Search Results

Search found 20755 results on 831 pages for 'custom map'.

Page 297/831 | < Previous Page | 293 294 295 296 297 298 299 300 301 302 303 304  | Next Page >

  • MKMapView maptype not changing!

    - by TheLearner
    I cannot understand why my MKMapView does not want to change to satellite view. This method is called and case 1 is called I have stepped over it but it simply does not change to satellite type it always changes to standard. It only works when it goes back to Map type. Anyone have any ideas? - (IBAction)mapSatelliteSegmentControlTapped:(UISegmentedControl *)sender { switch (sender.selectedSegmentIndex) { case 1: //Satellite self.mapView.mapType = MKMapTypeSatellite; default: //Map self.mapView.mapType = MKMapTypeStandard; } }

    Read the article

  • Why is Chrome ignoring my CSS selector?

    - by janoChen
    In the following page http://ada.kiexpro.com/test2/map.html I added: white-space: normal; to wrap the copyright text that is coming our from the Google map API. It works in FF and IE but Chrome seems to ignore the CSS selector: global.css: #cm_map span { white-space: normal !important; }

    Read the article

  • URL Routing in Java

    - by Jack
    Coming from other web frameworks, I'm used to being able to map parts of a URL to method parameters. I know that web.xml provides a way to map an entire URL to a Servlet but is there a way to get more features out of this, such as mapping pieces of the URL to method parameters?

    Read the article

  • REST services - exposing non-data "actions"

    - by ctacke
    I understand how to use REST for doing general entity interactions - using urls names to map to entities and the HTTP verbs to map to actions on those entities. But what is the generally accepted way of looking at "actions" more like RPC? For example, let's say I want to send a command for the device to reset? There's no real "entity" here or do I do something like POST to http://mydevice/device/reset?

    Read the article

  • Rails routing aliasing and namespaces

    - by kain
    Given a simple namespaced route map.namespace :api do |api| api.resources :genres end how can I reuse this block but with another namespace? Currently I'm achieving that by writing another routes hacked on the fly map.with_options :name_prefix => 'mobile_', :path_prefix => 'mobile' do |mobile| mobile.resources :genres, :controller => 'api/genres' end But it seems less than ideal.

    Read the article

  • Struts2 form to action fields mapping automatically

    - by hkansal
    Hello, I would like to know if it is possible, in Struts2, to map an HTML form's fields to those of an action, automatically, without getters and setters. It is clear that by getters and setters or the ParameterAware interface and the Map, fields can be set in the action, but I just wanted to know if otherwise there was a way.

    Read the article

  • How to use another type of EditingControl in a single .NET 3.5 DataGridView column ?

    - by too
    Is this possible to have two (or more) different kinds of cells to be displayed interchangeably in single column of C# .Net 3.5 WinForms DataGridView? I know one column has specified single EditingControl type, yet I think grid is flexible enough to do some tricks, I may think of only: Adding as many invisible columns to grid as required types of cells and on CellBeginEdit somehow exchange current cell with other column's cell Creating custom column and custom cell with possibility of changing EditingControl for single cell Which approach is better, is there any other solution, are there any examples ?

    Read the article

  • Which is the fastest idiomatic way to add all vectors (in the math sense) inside a Scala list?

    - by davips
    I have two solutions, but one doesn't compile and the other, I think, could be better: object Foo extends App { val vectors = List(List(1,2,3), List(2,2,3), List(1,2,2)) //just a stupid example //transposing println("vectors = " + vectors.transpose.map (_.sum)) //it prints vectors = List(4, 6, 8) //folding vectors.reduce { case (a, b) => (a zip b) map { case (x, y) => x + y } } //compiler says: missing parameter type for exp. function; arg. types must be fully known }

    Read the article

  • remove field name from object validation message

    - by Colin G
    I've got a simple active record validation on an object using this within a form: form.error_messages({:message => '', :header_message => ''}) This in turn outputs something like "FieldName My Custom message" What i need to do is remove the field name from the error message but leave my custom message. Can anyone point me in the right direction for this.

    Read the article

  • j query validation plugin for two fields

    - by jonathan p
    I am using the Jquery Validation plug-in, however i need to add a "custom rule", i have 2 date fields and i need to ensure that the end date is not less than the start date. My problem is how to pass the two fields in as elements. As i understand u set up a custom function something like this : function customValidationMethod(value, element, params){ } But can't see how i could use it with two fields, if anyone has any ideas it would be greatly appreciated.

    Read the article

  • How do I keep a datastructure in sync across several servers in Java?

    - by sanity
    Have a Map which contains objects that I want to keep in sync across multiple servers, such that if objects in the map are created, deleted, or modified - this is reflected immediately (ie. within a second or two) across all servers, in a way that can potentially scale up to tens of servers. Is there a lightweight open source Java tool that can do something like this? I'm aware of Terracotta but it is rather heavy weight for what I need.

    Read the article

  • Binding one dependency property to another

    - by Gregory Dodd
    I have a custom Tab Control that I have created, but I am having an issue. I have an Editable TextBox as part of the custom TabControl View. <Controls:EditableTextControl x:Name="PageTypeName" Style="{StaticResource ResourceKey={x:Type Controls:EditableTextControl}}" Grid.Row="0" TabIndex="0" Uid="0" AutomationProperties.AutomationId="PageTypeNameTextBox" AutomationProperties.Name="PageTypeName" Visibility="{Binding ElementName=PageTabControl,Path=ShowPageType}"> <Controls:EditableTextControl.ContextMenu> <ContextMenu x:Name="TabContextMenu"> <MenuItem Header="Rename Page Type" Command="{Binding Path=PlacementTarget.EnterEditMode, RelativeSource={RelativeSource AncestorType=ContextMenu}}" AutomationProperties.AutomationId="RenamePageTypeMenuItem" AutomationProperties.Name="RenamePageType"/> <MenuItem Header="Delete Page Type" Command="{Binding Path=PageTypeDeletedCommand}" AutomationProperties.AutomationId="DeletePageTypeMenuItem" AutomationProperties.Name="DeletePageType"/> </ContextMenu> </Controls:EditableTextControl.ContextMenu> <Controls:EditableTextControl.Content> <!--<Binding Path="CurrentPageTypeViewModel.Name" Mode="TwoWay"/>--> <Binding ElementName="PageTabControl" Path="CurrentPageTypeName" Mode ="TwoWay"/> </Controls:EditableTextControl.Content> </Controls:EditableTextControl> In the Content section I am binding to a Dependency Prop called CurrentPageTypeName. This Depedency prop is part of this custom Tab Control. public static DependencyProperty CurrentPageTypeNameProperty = DependencyProperty.Register("CurrentPageTypeName", typeof(object), typeof(TabControlView)); public object CurrentPageTypeName { get { return GetValue(CurrentPageTypeNameProperty) as object; } set { SetValue(CurrentPageTypeNameProperty, value); } } In another view, where I am using the custom TabControl I then bind my property, with the actual name value, to CurrentPageTypeName property as seen below: <Views:TabControlView Grid.Row="0" Name="RunPageTabControl" TabItemsSource="{Binding RunPageTypeViewModels}" SelectedTab="{Binding Converter={StaticResource debugConverter}}" CurrentPageTypeName="{Binding Path=RunPageName, Mode=TwoWay}" TabContentTemplateSelector="{StaticResource tabItemTemplateSelector}" SelectedIndex="{Binding RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type UserControl}}, Path=DataContext.SelectedTabIndex}" ShowPageType="Hidden" > <!--<Views:TabControlView.TabContentTemplate> <DataTemplate DataType="{x:Type ViewModels:RunPageTypeViewModel}"> <RunViews:RunPageTypeView/> </DataTemplate> </Views:TabControlView.TabContentTemplate>--> </Views:TabControlView> My problem is that nothing seems to be happening. It is grabbing its Content from the Itemsource, and not from my chained Dependency props. Is what I am trying even possible? If so, what have I done wrong. Thanks for looking.

    Read the article

  • C# Strange Behavior

    - by Betamoo
    I have a custom struct : struct A { public int y; } a custom class with empty constuctor: class B { public A a; public B() { } } and here is the main: static void Main(string[] args) { B b = new B(); b.a.y = 5;//No runtime errors! Console.WriteLine(b.a.y); } When I run the above program, it does not give me any errors, although I did not initialize struct A in class B constructor..'a=new A();'

    Read the article

  • Vertical (rotated) label in Android

    - by DroidIn.net
    I need 2 ways of showing vertical label in Android: Horizontal label turned 90 degrees counterclockwise (letters on the side) Horizontal label with letters one under the other (like a store sign) Do I need to develop custom widgets for both cases (one case), can I make TextView to render that way, and what would be a good way to do something like that if I need to go completely custom?

    Read the article

  • Limiting records in a model action...

    - by bgadoci
    How do I limit the number of records that I am outputting with the following code to only 3 records: User.rb def workouts_on_which_i_commented comments.map{|x|x.workout}.uniq end def comment_stream workouts_on_which_i_commented.map do |w| w.comments end.flatten.sort{|x,y| y.created_at <=> x.created_at} end html.erb file <% current_user.comment_stream.each do |comment| %> ... <% end %> UPDATE: I'm using Rails 2.3.9

    Read the article

  • Restrict sprite movement to vertical and horizontal

    - by Daniel Granger
    I have been battling with this for some time and my noob brain can't quite work it out. I have a standard tile map and currently use the following code to move my enemy sprite around the map -(void) movePlayer:(ccTime)deltaTime { if (CGPointEqualToPoint(self.position, requestedPosition)) return; float step = kPlayerSpeed * deltaTime; float dist = ccpDistance(self.position, requestedPosition); CGPoint vectorBetweenAB = ccpSub(self.position, requestedPosition); if (dist <= step) { self.position = requestedPosition; [self popPosition]; } else { CGPoint normVectorBetweenAB = ccpNormalize(vectorBetweenAB); CGPoint movementVectorForThisFrame = ccpMult(normVectorBetweenAB, step); if (abs(vectorBetweenAB.x) > abs(vectorBetweenAB.y)) { if (vectorBetweenAB.x > 0) { [self runAnimation:walkLeft]; } else { [self runAnimation:walkRight]; } } else { if (vectorBetweenAB.y > 0) { [self runAnimation:walkDown]; } else { [self runAnimation:walkUp]; } } if (self.position.x > movementVectorForThisFrame.x) { movementVectorForThisFrame.x = -movementVectorForThisFrame.x; } if (self.position.y > movementVectorForThisFrame.y) { movementVectorForThisFrame.y = -movementVectorForThisFrame.y; } self.position = ccpAdd(self.position, movementVectorForThisFrame); } } movePlayer: is called by the classes updateWithDeltaTime: method. the ivar requestedPosition is set in the updateWithDeltaTime method as well, it basically gets the next point out of a queue to move to. These points can be anywhere on the map, so if they are in a diagonal direction from the enemy the enemy sprite will move directly to that point. But how do I change the above code to restrict the movement to vertical and horizontal movement only so that the enemies movement 'staircases' its way along a diagonal path, taking the manhattan distance (I think its called). As shown by my crude drawing below... S being the start point F being the finish and the numbers being each intermediate point along its path to create a staircase type diagonal movement. Finally I intend to be able to toggle this behaviour on and off, so that I can choose whether or not I want the enemy to move free around the map or be restricted to this horizontal / vertical movement only. | | | | | | | | | | | | | | | | | | | | | |F| | | | | | | | | |5|4| | | | | | | | | |3|2| | | | | | | | | |1|S| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

    Read the article

  • Help With Generics? How to Define Generic Method?

    - by DaveDev
    Is it possible to create a generic method with a definition similar to: public static string GenerateWidget<TypeOfHtmlGen, WidgetType>(this HtmlHelper htmlHelper , object modelData) // TypeOfHtmlGenerator is a type that creates custom Html tags. // GenerateWidget creates custom Html tags which contains Html representing the Widget. I can use this method to create any kind of widget contained within any kind of Html tag. Thanks

    Read the article

  • How to add Eclipse Task Tags programmatically (Eclipse Plugin development)?

    - by sebnem
    Hi, I am developing an Eclipse Plugin. I want to add my custom Task Tag programmatically within the plugin. (Lets say DOTHIS) Later, i want to list the lines marked with DOTHIS tag in my custom taskView I know that it is done using the Eclipse UI from Project Properties Java Compiler Task Tags New. and then in the task view by Configure Contents but how can i do these arranegments within the plugin? Thanks in advance.

    Read the article

  • An Xml Serializable PropertyBag Dictionary Class for .NET

    - by Rick Strahl
    I don't know about you but I frequently need property bags in my applications to store and possibly cache arbitrary data. Dictionary<T,V> works well for this although I always seem to be hunting for a more specific generic type that provides a string key based dictionary. There's string dictionary, but it only works with strings. There's Hashset<T> but it uses the actual values as keys. In most key value pair situations for me string is key value to work off. Dictionary<T,V> works well enough, but there are some issues with serialization of dictionaries in .NET. The .NET framework doesn't do well serializing IDictionary objects out of the box. The XmlSerializer doesn't support serialization of IDictionary via it's default serialization, and while the DataContractSerializer does support IDictionary serialization it produces some pretty atrocious XML. What doesn't work? First off Dictionary serialization with the Xml Serializer doesn't work so the following fails: [TestMethod] public void DictionaryXmlSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXml(bag)); } public string ToXml(object obj) { if (obj == null) return null; StringWriter sw = new StringWriter(); XmlSerializer ser = new XmlSerializer(obj.GetType()); ser.Serialize(sw, obj); return sw.ToString(); } The error you get with this is: System.NotSupportedException: The type System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]] is not supported because it implements IDictionary. Got it! BTW, the same is true with binary serialization. Running the same code above against the DataContractSerializer does work: [TestMethod] public void DictionaryDataContextSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXmlDcs(bag)); } public string ToXmlDcs(object value, bool throwExceptions = false) { var ser = new DataContractSerializer(value.GetType(), null, int.MaxValue, true, false, null); MemoryStream ms = new MemoryStream(); ser.WriteObject(ms, value); return Encoding.UTF8.GetString(ms.ToArray(), 0, (int)ms.Length); } This DOES work but produces some pretty heinous XML (formatted with line breaks and indentation here): <ArrayOfKeyValueOfstringanyType xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <KeyValueOfstringanyType> <Key>key</Key> <Value i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">Value</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key2</Key> <Value i:type="a:decimal" xmlns:a="http://www.w3.org/2001/XMLSchema">100.10</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key3</Key> <Value i:type="a:guid" xmlns:a="http://schemas.microsoft.com/2003/10/Serialization/">2cd46d2a-a636-4af4-979b-e834d39b6d37</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key4</Key> <Value i:type="a:dateTime" xmlns:a="http://www.w3.org/2001/XMLSchema">2011-09-19T17:17:05.4406999-07:00</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key5</Key> <Value i:type="a:boolean" xmlns:a="http://www.w3.org/2001/XMLSchema">true</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key7</Key> <Value i:type="a:base64Binary" xmlns:a="http://www.w3.org/2001/XMLSchema">Ki1C</Value> </KeyValueOfstringanyType> </ArrayOfKeyValueOfstringanyType> Ouch! That seriously hurts the eye! :-) Worse though it's extremely verbose with all those repetitive namespace declarations. It's good to know that it works in a pinch, but for a human readable/editable solution or something lightweight to store in a database it's not quite ideal. Why should I care? As a little background, in one of my applications I have a need for a flexible property bag that is used on a free form database field on an otherwise static entity. Basically what I have is a standard database record to which arbitrary properties can be added in an XML based string field. I intend to expose those arbitrary properties as a collection from field data stored in XML. The concept is pretty simple: When loading write the data to the collection, when the data is saved serialize the data into an XML string and store it into the database. When reading the data pick up the XML and if the collection on the entity is accessed automatically deserialize the XML into the Dictionary. (I'll talk more about this in another post). While the DataContext Serializer would work, it's verbosity is problematic both for size of the generated XML strings and the fact that users can manually edit this XML based property data in an advanced mode. A clean(er) layout certainly would be preferable and more user friendly. Custom XMLSerialization with a PropertyBag Class So… after a bunch of experimentation with different serialization formats I decided to create a custom PropertyBag class that provides for a serializable Dictionary. It's basically a custom Dictionary<TType,TValue> implementation with the keys always set as string keys. The result are PropertyBag<TValue> and PropertyBag (which defaults to the object type for values). The PropertyBag<TType> and PropertyBag classes provide these features: Subclassed from Dictionary<T,V> Implements IXmlSerializable with a cleanish XML format ToXml() and FromXml() methods to export and import to and from XML strings Static CreateFromXml() method to create an instance It's simple enough as it's merely a Dictionary<string,object> subclass but that supports serialization to a - what I think at least - cleaner XML format. The class is super simple to use: [TestMethod] public void PropertyBagTwoWayObjectSerializationTest() { var bag = new PropertyBag(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42,45,66 } ); bag.Add("Key8", null); bag.Add("Key9", new ComplexObject() { Name = "Rick", Entered = DateTime.Now, Count = 10 }); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag["key"] as string == "Value"); Assert.IsInstanceOfType( bag["Key3"], typeof(Guid)); Assert.IsNull(bag["Key8"]); //Assert.IsNull(bag["Key10"]); Assert.IsInstanceOfType(bag["Key9"], typeof(ComplexObject)); } This uses the PropertyBag class which uses a PropertyBag<string,object> - which means it returns untyped values of type object. I suspect for me this will be the most common scenario as I'd want to store arbitrary values in the PropertyBag rather than one specific type. The same code with a strongly typed PropertyBag<decimal> looks like this: [TestMethod] public void PropertyBagTwoWayValueTypeSerializationTest() { var bag = new PropertyBag<decimal>(); bag.Add("key", 10M); bag.Add("Key1", 100.10M); bag.Add("Key2", 200.10M); bag.Add("Key3", 300.10M); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag.Get("Key1") == 100.10M); Assert.IsTrue(bag.Get("Key3") == 300.10M); } and produces typed results of type decimal. The types can be either value or reference types the combination of which actually proved to be a little more tricky than anticipated due to null and specific string value checks required - getting the generic typing right required use of default(T) and Convert.ChangeType() to trick the compiler into playing nice. Of course the whole raison d'etre for this class is the XML serialization. You can see in the code above that we're doing a .ToXml() and .FromXml() to serialize to and from string. The XML produced for the first example looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value>Value</value> </item> <item> <key>Key2</key> <value type="decimal">100.10</value> </item> <item> <key>Key3</key> <value type="___System.Guid"> <guid>f7a92032-0c6d-4e9d-9950-b15ff7cd207d</guid> </value> </item> <item> <key>Key4</key> <value type="datetime">2011-09-26T17:45:58.5789578-10:00</value> </item> <item> <key>Key5</key> <value type="boolean">true</value> </item> <item> <key>Key7</key> <value type="base64Binary">Ki1C</value> </item> <item> <key>Key8</key> <value type="nil" /> </item> <item> <key>Key9</key> <value type="___Westwind.Tools.Tests.PropertyBagTest+ComplexObject"> <ComplexObject> <Name>Rick</Name> <Entered>2011-09-26T17:45:58.5789578-10:00</Entered> <Count>10</Count> </ComplexObject> </value> </item> </properties>   The format is a bit cleaner than the DataContractSerializer. Each item is serialized into <key> <value> pairs. If the value is a string no type information is written. Since string tends to be the most common type this saves space and serialization processing. All other types are attributed. Simple types are mapped to XML types so things like decimal, datetime, boolean and base64Binary are encoded using their Xml type values. All other types are embedded with a hokey format that describes the .NET type preceded by a three underscores and then are encoded using the XmlSerializer. You can see this best above in the ComplexObject encoding. For custom types this isn't pretty either, but it's more concise than the DCS and it works as long as you're serializing back and forth between .NET clients at least. The XML generated from the second example that uses PropertyBag<decimal> looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value type="decimal">10</value> </item> <item> <key>Key1</key> <value type="decimal">100.10</value> </item> <item> <key>Key2</key> <value type="decimal">200.10</value> </item> <item> <key>Key3</key> <value type="decimal">300.10</value> </item> </properties>   How does it work As I mentioned there's nothing fancy about this solution - it's little more than a subclass of Dictionary<T,V> that implements custom Xml Serialization and a couple of helper methods that facilitate getting the XML in and out of the class more easily. But it's proven very handy for a number of projects for me where dynamic data storage is required. Here's the code: /// <summary> /// Creates a serializable string/object dictionary that is XML serializable /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> [XmlRoot("properties")] public class PropertyBag : PropertyBag<object> { /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml">Serialize</param> /// <returns></returns> public static PropertyBag CreateFromXml(string xml) { var bag = new PropertyBag(); bag.FromXml(xml); return bag; } } /// <summary> /// Creates a serializable string for generic types that is XML serializable. /// /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> /// <typeparam name="TValue">Must be a reference type. For value types use type object</typeparam> [XmlRoot("properties")] public class PropertyBag<TValue> : Dictionary<string, TValue>, IXmlSerializable { /// <summary> /// Not implemented - this means no schema information is passed /// so this won't work with ASMX/WCF services. /// </summary> /// <returns></returns> public System.Xml.Schema.XmlSchema GetSchema() { return null; } /// <summary> /// Serializes the dictionary to XML. Keys are /// serialized to element names and values as /// element values. An xml type attribute is embedded /// for each serialized element - a .NET type /// element is embedded for each complex type and /// prefixed with three underscores. /// </summary> /// <param name="writer"></param> public void WriteXml(System.Xml.XmlWriter writer) { foreach (string key in this.Keys) { TValue value = this[key]; Type type = null; if (value != null) type = value.GetType(); writer.WriteStartElement("item"); writer.WriteStartElement("key"); writer.WriteString(key as string); writer.WriteEndElement(); writer.WriteStartElement("value"); string xmlType = XmlUtils.MapTypeToXmlType(type); bool isCustom = false; // Type information attribute if not string if (value == null) { writer.WriteAttributeString("type", "nil"); } else if (!string.IsNullOrEmpty(xmlType)) { if (xmlType != "string") { writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } } else { isCustom = true; xmlType = "___" + value.GetType().FullName; writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } // Actual deserialization if (!isCustom) { if (value != null) writer.WriteValue(value); } else { XmlSerializer ser = new XmlSerializer(value.GetType()); ser.Serialize(writer, value); } writer.WriteEndElement(); // value writer.WriteEndElement(); // item } } /// <summary> /// Reads the custom serialized format /// </summary> /// <param name="reader"></param> public void ReadXml(System.Xml.XmlReader reader) { this.Clear(); while (reader.Read()) { if (reader.NodeType == XmlNodeType.Element && reader.Name == "key") { string xmlType = null; string name = reader.ReadElementContentAsString(); // item element reader.ReadToNextSibling("value"); if (reader.MoveToNextAttribute()) xmlType = reader.Value; reader.MoveToContent(); TValue value; if (xmlType == "nil") value = default(TValue); // null else if (string.IsNullOrEmpty(xmlType)) { // value is a string or object and we can assign TValue to value string strval = reader.ReadElementContentAsString(); value = (TValue) Convert.ChangeType(strval, typeof(TValue)); } else if (xmlType.StartsWith("___")) { while (reader.Read() && reader.NodeType != XmlNodeType.Element) { } Type type = ReflectionUtils.GetTypeFromName(xmlType.Substring(3)); //value = reader.ReadElementContentAs(type,null); XmlSerializer ser = new XmlSerializer(type); value = (TValue)ser.Deserialize(reader); } else value = (TValue)reader.ReadElementContentAs(XmlUtils.MapXmlTypeToType(xmlType), null); this.Add(name, value); } } } /// <summary> /// Serializes this dictionary to an XML string /// </summary> /// <returns>XML String or Null if it fails</returns> public string ToXml() { string xml = null; SerializationUtils.SerializeObject(this, out xml); return xml; } /// <summary> /// Deserializes from an XML string /// </summary> /// <param name="xml"></param> /// <returns>true or false</returns> public bool FromXml(string xml) { this.Clear(); // if xml string is empty we return an empty dictionary if (string.IsNullOrEmpty(xml)) return true; var result = SerializationUtils.DeSerializeObject(xml, this.GetType()) as PropertyBag<TValue>; if (result != null) { foreach (var item in result) { this.Add(item.Key, item.Value); } } else // null is a failure return false; return true; } /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml"></param> /// <returns></returns> public static PropertyBag<TValue> CreateFromXml(string xml) { var bag = new PropertyBag<TValue>(); bag.FromXml(xml); return bag; } } } The code uses a couple of small helper classes SerializationUtils and XmlUtils for mapping Xml types to and from .NET, both of which are from the WestWind,Utilities project (which is the same project where PropertyBag lives) from the West Wind Web Toolkit. The code implements ReadXml and WriteXml for the IXmlSerializable implementation using old school XmlReaders and XmlWriters (because it's pretty simple stuff - no need for XLinq here). Then there are two helper methods .ToXml() and .FromXml() that basically allow your code to easily convert between XML and a PropertyBag object. In my code that's what I use to actually to persist to and from the entity XML property during .Load() and .Save() operations. It's sweet to be able to have a string key dictionary and then be able to turn around with 1 line of code to persist the whole thing to XML and back. Hopefully some of you will find this class as useful as I've found it. It's a simple solution to a common requirement in my applications and I've used the hell out of it in the  short time since I created it. Resources You can find the complete code for the two classes plus the helpers in the Subversion repository for Westwind.Utilities. You can grab the source files from there or download the whole project. You can also grab the full Westwind.Utilities assembly from NuGet and add it to your project if that's easier for you. PropertyBag Source Code SerializationUtils and XmlUtils Westwind.Utilities Assembly on NuGet (add from Visual Studio) © Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Samba doesnt require password on xbmc but does on ubuntu

    - by Chris
    I have samba setup on a fedora 13 machine, and I use it to share with my xbmc client in the family room. When I set this up there no password or anything was required I merely entered in paths such as: smb://<host>/<share> and all worked. Now on my ubuntu 10.04 machine when I try to access the same hosts, for example through smbmount though I receive an error. smbmount //media/Music ~/Music/ # media is in my /etc/hosts and resolves to # correct IP address for the machine I receive error: operation not permitted after pressing enter when it prompts for password. Here is my entry from /etc/samba/smb.conf: [global] workgroup = WORKGROUP server string = Samba Server Version %v # log files split per-machine: log file = /var/log/samba/log.%m # maximum size of 50KB per log file, then rotate: max log size = 50 security = user passdb backend = tdbsam ; security = domain ; passdb backend = tdbsam ; realm = MY_REALM ; password server = <NT-Server-Name> ; security = user ; passdb backend = tdbsam ; domain master = yes ; domain logons = yes ; logon script = %m.bat ; logon script = %u.bat ; logon path = \\%L\Profiles\%u ; logon path = ; add user script = /usr/sbin/useradd "%u" -n -g users ; add group script = /usr/sbin/groupadd "%g" ; add machine script = /usr/sbin/useradd -n -c "Workstation (%u)" -M -d /nohome -s /bin/false "%u" ; delete user script = /usr/sbin/userdel "%u" ; delete user from group script = /usr/sbin/userdel "%u" "%g" ; delete group script = /usr/sbin/groupdel "%g" ; local master = no ; os level = 33 ; preferred master = yes ; wins support = yes ; wins server = w.x.y.z ; wins proxy = yes ; dns proxy = yes load printers = yes cups options = raw ; printcap name = /etc/printcap # obtain a list of printers automatically on UNIX System V systems: ; printcap name = lpstat ; printing = cups ; map archive = no ; map hidden = no ; map read only = no ; map system = no ; store dos attributes = yes #============================ Share Definitions ============================== [homes] comment = Home Directories browseable = no writable = yes ; valid users = %S ; valid users = MYDOMAIN\%S # Un-comment the following and create the netlogon directory for Domain Logons: ; [netlogon] ; comment = Network Logon Service ; path = /var/lib/samba/netlogon ; guest ok = yes ; writable = no ; share modes = no # Un-comment the following to provide a specific roving profile share. # The default is to use the user's home directory: ; [Profiles] ; path = /var/lib/samba/profiles ; browseable = no ; guest ok = yes # A publicly accessible directory that is read only, except for users in the # "staff" group (which have write permissions): ; [public] ; comment = Public Stuff ; path = /home/samba ; public = yes ; writable = yes ; printable = no ; write list = +staff [tv] comment = TV path = /media/Isos/tv public = yes writable = yes printable = no write list = +media [music] comment = Music path = /media/Storage/music/ public = yes writable = yes printable = no write list = +media [pictures] comment = Pictures path = /media/Storage/pictures public = yes writable = yes printable = no write list = +media

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

< Previous Page | 293 294 295 296 297 298 299 300 301 302 303 304  | Next Page >