Search Results

Search found 8219 results on 329 pages for 'less'.

Page 29/329 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • The Freemium-Premium Puzzle

    The more time I spend thinking about the value of information, the more I found that digitalizing information significantly changed the 'information markets', potentially in an irreversible manner. The graph at the bottom outlines my current view. The existing business models tend to be the same in the digital and analogue information world, i.e. revenue is derived from a combination of consumers' payments and advertisement. Even monetizing 'meta-information' such as search engines isn't new. Just think of the once popular 'Who'sWho'. What really changed is the price-value ratio. The curve is pushed down, closer to the axis. You pay less for the same, or often even get more for less. If you recall the capabilities I described in relevance of information you will see that there are many additional features available for digital content compared to analogue content. I think this is a good 'blue ocean strategy' by combining existing capabilities in a new way. (Kim W.C. & Mauborgne, R. (2005) Blue Ocean Strategies. Boston: Harvard Business School Publishing.). In addition the different channels of digital information distribution significantly change the value of information. I will touch on this in one of my next blogs. Right now, many information providers started to offer 'freemium' content through digital channels, hoping to get a premium for the 'full' content. No freemium seems to take them out of business, because they are apparently no longer visible in today's most relevant channels of information consumption. But, the more freemium is provided, the lower the premium gets; a truly puzzling situation. To make it worse, channel providers increasingly regard information as a value adding and differentiating activity. Maybe new types of exclusive, strategic alliances will solve the puzzle, introducing new types of 'gate-keepers', which - to me - somehow does not match the spirit of the WWW and the generation Y's perception of information consumption and exchange.

    Read the article

  • How do you plan your asynchronous code?

    - by NullOrEmpty
    I created a library that is a invoker for a web service somewhere else. The library exposes asynchronous methods, since web service calls are a good candidate for that matter. At the beginning everything was just fine, I had methods with easy to understand operations in a CRUD fashion, since the library is a kind of repository. But then business logic started to become complex, and some of the procedures involves the chaining of many of these asynchronous operations, sometimes with different paths depending on the result value, etc.. etc.. Suddenly, everything is very messy, to stop the execution in a break point it is not very helpful, to find out what is going on or where in the process timeline have you stopped become a pain... Development becomes less quick, less agile, and to catch those bugs that happens once in a 1000 times becomes a hell. From the technical point, a repository that exposes asynchronous methods looked like a good idea, because some persistence layers could have delays, and you can use the async approach to do the most of your hardware. But from the functional point of view, things became very complex, and considering those procedures where a dozen of different calls were needed... I don't know the real value of the improvement. After read about TPL for a while, it looked like a good idea for managing tasks, but in the moment you have to combine them and start to reuse existing functionality, things become very messy. I have had a good experience using it for very concrete scenarios, but bad experience using them broadly. How do you work asynchronously? Do you use it always? Or just for long running processes? Thanks.

    Read the article

  • Domain Specific Software Engineering (DSSE)

    Domain Specific Software Engineering (DSSE) believes that creating every application from nothing is not advantageous when existing systems can be leveraged to create the same application in less time and with less cost.  This belief is founded in the idea that forcing applications to recreate exiting functionality is unnecessary. Why would we build a better wheel when we already have four really good and proven wheels? DSSE suggest that we take an existing wheel and just modify it to fit an existing need of a system. This allows developers to leverage existing codebases so that more time and expense are focused on creating more usable functionality compared to just creating more functionality. As an example, how many functions do we need to create to send an email when one can be created and used by all other applications within the existing domain? Key Factors of DSSE Domain Technology Business A Domain in DSSE is used to control the problem space for a project. This control allows for applications to be developed within specific constrains that focus development is to a specific direction.Technology in DSSE offers a variety of technological solutions to be applied within a domain. Technology Examples: Tools Patterns Architectures & Styles Legacy Systems Business is the motivator for any originations to use DSSE in there software development process. Business reason to use DSSE: Minimize Costs Maximize market and Profits When these factors are used in combination additional factors and benefits can be found. Result of combining Key Factors of DSSE Domain + Business  = Corporate Core Competencies Domain expertise improved by market and business expertise Domain + Technology = Application Family Architectures All possible technological solutions to problems in a domain without any business constraints.  Business + Technology =  Domain independent infrastructure Tools and techniques for building systems  independent of all domains  Domain + Business + Technology = Domain-specific software engineering Applies technology to domain related goals in the context of business and market expertise

    Read the article

  • Content light website and Google - Tell google it's a listings site (as opposed shop, reviews or restaurants)

    - by Doug Firr
    I have a listings style website. Due to the nature of this (listings) the site is content light. Each page is typically less that 50 words but there are many pages. The site in question has had a ton of media coverage and so has some great inbound links from places like Wired, Fast Company, Canada Broadcasting Corporation and many many other bloggers, media websites and recycle related niche authors (It's a recycling site). But Google really ignores it. Traffic from search is very very low - less than 5% of all traffic. I know that using markup you can tell Google whether your site is a restaurant, article, review, shop, local business and a few other categories (https://www.google.com/webmasters/markup-helper/u/0/). Is there a way to tell Google that my site is a listings site? I suspect, but do not know for sure, that part of the problem is that Google simply does not know what my site is? It's a crowdmap where people post curbalerts. The information is useful to people but it is presented in a short, concise way - a pin on a map, a picture and a short description. Adding anything further is not necessary for the site's intended purpose. 1st question - how best to tell the search engines what y site is - listings and not some spammy website? Any recommendations in improving our site's Search presence? You can take a look here if interested: http://tinyurl.com/lxg4hn7

    Read the article

  • New Workstation &ndash; Lenovo W530 Core i7 32GB 256GB SSD Win8Pro

    - by Brian Lanham
    So I pretty-much have my new machine up and running full-time. I am still going to have to hit my old workstation for some things but am more-or-less working on my new machine.  It’s really fast. And Bret was right, I’m not so far using all the RAM. 16 would have been enough but as @CodeMonkeyJava “go big or go home”. Windows 8 is…interesting.  So far I still seem to do most of my work in the “Desktop”.  However, I like the Store concept and I like the Metro UX.  Live tiles are also nice.  I really like how I can switch between Desktop and Metro easily.  Overall I think Microsoft has done a great job of combining the needed experience for touch and mouse. My overall Windows 8 rating is 5.9 because of the video card. Otherwise I’m hitting 7.8.  The system boots from cold in about 11 seconds and performs complete shutdown in 4.7 seconds.  It wakes from sleep in less than 1 second. VS 2012 starts and restarts almost instantly.  In fact, I find myself staring at the start page without realizing it.  Build time doesn’t seem to be significantly increased but it is faster. I seem to already be reinvigorated for work with this new machine. I’m looking forward to the performance.

    Read the article

  • An algorithm for finding subset matching criteria?

    - by Macin
    I recently came up with a problem which I would like to share some thoughts about with someone on this forum. This relates to finding a subset. In reality it is more complicated, but I tried to present it here using some simpler concepts. To make things easier, I created this conceptual DB model: Let's assume this is a DB for storing recipes. Recipe can have many instructions steps and many ingredients. Ingredients are stored in a cupboard and we know how much of each ingredient we have. Now, when we create a recipe, we have to define how much of each ingredient we need. When we want to use a recipe, we would just check if required amount is less than available amount for each product and then decide if we can cook a dinner - if amount required for at least one ingredient is less than available amount - recipe cannot be cooked. Simple sql query to get the result. This is straightforward, but I'm wondering, how should I work when the problem is stated the other way round, i.e. how to find recipies which can be cooked only from ingredients that are available? I hope my explanation is clear, but if you need any more clarification, please ask.

    Read the article

  • Series On Embedded Development (Part 1)

    - by user12612705
    This is the first in a series of entries on developing applications for the embedded environment. Most of this information is relevant to any type of embedded development (and even for desktop and server too), not just Java. This information is based on a talk Hinkmond Wong and I gave at JavaOne 2012 entitled Reducing Dynamic Memory in Java Embedded Applications. One thing to remember when developing embeddded applications is that memory matters. Yes, memory matters in desktop and server environments as well, but there's just plain less of it in embedded devices. So I'm going to be talking about saving this precious resource as well as another precious resource, CPU cycles...and a bit about power too. CPU matters too, and again, in embedded devices, there's just plain less of it. What you'll find, no surprise, is that there's a trade-off between performance and memory. To get better performance, you need to use more memory, and to save more memory, you need to need to use more CPU cycles. I'll be discussing three Memory Reduction Categories: - Optionality, both build-time and runtime. Optionality is about providing options so you can get rid of the stuff you don't need and include the stuff you do need. - Tunability, which is about providing options so you can tune your application by trading performance for size, and vice-versa. - Efficiency, which is about balancing size savings with performance.

    Read the article

  • Array sorting efficiency... Beginner need advice

    - by SoleSoft
    I'll start by saying I am very much a beginner programmer, this is essentially my first real project outside of using learning material. I've been making a 'Simon Says' style game (the game where you repeat the pattern generated by the computer) using C# and XNA, the actual game is complete and working fine but while creating it, I wanted to also create a 'top 10' scoreboard. The scoreboard would record player name, level (how many 'rounds' they've completed) and combo (how many buttons presses they got correct), the scoreboard would then be sorted by combo score. This led me to XML, the first time using it, and I eventually got to the point of having an XML file that recorded the top 10 scores. The XML file is managed within a scoreboard class, which is also responsible for adding new scores and sorting scores. Which gets me to the point... I'd like some feedback on the way I've gone about sorting the score list and how I could have done it better, I have no other way to gain feedback =(. I know .NET features Array.Sort() but I wasn't too sure of how to use it as it's not just a single array that needs to be sorted. When a new score needs to be entered into the scoreboard, the player name and level also have to be added. These are stored within an 'array of arrays' (10 = for 'top 10' scores) scoreboardComboData = new int[10]; // Combo scoreboardTextData = new string[2][]; scoreboardTextData[0] = new string[10]; // Name scoreboardTextData[1] = new string[10]; // Level as string The scoreboard class works as follows: - Checks to see if 'scoreboard.xml' exists, if not it creates it - Initialises above arrays and adds any player data from scoreboard.xml, from previous run - when AddScore(name, level, combo) is called the sort begins - Another method can also be called that populates the XML file with above array data The sort checks to see if the new score (combo) is less than or equal to any recorded scores within the scoreboardComboData array (if it's greater than a score, it moves onto the next element). If so, it moves all scores below the score it is less than or equal to down one element, essentially removing the last score and then places the new score within the element below the score it is less than or equal to. If the score is greater than all recorded scores, it moves all scores down one and inserts the new score within the first element. If it's the only score, it simply adds it to the first element. When a new score is added, the Name and Level data is also added to their relevant arrays, in the same way. What a tongue twister. Below is the AddScore method, I've added comments in the hope that it makes things clearer O_o. You can get the actual source file HERE. Below the method is an example of the quickest way to add a score to follow through with a debugger. public static void AddScore(string name, string level, int combo) { // If the scoreboard has not yet been filled, this adds another 'active' // array element each time a new score is added. The actual array size is // defined within PopulateScoreBoard() (set to 10 - for 'top 10' if (totalScores < scoreboardComboData.Length) totalScores++; // Does the scoreboard even need sorting? if (totalScores > 1) { for (int i = totalScores - 1; i > - 1; i--) { // Check to see if score (combo) is greater than score stored in // array if (combo > scoreboardComboData[i] && i != 0) { // If so continue to next element continue; } // Check to see if score (combo) is less or equal to element 'i' // score && that the element is not the last in the // array, if so the score does not need to be added to the scoreboard else if (combo <= scoreboardComboData[i] && i != scoreboardComboData.Length - 1) { // If the score is lower than element 'i' and greater than the last // element within the array, it needs to be added to the scoreboard. This is achieved // by moving each element under element 'i' down an element. The new score is then inserted // into the array under element 'i' for (int j = totalScores - 1; j > i; j--) { // Name and level data are moved down in their relevant arrays scoreboardTextData[0][j] = scoreboardTextData[0][j - 1]; scoreboardTextData[1][j] = scoreboardTextData[1][j - 1]; // Score (combo) data is moved down in relevant array scoreboardComboData[j] = scoreboardComboData[j - 1]; } // The new Name, level and score (combo) data is inserted into the relevant array under element 'i' scoreboardTextData[0][i + 1] = name; scoreboardTextData[1][i + 1] = level; scoreboardComboData[i + 1] = combo; break; } // If the method gets the this point, it means that the score is greater than all scores within // the array and therefore cannot be added in the above way. As it is not less than any score within // the array. else if (i == 0) { // All Names, levels and scores are moved down within their relevant arrays for (int j = totalScores - 1; j != 0; j--) { scoreboardTextData[0][j] = scoreboardTextData[0][j - 1]; scoreboardTextData[1][j] = scoreboardTextData[1][j - 1]; scoreboardComboData[j] = scoreboardComboData[j - 1]; } // The new number 1 top name, level and score, are added into the first element // within each of their relevant arrays. scoreboardTextData[0][0] = name; scoreboardTextData[1][0] = level; scoreboardComboData[0] = combo; break; } // If the methods get to this point, the combo score is not high enough // to be on the top10 score list and therefore needs to break break; } } // As totalScores < 1, the current score is the first to be added. Therefore no checks need to be made // and the Name, Level and combo data can be entered directly into the first element of their relevant // array. else { scoreboardTextData[0][0] = name; scoreboardTextData[1][0] = level; scoreboardComboData[0] = combo; } } } Example for adding score: private static void Initialize() { scoreboardDoc = new XmlDocument(); if (!File.Exists("Scoreboard.xml")) GenerateXML("Scoreboard.xml"); PopulateScoreBoard("Scoreboard.xml"); // ADD TEST SCORES HERE! AddScore("EXAMPLE", "10", 100); AddScore("EXAMPLE2", "24", 999); PopulateXML("Scoreboard.xml"); } In it's current state the source file is just used for testing, initialize is called within main and PopulateScoreBoard handles the majority of other initialising, so nothing else is needed, except to add a test score. I thank you for your time!

    Read the article

  • Adobe Photoshop Vs Lightroom Vs Aperture

    - by Aditi
    Adobe Photoshop is the standard choice for photographers, graphic artists and Web designers. Adobe Photoshop Lightroom  & Apple’s Aperture are also in the same league but the usage is vastly different. Although Photoshop is most popular & widely used by photographers, but in many ways it’s less relevant to photographers than ever before. As Lightroom & Aperture is aimed squarely at photographers for photo-processing. With this write up we are going to help you choose what is right for you and why. Adobe Photoshop Adobe Photoshop is the most liked tool for the detailed photo editing & designing work. Photoshop provides great features for rollover and Image slicing. Adobe Photoshop includes comprehensive optimization features for producing the highest quality Web graphics with the smallest possible file sizes. You can also create startling animations with it. Designers & Editors know how important precise masking is, PhotoShop lets you do that with various detailing tools. Art history brush, contact sheets, and history palette are some of the smart features, which add to its viability. Download Whether you’re producing printed pages or moving images, you can work more efficiently and produce better results because of its smooth integration across other adobe applications. Buy supporting layer effects, it allows you to quickly add drop shadows, inner and outer glows, bevels, and embossing to layers. It also provides Seamless Web Graphics Workflow. Photoshop is hands-down the BEST for editing. Photoshop Cons: • Slower, less precise editing features in Bridge • Processing lots of images requires actions and can be slower than exporting images from Lightroom • Much slower with editing and processing a large number of images Aperture Apple Aperture is aimed at the professional photographer who shoots predominantly raw files. It helps them to manage their workflow and perform their initial Raw conversion in a better way. Aperture provides adjustment tools such as Histogram to modify color and white balance, but most of the editing of photos is left for Photoshop. It gives users the option of seeing their photographs laid out like slides or negatives on a light table. It boasts of – stars, color-coding and easy techniques for filtering and picking images. Aperture has moved forward few steps than Photoshop, but most of the editing work has been left for Photoshop as it features seamless Photoshop integration. Aperture Pros: Aperture is a step up from the iPhoto software that comes with every Mac, and fairly easy to learn. Adjustments are made in a logical order from top to bottom of the menu. You can store the images in a library or any folder you choose. Aperture also works really well with direct Canon files. It is just $79 if you buy it through Apple’s App Store Moving forward, it will run on the iPad, and possibly the iPhone – Adobe products like Lightroom and Photoshop may never offer these options It is much nicer and simpler user interface. Lightroom Lightroom does a smashing job of basic fixing and editing. It is more advanced tool for photographers. They can use it to have a startling photography effect. Light room has many advanced features, which makes it one of the best tools for photographers and far ahead of the other two. They are Nondestructive editing. Nothing is actually changed in an image until the photo is exported. Better controls over organizing your photos. Lightroom helps to gather a group of photos to use in a slideshow. Lightroom has larger Compare and Survey views of images. Quickly customizable interface. Simple keystrokes allow you to perform different All Lightroom controls are kept available in panels right next to the photos. Always-available History palette, it doesn’t go when you close lightroom. You gain more colors to work with compared to Photoshop and with more precise control. Local control, or adjusting small parts of a photo without affecting anything else, has long been an important part of photography. In Lightroom 2, you can darken, lighten, and affect color and change sharpness and other aspects of specific areas in the photo simply by brushing your cursor across the areas. Photoshop has far more power in its Cloning and Healing Brush tools than Lightroom, but Lightroom offers simple cloning and healing that’s nondestructive. Lightroom supports the RAW formats of more cameras than Aperture. Lightroom provides the option of storing images outside the application in the file system. It costs less than photoshop. Download Why PhotoShop is advanced than Lightroom? There are countless image processing plug-ins on the market for doing specialized processing in Photoshop. For example, if your image needs sophisticated noise reduction, you can use the Noiseware plug-in with Photoshop to do a much better job or noise removal than Lightroom can do. Lightroom’s advantages over Aperture 3 Will always have better integration with Photoshop. Lightroom is backed by bigger and more active user community (So abundant availability for tutorials, etc.) Better noise reduction tool. Especially for photographers the Lens-distortion correction tool  is perfect Lightroom Cons: • Have to Import images to work on them • Slows down with over 10,000 images in the catalog • For processing just one or two images this is a slower workflow Photoshop Pros: • ACR has the same RAW processing controls as Lightroom • ACR Histogram is specialized to the chosen color space (Lightroom is locked into ProPhoto RGB color space with an sRGB tone curve) • Don’t have to Import images to open in Bridge or ACR • Ability to customize processing of RAW images with Photoshop Actions Pricing and Availability Get LightRoomGet PhotoShop Latest version Of Photoshop can be purchased from Adobe store and Adobe authorized reseller and it costs US$999. Latest version of Aperture can be bought for US$199 from Apple Online store or Mac App Store. You can buy latest version of LightRoom from Adobe Store or Adobe Authorized reseller for US$299. Related posts:Adobe Photoshop CS5 vs Photoshop CS5 extended Web based Alternatives to Photoshop 10 Free Alternatives for Adobe Photoshop Software

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Windows Phone 7 development: first impressions

    - by DigiMortal
    After hard week in work I got some free time to play with Windows Phone 7 CTP developer tools. Although my first test application is still unfinished I think it is good moment to share my first experiences to you. In this posting I will give you quick overview of Windows Phone 7 developer tools from developer perspective. If you are familiar with Visual Studio 2010 then you will feel comfortable because Windows Phone 7 CTP developer tools base on Visual Studio 2010 Express. Project templates There are five project templates available. Three of them are based on Silverlight and two on XNA Game Studio: Windows Phone Application (Silverlight) Windows Phone List Application (Silverlight) Windows Phone Class Library (Silverlight) Windows Phone Game (XNA Game Studio) Windows Phone Game Library (XNA Game Studio) Currently I am writing to test applications. One of them is based on Windows Phone Application and the other on Windows Phone List Application project template. After creating these projects you see the following views in Visual Studio. Windows Phone Application. Click on image to enlarge. Windows Phone List Application. Click on image to enlarge.  I suggest you to use some of these templates to get started more easily. Windows Phone 7 emulator You can run your Windows Phone 7 applications on Windows Phone 7 emulator that comes with developer tools CTP. If you run your application then emulator is started automatically and you can try out how your application works in phone-like emulator. You can see screenshot of emulator on right. Currently there is opened Windows Phone List Application as it is created by default. Click on image to enlarge it. Emulator is a little bit slow and uncomfortable but it works pretty well. This far I have caused only couple of crashes during my experiments. In these cases emulator works but Visual Studio gets stuck because it cannot communicate with emulator. One important note. Emulator is based on virtual machine although you can see only phone screen and options toolbar. If you want to run emulator you must close all virtual machines running on your machine and run Visual Studio 2010 as administrator. Once you run emulator you can keep it open because you can stop your application in Visual Studio, modify, compile and re-deploy it without restarting emulator. Designing user interfaces You can design user interface of your application in Visual Studio. When you open XAML-files it is displayed in window with two panels. Left panel shows you device screen and works as visual design environment while right panel shows you XAML mark-up and let’s you modify XML if you need it. As it is one of my very first Silverlight applications I felt more comfortable with XAML editor because property names in property boxes of visual designer confused me a little bit. Designer panel is not very good because it is visually hard to follow. It has black background that makes dark borders of controls very hard to see. If you have monitor with very high contrast then it is may be not a real problem. I have usual monitor and I have problem. :) Putting controls on design surface, dragging and resizing them is also pretty painful. Some controls are drawn correctly but for some controls you have to set width and height in XML so they can be resized. After some practicing it is not so annoying anymore. On the right you can see toolbox with some controllers. This is all you get out of the box. But it is sufficient to get started. After getting some experiences you can create your own controls or use existing ones from other vendors or developers. If it is your first time to do stuff with Silverlight then keep Google open – you need it hard. After getting over the first shock you get the point very quickly and start developing at normal speed. :) Writing source code Writing source code is the most familiar part of this action. Good old Visual Studio code editor with all nice features it has. But here you get also some surprises: The anatomy of Silverlight controls is a little bit different than the one of user controls in web and forms projects. Windows Phone 7 doesn’t run on full version of Windows (I bet it is some version of Windows CE or something like this) then there is less system classes you can use. Some familiar classes have less methods that in full version of .NET Framework and in these cases you have to write all the code by yourself or find libraries or source code from somewhere. These problems are really not so much problems than limitations and you get easily over them. Conclusion Windows Phone 7 CTP developer tools help you do a lot of things on Windows Phone 7. Although I expected better performance from tools I think that current performance is not a problem. This far my first test project is going very well and Google has answer for almost every question. Windows Phone 7 is mobile device and therefore it has less hardware resources than desktop computers. This is why toolset is so limited. The more you need memory the more slower is device and as you may guess it needs the more battery. If you are writing apps for mobile devices then make your best to get your application use as few resources as possible and act as fast as possible.

    Read the article

  • Analysing and measuring the performance of a .NET application (survey results)

    - by Laila
    Back in December last year, I asked myself: could it be that .NET developers think that you need three days and a PhD to do performance profiling on their code? What if developers are shunning profilers because they perceive them as too complex to use? If so, then what method do they use to measure and analyse the performance of their .NET applications? Do they even care about performance? So, a few weeks ago, I decided to get a 1-minute survey up and running in the hopes that some good, hard data would clear the matter up once and for all. I posted the survey on Simple Talk and got help from a few people to promote it. The survey consisted of 3 simple questions: Amazingly, 533 developers took the time to respond - which means I had enough data to get representative results! So before I go any further, I would like to thank all of you who contributed, because I now have some pretty good answers to the troubling questions I was asking myself. To thank you properly, I thought I would share some of the results with you. First of all, application performance is indeed important to most of you. In fact, performance is an intrinsic part of the development cycle for a good 40% of you, which is much higher than I had anticipated, I have to admit. (I know, "Have a little faith Laila!") When asked what tool you use to measure and analyse application performance, I found that nearly half of the respondents use logging statements, a third use performance counters, and 70% of respondents use a profiler of some sort (a 3rd party performance profilers, the CLR profiler or the Visual Studio profiler). The importance attributed to logging statements did surprise me a little. I am still not sure why somebody would go to the trouble of manually instrumenting code in order to measure its performance, instead of just using a profiler. I personally find the process of annotating code, calculating times from log files, and relating it all back to your source terrifyingly laborious. Not to mention that you then need to remember to turn it all off later! Even when you have logging in place throughout all your code anyway, you still have a fair amount of potentially error-prone calculation to sift through the results; in addition, you'll only get method-level rather than line-level timings, and you won't get timings from any framework or library methods you don't have source for. To top it all, we all know that bottlenecks are rarely where you would expect them to be, so you could be wasting time looking for a performance problem in the wrong place. On the other hand, profilers do all the work for you: they automatically collect the CPU and wall-clock timings, and present the results from method timing all the way down to individual lines of code. Maybe I'm missing a trick. I would love to know about the types of scenarios where you actively prefer to use logging statements. Finally, while a third of the respondents didn't have a strong opinion about code performance profilers, those who had an opinion thought that they were mainly complex to use and time consuming. Three respondents in particular summarised this perfectly: "sometimes, they are rather complex to use, adding an additional time-sink to the process of trying to resolve the existing problem". "they are simple to use, but the results are hard to understand" "Complex to find the more advanced things, easy to find some low hanging fruit". These results confirmed my suspicions: Profilers are seen to be designed for more advanced users who can use them effectively and make sense of the results. I found yet more interesting information when I started comparing samples of "developers for whom performance is an important part of the dev cycle", with those "to whom performance is only looked at in times of crisis", and "developers to whom performance is not important, as long as the app works". See the three graphs below. Sample of developers to whom performance is an important part of the dev cycle: Sample of developers to whom performance is important only in times of crisis: Sample of developers to whom performance is not important, as long as the app works: As you can see, there is a strong correlation between the usage of a profiler and the importance attributed to performance: indeed, the more important performance is to a development team, the more likely they are to use a profiler. In addition, developers to whom performance is an important part of the dev cycle have a higher tendency to use a much wider range of methods for performance measurement and analysis. And, unsurprisingly, the less important performance is, the less varied the methods of measurement are. So all in all, to come back to my random questions: .NET developers do care about performance. Those who care the most use a wider range of performance measurement methods than those who care less. But overall, logging statements, performance counters and third party performance profilers are the performance measurement methods of choice for most developers. Finally, although most of you find code profilers complex to use, those of you who care the most about performance tend to use profilers more than those of you to whom performance is not so important.

    Read the article

  • C#/.NET Little Wonders &ndash; Cross Calling Constructors

    - by James Michael Hare
    Just a small post today, it’s the final iteration before our release and things are crazy here!  This is another little tidbit that I love using, and it should be fairly common knowledge, yet I’ve noticed many times that less experienced developers tend to have redundant constructor code when they overload their constructors. The Problem – repetitive code is less maintainable Let’s say you were designing a messaging system, and so you want to create a class to represent the properties for a Receiver, so perhaps you design a ReceiverProperties class to represent this collection of properties. Perhaps, you decide to make ReceiverProperties immutable, and so you have several constructors that you can use for alternative construction: 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: { 13: ReceiverType = receiverType; 14: Source = source; 15: IsDurable = isDurable; 16: IsBuffered = true; 17: } 18:  19: // Constructs a set of receiver properties with buffering on and durability off. 20: public ReceiverProperties(ReceiverType receiverType, string source) 21: { 22: ReceiverType = receiverType; 23: Source = source; 24: IsDurable = false; 25: IsBuffered = true; 26: } Note: keep in mind this is just a simple example for illustration, and in same cases default parameters can also help clean this up, but they have issues of their own. While strictly speaking, there is nothing wrong with this code, logically, it suffers from maintainability flaws.  Consider what happens if you add a new property to the class?  You have to remember to guarantee that it is set appropriately in every constructor call. This can cause subtle bugs and becomes even uglier when the constructors do more complex logic, error handling, or there are numerous potential overloads (especially if you can’t easily see them all on one screen’s height). The Solution – cross-calling constructors I’d wager nearly everyone knows how to call your base class’s constructor, but you can also cross-call to one of the constructors in the same class by using the this keyword in the same way you use base to call a base constructor. 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: : this(receiverType, source, isDurable, true) 13: { 14: } 15:  16: // Constructs a set of receiver properties with buffering on and durability off. 17: public ReceiverProperties(ReceiverType receiverType, string source) 18: : this(receiverType, source, false, true) 19: { 20: } Notice, there is much less code.  In addition, the code you have has no repetitive logic.  You can define the main constructor that takes all arguments, and the remaining constructors with defaults simply cross-call the main constructor, passing in the defaults. Yes, in some cases default parameters can ease some of this for you, but default parameters only work for compile-time constants (null, string and number literals).  For example, if you were creating a TradingDataAdapter that relied on an implementation of ITradingDao which is the data access object to retreive records from the database, you might want two constructors: one that takes an ITradingDao reference, and a default constructor which constructs a specific ITradingDao for ease of use: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: { 10: _tradingDao = new SqlTradingDao(); 11:  12: // same constructor logic as above 13: }   As you can see, this isn’t something we can solve with a default parameter, but we could with cross-calling constructors: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: : this(new SqlTradingDao()) 10: { 11: }   So in cases like this where you have constructors with non compiler-time constant defaults, default parameters can’t help you and cross-calling constructors is one of your best options. Summary When you have just one constructor doing the job of initializing the class, you can consolidate all your logic and error-handling in one place, thus ensuring that your behavior will be consistent across the constructor calls. This makes the code more maintainable and even easier to read.  There will be some cases where cross-calling constructors may be sub-optimal or not possible (if, for example, the overloaded constructors take completely different types and are not just “defaulting” behaviors). You can also use default parameters, of course, but default parameter behavior in a class hierarchy can be problematic (default values are not inherited and in fact can differ) so sometimes multiple constructors are actually preferable. Regardless of why you may need to have multiple constructors, consider cross-calling where you can to reduce redundant logic and clean up the code.   Technorati Tags: C#,.NET,Little Wonders

    Read the article

  • About Solaris 11 and UltraSPARC II/III/IV/IV+

    - by nospam(at)example.com (Joerg Moellenkamp)
    I know that I will get the usual amount of comments like "Oh, Jörg ? you can't be negative about Oracle" for this article. However as usual I want to explain the logic behind my reasoning. Yes ? I know that there is a lot of UltraSPARC III, IV and IV+ gear out there. But there are some very basic questions: Does your application you are currently running on this gear stops running just because you can't run Solaris 11 on it? What is the need to upgrade a system already in production to Solaris 11? I have the impression, that some people think that the systems get useless in the moment Oracle releases Solaris 11. I know that Sun sold UltraSPARC IV+ systems until 2009. The Sun SF490 introduced 2004 for example, that was a Sun SF480 with UltraSPARC IV and later with UltraSPARC IV+. And yes, Sun made some speedbumps. At that time the systems of the UltraSPARC III to IV+ generations were supported on Solaris 8, on Solaris 9 and on Solaris 10. However from my perspective we sold them to customers, which weren't able to migrate to Solaris 10 because they used applications not supported on Solaris 9 or who just didn't wanted to migrate to Solaris 10. Believe it or not ? I personally know two customers that migrated core systems to Solaris 10 in ? well 2008/9. This was especially true when the M3000 was announced in 2008 when it closed the darned single socket gap. It may be different at you site, however that's what I remember about that time when talking with customers. At first: Just because there is no Solaris 11 for UltraSPARC III, IV and IV+, it doesn't mean that Solaris 10 will go away anytime soon. I just want to point you to "Expect Lifetime Support - Hardware and Operating Systems". It states about Premier Support:Maintenance and software upgrades are included for Oracle operating systems and Oracle VM for a minimum of eight years from the general availability date.GA for Solaris 10 was in 2005. Plus 8 years ? 2013 ? at minimum. Then you can still opt for 3 years of "Extended Support" ? 2016 ? at minimum. 2016 your systems purchased in 2009 are 7 years old. Even on systems purchased at the very end of the lifetime of that system generation. That are the rules as written in the linked document. I said minimum The actual dates are even further in the future: Premier Support for Solaris 10 ends in 2015, Extended support ends 2018. Sustaining support ? indefinite. You will find this in the document "Oracle Lifetime Support Policy: Oracle Hardware and Operating Systems".So I don't understand when some people write, that Oracle is less protective about hardware investments than Sun. And for hardware it's the same as with Sun: Service 5 years after EOL as part of Premier Support. I would like to write about a different perspective as well: I have to be a little cautious here, because this is going in the roadmap area, so I will mention the public sources here: John Fowler told last year that we have to expect at at least 3x the single thread performance of T3 for T4. We have 8 cores in T4, as stated by Rick Hetherington. Let's assume for a moment that a T4 core will have the performance of a UltraSPARC core (just to simplify math and not to disclosing anything about the performance, all existing SPARC cores are considered equal). So given this pieces of information, you could consolidate 8 V215, 4 or 8 V245, 2 full blown V445,2 full blown 490, 2 full blown M3000 on a single T4 SPARC processor. The Fowler roadmap prezo talked about 4-socket systems with T4. So 32 V215, 16 to 8 V245, 8 fullblown V445, 8 full blown V490, 8 full blown M3000 in a system image. I think you get the idea. That said, most of the systems we are talking about have already amortized and perhaps it's just time to invest in new systems to yield other advantages like reduced space consumptions, like reduced power consumption, like some of the neat features sun4v gives you, and yes ? reduced number of processor licenses for Oracle and less money for Oracle HW/SW support. As much as I dislike it myself that my own UltraSPARC III and UltraSPARC II based systems won't run on Solaris 11 (and I have quite a few of them in my personal lab), I really think that the impact on production environments will be much less than most people think now. By the way: The reason for this move is a quite significant new feature. I will tell you that it was this feature, when it's out. I assume, telling just a word more could lead to much more time to blog.

    Read the article

  • career advice for PhD scientist seeking to program?

    - by C SD
    I'm largely a self-taught programmer. In fact, I first started programming about half way through biophysics grad school, and even though I think I've done some pretty nice work, I've never worked as part of a 'serious' development team that had more than one or two other developers (and I wouldn't hesitate to call them equally inexperienced in software development as a profession). After finishing my PhD I applied to Google, on a lark, since I had some confidence in my abilities, if not necessarily my experience, and I was hoping to maybe slip in and absorb all the experience and talent I'd be surrounded with and become productive enough, quickly enough, that they wouldn't immediately regret their decision. I was excited to actually get invited to interview up at Mountain View (this was ~ mid 2008). Overall, my memory of the interview was very positive, but after close to a three month wait (is that normal?) they ended up turning me down. I wasn't too surprised or disappointed (aside from the uncomfortably long wait) given my unusual background and admitted lack of experience. I decided to continue as a postdoc, but focus on improving my skills rather than doing research. I've done about three years of that, and my honest assessment is that I've learned a ton more, but I really need more of a peer group to maintain or accelerate my growth. Google invited me to interview again about eight months ago, and the interview process went even better than the first time around (I thought), though they again declined to give me an offer. I have to admit this second rejection was much more discouraging. They had insisted I interview even after I mentioned to them that a move on my part was unlikely given that I had bought a house, gotten married, etc. since the first interview. I guess I was hoping they'd at least give me an offer that I could parlay into a more conventional, but still interesting, programming position close to home. So here I am, going on my third year out of grad school, a glorified postdoc and I'm starting to get pretty discouraged. Even though I could technically get 'back-on-track' for a career in science, I have been focusing the vast majority of this time on gaining programming experience rather than on research and publications. The problem is, whenever I look, most job listings have requirements that seem impossibly grandiose and I hesitate to apply. That, or the job/project seems incredibly dull. Ironically, applying to Google struck me as less intimidating. I suspect that either most people are just a lot less realistic than I am when it comes to assessing how long it will take for them to get up to speed, or they don't care; my fear is that I'm just woefully unqualified for any interesting, well paying work. IE: I'm confident I could switch fully back into C++ mode with a couple weeks work (I mostly use C,Python,C# daily) but I don't list myself as being 'proficient' in C++ on my CV, or applying for jobs that 'require' such knowledge. The few applications for which I did feel I was a legitimately good match have not elicited a response. I suspect the following things are potential problems with my application/CV and I would like feedback on: I don't have a CS degree. My BS was in biochemistry and molecular biology, my PhD in biophysics. I took a undergrad and grad level CS course at UCSD and completely killed them, but I don't know how to translate that to my CV effectively. I have a PhD, but it's not in CS... I've been debating if I should remove it from my CV, and wether or not it would then be misleading to list at least some of those years as some kind of 'programming' job (in many respects it was). I think there are sometimes strong stigmas associated with 'self-taught' programmers. I am certainly one of those. I even recognize that some of those stigmas hold a hint of truth, but I really do want to be an asset to a team. How do I communicate that even though I have been largely self-directing for ~8 years I can still take marching orders when needed? Do I just say so outright? Should I just become a lot less scrupulous about the whole process? anecdote: I have a friend who applied for positions where he completely fudged his qualifications to get past the first culling. He was much more honest and forthcoming about his actual qualifications when contacted and he still managed to get invited to a couple of interviews and even got some offers. His balls are larger than mine though.

    Read the article

  • Why do we use Pythagoras in game physics?

    - by Starkers
    I've recently learned that we use Pythagoras a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagoras! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagoras to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagoras so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Why do we use the Pythagorean theorem in game physics?

    - by Starkers
    I've recently learned that we use Pythagorean theorem a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagorean theorem! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagorean theorem to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagorean theorem so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • Announcing the Release of Visual Studio 2013 and Great Improvements to ASP.NET and Entity Framework

    - by ScottGu
    Today we released VS 2013 and .NET 4.5.1. These releases include a ton of great improvements, and include some fantastic enhancements to ASP.NET and the Entity Framework.  You can download and start using them now. Below are details on a few of the great ASP.NET, Web Development, and Entity Framework improvements you can take advantage of with this release.  Please visit http://www.asp.net/vnext for additional release notes, documentation, and tutorials. One ASP.NET With the release of Visual Studio 2013, we have taken a step towards unifying the experience of using the different ASP.NET sub-frameworks (Web Forms, MVC, Web API, SignalR, etc), and you can now easily mix and match the different ASP.NET technologies you want to use within a single application. When you do a File-New Project with VS 2013 you’ll now see a single ASP.NET Project option: Selecting this project will bring up an additional dialog that allows you to start with a base project template, and then optionally add/remove the technologies you want to use in it.  For example, you could start with a Web Forms template and add Web API or Web Forms support for it, or create a MVC project and also enable Web Forms pages within it: This makes it easy for you to use any ASP.NET technology you want within your apps, and take advantage of any feature across the entire ASP.NET technology span. Richer Authentication Support The new “One ASP.NET” project dialog also includes a new Change Authentication button that, when pushed, enables you to easily change the authentication approach used by your applications – and makes it much easier to build secure applications that enable SSO from a variety of identity providers.  For example, when you start with the ASP.NET Web Forms or MVC templates you can easily add any of the following authentication options to the application: No Authentication Individual User Accounts (Single Sign-On support with FaceBook, Twitter, Google, and Microsoft ID – or Forms Auth with ASP.NET Membership) Organizational Accounts (Single Sign-On support with Windows Azure Active Directory ) Windows Authentication (Active Directory in an intranet application) The Windows Azure Active Directory support is particularly cool.  Last month we updated Windows Azure Active Directory so that developers can now easily create any number of Directories using it (for free and deployed within seconds).  It now takes only a few moments to enable single-sign-on support within your ASP.NET applications against these Windows Azure Active Directories.  Simply choose the “Organizational Accounts” radio button within the Change Authentication dialog and enter the name of your Windows Azure Active Directory to do this: This will automatically configure your ASP.NET application to use Windows Azure Active Directory and register the application with it.  Now when you run the app your users can easily and securely sign-in using their Active Directory credentials within it – regardless of where the application is hosted on the Internet. For more information about the new process for creating web projects, see Creating ASP.NET Web Projects in Visual Studio 2013. Responsive Project Templates with Bootstrap The new default project templates for ASP.NET Web Forms, MVC, Web API and SPA are built using Bootstrap. Bootstrap is an open source CSS framework that helps you build responsive websites which look great on different form factors such as mobile phones, tables and desktops. For example in a browser window the home page created by the MVC template looks like the following: When you resize the browser to a narrow window to see how it would like on a phone, you can notice how the contents gracefully wrap around and the horizontal top menu turns into an icon: When you click the menu-icon above it expands into a vertical menu – which enables a good navigation experience for small screen real-estate devices: We think Bootstrap will enable developers to build web applications that work even better on phones, tablets and other mobile devices – and enable you to easily build applications that can leverage the rich ecosystem of Bootstrap CSS templates already out there.  You can learn more about Bootstrap here. Visual Studio Web Tooling Improvements Visual Studio 2013 includes a new, much richer, HTML editor for Razor files and HTML files in web applications. The new HTML editor provides a single unified schema based on HTML5. It has automatic brace completion, jQuery UI and AngularJS attribute IntelliSense, attribute IntelliSense Grouping, and other great improvements. For example, typing “ng-“ on an HTML element will show the intellisense for AngularJS: This support for AngularJS, Knockout.js, Handlebars and other SPA technologies in this release of ASP.NET and VS 2013 makes it even easier to build rich client web applications: The screen shot below demonstrates how the HTML editor can also now inspect your page at design-time to determine all of the CSS classes that are available. In this case, the auto-completion list contains classes from Bootstrap’s CSS file. No more guessing at which Bootstrap element names you need to use: Visual Studio 2013 also comes with built-in support for both CoffeeScript and LESS editing support. The LESS editor comes with all the cool features from the CSS editor and has specific Intellisense for variables and mixins across all the LESS documents in the @import chain. Browser Link – SignalR channel between browser and Visual Studio The new Browser Link feature in VS 2013 lets you run your app within multiple browsers on your dev machine, connect them to Visual Studio, and simultaneously refresh all of them just by clicking a button in the toolbar. You can connect multiple browsers (including IE, FireFox, Chrome) to your development site, including mobile emulators, and click refresh to refresh all the browsers all at the same time.  This makes it much easier to easily develop/test against multiple browsers in parallel. Browser Link also exposes an API to enable developers to write Browser Link extensions.  By enabling developers to take advantage of the Browser Link API, it becomes possible to create very advanced scenarios that crosses boundaries between Visual Studio and any browser that’s connected to it. Web Essentials takes advantage of the API to create an integrated experience between Visual Studio and the browser’s developer tools, remote controlling mobile emulators and a lot more. You will see us take advantage of this support even more to enable really cool scenarios going forward. ASP.NET Scaffolding ASP.NET Scaffolding is a new code generation framework for ASP.NET Web applications. It makes it easy to add boilerplate code to your project that interacts with a data model. In previous versions of Visual Studio, scaffolding was limited to ASP.NET MVC projects. With Visual Studio 2013, you can now use scaffolding for any ASP.NET project, including Web Forms. When using scaffolding, we ensure that all required dependencies are automatically installed for you in the project. For example, if you start with an ASP.NET Web Forms project and then use scaffolding to add a Web API Controller, the required NuGet packages and references to enable Web API are added to your project automatically.  To do this, just choose the Add->New Scaffold Item context menu: Support for scaffolding async controllers uses the new async features from Entity Framework 6. ASP.NET Identity ASP.NET Identity is a new membership system for ASP.NET applications that we are introducing with this release. ASP.NET Identity makes it easy to integrate user-specific profile data with application data. ASP.NET Identity also allows you to choose the persistence model for user profiles in your application. You can store the data in a SQL Server database or another data store, including NoSQL data stores such as Windows Azure Storage Tables. ASP.NET Identity also supports Claims-based authentication, where the user’s identity is represented as a set of claims from a trusted issuer. Users can login by creating an account on the website using username and password, or they can login using social identity providers (such as Microsoft Account, Twitter, Facebook, Google) or using organizational accounts through Windows Azure Active Directory or Active Directory Federation Services (ADFS). To learn more about how to use ASP.NET Identity visit http://www.asp.net/identity.  ASP.NET Web API 2 ASP.NET Web API 2 has a bunch of great improvements including: Attribute routing ASP.NET Web API now supports attribute routing, thanks to a contribution by Tim McCall, the author of http://attributerouting.net. With attribute routing you can specify your Web API routes by annotating your actions and controllers like this: OAuth 2.0 support The Web API and Single Page Application project templates now support authorization using OAuth 2.0. OAuth 2.0 is a framework for authorizing client access to protected resources. It works for a variety of clients including browsers and mobile devices. OData Improvements ASP.NET Web API also now provides support for OData endpoints and enables support for both ATOM and JSON-light formats. With OData you get support for rich query semantics, paging, $metadata, CRUD operations, and custom actions over any data source. Below are some of the specific enhancements in ASP.NET Web API 2 OData. Support for $select, $expand, $batch, and $value Improved extensibility Type-less support Reuse an existing model OWIN Integration ASP.NET Web API now fully supports OWIN and can be run on any OWIN capable host. With OWIN integration, you can self-host Web API in your own process alongside other OWIN middleware, such as SignalR. For more information, see Use OWIN to Self-Host ASP.NET Web API. More Web API Improvements In addition to the features above there have been a host of other features in ASP.NET Web API, including CORS support Authentication Filters Filter Overrides Improved Unit Testability Portable ASP.NET Web API Client To learn more go to http://www.asp.net/web-api/ ASP.NET SignalR 2 ASP.NET SignalR is library for ASP.NET developers that dramatically simplifies the process of adding real-time web functionality to your applications. Real-time web functionality is the ability to have server-side code push content to connected clients instantly as it becomes available. SignalR 2.0 introduces a ton of great improvements. We’ve added support for Cross-Origin Resource Sharing (CORS) to SignalR 2.0. iOS and Android support for SignalR have also been added using the MonoTouch and MonoDroid components from the Xamarin library (for more information on how to use these additions, see the article Using Xamarin Components from the SignalR wiki). We’ve also added support for the Portable .NET Client in SignalR 2.0 and created a new self-hosting package. This change makes the setup process for SignalR much more consistent between web-hosted and self-hosted SignalR applications. To learn more go to http://www.asp.net/signalr. ASP.NET MVC 5 The ASP.NET MVC project templates integrate seamlessly with the new One ASP.NET experience and enable you to integrate all of the above ASP.NET Web API, SignalR and Identity improvements. You can also customize your MVC project and configure authentication using the One ASP.NET project creation wizard. The MVC templates have also been updated to use ASP.NET Identity and Bootstrap as well. An introductory tutorial to ASP.NET MVC 5 can be found at Getting Started with ASP.NET MVC 5. This release of ASP.NET MVC also supports several nice new MVC-specific features including: Authentication filters: These filters allow you to specify authentication logic per-action, per-controller or globally for all controllers. Attribute Routing: Attribute Routing allows you to define your routes on actions or controllers. To learn more go to http://www.asp.net/mvc Entity Framework 6 Improvements Visual Studio 2013 ships with Entity Framework 6, which bring a lot of great new features to the data access space: Async and Task<T> Support EF6’s new Async Query and Save support enables you to perform asynchronous data access and take advantage of the Task<T> support introduced in .NET 4.5 within data access scenarios.  This allows you to free up threads that might otherwise by blocked on data access requests, and enable them to be used to process other requests whilst you wait for the database engine to process operations. When the database server responds the thread will be re-queued within your ASP.NET application and execution will continue.  This enables you to easily write significantly more scalable server code. Here is an example ASP.NET WebAPI action that makes use of the new EF6 async query methods: Interception and Logging Interception and SQL logging allows you to view – or even change – every command that is sent to the database by Entity Framework. This includes a simple, human readable log – which is great for debugging – as well as some lower level building blocks that give you access to the command and results. Here is an example of wiring up the simple log to Debug in the constructor of an MVC controller: Custom Code-First Conventions The new Custom Code-First Conventions enable bulk configuration of a Code First model – reducing the amount of code you need to write and maintain. Conventions are great when your domain classes don’t match the Code First conventions. For example, the following convention configures all properties that are called ‘Key’ to be the primary key of the entity they belong to. This is different than the default Code First convention that expects Id or <type name>Id. Connection Resiliency The new Connection Resiliency feature in EF6 enables you to register an execution strategy to handle – and potentially retry – failed database operations. This is especially useful when deploying to cloud environments where dropped connections become more common as you traverse load balancers and distributed networks. EF6 includes a built-in execution strategy for SQL Azure that knows about retryable exception types and has some sensible – but overridable – defaults for the number of retries and time between retries when errors occur. Registering it is simple using the new Code-Based Configuration support: These are just some of the new features in EF6. You can visit the release notes section of the Entity Framework site for a complete list of new features. Microsoft OWIN Components Open Web Interface for .NET (OWIN) defines an open abstraction between .NET web servers and web applications, and the ASP.NET “Katana” project brings this abstraction to ASP.NET. OWIN decouples the web application from the server, making web applications host-agnostic. For example, you can host an OWIN-based web application in IIS or self-host it in a custom process. For more information about OWIN and Katana, see What's new in OWIN and Katana. Summary Today’s Visual Studio 2013, ASP.NET and Entity Framework release delivers some fantastic new features that streamline your web development lifecycle. These feature span from server framework to data access to tooling to client-side HTML development.  They also integrate some great open-source technology and contributions from our developer community. Download and start using them today! Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • eBooks on iPad vs. Kindle: More Debate than Smackdown

    - by andrewbrust
    When the iPad was presented at its San Francisco launch event on January 28th, Steve Jobs spent a significant amount of time explaining how well the device would serve as an eBook reader. He showed the iBooks reader application and iBookstore and laid down the gauntlet before Amazon and its beloved Kindle device. Almost immediately afterwards, criticism came rushing forth that the iPad could never beat the Kindle for book reading. The curious part of that criticism is that virtually no one offering it had actually used the iPad yet. A few weeks later, on April 3rd, the iPad was released for sale in the United States. I bought one on that day and in the few additional weeks that have elapsed, I’ve given quite a workout to most of its capabilities, including its eBook features. I’ve also spent some time with the Kindle, albeit a first-generation model, to see how it actually compares to the iPad. I had some expectations going in, but I came away with conclusions about each device that were more scenario-based than absolute. I present my findings to you here.   Vital Statistics Let’s start with an inventory of each device’s underlying technology. The iPad has a color, backlit LCD screen and an on-screen keyboard. It has a battery which, on a full charge, lasts anywhere from 6-10 hours. The Kindle offers a monochrome, reflective E Ink display, a physical keyboard and a battery that on my first gen loaner unit can go up to a week between charges (Amazon claims the battery on the Kindle 2 can last up to 2 weeks on a single charge). The Kindle connects to Amazon’s Kindle Store using a 3G modem (the technology and network vary depending on the model) that incurs no airtime service charges whatsoever. The iPad units that are on-sale today work over WiFi only. 3G-equipped models will be on sale shortly and will command a $130 premium over their WiFi-only counterparts. 3G service on the iPad, in the U.S. from AT&T, will be fee-based, with a 250MB plan at $14.99 per month and an unlimited plan at $29.99. No contract is required for 3G service. All these tech specs aside, I think a more useful observation is that the iPad is a multi-purpose Internet-connected entertainment device, while the Kindle is a dedicated reading device. The question is whether those differences in design and intended use create a clear-cut winner for reading electronic publications. Let’s take a look at each device, in isolation, now.   Kindle To me, what’s most innovative about the Kindle is its E Ink display. E Ink really looks like ink on a sheet of paper. It requires no backlight, it’s fully visible in direct sunlight and it causes almost none of the eyestrain that LCD-based computer display technology (like that used on the iPad) does. It’s really versatile in an all-around way. Forgive me if this sounds precious, but reading on it is really a joy. In fact, it’s a genuinely relaxing experience. Through the Kindle Store, Amazon allows users to download books (including audio books), magazines, newspapers and blog feeds. Books and magazines can be purchased either on a single-issue basis or as an annual subscription. Books, of course, are purchased singly. Oddly, blogs are not free, but instead carry a monthly subscription fee, typically $1.99. To me this is ludicrous, but I suppose the free 3G service is partially to blame. Books and magazine issues download quickly. Magazine and blog subscriptions cause new issues or posts to be pushed to your device on an automated basis. Available blogs include 9000-odd feeds that Amazon offers on the Kindle Store; unless I missed something, arbitrary RSS feeds are not supported (though there are third party workarounds to this limitation). The shopping experience is integrated well, has an huge selection, and offers certain graphical perks. For example, magazine and newspaper logos are displayed in menus, and book cover thumbnails appear as well. A simple search mechanism is provided and text entry through the physical keyboard is relatively painless. It’s very easy and straightforward to enter the store, find something you like and start reading it quickly. If you know what you’re looking for, it’s even faster. Given Kindle’s high portability, very reliable battery, instant-on capability and highly integrated content acquisition, it makes reading on whim, and in random spurts of downtime, very attractive. The Kindle’s home screen lists all of your publications, and easily lets you select one, then start reading it. Once opened, publications display in crisp, attractive text that is adjustable in size. “Turning” pages is achieved through buttons dedicated to the task. Notes can be recorded, bookmarks can be saved and pages can be saved as clippings. I am not an avid book reader, and yet I found the Kindle made it really fun, convenient and soothing to read. There’s something about the easy access to the material and the simplicity of the display that makes the Kindle seduce you into chilling out and reading page after page. On the other hand, the Kindle has an awkward navigation interface. While menus are displayed clearly on the screen, the method of selecting menu items is tricky: alongside the right-hand edge of the main display is a thin column that acts as a second display. It has a white background, and a scrollable silver cursor that is moved up or down through the use of the device’s scrollwheel. Picking a menu item on the main display involves scrolling the silver cursor to a position parallel to that menu item and pushing the scrollwheel in. This navigation technique creates a disconnect, literally. You don’t really click on a selection so much as you gesture toward it. I got used to this technique quickly, but I didn’t love it. It definitely created a kind of anxiety in me, making me feel the need to speed through menus and get to my destination document quickly. Once there, I could calm down and relax. Books are great on the Kindle. Magazines and newspapers much less so. I found the rendering of photographs, and even illustrations, to be unacceptably crude. For this reason, I expect that reading textbooks on the Kindle may leave students wanting. I found that the original flow and layout of any publication was sacrificed on the Kindle. In effect, browsing a magazine or newspaper was almost impossible. Reading the text of individual articles was enjoyable, but having to read this way made the whole experience much more “a la carte” than cohesive and thematic between articles. I imagine that for academic journals this is ideal, but for consumer publications it imposes a stripped-down, low-fidelity experience that evokes a sense of deprivation. In general, the Kindle is great for reading text. For just about anything else, especially activity that involves exploratory browsing, meandering and short-attention-span reading, it presents a real barrier to entry and adoption. Avid book readers will enjoy the Kindle (if they’re not already). It’s a great device for losing oneself in a book over long sittings. Multitaskers who are more interested in periodicals, be they online or off, will like it much less, as they will find compromise, and even sacrifice, to be palpable.   iPad The iPad is a very different device from the Kindle. While the Kindle is oriented to pages of text, the iPad orbits around applications and their interfaces. Be it the pinch and zoom experience in the browser, the rich media features that augment content on news and weather sites, or the ability to interact with social networking services like Twitter, the iPad is versatile. While it shares a slate-like form factor with the Kindle, it’s effectively an elegant personal computer. One of its many features is the iBook application and integration of the iBookstore. But it’s a multi-purpose device. That turns out to be good and bad, depending on what you’re reading. The iBookstore is great for browsing. It’s color, rich animation-laden user interface make it possible to shop for books, rather than merely search and acquire them. Unfortunately, its selection is rather sparse at the moment. If you’re looking for a New York Times bestseller, or other popular titles, you should be OK. If you want to read something more specialized, it’s much harder. Unlike the awkward navigation interface of the Kindle, the iPad offers a nearly flawless touch-screen interface that seduces the user into tinkering and kibitzing every bit as much as the Kindle lulls you into a deep, concentrated read. It’s a dynamic and interactive device, whereas the Kindle is static and passive. The iBook reader is slick and fun. Use the iPad in landscape mode and you can read the book in 2-up (left/right 2-page) display; use it in portrait mode and you can read one page at a time. Rather than clicking a hardware button to turn pages, you simply drag and wipe from right-to-left to flip the single or right-hand page. The page actually travels through an animated path as it would in a physical book. The intuitiveness of the interface is uncanny. The reader also accommodates saving of bookmarks, searching of the text, and the ability to highlight a word and look it up in a dictionary. Pages display brightly and clearly. They’re easy to read. But the backlight and the glare made me less comfortable than I was with the Kindle. The knowledge that completely different applications (including the Web and email and Twitter) were just a few taps away made me antsy and very tempted to task-switch. The knowledge that battery life is an issue created subtle discomfort. If the Kindle makes you feel like you’re in a library reading room, then the iPad makes you feel, at best, like you’re under fluorescent lights at a Barnes and Noble or Borders store. If you’re lucky, you’d be on a couch or at a reading table in the store, but you might also be standing up, in the aisles. Clearly, I didn’t find this conducive to focused and sustained reading. But that may have more to do with my own tendency to read periodicals far more than books, and my neurotic . And, truth be known, the book reading experience, when not explicitly compared to Kindle’s, was still pleasant. It is also important to point out that Kindle Store-sourced books can be read on the iPad through a Kindle reader application, from Amazon, specific to the device. This offered a less rich experience than the iBooks reader, but it was completely adequate. Despite the Kindle brand of the reader, however, it offered little in terms of simulating the reading experience on its namesake device. When it comes to periodicals, the iPad wins hands down. Magazines, even if merely scanned images of their print editions, read on the iPad in a way that felt similar to reading hard copy. The full color display, touch navigation and even the ability to render advertisements in their full glory makes the iPad a great way to read through any piece of work that is measured in pages, rather than chapters. There are many ways to get magazines and newspapers onto the iPad, including the Zinio reader, and publication-specific applications like the Wall Street Journal’s and Popular Science’s. The New York Times’ free Editors’ Choice application offers a Times Reader-like interface to a subset of the Gray Lady’s daily content. The completely Web-based but iPad-optimized Times Skimmer site (at www.nytimes.com/timesskimmer) works well too. Even conventional Web sites themselves can be read much like magazines, given the iPad’s ability to zoom in on the text and crop out advertisements on the margins. While the Kindle does have an experimental Web browser, it reminded me a lot of early mobile phone browsers, only in a larger size. For text-heavy sites with simple layout, it works fine. For just about anything else, it becomes more trouble than it’s worth. And given the way magazine articles make me think of things I want to look up online, I think that’s a real liability for the Kindle.   Summing Up What I came to realize is that the Kindle isn’t so much a computer or even an Internet device as it is a printer. While it doesn’t use physical paper, it still renders its content a page at a time, just like a laser printer does, and its output appears strikingly similar. You can read the rendered text, but you can’t interact with it in any way. That’s why the navigation requires a separate cursor display area. And because of the page-oriented rendering behavior, turning pages causes a flash on the display and requires a sometimes long pause before the next page is rendered. The good side of this is that once the page is generated, no battery power is required to display it. That makes for great battery life, optimal viewing under most lighting conditions (as long as there is some light) and low-eyestrain text-centric display of content. The Kindle is highly portable, has an excellent selection in its store and is refreshingly distraction-free. All of this is ideal for reading books. And iPad doesn’t offer any of it. What iPad does offer is versatility, variety, richness and luxury. It’s flush with accoutrements even if it’s low on focused, sustained text display. That makes it inferior to the Kindle for book reading. But that also makes it better than the Kindle for almost everything else. As such, and given that its book reading experience is still decent (even if not superior), I think the iPad will give Kindle a run for its money. True book lovers, and people on a budget, will want the Kindle. People with a robust amount of discretionary income may want both devices. Everyone else who is interested in a slate form factor e-reading device, especially if they also wish to have leisure-friendly Internet access, will likely choose the iPad exclusively. One thing is for sure: iPad has reduced Kindle’s market, and may have shifted its mass market potential to a mere niche play. If Amazon is smart, it will improve its iPad-based Kindle reader app significantly. It can then leverage the iPad channel as a significant market for the Kindle Store. After all, selling the eBooks themselves is what Amazon should care most about.

    Read the article

  • Silverlight Recruiting Application Part 5 - Jobs Module / View

    Now we starting getting into a more code-heavy portion of this series, thankfully though this means the groundwork is all set for the most part and after adding the modules we will have a complete application that can be provided with full source. The Jobs module will have two concerns- adding and maintaining jobs that can then be broadcast out to the website. How they are displayed on the site will be handled by our admin system (which will just poll from this common database), so we aren't too concerned with that, but rather with getting the information into the system and allowing the backend administration/HR users to keep things up to date. Since there is a fair bit of information that we want to display, we're going to move editing to a separate view so we can get all that information in an easy-to-use spot. With all the files created for this module, the project looks something like this: And now... on to the code. XAML for the Job Posting View All we really need for the Job Posting View is a RadGridView and a few buttons. This will let us both show off records and perform operations on the records without much hassle. That XAML is going to look something like this: 01.<Grid x:Name="LayoutRoot" 02.Background="White"> 03.<Grid.RowDefinitions> 04.<RowDefinition Height="30" /> 05.<RowDefinition /> 06.</Grid.RowDefinitions> 07.<StackPanel Orientation="Horizontal"> 08.<Button x:Name="xAddRecordButton" 09.Content="Add Job" 10.Width="120" 11.cal:Click.Command="{Binding AddRecord}" 12.telerik:StyleManager.Theme="Windows7" /> 13.<Button x:Name="xEditRecordButton" 14.Content="Edit Job" 15.Width="120" 16.cal:Click.Command="{Binding EditRecord}" 17.telerik:StyleManager.Theme="Windows7" /> 18.</StackPanel> 19.<telerikGrid:RadGridView x:Name="xJobsGrid" 20.Grid.Row="1" 21.IsReadOnly="True" 22.AutoGenerateColumns="False" 23.ColumnWidth="*" 24.RowDetailsVisibilityMode="VisibleWhenSelected" 25.ItemsSource="{Binding MyJobs}" 26.SelectedItem="{Binding SelectedJob, Mode=TwoWay}" 27.command:SelectedItemChangedEventClass.Command="{Binding SelectedItemChanged}"> 28.<telerikGrid:RadGridView.Columns> 29.<telerikGrid:GridViewDataColumn Header="Job Title" 30.DataMemberBinding="{Binding JobTitle}" 31.UniqueName="JobTitle" /> 32.<telerikGrid:GridViewDataColumn Header="Location" 33.DataMemberBinding="{Binding Location}" 34.UniqueName="Location" /> 35.<telerikGrid:GridViewDataColumn Header="Resume Required" 36.DataMemberBinding="{Binding NeedsResume}" 37.UniqueName="NeedsResume" /> 38.<telerikGrid:GridViewDataColumn Header="CV Required" 39.DataMemberBinding="{Binding NeedsCV}" 40.UniqueName="NeedsCV" /> 41.<telerikGrid:GridViewDataColumn Header="Overview Required" 42.DataMemberBinding="{Binding NeedsOverview}" 43.UniqueName="NeedsOverview" /> 44.<telerikGrid:GridViewDataColumn Header="Active" 45.DataMemberBinding="{Binding IsActive}" 46.UniqueName="IsActive" /> 47.</telerikGrid:RadGridView.Columns> 48.</telerikGrid:RadGridView> 49.</Grid> I'll explain what's happening here by line numbers: Lines 11 and 16: Using the same type of click commands as we saw in the Menu module, we tie the button clicks to delegate commands in the viewmodel. Line 25: The source for the jobs will be a collection in the viewmodel. Line 26: We also bind the selected item to a public property from the viewmodel for use in code. Line 27: We've turned the event into a command so we can handle it via code in the viewmodel. So those first three probably make sense to you as far as Silverlight/WPF binding magic is concerned, but for line 27... This actually comes from something I read onDamien Schenkelman's blog back in the day for creating an attached behavior from any event. So, any time you see me using command:Whatever.Command, the backing for it is actually something like this: SelectedItemChangedEventBehavior.cs: 01.public class SelectedItemChangedEventBehavior : CommandBehaviorBase<Telerik.Windows.Controls.DataControl> 02.{ 03.public SelectedItemChangedEventBehavior(DataControl element) 04.: base(element) 05.{ 06.element.SelectionChanged += new EventHandler<SelectionChangeEventArgs>(element_SelectionChanged); 07.} 08.void element_SelectionChanged(object sender, SelectionChangeEventArgs e) 09.{ 10.// We'll only ever allow single selection, so will only need item index 0 11.base.CommandParameter = e.AddedItems[0]; 12.base.ExecuteCommand(); 13.} 14.} SelectedItemChangedEventClass.cs: 01.public class SelectedItemChangedEventClass 02.{ 03.#region The Command Stuff 04.public static ICommand GetCommand(DependencyObject obj) 05.{ 06.return (ICommand)obj.GetValue(CommandProperty); 07.} 08.public static void SetCommand(DependencyObject obj, ICommand value) 09.{ 10.obj.SetValue(CommandProperty, value); 11.} 12.public static readonly DependencyProperty CommandProperty = 13.DependencyProperty.RegisterAttached("Command", typeof(ICommand), 14.typeof(SelectedItemChangedEventClass), new PropertyMetadata(OnSetCommandCallback)); 15.public static void OnSetCommandCallback(DependencyObject dependencyObject, DependencyPropertyChangedEventArgs e) 16.{ 17.DataControl element = dependencyObject as DataControl; 18.if (element != null) 19.{ 20.SelectedItemChangedEventBehavior behavior = GetOrCreateBehavior(element); 21.behavior.Command = e.NewValue as ICommand; 22.} 23.} 24.#endregion 25.public static SelectedItemChangedEventBehavior GetOrCreateBehavior(DataControl element) 26.{ 27.SelectedItemChangedEventBehavior behavior = element.GetValue(SelectedItemChangedEventBehaviorProperty) as SelectedItemChangedEventBehavior; 28.if (behavior == null) 29.{ 30.behavior = new SelectedItemChangedEventBehavior(element); 31.element.SetValue(SelectedItemChangedEventBehaviorProperty, behavior); 32.} 33.return behavior; 34.} 35.public static SelectedItemChangedEventBehavior GetSelectedItemChangedEventBehavior(DependencyObject obj) 36.{ 37.return (SelectedItemChangedEventBehavior)obj.GetValue(SelectedItemChangedEventBehaviorProperty); 38.} 39.public static void SetSelectedItemChangedEventBehavior(DependencyObject obj, SelectedItemChangedEventBehavior value) 40.{ 41.obj.SetValue(SelectedItemChangedEventBehaviorProperty, value); 42.} 43.public static readonly DependencyProperty SelectedItemChangedEventBehaviorProperty = 44.DependencyProperty.RegisterAttached("SelectedItemChangedEventBehavior", 45.typeof(SelectedItemChangedEventBehavior), typeof(SelectedItemChangedEventClass), null); 46.} These end up looking very similar from command to command, but in a nutshell you create a command based on any event, determine what the parameter for it will be, then execute. It attaches via XAML and ties to a DelegateCommand in the viewmodel, so you get the full event experience (since some controls get a bit event-rich for added functionality). Simple enough, right? Viewmodel for the Job Posting View The Viewmodel is going to need to handle all events going back and forth, maintaining interactions with the data we are using, and both publishing and subscribing to events. Rather than breaking this into tons of little pieces, I'll give you a nice view of the entire viewmodel and then hit up the important points line-by-line: 001.public class JobPostingViewModel : ViewModelBase 002.{ 003.private readonly IEventAggregator eventAggregator; 004.private readonly IRegionManager regionManager; 005.public DelegateCommand<object> AddRecord { get; set; } 006.public DelegateCommand<object> EditRecord { get; set; } 007.public DelegateCommand<object> SelectedItemChanged { get; set; } 008.public RecruitingContext context; 009.private QueryableCollectionView _myJobs; 010.public QueryableCollectionView MyJobs 011.{ 012.get { return _myJobs; } 013.} 014.private QueryableCollectionView _selectionJobActionHistory; 015.public QueryableCollectionView SelectedJobActionHistory 016.{ 017.get { return _selectionJobActionHistory; } 018.} 019.private JobPosting _selectedJob; 020.public JobPosting SelectedJob 021.{ 022.get { return _selectedJob; } 023.set 024.{ 025.if (value != _selectedJob) 026.{ 027._selectedJob = value; 028.NotifyChanged("SelectedJob"); 029.} 030.} 031.} 032.public SubscriptionToken editToken = new SubscriptionToken(); 033.public SubscriptionToken addToken = new SubscriptionToken(); 034.public JobPostingViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 035.{ 036.// set Unity items 037.this.eventAggregator = eventAgg; 038.this.regionManager = regionmanager; 039.// load our context 040.context = new RecruitingContext(); 041.this._myJobs = new QueryableCollectionView(context.JobPostings); 042.context.Load(context.GetJobPostingsQuery()); 043.// set command events 044.this.AddRecord = new DelegateCommand<object>(this.AddNewRecord); 045.this.EditRecord = new DelegateCommand<object>(this.EditExistingRecord); 046.this.SelectedItemChanged = new DelegateCommand<object>(this.SelectedRecordChanged); 047.SetSubscriptions(); 048.} 049.#region DelegateCommands from View 050.public void AddNewRecord(object obj) 051.{ 052.this.eventAggregator.GetEvent<AddJobEvent>().Publish(true); 053.} 054.public void EditExistingRecord(object obj) 055.{ 056.if (_selectedJob == null) 057.{ 058.this.eventAggregator.GetEvent<NotifyUserEvent>().Publish("No job selected."); 059.} 060.else 061.{ 062.this._myJobs.EditItem(this._selectedJob); 063.this.eventAggregator.GetEvent<EditJobEvent>().Publish(this._selectedJob); 064.} 065.} 066.public void SelectedRecordChanged(object obj) 067.{ 068.if (obj.GetType() == typeof(ActionHistory)) 069.{ 070.// event bubbles up so we don't catch items from the ActionHistory grid 071.} 072.else 073.{ 074.JobPosting job = obj as JobPosting; 075.GrabHistory(job.PostingID); 076.} 077.} 078.#endregion 079.#region Subscription Declaration and Events 080.public void SetSubscriptions() 081.{ 082.EditJobCompleteEvent editComplete = eventAggregator.GetEvent<EditJobCompleteEvent>(); 083.if (editToken != null) 084.editComplete.Unsubscribe(editToken); 085.editToken = editComplete.Subscribe(this.EditCompleteEventHandler); 086.AddJobCompleteEvent addComplete = eventAggregator.GetEvent<AddJobCompleteEvent>(); 087.if (addToken != null) 088.addComplete.Unsubscribe(addToken); 089.addToken = addComplete.Subscribe(this.AddCompleteEventHandler); 090.} 091.public void EditCompleteEventHandler(bool complete) 092.{ 093.if (complete) 094.{ 095.JobPosting thisJob = _myJobs.CurrentEditItem as JobPosting; 096.this._myJobs.CommitEdit(); 097.this.context.SubmitChanges((s) => 098.{ 099.ActionHistory myAction = new ActionHistory(); 100.myAction.PostingID = thisJob.PostingID; 101.myAction.Description = String.Format("Job '{0}' has been edited by {1}", thisJob.JobTitle, "default user"); 102.myAction.TimeStamp = DateTime.Now; 103.eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 104.} 105., null); 106.} 107.else 108.{ 109.this._myJobs.CancelEdit(); 110.} 111.this.MakeMeActive(this.regionManager, "MainRegion", "JobPostingsView"); 112.} 113.public void AddCompleteEventHandler(JobPosting job) 114.{ 115.if (job == null) 116.{ 117.// do nothing, new job add cancelled 118.} 119.else 120.{ 121.this.context.JobPostings.Add(job); 122.this.context.SubmitChanges((s) => 123.{ 124.ActionHistory myAction = new ActionHistory(); 125.myAction.PostingID = job.PostingID; 126.myAction.Description = String.Format("Job '{0}' has been added by {1}", job.JobTitle, "default user"); 127.myAction.TimeStamp = DateTime.Now; 128.eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 129.} 130., null); 131.} 132.this.MakeMeActive(this.regionManager, "MainRegion", "JobPostingsView"); 133.} 134.#endregion 135.public void GrabHistory(int postID) 136.{ 137.context.ActionHistories.Clear(); 138._selectionJobActionHistory = new QueryableCollectionView(context.ActionHistories); 139.context.Load(context.GetHistoryForJobQuery(postID)); 140.} Taking it from the top, we're injecting an Event Aggregator and Region Manager for use down the road and also have the public DelegateCommands (just like in the Menu module). We also grab a reference to our context, which we'll obviously need for data, then set up a few fields with public properties tied to them. We're also setting subscription tokens, which we have not yet seen but I will get into below. The AddNewRecord (50) and EditExistingRecord (54) methods should speak for themselves for functionality, the one thing of note is we're sending events off to the Event Aggregator which some module, somewhere will take care of. Since these aren't entirely relying on one another, the Jobs View doesn't care if anyone is listening, but it will publish AddJobEvent (52), NotifyUserEvent (58) and EditJobEvent (63)regardless. Don't mind the GrabHistory() method so much, that is just grabbing history items (visibly being created in the SubmitChanges callbacks), and adding them to the database. Every action will trigger a history event, so we'll know who modified what and when, just in case. ;) So where are we at? Well, if we click to Add a job, we publish an event, if we edit a job, we publish an event with the selected record (attained through the magic of binding). Where is this all going though? To the Viewmodel, of course! XAML for the AddEditJobView This is pretty straightforward except for one thing, noted below: 001.<Grid x:Name="LayoutRoot" 002.Background="White"> 003.<Grid x:Name="xEditGrid" 004.Margin="10" 005.validationHelper:ValidationScope.Errors="{Binding Errors}"> 006.<Grid.Background> 007.<LinearGradientBrush EndPoint="0.5,1" 008.StartPoint="0.5,0"> 009.<GradientStop Color="#FFC7C7C7" 010.Offset="0" /> 011.<GradientStop Color="#FFF6F3F3" 012.Offset="1" /> 013.</LinearGradientBrush> 014.</Grid.Background> 015.<Grid.RowDefinitions> 016.<RowDefinition Height="40" /> 017.<RowDefinition Height="40" /> 018.<RowDefinition Height="40" /> 019.<RowDefinition Height="100" /> 020.<RowDefinition Height="100" /> 021.<RowDefinition Height="100" /> 022.<RowDefinition Height="40" /> 023.<RowDefinition Height="40" /> 024.<RowDefinition Height="40" /> 025.</Grid.RowDefinitions> 026.<Grid.ColumnDefinitions> 027.<ColumnDefinition Width="150" /> 028.<ColumnDefinition Width="150" /> 029.<ColumnDefinition Width="300" /> 030.<ColumnDefinition Width="100" /> 031.</Grid.ColumnDefinitions> 032.<!-- Title --> 033.<TextBlock Margin="8" 034.Text="{Binding AddEditString}" 035.TextWrapping="Wrap" 036.Grid.Column="1" 037.Grid.ColumnSpan="2" 038.FontSize="16" /> 039.<!-- Data entry area--> 040. 041.<TextBlock Margin="8,0,0,0" 042.Style="{StaticResource LabelTxb}" 043.Grid.Row="1" 044.Text="Job Title" 045.VerticalAlignment="Center" /> 046.<TextBox x:Name="xJobTitleTB" 047.Margin="0,8" 048.Grid.Column="1" 049.Grid.Row="1" 050.Text="{Binding activeJob.JobTitle, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 051.Grid.ColumnSpan="2" /> 052.<TextBlock Margin="8,0,0,0" 053.Grid.Row="2" 054.Text="Location" 055.d:LayoutOverrides="Height" 056.VerticalAlignment="Center" /> 057.<TextBox x:Name="xLocationTB" 058.Margin="0,8" 059.Grid.Column="1" 060.Grid.Row="2" 061.Text="{Binding activeJob.Location, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 062.Grid.ColumnSpan="2" /> 063. 064.<TextBlock Margin="8,11,8,0" 065.Grid.Row="3" 066.Text="Description" 067.TextWrapping="Wrap" 068.VerticalAlignment="Top" /> 069. 070.<TextBox x:Name="xDescriptionTB" 071.Height="84" 072.TextWrapping="Wrap" 073.ScrollViewer.VerticalScrollBarVisibility="Auto" 074.Grid.Column="1" 075.Grid.Row="3" 076.Text="{Binding activeJob.Description, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 077.Grid.ColumnSpan="2" /> 078.<TextBlock Margin="8,11,8,0" 079.Grid.Row="4" 080.Text="Requirements" 081.TextWrapping="Wrap" 082.VerticalAlignment="Top" /> 083. 084.<TextBox x:Name="xRequirementsTB" 085.Height="84" 086.TextWrapping="Wrap" 087.ScrollViewer.VerticalScrollBarVisibility="Auto" 088.Grid.Column="1" 089.Grid.Row="4" 090.Text="{Binding activeJob.Requirements, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 091.Grid.ColumnSpan="2" /> 092.<TextBlock Margin="8,11,8,0" 093.Grid.Row="5" 094.Text="Qualifications" 095.TextWrapping="Wrap" 096.VerticalAlignment="Top" /> 097. 098.<TextBox x:Name="xQualificationsTB" 099.Height="84" 100.TextWrapping="Wrap" 101.ScrollViewer.VerticalScrollBarVisibility="Auto" 102.Grid.Column="1" 103.Grid.Row="5" 104.Text="{Binding activeJob.Qualifications, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 105.Grid.ColumnSpan="2" /> 106.<!-- Requirements Checkboxes--> 107. 108.<CheckBox x:Name="xResumeRequiredCB" Margin="8,8,8,15" 109.Content="Resume Required" 110.Grid.Row="6" 111.Grid.ColumnSpan="2" 112.IsChecked="{Binding activeJob.NeedsResume, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 113. 114.<CheckBox x:Name="xCoverletterRequiredCB" Margin="8,8,8,15" 115.Content="Cover Letter Required" 116.Grid.Column="2" 117.Grid.Row="6" 118.IsChecked="{Binding activeJob.NeedsCV, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 119. 120.<CheckBox x:Name="xOverviewRequiredCB" Margin="8,8,8,15" 121.Content="Overview Required" 122.Grid.Row="7" 123.Grid.ColumnSpan="2" 124.IsChecked="{Binding activeJob.NeedsOverview, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 125. 126.<CheckBox x:Name="xJobActiveCB" Margin="8,8,8,15" 127.Content="Job is Active" 128.Grid.Column="2" 129.Grid.Row="7" 130.IsChecked="{Binding activeJob.IsActive, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 131. 132.<!-- Buttons --> 133. 134.<Button x:Name="xAddEditButton" Margin="8,8,0,10" 135.Content="{Binding AddEditButtonString}" 136.cal:Click.Command="{Binding AddEditCommand}" 137.Grid.Column="2" 138.Grid.Row="8" 139.HorizontalAlignment="Left" 140.Width="125" 141.telerik:StyleManager.Theme="Windows7" /> 142. 143.<Button x:Name="xCancelButton" HorizontalAlignment="Right" 144.Content="Cancel" 145.cal:Click.Command="{Binding CancelCommand}" 146.Margin="0,8,8,10" 147.Width="125" 148.Grid.Column="2" 149.Grid.Row="8" 150.telerik:StyleManager.Theme="Windows7" /> 151.</Grid> 152.</Grid> The 'validationHelper:ValidationScope' line may seem odd. This is a handy little trick for catching current and would-be validation errors when working in this whole setup. This all comes from an approach found on theJoy Of Code blog, although it looks like the story for this will be changing slightly with new advances in SL4/WCF RIA Services, so this section can definitely get an overhaul a little down the road. The code is the fun part of all this, so let us see what's happening under the hood. Viewmodel for the AddEditJobView We are going to see some of the same things happening here, so I'll skip over the repeat info and get right to the good stuff: 001.public class AddEditJobViewModel : ViewModelBase 002.{ 003.private readonly IEventAggregator eventAggregator; 004.private readonly IRegionManager regionManager; 005. 006.public RecruitingContext context; 007. 008.private JobPosting _activeJob; 009.public JobPosting activeJob 010.{ 011.get { return _activeJob; } 012.set 013.{ 014.if (_activeJob != value) 015.{ 016._activeJob = value; 017.NotifyChanged("activeJob"); 018.} 019.} 020.} 021. 022.public bool isNewJob; 023. 024.private string _addEditString; 025.public string AddEditString 026.{ 027.get { return _addEditString; } 028.set 029.{ 030.if (_addEditString != value) 031.{ 032._addEditString = value; 033.NotifyChanged("AddEditString"); 034.} 035.} 036.} 037. 038.private string _addEditButtonString; 039.public string AddEditButtonString 040.{ 041.get { return _addEditButtonString; } 042.set 043.{ 044.if (_addEditButtonString != value) 045.{ 046._addEditButtonString = value; 047.NotifyChanged("AddEditButtonString"); 048.} 049.} 050.} 051. 052.public SubscriptionToken addJobToken = new SubscriptionToken(); 053.public SubscriptionToken editJobToken = new SubscriptionToken(); 054. 055.public DelegateCommand<object> AddEditCommand { get; set; } 056.public DelegateCommand<object> CancelCommand { get; set; } 057. 058.private ObservableCollection<ValidationError> _errors = new ObservableCollection<ValidationError>(); 059.public ObservableCollection<ValidationError> Errors 060.{ 061.get { return _errors; } 062.} 063. 064.private ObservableCollection<ValidationResult> _valResults = new ObservableCollection<ValidationResult>(); 065.public ObservableCollection<ValidationResult> ValResults 066.{ 067.get { return this._valResults; } 068.} 069. 070.public AddEditJobViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 071.{ 072.// set Unity items 073.this.eventAggregator = eventAgg; 074.this.regionManager = regionmanager; 075. 076.context = new RecruitingContext(); 077. 078.AddEditCommand = new DelegateCommand<object>(this.AddEditJobCommand); 079.CancelCommand = new DelegateCommand<object>(this.CancelAddEditCommand); 080. 081.SetSubscriptions(); 082.} 083. 084.#region Subscription Declaration and Events 085. 086.public void SetSubscriptions() 087.{ 088.AddJobEvent addJob = this.eventAggregator.GetEvent<AddJobEvent>(); 089. 090.if (addJobToken != null) 091.addJob.Unsubscribe(addJobToken); 092. 093.addJobToken = addJob.Subscribe(this.AddJobEventHandler); 094. 095.EditJobEvent editJob = this.eventAggregator.GetEvent<EditJobEvent>(); 096. 097.if (editJobToken != null) 098.editJob.Unsubscribe(editJobToken); 099. 100.editJobToken = editJob.Subscribe(this.EditJobEventHandler); 101.} 102. 103.public void AddJobEventHandler(bool isNew) 104.{ 105.this.activeJob = null; 106.this.activeJob = new JobPosting(); 107.this.activeJob.IsActive = true; // We assume that we want a new job to go up immediately 108.this.isNewJob = true; 109.this.AddEditString = "Add New Job Posting"; 110.this.AddEditButtonString = "Add Job"; 111. 112.MakeMeActive(this.regionManager, "MainRegion", "AddEditJobView"); 113.} 114. 115.public void EditJobEventHandler(JobPosting editJob) 116.{ 117.this.activeJob = null; 118.this.activeJob = editJob; 119.this.isNewJob = false; 120.this.AddEditString = "Edit Job Posting"; 121.this.AddEditButtonString = "Edit Job"; 122. 123.MakeMeActive(this.regionManager, "MainRegion", "AddEditJobView"); 124.} 125. 126.#endregion 127. 128.#region DelegateCommands from View 129. 130.public void AddEditJobCommand(object obj) 131.{ 132.if (this.Errors.Count > 0) 133.{ 134.List<string> errorMessages = new List<string>(); 135. 136.foreach (var valR in this.Errors) 137.{ 138.errorMessages.Add(valR.Exception.Message); 139.} 140. 141.this.eventAggregator.GetEvent<DisplayValidationErrorsEvent>().Publish(errorMessages); 142. 143.} 144.else if (!Validator.TryValidateObject(this.activeJob, new ValidationContext(this.activeJob, null, null), _valResults, true)) 145.{ 146.List<string> errorMessages = new List<string>(); 147. 148.foreach (var valR in this._valResults) 149.{ 150.errorMessages.Add(valR.ErrorMessage); 151.} 152. 153.this._valResults.Clear(); 154. 155.this.eventAggregator.GetEvent<DisplayValidationErrorsEvent>().Publish(errorMessages); 156.} 157.else 158.{ 159.if (this.isNewJob) 160.{ 161.this.eventAggregator.GetEvent<AddJobCompleteEvent>().Publish(this.activeJob); 162.} 163.else 164.{ 165.this.eventAggregator.GetEvent<EditJobCompleteEvent>().Publish(true); 166.} 167.} 168.} 169. 170.public void CancelAddEditCommand(object obj) 171.{ 172.if (this.isNewJob) 173.{ 174.this.eventAggregator.GetEvent<AddJobCompleteEvent>().Publish(null); 175.} 176.else 177.{ 178.this.eventAggregator.GetEvent<EditJobCompleteEvent>().Publish(false); 179.} 180.} 181. 182.#endregion 183.} 184.} We start seeing something new on line 103- the AddJobEventHandler will create a new job and set that to the activeJob item on the ViewModel. When this is all set, the view calls that familiar MakeMeActive method to activate itself. I made a bit of a management call on making views self-activate like this, but I figured it works for one reason. As I create this application, views may not exist that I have in mind, so after a view receives its 'ping' from being subscribed to an event, it prepares whatever it needs to do and then goes active. This way if I don't have 'edit' hooked up, I can click as the day is long on the main view and won't get lost in an empty region. Total personal preference here. :) Everything else should again be pretty straightforward, although I do a bit of validation checking in the AddEditJobCommand, which can either fire off an event back to the main view/viewmodel if everything is a success or sent a list of errors to our notification module, which pops open a RadWindow with the alerts if any exist. As a bonus side note, here's what my WCF RIA Services metadata looks like for handling all of the validation: private JobPostingMetadata() { } [StringLength(2500, ErrorMessage = "Description should be more than one and less than 2500 characters.", MinimumLength = 1)] [Required(ErrorMessage = "Description is required.")] public string Description; [Required(ErrorMessage="Active Status is Required")] public bool IsActive; [StringLength(100, ErrorMessage = "Posting title must be more than 3 but less than 100 characters.", MinimumLength = 3)] [Required(ErrorMessage = "Job Title is required.")] public bool JobTitle; [Required] public string Location; public bool NeedsCV; public bool NeedsOverview; public bool NeedsResume; public int PostingID; [Required(ErrorMessage="Qualifications are required.")] [StringLength(2500, ErrorMessage="Qualifications should be more than one and less than 2500 characters.", MinimumLength=1)] public string Qualifications; [StringLength(2500, ErrorMessage = "Requirements should be more than one and less than 2500 characters.", MinimumLength = 1)] [Required(ErrorMessage="Requirements are required.")] public string Requirements;   The RecruitCB Alternative See all that Xaml I pasted above? Those are now two pieces sitting in the JobsView.xaml file now. The only real difference is that the xEditGrid now sits in the same place as xJobsGrid, with visibility swapping out between the two for a quick switch. I also took out all the cal: and command: command references and replaced Button events with clicks and the Grid selection command replaced with a SelectedItemChanged event. Also, at the bottom of the xEditGrid after the last button, I add a ValidationSummary (with Visibility=Collapsed) to catch any errors that are popping up. Simple as can be, and leads to this being the single code-behind file: 001.public partial class JobsView : UserControl 002.{ 003.public RecruitingContext context; 004.public JobPosting activeJob; 005.public bool isNew; 006.private ObservableCollection<ValidationResult> _valResults = new ObservableCollection<ValidationResult>(); 007.public ObservableCollection<ValidationResult> ValResults 008.{ 009.get { return this._valResults; } 010.} 011.public JobsView() 012.{ 013.InitializeComponent(); 014.this.Loaded += new RoutedEventHandler(JobsView_Loaded); 015.} 016.void JobsView_Loaded(object sender, RoutedEventArgs e) 017.{ 018.context = new RecruitingContext(); 019.xJobsGrid.ItemsSource = context.JobPostings; 020.context.Load(context.GetJobPostingsQuery()); 021.} 022.private void xAddRecordButton_Click(object sender, RoutedEventArgs e) 023.{ 024.activeJob = new JobPosting(); 025.isNew = true; 026.xAddEditTitle.Text = "Add a Job Posting"; 027.xAddEditButton.Content = "Add"; 028.xEditGrid.DataContext = activeJob; 029.HideJobsGrid(); 030.} 031.private void xEditRecordButton_Click(object sender, RoutedEventArgs e) 032.{ 033.activeJob = xJobsGrid.SelectedItem as JobPosting; 034.isNew = false; 035.xAddEditTitle.Text = "Edit a Job Posting"; 036.xAddEditButton.Content = "Edit"; 037.xEditGrid.DataContext = activeJob; 038.HideJobsGrid(); 039.} 040.private void xAddEditButton_Click(object sender, RoutedEventArgs e) 041.{ 042.if (!Validator.TryValidateObject(this.activeJob, new ValidationContext(this.activeJob, null, null), _valResults, true)) 043.{ 044.List<string> errorMessages = new List<string>(); 045.foreach (var valR in this._valResults) 046.{ 047.errorMessages.Add(valR.ErrorMessage); 048.} 049.this._valResults.Clear(); 050.ShowErrors(errorMessages); 051.} 052.else if (xSummary.Errors.Count > 0) 053.{ 054.List<string> errorMessages = new List<string>(); 055.foreach (var err in xSummary.Errors) 056.{ 057.errorMessages.Add(err.Message); 058.} 059.ShowErrors(errorMessages); 060.} 061.else 062.{ 063.if (this.isNew) 064.{ 065.context.JobPostings.Add(activeJob); 066.context.SubmitChanges((s) => 067.{ 068.ActionHistory thisAction = new ActionHistory(); 069.thisAction.PostingID = activeJob.PostingID; 070.thisAction.Description = String.Format("Job '{0}' has been edited by {1}", activeJob.JobTitle, "default user"); 071.thisAction.TimeStamp = DateTime.Now; 072.context.ActionHistories.Add(thisAction); 073.context.SubmitChanges(); 074.}, null); 075.} 076.else 077.{ 078.context.SubmitChanges((s) => 079.{ 080.ActionHistory thisAction = new ActionHistory(); 081.thisAction.PostingID = activeJob.PostingID; 082.thisAction.Description = String.Format("Job '{0}' has been added by {1}", activeJob.JobTitle, "default user"); 083.thisAction.TimeStamp = DateTime.Now; 084.context.ActionHistories.Add(thisAction); 085.context.SubmitChanges(); 086.}, null); 087.} 088.ShowJobsGrid(); 089.} 090.} 091.private void xCancelButton_Click(object sender, RoutedEventArgs e) 092.{ 093.ShowJobsGrid(); 094.} 095.private void ShowJobsGrid() 096.{ 097.xAddEditRecordButtonPanel.Visibility = Visibility.Visible; 098.xEditGrid.Visibility = Visibility.Collapsed; 099.xJobsGrid.Visibility = Visibility.Visible; 100.} 101.private void HideJobsGrid() 102.{ 103.xAddEditRecordButtonPanel.Visibility = Visibility.Collapsed; 104.xJobsGrid.Visibility = Visibility.Collapsed; 105.xEditGrid.Visibility = Visibility.Visible; 106.} 107.private void ShowErrors(List<string> errorList) 108.{ 109.string nm = "Errors received: \n"; 110.foreach (string anerror in errorList) 111.nm += anerror + "\n"; 112.RadWindow.Alert(nm); 113.} 114.} The first 39 lines should be pretty familiar, not doing anything too unorthodox to get this up and running. Once we hit the xAddEditButton_Click on line 40, we're still doing pretty much the same things except instead of checking the ValidationHelper errors, we both run a check on the current activeJob object as well as check the ValidationSummary errors list. Once that is set, we again use the callback of context.SubmitChanges (lines 68 and 78) to create an ActionHistory which we will use to track these items down the line. That's all? Essentially... yes. If you look back through this post, most of the code and adventures we have taken were just to get things working in the MVVM/Prism setup. Since I have the whole 'module' self-contained in a single JobView+code-behind setup, I don't have to worry about things like sending events off into space for someone to pick up, communicating through an Infrastructure project, or even re-inventing events to be used with attached behaviors. Everything just kinda works, and again with much less code. Here's a picture of the MVVM and Code-behind versions on the Jobs and AddEdit views, but since the functionality is the same in both apps you still cannot tell them apart (for two-strike): Looking ahead, the Applicants module is effectively the same thing as the Jobs module, so most of the code is being cut-and-pasted back and forth with minor tweaks here and there. So that one is being taken care of by me behind the scenes. Next time, we get into a new world of fun- the interview scheduling module, which will pull from available jobs and applicants for each interview being scheduled, tying everything together with RadScheduler to the rescue. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • reading the file name from user input in MIPS assembly

    - by Hassan Al-Jeshi
    I'm writing a MIPS assembly code that will ask the user for the file name and it will produce some statistics about the content of the file. However, when I hard code the file name into a variable from the beginning it works just fine, but when I ask the user to input the file name it does not work. after some debugging, I have discovered that the program adds 0x00 char and 0x0a char (check asciitable.com) at the end of user input in the memory and that's why it does not open the file based on the user input. anyone has any idea about how to get rid of those extra chars, or how to open the file after getting its name from the user?? here is my complete code (it is working fine except for the file name from user thing, and anybody is free to use it for any purpose he/she wants to): .data fin: .ascii "" # filename for input msg0: .asciiz "aaaa" msg1: .asciiz "Please enter the input file name:" msg2: .asciiz "Number of Uppercase Char: " msg3: .asciiz "Number of Lowercase Char: " msg4: .asciiz "Number of Decimal Char: " msg5: .asciiz "Number of Words: " nline: .asciiz "\n" buffer: .asciiz "" .text #----------------------- li $v0, 4 la $a0, msg1 syscall li $v0, 8 la $a0, fin li $a1, 21 syscall jal fileRead #read from file move $s1, $v0 #$t0 = total number of bytes li $t0, 0 # Loop counter li $t1, 0 # Uppercase counter li $t2, 0 # Lowercase counter li $t3, 0 # Decimal counter li $t4, 0 # Words counter loop: bge $t0, $s1, end #if end of file reached OR if there is an error in the file lb $t5, buffer($t0) #load next byte from file jal checkUpper #check for upper case jal checkLower #check for lower case jal checkDecimal #check for decimal jal checkWord #check for words addi $t0, $t0, 1 #increment loop counter j loop end: jal output jal fileClose li $v0, 10 syscall fileRead: # Open file for reading li $v0, 13 # system call for open file la $a0, fin # input file name li $a1, 0 # flag for reading li $a2, 0 # mode is ignored syscall # open a file move $s0, $v0 # save the file descriptor # reading from file just opened li $v0, 14 # system call for reading from file move $a0, $s0 # file descriptor la $a1, buffer # address of buffer from which to read li $a2, 100000 # hardcoded buffer length syscall # read from file jr $ra output: li $v0, 4 la $a0, msg2 syscall li $v0, 1 move $a0, $t1 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg3 syscall li $v0, 1 move $a0, $t2 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg4 syscall li $v0, 1 move $a0, $t3 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg5 syscall addi $t4, $t4, 1 li $v0, 1 move $a0, $t4 syscall jr $ra checkUpper: blt $t5, 0x41, L1 #branch if less than 'A' bgt $t5, 0x5a, L1 #branch if greater than 'Z' addi $t1, $t1, 1 #increment Uppercase counter L1: jr $ra checkLower: blt $t5, 0x61, L2 #branch if less than 'a' bgt $t5, 0x7a, L2 #branch if greater than 'z' addi $t2, $t2, 1 #increment Lowercase counter L2: jr $ra checkDecimal: blt $t5, 0x30, L3 #branch if less than '0' bgt $t5, 0x39, L3 #branch if greater than '9' addi $t3, $t3, 1 #increment Decimal counter L3: jr $ra checkWord: bne $t5, 0x20, L4 #branch if 'space' addi $t4, $t4, 1 #increment words counter L4: jr $ra fileClose: # Close the file li $v0, 16 # system call for close file move $a0, $s0 # file descriptor to close syscall # close file jr $ra Note: I'm using MARS Simulator, if that makes any different

    Read the article

  • MIPS: removing non alpha-numeric characters from a string

    - by Kron
    I'm in the process of writing a program in MIPS that will determine whether or not a user entered string is a palindrome. It has three subroutines which are under construction. Here is the main block of code, subroutines to follow with relevant info: .data Buffer: .asciiz " " # 80 bytes in Buffer intro: .asciiz "Hello, please enter a string of up to 80 characters. I will then tell you if that string was a palindrome!" .text main: li $v0, 4 # print_string call number la $a0, intro # pointer to string in memory syscall li $v0, 8 #syscall code for reading string la $a0, Buffer #save read string into buffer li $a1, 80 #string is 80 bytes long syscall li $s0, 0 #i = 0 li $t0, 80 #max for i to reach la $a0, Buffer jal stripNonAlpha li $v0, 4 # print_string call number la $a0, Buffer # pointer to string in memory syscall li $s0, 0 jal findEnd jal toUpperCase li $v0, 4 # print_string call number la $a0, Buffer # pointer to string in memory syscall Firstly, it's supposed to remove all non alpha-numeric characters from the string before hand, but when it encounters a character designated for removal, all characters after that are removed. stripNonAlpha: beq $s0, $t0, stripEnd #if i = 80 end add $t4, $s0, $a0 #address of Buffer[i] in $t4 lb $s1, 0($t4) #load value of Buffer[i] addi $s0, $s0, 1 #i = i + 1 slti $t1, $s1, 48 #if ascii code is less than 48 bne $t1, $zero, strip #remove ascii character slti $t1, $s1, 58 #if ascii code is greater than 57 #and slti $t2, $s1, 65 #if ascii code is less than 65 slt $t3, $t1, $t2 bne $t3, $zero, strip #remove ascii character slti $t1, $s1, 91 #if ascii code is greater than 90 #and slti $t2, $s1, 97 #if ascii code is less than 97 slt $t3, $t1, $t2 bne $t3, $zero, strip #remove ascii character slti $t1, $s1, 123 #if ascii character is greater than 122 beq $t1, $zero, strip #remove ascii character j stripNonAlpha #go to stripNonAlpha strip: #add $t5, $s0, $a0 #address of Buffer[i] in $t5 sb $0, 0($t4) #Buffer[i] = 0 #addi $s0, $s0, 1 #i = i + 1 j stripNonAlpha #go to stripNonAlpha stripEnd: la $a0, Buffer #save modified string into buffer jr $ra #return Secondly, it is supposed to convert all lowercase characters to uppercase. toUpperCase: beq $s0, $s2, upperEnd add $t4, $s0, $a0 lb $s1, 0($t4) addi $s1, $s1, 1 slti $t1, $s1, 97 #beq $t1, $zero, upper slti $t2, $s1, 123 slt $t3, $t1, $t2 bne $t1, $zero, upper j toUpperCase upper: add $t5, $s0, $a0 addi $t6, $t6, -32 sb $t6, 0($t5) j toUpperCase upperEnd: la $a0, Buffer jr $ra The final subroutine, which checks if the string is a palindrome isn't anywhere near complete at the moment. I'm having trouble finding the end of the string because I'm not sure what PC-SPIM uses as the carriage return character. Any help is appreciated, I have the feeling most of my problems result from something silly and stupid so feel free to point out anything, no matter how small.

    Read the article

  • What advantages does TFS 2010 have over Axios OnTime?

    - by Russell
    I am currently creating a business case for rolling out TFS 2010 as our source control and bug/release management tool. We currently use OnTime for our bug tracking software and subversion for our SCM. I was wondering what advantages TFS 2010 has over OnTime? I have done some thinking so far and would love to hear responses: TFS 2010 allows linking changesets-work items-builds TFS 2010 provides greater customisation of workflow than OnTime TFS 2010 is integrated into the Visual Studio IDE - This requires less apps to be open and less window flicking Thanks in advance.

    Read the article

  • How to develop screen resolution independent smart device application in C#?

    - by Shailesh Jaiswal
    I am developing smart device application in C#. I am developing this application for 240*320 screen resolution. I want to make this application screen resolution independent so that it can run on different mobile devices with different screen resolutions. Currently I am testing my application on different emulators for platform- Pocket PC 2003, Windows mobile 6 standard SDK & Windows Mobile 6 professional SDK . When I run the application on emulator for 240*320 screen resolution or less than that it works well ( only it provide the horizontal & vertical scrall bar in case of resolution less tha 240*320). If I run my application on emulator with more than 240*320 screen resolution its User Inferface gets badly affected. How to make the smart device application screen resolution independent ? Can you provide me the code or link through which i can resolve the above issue? Is there any setting for making the application screen resolution independent?

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >