfb frame buffer device [27.362347] drm: registered panic notifier [27.362357] [drm] Initialized radeon 2.12.0 20080528 for 0000:01:00.0 on minor 0 [27.617435] init: udev-fallback-graphics main process (1049) terminated with status 1 [30.064481] init: plymouth-stop pre-start process (1500) terminated with status 1 [51.708241] CE: hpet increased min_delta_ns to 20113 nsec [59.448029] eth2: no IPv6 routers present But I have no idea how to start debugging this. sudo lshw -C video $ sudo lshw -C video *-display description: VGA compatible controller product: RV710 [Mobility Radeon HD 4300 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 32 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:48 memory:e0000000-efffffff ioport:de00(size=256) memory:f6df0000-f6dfffff memory:f6d00000-f6d1ffff After loading the propriety driver my new dmesg log is below (starting from the first major time gap): [2.983741] EXT4-fs (sda6): mounted filesystem with ordered data mode. Opts: (null) [25.094327] ADDRCONF(NETDEV_UP): eth0: link is not ready [25.119737] udevd[520]: starting version 175 [25.167086] lp: driver loaded but no devices found [25.215341] fglrx: module license 'Proprietary. (C) 2002 - ATI Technologies, Starnberg, GERMANY' taints kernel. [25.215345] Disabling lock debugging due to kernel taint [25.231924] wmi: Mapper loaded [25.318414] lib80211: common routines for IEEE802.11 drivers [25.318418] lib80211_crypt: registered algorithm 'NULL' [25.331631] [fglrx] Maximum main memory to use for locked dma buffers: 3789 MBytes. [25.332095] [fglrx] vendor: 1002 device: 9552 count: 1 [25.334206] [fglrx] ioport: bar 1, base 0xde00, size: 0x100 [25.334229] pci 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [25.334235] pci 0000:01:00.0: setting latency timer to 64 [25.337109] [fglrx] Kernel PAT support is enabled [25.337140] [fglrx] module loaded - fglrx 8.96.4 [Mar 12 2012] with 1 minors [25.342803] Adding 4189180k swap on /dev/sda7. Priority:-1 extents:1 across:4189180k [25.364031] type=1400 audit(1338241723.027:2): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=606 comm="apparmor_parser" [25.364491] type=1400 audit(1338241723.031:3): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=606 comm="apparmor_parser" [25.364760] type=1400 audit(1338241723.031:4): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=606 comm="apparmor_parser" [25.394328] wl 0000:0c:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [25.394343] wl 0000:0c:00.0: setting latency timer to 64 [25.415531] acpi device:36: registered as cooling_device2 [25.416688] input: Video Bus as /devices/LNXSYSTM:00/device:00/PNP0A03:00/device:34/LNXVIDEO:00/input/input6 [25.416795] ACPI: Video Device [VID] (multi-head: yes rom: no post: no) [25.416865] [Firmware Bug]: Duplicate ACPI video bus devices for the same VGA controller, please try module parameter "video.allow_duplicates=1"if the current driver doesn't work. [25.425133] lib80211_crypt: registered algorithm 'TKIP' [25.448058] snd_hda_intel 0000:00:1b.0: PCI INT A -> GSI 21 (level, low) -> IRQ 21 [25.448321] snd_hda_intel 0000:00:1b.0: irq 47 for MSI/MSI-X [25.448353] snd_hda_intel 0000:00:1b.0: setting latency timer to 64 [25.738867] eth1: Broadcom BCM4315 802.11 Hybrid Wireless Controller 5.100.82.38 [25.761213] input: HDA Intel Mic as /devices/pci0000:00/0000:00:1b.0/sound/card0/input7 [25.761406] input: HDA Intel Headphone as /devices/pci0000:00/0000:00:1b.0/sound/card0/input8 [25.783432] dcdbas dcdbas: Dell Systems Management Base Driver (version 5.6.0-3.2) [25.908318] EXT4-fs (sda6): re-mounted. Opts: errors=remount-ro [25.928155] input: Dell WMI hotkeys as /devices/virtual/input/input9 [25.960561] udevd[543]: renamed network interface eth1 to eth2 [26.285688] init: failsafe main process (835) killed by TERM signal [26.396426] input: PS/2 Mouse as /devices/platform/i8042/serio2/input/input10 [26.423108] input: AlpsPS/2 ALPS GlidePoint as /devices/platform/i8042/serio2/input/input11 [26.511297] Bluetooth: Core ver 2.16 [26.511383] NET: Registered protocol family 31 [26.511385] Bluetooth: HCI device and connection manager initialized [26.511388] Bluetooth: HCI socket layer initialized [26.511391] Bluetooth: L2CAP socket layer initialized [26.512079] Bluetooth: SCO socket layer initialized [26.530164] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [26.530168] Bluetooth: BNEP filters: protocol multicast [26.553893] type=1400 audit(1338241724.219:5): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=928 comm="apparmor_parser" [26.554860] Bluetooth: RFCOMM TTY layer initialized [26.554866] Bluetooth: RFCOMM socket layer initialized [26.554868] Bluetooth: RFCOMM ver 1.11 [26.557910] type=1400 audit(1338241724.223:6): apparmor="STATUS" operation="profile_load" name="/usr/lib/lightdm/lightdm/lightdm-guest-session-wrapper" pid=927 comm="apparmor_parser" [26.559166] type=1400 audit(1338241724.223:7): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=928 comm="apparmor_parser" [26.559574] type=1400 audit(1338241724.223:8): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=928 comm="apparmor_parser" [26.575519] type=1400 audit(1338241724.239:9): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/mission-control-5" pid=931 comm="apparmor_parser" [26.581100] type=1400 audit(1338241724.247:10): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/telepathy-*" pid=931 comm="apparmor_parser" [26.582794] type=1400 audit(1338241724.247:11): apparmor="STATUS" operation="profile_load" name="/usr/bin/evince" pid=929 comm="apparmor_parser" [26.605672] ppdev: user-space parallel port driver [27.592475] sky2 0000:09:00.0: eth0: enabling interface [27.604329] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.606962] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.852509] vesafb: mode is 1024x768x32, linelength=4096, pages=0 [27.852513] vesafb: scrolling: redraw [27.852515] vesafb: Truecolor: size=0:8:8:8, shift=0:16:8:0 [27.852523] mtrr: type mismatch for e0000000,400000 old: write-back new: write-combining [27.852527] mtrr: type mismatch for e0000000,200000 old: write-back new: write-combining [27.852531] mtrr: type mismatch for e0000000,100000 old: write-back new: write-combining [27.852534] mtrr: type mismatch for e0000000,80000 old: write-back new: write-combining [27.852538] mtrr: type mismatch for e0000000,40000 old: write-back new: write-combining [27.852541] mtrr: type mismatch for e0000000,20000 old: write-back new: write-combining [27.852544] mtrr: type mismatch for e0000000,10000 old: write-back new: write-combining [27.852548] mtrr: type mismatch for e0000000,8000 old: write-back new: write-combining [27.852551] mtrr: type mismatch for e0000000,4000 old: write-back new: write-combining [27.852554] mtrr: type mismatch for e0000000,2000 old: write-back new: write-combining [27.852558] mtrr: type mismatch for e0000000,1000 old: write-back new: write-combining [27.853154] vesafb: framebuffer at 0xe0000000, mapped to 0xffffc90005580000, using 3072k, total 3072k [27.853405] Console: switching to colour frame buffer device 128x48 [27.853426] fb0: VESA VGA frame buffer device [28.539800] fglrx_pci 0000:01:00.0: irq 48 for MSI/MSI-X [28.540552] [fglrx] Firegl kernel thread PID: 1168 [28.540679] [fglrx] Firegl kernel thread PID: 1169 [28.540789] [fglrx] Firegl kernel thread PID: 1170 [28.540932] [fglrx] IRQ 48 Enabled [29.845620] [fglrx] Gart USWC size:1236 M. [29.845624] [fglrx] Gart cacheable size:489 M. [29.845629] [fglrx] Reserved FB block: Shared offset:0, size:1000000 [29.845632] [fglrx] Reserved FB block: Unshared offset:fc21000, size:3df000 [29.845635] [fglrx] Reserved FB block: Unshared offset:1fffb000, size:5000 [59.700023] eth2: no IPv6 routers present

    Read the article

  • Basic shadow mapping fails on NVIDIA card?

    - by James
    Recently I switched from an AMD Radeon HD 6870 card to an (MSI) NVIDIA GTX 670 for performance reasons. I found however that my implementation of shadow mapping in all my applications failed. In a very simple shadow POC project the problem appears to be that the scene being drawn never results in a draw to the depth map and as a result the entire depth map is just infinity, 1.0 (Reading directly from the depth component after draw (glReadPixels) shows every pixel is infinity (1.0), replacing the depth comparison in the shader with a comparison of the depth from the shadow map with 1.0 shadows the entire scene, and writing random values to the depth map and then not calling glClear(GL_DEPTH_BUFFER_BIT) results in a random noisy pattern on the scene elements - from which we can infer that the uploading of the depth texture and comparison within the shader are functioning perfectly.) Since the problem appears almost certainly to be in the depth render, this is the code for that: const int s_res = 1024; GLuint shadowMap_tex; GLuint shadowMap_prog; GLint sm_attr_coord3d; GLint sm_uniform_mvp; GLuint fbo_handle; GLuint renderBuffer; bool isMappingShad = false; //The scene consists of a plane with box above it GLfloat scene[] = { -10.0, 0.0, -10.0, 0.5, 0.0, 10.0, 0.0, -10.0, 1.0, 0.0, 10.0, 0.0, 10.0, 1.0, 0.5, -10.0, 0.0, -10.0, 0.5, 0.0, -10.0, 0.0, 10.0, 0.5, 0.5, 10.0, 0.0, 10.0, 1.0, 0.5, ... }; //Initialize the stuff used by the shadow map generator int initShadowMap() { //Initialize the shadowMap shader program if (create_program("shadow.v.glsl", "shadow.f.glsl", shadowMap_prog) != 1) return -1; const char* attribute_name = "coord3d"; sm_attr_coord3d = glGetAttribLocation(shadowMap_prog, attribute_name); if (sm_attr_coord3d == -1) { fprintf(stderr, "Could not bind attribute %s\n", attribute_name); return 0; } const char* uniform_name = "mvp"; sm_uniform_mvp = glGetUniformLocation(shadowMap_prog, uniform_name); if (sm_uniform_mvp == -1) { fprintf(stderr, "Could not bind uniform %s\n", uniform_name); return 0; } //Create a framebuffer glGenFramebuffers(1, &fbo_handle); glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); //Create render buffer glGenRenderbuffers(1, &renderBuffer); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); //Setup the shadow texture glGenTextures(1, &shadowMap_tex); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, s_res, s_res, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); return 0; } //Delete stuff void dnitShadowMap() { //Delete everything glDeleteFramebuffers(1, &fbo_handle); glDeleteRenderbuffers(1, &renderBuffer); glDeleteTextures(1, &shadowMap_tex); glDeleteProgram(shadowMap_prog); } int loadSMap() { //Bind MVP stuff glm::mat4 view = glm::lookAt(glm::vec3(10.0, 10.0, 5.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 projection = glm::ortho<float>(-10,10,-8,8,-10,40); glm::mat4 mvp = projection * view; glm::mat4 biasMatrix( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); glm::mat4 lsMVP = biasMatrix * mvp; //Upload light source matrix to the main shader programs glUniformMatrix4fv(uniform_ls_mvp, 1, GL_FALSE, glm::value_ptr(lsMVP)); glUseProgram(shadowMap_prog); glUniformMatrix4fv(sm_uniform_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //Draw to the framebuffer (with depth buffer only draw) glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowMap_tex, 0); glDrawBuffer(GL_NONE); glReadBuffer(GL_NONE); GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (GL_FRAMEBUFFER_COMPLETE != result) { printf("ERROR: Framebuffer is not complete.\n"); return -1; } //Draw shadow scene printf("Creating shadow buffers..\n"); int ticks = SDL_GetTicks(); glClear(GL_DEPTH_BUFFER_BIT); //Wipe the depth buffer glViewport(0, 0, s_res, s_res); isMappingShad = true; //DRAW glEnableVertexAttribArray(sm_attr_coord3d); glVertexAttribPointer(sm_attr_coord3d, 3, GL_FLOAT, GL_FALSE, 5*4, scene); glDrawArrays(GL_TRIANGLES, 0, 14*3); glDisableVertexAttribArray(sm_attr_coord3d); isMappingShad = false; glBindFramebuffer(GL_FRAMEBUFFER, 0); printf("Render Sbuf in %dms (GLerr: %d)\n", SDL_GetTicks() - ticks, glGetError()); return 0; } This is the full code for the POC shadow mapping project (C++) (Requires SDL 1.2, SDL-image 1.2, GLEW (1.5) and GLM development headers.) initShadowMap is called, followed by loadSMap, the scene is drawn from the camera POV and then dnitShadowMap is called. I followed this tutorial originally (Along with another more comprehensive tutorial which has disappeared as this guy re-configured his site but used to be here (404).) I've ensured that the scene is visible (as can be seen within the full project) to the light source (which uses an orthogonal projection matrix.) Shader utilities function fine in non-shadow-mapped projects. I should also note that at no point is the GL error state set. What am I doing wrong here and why did this not cause problems on my AMD card? (System: Ubuntu 12.04, Linux 3.2.0-49-generic, 64 bit, with the nvidia-experimental-310 driver package. All other games are functioning fine so it's most likely not a card/driver issue.)

    Read the article

  • Why would GLCapabilities.setHardwareAccelerated(true/false) have no effect on performance?

    - by Luke
    I've got a JOGL application in which I am rendering 1 million textures (all the same texture) and 1 million lines between those textures. Basically it's a ball-and-stick graph. I am storing the vertices in a vertex array on the card and referencing them via index arrays, which are also stored on the card. Each pass through the draw loop I am basically doing this: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_LINES, <size>, GL.GL_UNSIGNED_INT, 0); I noticed that the JOGL library is pegging one of my CPU cores. Every frame, the run method internal to the library is taking quite long. I'm not sure why this is happening since I have called setHardwareAccelerated(true) on the GLCapabilities used to create my canvas. What's more interesting is that I changed it to setHardwareAccelerated(false) and there was no impact on the performance at all. Is it possible that my code is not using hardware rendering even when it is set to true? Is there any way to check? EDIT: As suggested, I have tested breaking my calls up into smaller chunks. I have tried using glDrawRangeElements and respecting the limits that it requests. All of these simply resulted in the same pegged CPU usage and worse framerates. I have also narrowed the problem down to a simpler example where I just render 4 million textures (no lines). The draw loop then just doing this: gl.glEnableClientState(GL.GL_VERTEX_ARRAY); gl.glEnableClientState(GL.GL_INDEX_ARRAY); gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT); gl.glMatrixMode(GL.GL_MODELVIEW); gl.glLoadIdentity(); <... Camera and transform related code ...> gl.glEnableVertexAttribArray(0); gl.glEnable(GL.GL_TEXTURE_2D); gl.glAlphaFunc(GL.GL_GREATER, ALPHA_TEST_LIMIT); gl.glEnable(GL.GL_ALPHA_TEST); <... Bind texture ...> gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glDisable(GL.GL_TEXTURE_2D); gl.glDisable(GL.GL_ALPHA_TEST); gl.glDisableVertexAttribArray(0); gl.glFlush(); Where the first buffer contains 12 million floats (the x,y,z coords of the 4 million textures) and the second (element) buffer contains 4 million integers. In this simple example it is simply the integers 0 through 3999999. I really want to know what is being done in software that is pegging my CPU, and how I can make it stop (if I can). My buffers are generated by the following code: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_FLOAT, <buffer>, GL.GL_STATIC_DRAW); gl.glVertexAttribPointer(0, 3, GL.GL_FLOAT, false, 0, 0); and: gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ELEMENT_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_INT, <buffer>, GL.GL_STATIC_DRAW); ADDITIONAL INFO: Here is my initialization code: gl.setSwapInterval(1); //Also tried 0 gl.glShadeModel(GL.GL_SMOOTH); gl.glClearDepth(1.0f); gl.glEnable(GL.GL_DEPTH_TEST); gl.glDepthFunc(GL.GL_LESS); gl.glHint(GL.GL_PERSPECTIVE_CORRECTION_HINT, GL.GL_FASTEST); gl.glPointParameterfv(GL.GL_POINT_DISTANCE_ATTENUATION, POINT_DISTANCE_ATTENUATION, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MIN, MIN_POINT_SIZE, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MAX, MAX_POINT_SIZE, 0); gl.glPointSize(POINT_SIZE); gl.glTexEnvf(GL.GL_POINT_SPRITE, GL.GL_COORD_REPLACE, GL.GL_TRUE); gl.glEnable(GL.GL_POINT_SPRITE); gl.glClearColor(clearColor.getX(), clearColor.getY(), clearColor.getZ(), 0.0f); Also, I'm not sure if this helps or not, but when I drag the entire graph off the screen, the FPS shoots back up and the CPU usage falls to 0%. This seems obvious and intuitive to me, but I thought that might give a hint to someone else.

    Read the article

  • The Virtues and Challenges of Implementing Basel III: What Every CFO and CRO Needs To Know

    - by Jenna Danko
    The Basel Committee on Banking Supervision (BCBS) is a group tasked with providing thought-leadership to the global banking industry.  Over the years, the BCBS has released volumes of guidance in an effort to promote stability within the financial sector.  By effectively communicating best-practices, the Basel Committee has influenced financial regulations worldwide.  Basel regulations are intended to help banks: More easily absorb shocks due to various forms of financial-economic stress Improve risk management and governance Enhance regulatory reporting and transparency In June 2011, the BCBS released Basel III: A global regulatory framework for more resilient banks and banking systems.  This new set of regulations included many enhancements to previous rules and will have both short and long term impacts on the banking industry.  Some of the key features of Basel III include: A stronger capital base More stringent capital standards and higher capital requirements Introduction of capital buffers  Additional risk coverage Enhanced quantification of counterparty credit risk Credit valuation adjustments  Wrong  way risk  Asset Value Correlation Multiplier for large financial institutions Liquidity management and monitoring Introduction of leverage ratio Even more rigorous data requirements To implement these features banks need to embark on a journey replete with challenges. These can be categorized into three key areas: Data, Models and Compliance. Data Challenges Data quality - All standard dimensions of Data Quality (DQ) have to be demonstrated.  Manual approaches are now considered too cumbersome and automation has become the norm. Data lineage - Data lineage has to be documented and demonstrated.  The PPT / Excel approach to documentation is being replaced by metadata tools.  Data lineage has become dynamic due to a variety of factors, making static documentation out-dated quickly.  Data dictionaries - A strong and clean business glossary is needed with proper identification of business owners for the data.  Data integrity - A strong, scalable architecture with work flow tools helps demonstrate data integrity.  Manual touch points have to be minimized.   Data relevance/coverage - Data must be relevant to all portfolios and storage devices must allow for sufficient data retention.  Coverage of both on and off balance sheet exposures is critical.   Model Challenges Model development - Requires highly trained resources with both quantitative and subject matter expertise. Model validation - All Basel models need to be validated. This requires additional resources with skills that may not be readily available in the marketplace.  Model documentation - All models need to be adequately documented.  Creation of document templates and model development processes/procedures is key. Risk and finance integration - This integration is necessary for Basel as the Allowance for Loan and Lease Losses (ALLL) is calculated by Finance, yet Expected Loss (EL) is calculated by Risk Management – and they need to somehow be equal.  This is tricky at best from an implementation perspective.  Compliance Challenges Rules interpretation - Some Basel III requirements leave room for interpretation.  A misinterpretation of regulations can lead to delays in Basel compliance and undesired reprimands from supervisory authorities. Gap identification and remediation - Internal identification and remediation of gaps ensures smoother Basel compliance and audit processes.  However business lines are challenged by the competing priorities which arise from regulatory compliance and business as usual work.  Qualification readiness - Providing internal and external auditors with robust evidence of a thorough examination of the readiness to proceed to parallel run and Basel qualification  In light of new regulations like Basel III and local variations such as the Dodd Frank Act (DFA) and Comprehensive Capital Analysis and Review (CCAR) in the US, banks are now forced to ask themselves many difficult questions.  For example, executives must consider: How will Basel III play into their Risk Appetite? How will they create project plans for Basel III when they haven’t yet finished implementing Basel II? How will new regulations impact capital structure including profitability and capital distributions to shareholders? After all, new regulations often lead to diminished profitability as well as an assortment of implementation problems as we discussed earlier in this note.  However, by requiring banks to focus on premium growth, regulators increase the potential for long-term profitability and sustainability.  And a more stable banking system: Increases consumer confidence which in turn supports banking activity  Ensures that adequate funding is available for individuals and companies Puts regulators at ease, allowing bankers to focus on banking Stability is intended to bring long-term profitability to banks.  Therefore, it is important that every banking institution takes the steps necessary to properly manage, monitor and disclose its risks.  This can be done with the assistance and oversight of an independent regulatory authority.  A spectrum of banks exist today wherein some continue to debate and negotiate with regulators over the implementation of new requirements, while others are simply choosing to embrace them for the benefits I highlighted above. Do share with me how your institution is coping with and embracing these new regulations within your bank. Dr. Varun Agarwal is a Principal in the Banking Practice for Capgemini Financial Services.  He has over 19 years experience in areas that span from enterprise risk management, credit, market, and to country risk management; financial modeling and valuation; and international financial markets research and analyses.

    Read the article

  • YouTube Scalability Lessons

    - by Bertrand Matthelié
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Calibri"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }h2 { margin: 12pt 0cm 3pt; page-break-after: avoid; font-size: 14pt; font-family: "Times New Roman"; font-style: italic; }a:link, span.MsoHyperlink { color: blue; text-decoration: underline; }a:visited, span.MsoHyperlinkFollowed { color: purple; text-decoration: underline; }span.Heading2Char { font-family: Calibri; font-weight: bold; font-style: italic; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Very interesting blog post by Todd Hoff at highscalability.com presenting “7 Years of YouTube Scalability Lessons in 30 min” based on a presentation from Mike Solomon, one of the original engineers at YouTube: …. The key takeaway away of the talk for me was doing a lot with really simple tools. While many teams are moving on to more complex ecosystems, YouTube really does keep it simple. They program primarily in Python, use MySQL as their database, they’ve stuck with Apache, and even new features for such a massive site start as a very simple Python program. That doesn’t mean YouTube doesn’t do cool stuff, they do, but what makes everything work together is more a philosophy or a way of doing things than technological hocus pocus. What made YouTube into one of the world’s largest websites? Read on and see... Stats @font-face { font-family: "Arial"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; } 4 billion Views a day 60 hours of video is uploaded every minute 350+ million devices are YouTube enabled Revenue double in 2010 The number of videos has gone up 9 orders of magnitude and the number of developers has only gone up two orders of magnitude. 1 million lines of Python code Stack @font-face { font-family: "Arial"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; } Python - most of the lines of code for YouTube are still in Python. Everytime you watch a YouTube video you are executing a bunch of Python code. Apache - when you think you need to get rid of it, you don’t. Apache is a real rockstar technology at YouTube because they keep it simple. Every request goes through Apache. Linux - the benefit of Linux is there’s always a way to get in and see how your system is behaving. No matter how bad your app is behaving, you can take a look at it with Linux tools like strace and tcpdump. MySQL - is used a lot. When you watch a video you are getting data from MySQL. Sometime it’s used a relational database or a blob store. It’s about tuning and making choices about how you organize your data. Vitess- a  new project released by YouTube, written in Go, it’s a frontend to MySQL. It does a lot of optimization on the fly, it rewrites queries and acts as a proxy. Currently it serves every YouTube database request. It’s RPC based. Zookeeper - a distributed lock server. It’s used for configuration. Really interesting piece of technology. Hard to use correctly so read the manual Wiseguy - a CGI servlet container. Spitfire - a templating system. It has an abstract syntax tree that let’s them do transformations to make things go faster. Serialization formats - no matter which one you use, they are all expensive. Measure. Don’t use pickle. Not a good choice. Found protocol buffers slow. They wrote their own BSON implementation, which is 10-15 time faster than the one you can download. ...Contiues. Read the blog Watch the video

    Read the article

  • How can I set my screen resolution to match my TV?

    - by Scott Severance
    I have a computer in my classroom that's connected to an LG smart TV (that's actually not so smart. I wouldn't recommend buying one.). For the touch interface, the TV wants a resolution of 1920x1080 at 60Hz. However, I can't seem to set the computer to that resolution. The display settings only offer 1024x768 and 640x480. The computer dual boots with Windows XP, where widescreen options are available in approximately the required size, but the exact resolution -- or even aspect ratio-- isn't available in XP either. I tried the following command: xrandr -s 1920x1080 -r 60 The response was: Size 1920x1080 not found in available modes Back in the old days, the solution would be to edit xorg.conf. However, since that file no longer exists, and I haven't found up-to-date info, I don't know what else to do. If it helps, this machine will never be connected to a different display, so resolution flexibility isn't important. Here's the output of lshw: *-display:0 description: VGA compatible controller product: 4 Series Chipset Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 03 width: 64 bits clock: 33MHz capabilities: vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:42 memory:fe800000-febfffff memory:d0000000-dfffffff ioport:ecd8(size=8) *-display:1 UNCLAIMED description: Display controller product: 4 Series Chipset Integrated Graphics Controller vendor: Intel Corporation physical id: 2.1 bus info: pci@0000:00:02.1 version: 03 width: 64 bits clock: 33MHz According to the system settings, my graphics driver is unknown and my "experience" is standard. This is 64-bit Ubuntu 12.04 (Precise) Note: There are a number of similar questions to this one, but they didn't include any answers that helped me. Update After posting this question, I noticed one in the sidebar that I hadn't found through search but which appeared to contain the answer. Based on that question, I created the /etc/X11/xorg.conf file below: Section "ServerLayout" Identifier "X.org Configured" Screen 0 "Screen0" 0 0 InputDevice "Mouse0" "CorePointer" InputDevice "Keyboard0" "CoreKeyboard" EndSection Section "Files" ModulePath "/usr/lib/xorg/modules" FontPath "/usr/share/fonts/X11/misc" FontPath "/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType" FontPath "built-ins" EndSection Section "Module" Load "glx" Load "dri2" Load "dbe" Load "dri" Load "record" Load "extmod" EndSection Section "InputDevice" Identifier "Keyboard0" Driver "kbd" EndSection Section "InputDevice" Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/input/mice" Option "ZAxisMapping" "4 5 6 7" EndSection Section "Monitor" Identifier "Monitor0" VendorName "LG" ModelName "Smart TV" EndSection Section "Device" ### Available Driver options are:- ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", ### <percent>: "<f>%" ### [arg]: arg optional #Option "DRI" # [<bool>] #Option "ColorKey" # <i> #Option "VideoKey" # <i> #Option "FallbackDebug" # [<bool>] #Option "Tiling" # [<bool>] #Option "LinearFramebuffer" # [<bool>] #Option "Shadow" # [<bool>] #Option "SwapbuffersWait" # [<bool>] #Option "TripleBuffer" # [<bool>] #Option "XvMC" # [<bool>] #Option "XvPreferOverlay" # [<bool>] #Option "DebugFlushBatches" # [<bool>] #Option "DebugFlushCaches" # [<bool>] #Option "DebugWait" # [<bool>] #Option "HotPlug" # [<bool>] #Option "RelaxedFencing" # [<bool>] Identifier "Card0" Driver "intel" BusID "PCI:0:2:0" EndSection Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" DefaultDepth 24 #SubSection "Display" # Viewport 0 0 # Depth 1 #EndSubSection #SubSection "Display" # Viewport 0 0 # Depth 4 #EndSubSection #SubSection "Display" # Viewport 0 0 # Depth 8 #EndSubSection #SubSection "Display" # Viewport 0 0 # Depth 15 #EndSubSection #SubSection "Display" # Viewport 0 0 # Depth 16 #EndSubSection SubSection "Display" Viewport 0 0 Depth 24 Modes "1024x768" "1920x1080" EndSubSection EndSection According to /var/log/Xorg.0.log, my settings aren't being applied. In fact, I wonder if the config file is even being read. [ 1209.083] (**) intel(0): Depth 24, (--) framebuffer bpp 32 [ 1209.084] (==) intel(0): RGB weight 888 [ 1209.084] (==) intel(0): Default visual is TrueColor [ 1209.084] (II) intel(0): Integrated Graphics Chipset: Intel(R) G41 [ 1209.084] (--) intel(0): Chipset: "G41" [ 1209.084] (**) intel(0): Relaxed fencing enabled [ 1209.084] (**) intel(0): Wait on SwapBuffers? enabled [ 1209.084] (**) intel(0): Triple buffering? enabled [ 1209.084] (**) intel(0): Framebuffer tiled [ 1209.084] (**) intel(0): Pixmaps tiled [ 1209.084] (**) intel(0): 3D buffers tiled [ 1209.084] (**) intel(0): SwapBuffers wait enabled [ 1209.084] (==) intel(0): video overlay key set to 0x101fe [ 1209.172] (II) intel(0): Output VGA1 using monitor section Monitor0 [ 1209.260] (II) intel(0): EDID for output VGA1 [ 1209.260] (II) intel(0): Printing probed modes for output VGA1 [ 1209.260] (II) intel(0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz) [ 1209.260] (II) intel(0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz) [ 1209.260] (II) intel(0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz) [ 1209.260] (II) intel(0): Modeline "848x480"x60.0 33.75 848 864 976 1088 480 486 494 517 +hsync +vsync (31.0 kHz) [ 1209.260] (II) intel(0): Modeline "640x480"x59.9 25.18 640 656 752 800 480 489 492 525 -hsync -vsync (31.5 kHz) [ 1209.260] (II) intel(0): Output VGA1 connected [ 1209.260] (II) intel(0): Using user preference for initial modes [ 1209.260] (II) intel(0): Output VGA1 using initial mode 1024x768 [ 1209.260] (II) intel(0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 1209.260] (II) intel(0): Kernel page flipping support detected, enabling [ 1209.260] (==) intel(0): DPI set to (96, 96)

    Read the article

  • Indexed Drawing in OpenGL not working

    - by user2050846
    I am trying to render 2 types of primitives- - points ( a Point Cloud ) - triangles ( a Mesh ) I am rendering points simply without any index arrays and they are getting rendered fine. To render the meshes I am using indexed drawing with the face list array having the indices of the vertices to be rendered as Triangles. Vertices and their corresponding vertex colors are stored in their corresponding buffers. But the indexed drawing command do not draw anything. The code is as follows- Main Display Function: void display() { simple->enable(); simple->bindUniform("MV",modelview); simple->bindUniform("P", projection); // rendering Point Cloud glBindVertexArray(vao); // Vertex buffer Point Cloud glBindBuffer(GL_ARRAY_BUFFER,vertexbuffer); glEnableVertexAttribArray(0); glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,0,0); // Color Buffer point Cloud glBindBuffer(GL_ARRAY_BUFFER,colorbuffer); glEnableVertexAttribArray(1); glVertexAttribPointer(1,3,GL_FLOAT,GL_FALSE,0,0); // Render Colored Point Cloud //glDrawArrays(GL_POINTS,0,model->vertexCount); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); // ---------------- END---------------------// //// Floor Rendering glBindBuffer(GL_ARRAY_BUFFER,fl); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,0,0); glVertexAttribPointer(1,4,GL_FLOAT,GL_FALSE,0,(void *)48); glDrawArrays(GL_QUADS,0,4); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); // -----------------END---------------------// //Rendering the Meshes //////////// PART OF CODE THAT IS NOT DRAWING ANYTHING //////////////////// glBindVertexArray(vid); for(int i=0;i<NUM_MESHES;i++) { glBindBuffer(GL_ARRAY_BUFFER,mVertex[i]); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,0,0); glVertexAttribPointer(1,3,GL_FLOAT,GL_FALSE,0,(void *)(meshes[i]->vertexCount*sizeof(glm::vec3))); //glDrawArrays(GL_TRIANGLES,0,meshes[i]->vertexCount); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,mFace[i]); //cout<<gluErrorString(glGetError()); glDrawElements(GL_TRIANGLES,meshes[i]->faceCount*3,GL_FLOAT,(void *)0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); } glUseProgram(0); glutSwapBuffers(); glutPostRedisplay(); } Point Cloud Buffer Allocation Initialization: void initGLPointCloud() { glGenBuffers(1,&vertexbuffer); glGenBuffers(1,&colorbuffer); glGenBuffers(1,&fl); //Populates the position buffer glBindBuffer(GL_ARRAY_BUFFER,vertexbuffer); glBufferData(GL_ARRAY_BUFFER, model->vertexCount * sizeof (glm::vec3), &model->positions[0], GL_STATIC_DRAW); //Populates the color buffer glBindBuffer(GL_ARRAY_BUFFER, colorbuffer); glBufferData(GL_ARRAY_BUFFER, model->vertexCount * sizeof (glm::vec3), &model->colors[0], GL_STATIC_DRAW); model->FreeMemory(); // To free the not needed memory, as the data has been already // copied on graphic card, and wont be used again. glBindBuffer(GL_ARRAY_BUFFER,0); } Meshes Buffer Initialization: void initGLMeshes(int i) { glBindBuffer(GL_ARRAY_BUFFER,mVertex[i]); glBufferData(GL_ARRAY_BUFFER,meshes[i]->vertexCount*sizeof(glm::vec3)*2,NULL,GL_STATIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER,0,meshes[i]->vertexCount*sizeof(glm::vec3),&meshes[i]->positions[0]); glBufferSubData(GL_ARRAY_BUFFER,meshes[i]->vertexCount*sizeof(glm::vec3),meshes[i]->vertexCount*sizeof(glm::vec3),&meshes[i]->colors[0]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,mFace[i]); glBufferData(GL_ELEMENT_ARRAY_BUFFER,meshes[i]->faceCount*sizeof(glm::vec3), &meshes[i]->faces[0],GL_STATIC_DRAW); meshes[i]->FreeMemory(); //glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); } Initialize the Rendering, load and create shader and calls the mesh and PCD initializers. void initRender() { simple= new GLSLShader("shaders/simple.vert","shaders/simple.frag"); //Point Cloud //Sets up VAO glGenVertexArrays(1, &vao); glBindVertexArray(vao); initGLPointCloud(); //floorData glBindBuffer(GL_ARRAY_BUFFER, fl); glBufferData(GL_ARRAY_BUFFER, sizeof(floorData), &floorData[0], GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER,0); glBindVertexArray(0); //Meshes for(int i=0;i<NUM_MESHES;i++) { if(i==0) // SET up the new vertex array state for indexed Drawing { glGenVertexArrays(1, &vid); glBindVertexArray(vid); glGenBuffers(NUM_MESHES,mVertex); glGenBuffers(NUM_MESHES,mColor); glGenBuffers(NUM_MESHES,mFace); } initGLMeshes(i); } glEnable(GL_DEPTH_TEST); } Any help would be much appreciated, I have been breaking my head on this problem since 3 days, and still it is unsolved.

    Read the article

  • How do I pass vertex and color positions to OpenGL shaders?

    - by smoth190
    I've been trying to get this to work for the past two days, telling myself I wouldn't ask for help. I think you can see where that got me... I thought I'd try my hand at a little OpenGL, because DirectX is complex and depressing. I picked OpenGL 3.x, because even with my OpenGL 4 graphics card, all my friends don't have that, and I like to let them use my programs. There aren't really any great tutorials for OpenGL 3, most are just "type this and this will happen--the end". I'm trying to just draw a simple triangle, and so far, all I have is a blank screen with my clear color (when I set the draw type to GL_POINTS I just get a black dot). I have no idea what the problem is, so I'll just slap down the code: Here is the function that creates the triangle: void CEntityRenderable::CreateBuffers() { m_vertices = new Vertex3D[3]; m_vertexCount = 3; m_vertices[0].x = -1.0f; m_vertices[0].y = -1.0f; m_vertices[0].z = -5.0f; m_vertices[0].r = 1.0f; m_vertices[0].g = 0.0f; m_vertices[0].b = 0.0f; m_vertices[0].a = 1.0f; m_vertices[1].x = 1.0f; m_vertices[1].y = -1.0f; m_vertices[1].z = -5.0f; m_vertices[1].r = 1.0f; m_vertices[1].g = 0.0f; m_vertices[1].b = 0.0f; m_vertices[1].a = 1.0f; m_vertices[2].x = 0.0f; m_vertices[2].y = 1.0f; m_vertices[2].z = -5.0f; m_vertices[2].r = 1.0f; m_vertices[2].g = 0.0f; m_vertices[2].b = 0.0f; m_vertices[2].a = 1.0f; //Create the VAO glGenVertexArrays(1, &m_vaoID); //Bind the VAO glBindVertexArray(m_vaoID); //Create a vertex buffer glGenBuffers(1, &m_vboID); //Bind the buffer glBindBuffer(GL_ARRAY_BUFFER, m_vboID); //Set the buffers data glBufferData(GL_ARRAY_BUFFER, sizeof(m_vertices), m_vertices, GL_STATIC_DRAW); //Set its usage glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex3D), 0); glVertexAttribPointer(1, 4, GL_FLOAT, GL_TRUE, sizeof(Vertex3D), (void*)(3*sizeof(float))); //Enable glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); //Check for errors if(glGetError() != GL_NO_ERROR) { Error("Failed to create VBO: %s", gluErrorString(glGetError())); } //Unbind... glBindVertexArray(0); } The Vertex3D struct is as such... struct Vertex3D { Vertex3D() : x(0), y(0), z(0), r(0), g(0), b(0), a(1) {} float x, y, z; float r, g, b, a; }; And finally the render function: void CEntityRenderable::RenderEntity() { //Render... glBindVertexArray(m_vaoID); //Use our attribs glDrawArrays(GL_POINTS, 0, m_vertexCount); glBindVertexArray(0); //unbind OnRender(); } (And yes, I am binding and unbinding the shader. That is just in a different place) I think my problem is that I haven't fully wrapped my mind around this whole VertexAttribArray thing (the only thing I like better in DirectX was input layouts D:). This is my vertex shader: #version 330 //Matrices uniform mat4 projectionMatrix; uniform mat4 viewMatrix; uniform mat4 modelMatrix; //In values layout(location = 0) in vec3 position; layout(location = 1) in vec3 color; //Out values out vec3 frag_color; //Main shader void main(void) { //Position in world gl_Position = vec4(position, 1.0); //gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(in_Position, 1.0); //No color changes frag_color = color; } As you can see, I've disable the matrices, because that just makes debugging this thing so much harder. I tried to debug using glslDevil, but my program just crashes right before the shaders are created... so I gave up with that. This is my first shot at OpenGL since the good old days of LWJGL, but that was when I didn't even know what a shader was. Thanks for your help :)

    Read the article

  • Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket - (TOTD #185)

    - by arungupta
    The WebSocket API defines different send(xxx) methods that can be used to send text and binary data. This Tip Of The Day (TOTD) will show how to send and receive text and binary data using WebSocket. TOTD #183 explains how to get started with a WebSocket endpoint using GlassFish 4. A simple endpoint from that blog looks like: @WebSocketEndpoint("/endpoint") public class MyEndpoint { public void receiveTextMessage(String message) { . . . } } A message with the first parameter of the type String is invoked when a text payload is received. The payload of the incoming WebSocket frame is mapped to this first parameter. An optional second parameter, Session, can be specified to map to the "other end" of this conversation. For example: public void receiveTextMessage(String message, Session session) {     . . . } The return type is void and that means no response is returned to the client that invoked this endpoint. A response may be returned to the client in two different ways. First, set the return type to the expected type, such as: public String receiveTextMessage(String message) { String response = . . . . . . return response; } In this case a text payload is returned back to the invoking endpoint. The second way to send a response back is to use the mapped session to send response using one of the sendXXX methods in Session, when and if needed. public void receiveTextMessage(String message, Session session) {     . . .     RemoteEndpoint remote = session.getRemote();     remote.sendString(...);     . . .     remote.sendString(...);    . . .    remote.sendString(...); } This shows how duplex and asynchronous communication between the two endpoints can be achieved. This can be used to define different message exchange patterns between the client and server. The WebSocket client can send the message as: websocket.send(myTextField.value); where myTextField is a text field in the web page. Binary payload in the incoming WebSocket frame can be received if ByteBuffer is used as the first parameter of the method signature. The endpoint method signature in that case would look like: public void receiveBinaryMessage(ByteBuffer message) {     . . . } From the client side, the binary data can be sent using Blob, ArrayBuffer, and ArrayBufferView. Blob is a just raw data and the actual interpretation is left to the application. ArrayBuffer and ArrayBufferView are defined in the TypedArray specification and are designed to send binary data using WebSocket. In short, ArrayBuffer is a fixed-length binary buffer with no format and no mechanism for accessing its contents. These buffers are manipulated using one of the views defined by one of the subclasses of ArrayBufferView listed below: Int8Array (signed 8-bit integer or char) Uint8Array (unsigned 8-bit integer or unsigned char) Int16Array (signed 16-bit integer or short) Uint16Array (unsigned 16-bit integer or unsigned short) Int32Array (signed 32-bit integer or int) Uint32Array (unsigned 16-bit integer or unsigned int) Float32Array (signed 32-bit float or float) Float64Array (signed 64-bit float or double) WebSocket can send binary data using ArrayBuffer with a view defined by a subclass of ArrayBufferView or a subclass of ArrayBufferView itself. The WebSocket client can send the message using Blob as: blob = new Blob([myField2.value]);websocket.send(blob); where myField2 is a text field in the web page. The WebSocket client can send the message using ArrayBuffer as: var buffer = new ArrayBuffer(10);var bytes = new Uint8Array(buffer);for (var i=0; i<bytes.length; i++) { bytes[i] = i;}websocket.send(buffer); A concrete implementation of receiving the binary message may look like: @WebSocketMessagepublic void echoBinary(ByteBuffer data, Session session) throws IOException {    System.out.println("echoBinary: " + data);    for (byte b : data.array()) {        System.out.print(b);    }    session.getRemote().sendBytes(data);} This method is just printing the binary data for verification but you may actually be storing it in a database or converting to an image or something more meaningful. Be aware of TYRUS-51 if you are trying to send binary data from server to client using method return type. Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) TOTD #183 - Getting Started with WebSocket in GlassFish TOTD #184 - Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark Subsequent blogs will discuss the following topics (not necessary in that order) ... Error handling Custom payloads using encoder/decoder Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

  • Understanding implementation of glu.PickMatrix()

    - by stoney78us
    I am working on an OpenGL project which requires object selection feature. I use OpenTK framework to do this; however OpenTK doesn't support glu.PickMatrix() method to define the picking region. I ended up googling its implementation and here is what i got: void GluPickMatrix(double x, double y, double deltax, double deltay, int[] viewport) { if (deltax <= 0 || deltay <= 0) { return; } GL.Translate((viewport[2] - 2 * (x - viewport[0])) / deltax, (viewport[3] - 2 * (y - viewport[1])) / deltay, 0); GL.Scale(viewport[2] / deltax, viewport[3] / deltay, 1.0); } I totally fail to understand this piece of code. Moreover, this doesn't work with my following code sample: //selectbuffer private int[] _selectBuffer = new int[512]; private void Init() { float[] triangleVertices = new float[] { 0.0f, 1.0f, 0.0f, -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f }; float[] _triangleColors = new float[] { 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; GL.GenBuffers(2, _vBO); GL.BindBuffer(BufferTarget.ArrayBuffer, _vBO[0]); GL.BufferData(BufferTarget.ArrayBuffer, new IntPtr(sizeof(float) * _triangleVertices.Length), _triangleVertices, BufferUsageHint.StaticDraw); GL.VertexPointer(3, VertexPointerType.Float, 0, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, _vBO[1]); GL.BufferData(BufferTarget.ArrayBuffer, new IntPtr(sizeof(float) * _triangleColors.Length), _triangleColors, BufferUsageHint.StaticDraw); GL.ColorPointer(3, ColorPointerType.Float, 0, 0); GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.ColorArray); //Selectbuffer set up GL.SelectBuffer(512, _selectBuffer); } private void glControlWindow_Paint(object sender, PaintEventArgs e) { GL.Clear(ClearBufferMask.ColorBufferBit); GL.Clear(ClearBufferMask.DepthBufferBit); float[] eyes = { 0.0f, 0.0f, -10.0f }; float[] target = { 0.0f, 0.0f, 0.0f }; Matrix4 projection = Matrix4.CreatePerspectiveFieldOfView(0.785398163f, 4.0f / 3.0f, 0.1f, 100f); //45 degree = 0.785398163 rads Matrix4 view = Matrix4.LookAt(eyes[0], eyes[1], eyes[2], target[0], target[1], target[2], 0, 1, 0); Matrix4 model = Matrix4.Identity; Matrix4 MV = view * model; //First Clear Buffers GL.Clear(ClearBufferMask.ColorBufferBit); GL.Clear(ClearBufferMask.DepthBufferBit); GL.MatrixMode(MatrixMode.Projection); GL.LoadIdentity(); GL.LoadMatrix(ref projection); GL.MatrixMode(MatrixMode.Modelview); GL.LoadIdentity(); GL.LoadMatrix(ref MV); GL.Viewport(0, 0, glControlWindow.Width, glControlWindow.Height); GL.Enable(EnableCap.DepthTest); //Enable correct Z Drawings GL.DepthFunc(DepthFunction.Less); //Enable correct Z Drawings GL.MatrixMode(MatrixMode.Modelview); GL.PushMatrix(); GL.Translate(3.0f, 0.0f, 0.0f); DrawTriangle(); GL.PopMatrix(); GL.PushMatrix(); GL.Translate(-3.0f, 0.0f, 0.0f); DrawTriangle(); GL.PopMatrix(); //Finally... GraphicsContext.CurrentContext.VSync = true; //Caps frame rate as to not over run GPU glControlWindow.SwapBuffers(); //Takes from the 'GL' and puts into control } private void DrawTriangle() { GL.BindBuffer(BufferTarget.ArrayBuffer, _vBO[0]); GL.VertexPointer(3, VertexPointerType.Float, 0, 0); GL.EnableClientState(ArrayCap.VertexArray); GL.DrawArrays(BeginMode.Triangles, 0, 3); GL.DisableClientState(ArrayCap.VertexArray); } //mouse click event implementation private void glControlWindow_MouseClick(object sender, System.Windows.Forms.MouseEventArgs e) { //Enter Select mode. Pretend drawing. GL.RenderMode(RenderingMode.Select); int[] viewport = new int[4]; GL.GetInteger(GetPName.Viewport, viewport); GL.PushMatrix(); GL.MatrixMode(MatrixMode.Projection); GL.LoadIdentity(); GluPickMatrix(e.X, e.Y, 5, 5, viewport); Matrix4 projection = Matrix4.CreatePerspectiveFieldOfView(0.785398163f, 4.0f / 3.0f, 0.1f, 100f); // this projection matrix is the same as one in glControlWindow_Paint method. GL.LoadMatrix(ref projection); GL.MatrixMode(MatrixMode.Modelview); int i = 0; int hits; GL.PushMatrix(); GL.Translate(3.0f, 0.0f, 0.0f); GL.PushName(i); DrawTriangle(); GL.PopName(); GL.PopMatrix(); i++; GL.PushMatrix(); GL.Translate(-3.0f, 0.0f, 0.0f); GL.PushName(i); DrawTriangle(); GL.PopName(); GL.PopMatrix(); hits = GL.RenderMode(RenderingMode.Render); .....hits processing code goes here... GL.PopMatrix(); glControlWindow.Invalidate(); } I expect to get only one hit everytime i click inside a triangle, but i always get 2 no matter where i click. I suspect there is something wrong with the implementation of the GluPickMatrix, I haven't figured out yet.

    Read the article

  • Problem with waveOutWrite and waveOutGetPosition deadlock

    - by MusiGenesis
    I'm working on an app that plays audio continuously using the waveOut... API from winmm.dll. The app uses "leapfrog" buffers, which are basically a bunch of arrays of samples that you dump into the audio queue. Windows plays them seamlessly in sequence, and as each buffer completes Windows calls a callback function. Inside this function, I load the next set of samples into the buffer, process them however, and then dump the buffer back into the audio queue. In this way, the audio plays indefinitely. For animation purposes, I'm trying to incorporate waveOutGetPosition into the application (since the "buffer done" callbacks are irregular enough to cause jerky animation). waveOutGetPosition returns the current position of playback, so it's hyper-precise. The problem is that in my application, making calls to waveOutGetPosition eventually causes the application to lock up - the sound stops and the call never returns. I've boiled things down to a simple app that demonstrates the problem. You can run the app here: http://www.musigenesis.com/SO/waveOut%20demo.exe If you just hear a tiny bit of piano over and over, it's working. It's just meant to demonstrate the problem. The source code for this project is here: http://www.musigenesis.com/SO/WaveOutDemo.zip The first button runs the app in leapfrog mode without making the calls to waveOutGetPosition. If you click this, the app will play forever without breaking (the X button will close it and shut it off). The second button starts the leapfrogger and also starts a forms timer that calls the waveOutGetPosition and displays the current position. Click this and the app will run for a short while and then lock up. On my laptop, it usually locks up in 15-30 seconds; at most it's taken a minute. I have no idea how to fix this, so any help or suggestions would be most welcome. I've found very few posts on this issue, but it seems that there is a potential deadlock, either from multiple calls to waveOutGetPosition or from calls to that and waveOutWrite that occur at the same time. It's possible that I'm calling this too frequently for the system to handle.

    Read the article

  • OpenGL FrameBuffer Objects weird behavior

    - by Ben Jones
    My algorithm is this: Render the scene to a FBO with shadow mapping from multiple locations Render the scene to the screen with shadow mapping ...black magic that I still have to imlement... Combine the samples from step 1 with the image from step 2 I'm trying to debug steps 1 and 2 and am coming across STRANGE behavior. My algorithm for each shadow mapped pass is: render the scene to a FBO connected to a depth array texture from the POV of each light render the scene from the viewpoint and use vertex/frag shaders to compare the depths When I run my algorithm this way: render from point to FBO render from point to screen glutSwapBuffers() The normal vectors in the screen pass appear to be incorrect (inverted possibly). I'm pretty sure that's the issue because my diffuse lighting calculation is incorrect, but the material colors are correct, and the shadows appear in the correct places. So, it seems like the only thing that could be the culprit is the normals. However if I do render from point to FBO render from point to Screen glutSwapBuffers() //wrong here render from point to Screen glutSwapBuffers() the second pass is correct. I assume there's a problem with my framebuffer calls. Can anyone see what the problem is from the log below? Its from a bugle trace grepped for 'buffer' with a few edits to make it a little more clear. Thanks! [INFO] trace.call: glGenFramebuffersEXT(1, 0xdfeb90 - { 1 }) [INFO] trace.call: glGenFramebuffersEXT(1, 0xdfebac - { 2 }) [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glDrawBuffer(GL_NONE) [INFO] trace.call: glReadBuffer(GL_NONE) [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) //start render to FBO [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 2) [INFO] trace.call: glReadBuffer(GL_NONE) [INFO] trace.call: glFramebufferTexture2DEXT(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 2, 0) [INFO] trace.call: glFramebufferTexture2DEXT(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, 3, 0) [INFO] trace.call: glDrawBuffer(GL_COLOR_ATTACHMENT0) //bind to the FBO attached to a depth tex array for shadows [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry //bind to the FBO I want the shadow mapped image rendered to [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 2) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) //draw geometry //draw to screen pass //again shadow mapping FBO [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry //bind to the screen [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) //finished, swap buffers [INFO] trace.call: glXSwapBuffers(0xd5fc10, 0x05800002) //INCORRECT OUTPUT //second try at render to screen: [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) draw geometry [INFO] trace.call: glXSwapBuffers(0xd5fc10, 0x05800002) //correct output

    Read the article

  • TVirtualStringTree - resetting non-visual nodes and memory consumption

    - by Remy Lebeau - TeamB
    I have an app that loads records from a binary log file and displays them in a virtual TListView. There are potentially millions of records in a file, and the display can be filtered by the user, so I do not load all of the records in memory at one time, and the ListView item indexes are not a 1-to-1 relation with the file record offsets (List item 1 may be file record 100, for instance). I use the ListView's OnDataHint event to load records for just the items the ListView is actually interested in. As the user scrolls around, the range specified by OnDataHint changes, allowing me to free records that are not in the new range, and allocate new records as needed. This works fine, speed is tolerable, and the memory footprint is very low. I am currently evaluating TVirtualStringTree as a replacement for the TListView, mainly because I want to add the ability to expand/collapse records that span multiple lines (I can fudge it with the TListView by incrementing/decrementing the item count dynamically, but this is not as straight forward as using a real tree). For the most part, I have been able to port the TListView logic and have everything work as I need. I notice that TVirtualStringTree's virtual paradigm is vastly different, though. It does not have the same kind of OnDataHint functionality that TListView does (I can use the OnScroll event to fake it, which allows my memory buffer logic to continue working), and I can use the OnInitializeNode event to associate nodes with records that are allocated. However, once a tree node is initialized, it sees that it remains initialized for the lifetime of the tree. That is not good for me. As the user scrolls around and I remove records from memory, I need to reset those non-visual nodes without removing them from the tree completely, or losing their expand/collapse states. When the user scrolls them back into view, I can re-allocate the records and re-initialize the nodes. Basically, I want to make TVirtualStringTree act as much like TListView as possible, as far as its virtualization is concerned. I have seen that TVirtualStringTree has a ResetNode() method, but I encounter various errors whenever I try to use it. I must be using it wrong. I also thought of just storing a data pointer inside each node to my record buffers, and I allocate and free memory, update those pointers accordingly. The end effect does not work so well, either. Worse, my largest test log file has ~5 million records in it. If I initialize the TVirtualStringTree with that many nodes at one time (when the log display is unfiltered), the tree's internal overhead for its nodes takes up a whopping 260MB of memory (without any records being allocated yet). Whereas with the TListView, loading the same log file and all the memory logic behind it, I can get away with using just a few MBs. Any ideas?

    Read the article

  • Asynchronous readback from opengl front buffer using multiple PBO's

    - by KillianDS
    I am developing an application that needs to read back the whole frame from the front buffer of an openGL application. I can hijack the application's opengl library and insert my code on swapbuffers. At the moment I am successfully using a simple but excruciating slow glReadPixels command without PBO's. Now I read about using multiple PBO's to speed things up. While I think I've found enough resources to actually program that (isn't that hard), I have some operational questions left. I would do something like this: create a series (e.g. 3) of PBO's use glReadPixels in my swapBuffers override to read data from front buffer to a PBO (should be fast and non-blocking, right?) Create a seperate thread to call glMapBufferARB, once per PBO after a glReadPixels, because this will block until the pixels are in client memory. Process the data from step 3. Now my main concern is of course in steps 2 and 3. I read about glReadPixels used on PBO's being non-blocking, will this be an issue if I issue new opengl commands after that very fast? Will those opengl commands block? Or will they continue (my guess), and if so, I guess only swapbuffers can be a problem, will this one stall or will glReadPixels from front buffer be many times faster than swapping (about each 15-30ms) or, worst case scenario, will swapbuffers be executed while glReadPixels is still reading data to the PBO? My current guess is this logic will do something like this: copy FRONT_BUFFER - generic place in VRAM, copy VRAM-RAM. But I have no idea which of those 2 is the real bottleneck and more, what the influence on the normal opengl command stream is. Then in step 3. Is it wise to do this asynchronously in a thread separated from normal opengl logic? At the moment I think not, It seems you have to restore buffer operations to normal after doing this and I can't install synchronization objects in the original code to temporarily block those. So I think my best option is to define a certain swapbuffer delay before reading them out, so e.g. calling glReadPixels on PBO i%3 and glMapBufferARB on PBO (i+2)%3 in the same thread, resulting in a delay of 2 frames. Also, when I call glMapBufferARB to use data in client memory, will this be the bottleneck or will glReadPixels (asynchronously) be the bottleneck? And finally, if you have some better ideas to speed up frame readback from GPU in opengl, please tell me, because this is a painful bottleneck in my current system. I hope my question is clear enough, I know the answer will probably also be somewhere on the internet but I mostly came up with results that used PBO's to keep buffers in video memory and do processing there. I really need to read back the front buffer to RAM and I do not find any clear explanations about performance in that case (which I need, I cannot rely on "it's faster", I need to explain why it's faster). Thank you

    Read the article

  • C# Begin/EndReceive - how do I read large data?

    - by ryeguy
    When reading data in chunks of say, 1024, how do I continue to read from a socket that receives a message bigger than 1024 bytes until there is no data left? Should I just use BeginReceive to read a packet's length prefix only, and then once that is retrieved, use Receive() (in the async thread) to read the rest of the packet? Or is there another way? edit: I thought Jon Skeet's link had the solution, but there is a bit of a speedbump with that code. The code I used is: public class StateObject { public Socket workSocket = null; public const int BUFFER_SIZE = 1024; public byte[] buffer = new byte[BUFFER_SIZE]; public StringBuilder sb = new StringBuilder(); } public static void Read_Callback(IAsyncResult ar) { StateObject so = (StateObject) ar.AsyncState; Socket s = so.workSocket; int read = s.EndReceive(ar); if (read > 0) { so.sb.Append(Encoding.ASCII.GetString(so.buffer, 0, read)); if (read == StateObject.BUFFER_SIZE) { s.BeginReceive(so.buffer, 0, StateObject.BUFFER_SIZE, 0, new AyncCallback(Async_Send_Receive.Read_Callback), so); return; } } if (so.sb.Length > 0) { //All of the data has been read, so displays it to the console string strContent; strContent = so.sb.ToString(); Console.WriteLine(String.Format("Read {0} byte from socket" + "data = {1} ", strContent.Length, strContent)); } s.Close(); } Now this corrected works fine most of the time, but it fails when the packet's size is a multiple of the buffer. The reason for this is if the buffer gets filled on a read it is assumed there is more data; but the same problem happens as before. A 2 byte buffer, for exmaple, gets filled twice on a 4 byte packet, and assumes there is more data. It then blocks because there is nothing left to read. The problem is that the receive function doesn't know when the end of the packet is. This got me thinking to two possible solutions: I could either have an end-of-packet delimiter or I could read the packet header to find the length and then receive exactly that amount (as I originally suggested). There's problems with each of these, though. I don't like the idea of using a delimiter, as a user could somehow work that into a packet in an input string from the app and screw it up. It also just seems kinda sloppy to me. The length header sounds ok, but I'm planning on using protocol buffers - I don't know the format of the data. Is there a length header? How many bytes is it? Would this be something I implement myself? Etc.. What should I do?

    Read the article

  • TVirtualStringTree - resetting non-visual nodes and memory comsumption

    - by Remy Lebeau - TeamB
    I have an app that loads records from a binary log file and displays them in a virtual TListView. There are potentially millions of records in a file, and the display can be filtered by the user, so I do not load all of the records in memory at one time, and the ListView item indexes are not a 1-to-1 relation with the file record offsets (List item 1 may be file record 100, for instance). I use the ListView's OnDataHint event to load records for just the items the ListView is actually interested in. As the user scrolls around, the range specified by OnDataHint changes, allowing me to free records that are not in the new range, and allocate new records as needed. This works fine, speed is tolerable, and the memory footprint is very low. I am currently evaluating TVirtualStringTree as a replacement for the TListView, mainly because I want to add the ability to expand/collapse records that span multiple lines (I can fudge it with the TListView by incrementing/decrementing the item count dynamically, but this is not as straight forward as using a real tree). For the most part, I have been able to port the TListView logic and have everything work as I need. I notice that TVirtualStringTree's virtual paridigm is vastly different, though. It does not have the same kind of OnDataHint functionality that TListView does (I can use the OnScroll event to fake it, which allows my memory buffer logic to continue working), and I can use the OnInitializeNode event to associate nodes with records that are allocated. However, once a tree node is initialized, it sees that it remains initialized for the lifetime of the tree. That is not good for me. As the user scrolls around and I remove records from memory, I need to reset those non-visual nodes without removing them from the tree completely, or losing their expand/collapse states. When the user scrolls them back into view, I can re-allocate the records and re-initialize the nodes. Basically, I want to make TVirtualStringTree act as much like TListView as possible, as far as its virtualization is concerned. I have seen that TVirtualStringTree has a ResetNode() method, but I encounter various errors whenever I try to use it. I must be using it wrong. I also thought of just storing a data pointer inside each node to my record buffers, and I allocate and free memory, update those pointers accordingly. The end effect does not work so well, either. Worse, my largest test log file has ~5 million records in it. If I initialize the TVirtualStringTree with that many nodes at one time (when the log display is unfiltered), the tree's internal overhead for its nodes takes up a whopping 260MB of memory (without any records being allocated yet). Whereas with the TListView, loading the same log file and all the memory logic behind it, I can get away with using just a few MBs. Any ideas?

    Read the article

  • Speed Problem with Wireless Connectivity on Cisco 877w

    - by Carl Crawley
    Having a bit of a weird one with my local LAN setup. I recently installed a Cisco 877W router on my DSL2+ connection and all is working really well.. Upgraded the IOS to 12.4 and my wired clients are streaming connectivity superfast at 1.3mb/s. However, there seems to be an issue with my wireless clients - I can't seem to stream any data across the local wireless connection (LAN) and using the Internet, whilst responsive enough isn't really comparable with the wired connection speed. For example, all devices are connected to an 8 Port Gb switch on FE0 from the Router with a NAS disk and on my wired clients, I can transfer/stream etc absolutely fine - however, transferring a local 700Mb file on my local LAN estimates 7-8 hours to transfer :( The Wireless config is as follows : interface Dot11Radio0 description WIRELESS INTERFACE no ip address ! encryption mode ciphers tkip ! ssid [MySSID] ! speed basic-1.0 basic-2.0 basic-5.5 6.0 9.0 basic-11.0 channel 2462 station-role root rts threshold 2312 world-mode dot11d country GB indoor bridge-group 1 bridge-group 1 subscriber-loop-control bridge-group 1 spanning-disabled bridge-group 1 block-unknown-source no bridge-group 1 source-learning no bridge-group 1 unicast-flooding All devices are connected to the Gb Switch which is connected to FE0 with the following: Hardware is Fast Ethernet, address is 0021.a03e.6519 (bia 0021.a03e.6519) Description: Uplink to Switch MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 100Mb/s ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 14000 bits/sec, 19 packets/sec 5 minute output rate 167000 bits/sec, 23 packets/sec 177365 packets input, 52089562 bytes, 0 no buffer Received 919 broadcasts, 0 runts, 0 giants, 0 throttles 260 input errors, 260 CRC, 0 frame, 0 overrun, 0 ignored 0 input packets with dribble condition detected 156673 packets output, 106218222 bytes, 0 underruns 0 output errors, 0 collisions, 2 interface resets 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier 0 output buffer failures, 0 output buffers swapped out Not sure why I'm having problems on the wireless and I've reached the end of my Cisco knowledge... Thanks for any pointers! Carl

    Read the article

  • memcpy segmentation fault on linux but not os x

    - by Andre
    I'm working on implementing a log based file system for a file as a class project. I have a good amount of it working on my 64 bit OS X laptop, but when I try to run the code on the CS department's 32 bit linux machines, I get a seg fault. The API we're given allows writing DISK_SECTOR_SIZE (512) bytes at a time. Our log record consists of the 512 bytes the user wants to write as well as some metadata (which sector he wants to write to, the type of operation, etc). All in all, the size of the "record" object is 528 bytes, which means each log record spans 2 sectors on the disk. The first record writes 0-512 on sector 0, and 0-15 on sector 1. The second record writes 16-512 on sector 1, and 0-31 on sector 2. The third record writes 32-512 on sector 2, and 0-47 on sector 3. ETC. So what I do is read the two sectors I'll be modifying into 2 freshly allocated buffers, copy starting at record into buf1+the calculated offset for 512-offset bytes. This works correctly on both machines. However, the second memcpy fails. Specifically, "record+DISK_SECTOR_SIZE-offset" in the below code segfaults, but only on the linux machine. Running some random tests, it gets more curious. The linux machine reports sizeof(Record) to be 528. Therefore, if I tried to memcpy from record+500 into buf for 1 byte, it shouldn't have a problem. In fact, the biggest offset I can get from record is 254. That is, memcpy(buf1, record+254, 1) works, but memcpy(buf1, record+255, 1) segfaults. Does anyone know what I'm missing? Record *record = malloc(sizeof(Record)); record->tid = tid; record->opType = OP_WRITE; record->opArg = sector; int i; for (i = 0; i < DISK_SECTOR_SIZE; i++) { record->data[i] = buf[i]; // *buf is passed into this function } char* buf1 = malloc(DISK_SECTOR_SIZE); char* buf2 = malloc(DISK_SECTOR_SIZE); d_read(ad->disk, ad->curLogSector, buf1); d_read(ad->disk, ad->curLogSector+1, buf2); memcpy(buf1+offset, record, DISK_SECTOR_SIZE-offset); memcpy(buf2, record+DISK_SECTOR_SIZE-offset, offset+sizeof(Record)-sizeof(record->data));

    Read the article

  • handling NSStream events when using EASession in MonoTouch

    - by scotru
    Does anyone have an example of how to handle read and write NSStream events in Monotouch when working with accessories via EASession? It looks like there isn't a strongly typed delegate for this and I'm having trouble figuring out what selectors I need to handle on the delegates of my InputStream and OutputStream and what I actually need to do with each selector in order to properly fill and empty the buffers belonging to the EASession object. Basically, I'm trying to port Apple's EADemo app to Monotouch right now. Here's the Objective-C source that I think is relevant to this problem: / / asynchronous NSStream handleEvent method - (void)stream:(NSStream *)aStream handleEvent:(NSStreamEvent)eventCode { switch (eventCode) { case NSStreamEventNone: break; case NSStreamEventOpenCompleted: break; case NSStreamEventHasBytesAvailable: [self _readData]; break; case NSStreamEventHasSpaceAvailable: [self _writeData]; break; case NSStreamEventErrorOccurred: break; case NSStreamEventEndEncountered: break; default: break; } } / low level write method - write data to the accessory while there is space available and data to write - (void)_writeData { while (([[_session outputStream] hasSpaceAvailable]) && ([_writeData length] > 0)) { NSInteger bytesWritten = [[_session outputStream] write:[_writeData bytes] maxLength:[_writeData length]]; if (bytesWritten == -1) { NSLog(@"write error"); break; } else if (bytesWritten > 0) { [_writeData replaceBytesInRange:NSMakeRange(0, bytesWritten) withBytes:NULL length:0]; } } } // low level read method - read data while there is data and space available in the input buffer - (void)_readData { #define EAD_INPUT_BUFFER_SIZE 128 uint8_t buf[EAD_INPUT_BUFFER_SIZE]; while ([[_session inputStream] hasBytesAvailable]) { NSInteger bytesRead = [[_session inputStream] read:buf maxLength:EAD_INPUT_BUFFER_SIZE]; if (_readData == nil) { _readData = [[NSMutableData alloc] init]; } [_readData appendBytes:(void *)buf length:bytesRead]; //NSLog(@"read %d bytes from input stream", bytesRead); } [[NSNotificationCenter defaultCenter] postNotificationName:EADSessionDataReceivedNotification object:self userInfo:nil]; } I'd also appreciate any architectural recommendations on how to best implement this in monotouch. For example, in the Objective C implementation these functions are not contained in any class--but in Monotouch would it make sense to make them members of my

    Read the article

  • How to write a cctor and op= for a factory class with ptr to abstract member field?

    - by Kache4
    I'm extracting files from zip and rar archives into raw buffers. I created the following to wrap minizip and unrarlib: Archive.hpp #include "ArchiveBase.hpp" #include "ArchiveDerived.hpp" class Archive { public: Archive(string path) { /* logic here to determine type */ switch(type) { case RAR: archive_ = new ArchiveRar(path); break; case ZIP: archive_ = new ArchiveZip(path); break; case UNKNOWN_ARCHIVE: throw; break; } } Archive(Archive& other) { archive_ = // how do I copy an abstract class? } ~Archive() { delete archive_; } void passThrough(ArchiveBase::Data& data) { archive_->passThrough(data); } Archive& operator = (Archive& other) { if (this == &other) return *this; ArchiveBase* newArchive = // can't instantiate.... delete archive_; archive_ = newArchive; return *this; } private: ArchiveBase* archive_; } ArchiveBase.hpp class ArchiveBase { public: // Is there any way to put this struct in Archive instead, // so that outside classes instantiating one could use // Archive::Data instead of ArchiveBase::Data? struct Data { int field; }; virtual void passThrough(Data& data) = 0; /* more methods */ } ArchiveDerived.hpp "Derived" being "Zip" or "Rar" #include "ArchiveBase.hpp" class ArchiveDerived : public ArchiveBase { public: ArchiveDerived(string path); void passThrough(ArchiveBase::Data& data); private: /* fields needed by minizip/unrarlib */ // example zip: unzFile zipFile_; // example rar: RARHANDLE rarFile_; } ArchiveDerived.cpp #include "ArchiveDerived.hpp" ArchiveDerived::ArchiveDerived(string path) { //implement } ArchiveDerived::passThrough(ArchiveBase::Data& data) { //implement } Somebody had suggested I use this design so that I could do: Archive archiveFile(pathToZipOrRar); archiveFile.passThrough(extractParams); // yay polymorphism! How do I write a cctor for Archive? What about op= for Archive? What can I do about "renaming" ArchiveBase::Data to Archive::Data? (Both minizip and unrarlib use such structs for input and output. Data is generic for Zip & Rar and later is used to create the respective library's struct.)

    Read the article

  • design for a wrapper around command-line utilities

    - by hatchetman82
    im trying to come up with a design for a wrapper for use when invoking command line utilities in java. the trouble with runtime.exec() is that you need to keep reading from the process' out and err streams or it hangs when it fills its buffers. this has led me to the following design: public class CommandLineInterface { private final Thread stdOutThread; private final Thread stdErrThread; private final OutputStreamWriter stdin; private final History history; public CommandLineInterface(String command) throws IOException { this.history = new History(); this.history.addEntry(new HistoryEntry(EntryTypeEnum.INPUT, command)); Process process = Runtime.getRuntime().exec(command); stdin = new OutputStreamWriter(process.getOutputStream()); stdOutThread = new Thread(new Leech(process.getInputStream(), history, EntryTypeEnum.OUTPUT)); stdOutThread.setDaemon(true); stdOutThread.start(); stdErrThread = new Thread(new Leech(process.getErrorStream(), history, EntryTypeEnum.ERROR)); stdErrThread.setDaemon(true); stdErrThread.start(); } public void write(String input) throws IOException { this.history.addEntry(new HistoryEntry(EntryTypeEnum.INPUT, input)); stdin.write(input); stdin.write("\n"); stdin.flush(); } } public class Leech implements Runnable{ private final InputStream stream; private final History history; private final EntryTypeEnum type; private volatile boolean alive = true; public Leech(InputStream stream, History history, EntryTypeEnum type) { this.stream = stream; this.history = history; this.type = type; } public void run() { BufferedReader reader = new BufferedReader(new InputStreamReader(stream)); String line; try { while(alive) { line = reader.readLine(); if (line==null) break; history.addEntry(new HistoryEntry(type, line)); } } catch (Exception e) { e.printStackTrace(); } } } my issue is with the Leech class (used to "leech" the process' out and err streams and feed them into history - which acts like a log file) - on the one hand reading whole lines is nice and easy (and what im currently doing), but it means i miss the last line (usually the prompt line). i only see the prompt line when executing the next command (because there's no line break until that point). on the other hand, if i read characters myself, how can i tell when the process is "done" ? (either complete or waiting for input) has anyone tried something like waiting 100 millis since the last output from the process and declaring it "done" ? any better ideas on how i can implement a nice wrapper around things like runtime.exec("cmd.exe") ?

    Read the article

  • cuda/thrust: Trying to sort_by_key 2.8GB of data in 6GB of gpu RAM throws bad_alloc

    - by Sven K
    I have just started using thrust and one of the biggest issues I have so far is that there seems to be no documentation as to how much memory operations require. So I am not sure why the code below is throwing bad_alloc when trying to sort (before the sorting I still have 50% of GPU memory available, and I have 70GB of RAM available on the CPU)--can anyone shed some light on this? #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/random.h> void initialize_data(thrust::device_vector<uint64_t>& data) { thrust::fill(data.begin(), data.end(), 10); } #define BUFFERS 3 int main(void) { size_t N = 120 * 1024 * 1024; char line[256]; try { std::cout << "device_vector" << std::endl; typedef thrust::device_vector<uint64_t> vec64_t; // Each buffer is 900MB vec64_t c[3] = {vec64_t(N), vec64_t(N), vec64_t(N)}; initialize_data(c[0]); initialize_data(c[1]); initialize_data(c[2]); std::cout << "initialize_data finished... Press enter"; std::cin.getline(line, 0); // nvidia-smi reports 48% memory usage at this point (2959MB of // 6143MB) std::cout << "sort_by_key col 0" << std::endl; // throws bad_alloc thrust::sort_by_key(c[0].begin(), c[0].end(), thrust::make_zip_iterator(thrust::make_tuple(c[1].begin(), c[2].begin()))); std::cout << "sort_by_key col 1" << std::endl; thrust::sort_by_key(c[1].begin(), c[1].end(), thrust::make_zip_iterator(thrust::make_tuple(c[0].begin(), c[2].begin()))); } catch(thrust::system_error &e) { std::cerr << "Error: " << e.what() << std::endl; exit(-1); } return 0; }

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33  | Next Page >