Search Results

Search found 43197 results on 1728 pages for 'dynamic function'.

Page 3/1728 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Dynamic obstacles avoidance in navigation mesh system

    - by Variable
    I've built my path finding system with unreal engine, somehow the path finding part works just fine while i can't find a proper way to solve dynamic obstacles avoidance problem. My characters are walking allover the map and collide with each other while they moving. I try to steering them when collision occurs, but this doesn't work well. For example, two characters block on the road while the third one's path is right in the middle of them and he'll get stuck. Can someone tell me the most popular way of doing dynamic avoidance? Thanks a lot.

    Read the article

  • SQL SERVER – Function: Is Function – SQL in Sixty Seconds #004 – Video

    - by pinaldave
    Today is February 29th. An unique date which we only get to observe once every four year. Year 2012 is leap year and SQL Server 2012 is also releasing this year. Yesterday I wrote an article where we have seen observed how using four different function we can create another function which can accurately validate if any year is leap year or not. We will use three functions newly introduced in SQL Server 2012 and demonstrate how we can find if any year is leap year or not. This function uses three of the SQL Server 2012 functions - IIF, EOMONTH and CONCAT. When I wrote this function, this is the sortest function I ever wrote to find out leap year. Please watch the video and let me know if any shorter function can be written to find leap year. More on Leap Yer: Detecting Leap Year in T-SQL using SQL Server 2012 – IIF, EOMONTH and CONCAT Function Date and Time Functions – EOMONTH() – A Quick Introduction Script/Function to Find Last Day of Month  I encourage you to submit your ideas for SQL in Sixty Seconds. We will try to accommodate as many as we can. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Video

    Read the article

  • Call a void* as a function without declaring a function pointer

    - by ToxIk
    I've searched but couldn't find any results (my terminology may be off) so forgive me if this has been asked before. I was wondering if there is an easy way to call a void* as a function in C without first declaring a function pointer and then assigning the function pointer the address; ie. assuming the function to be called is type void(void) void *ptr; ptr = <some address>; ((void*())ptr)(); /* call ptr as function here */ with the above code, I get error C2066: cast to function type is illegal in VC2008 If this is possible, how would the syntax differ for functions with return types and multiple parameters?

    Read the article

  • Lua : Dynamicly calling a function with arguments.

    - by Tipx
    Using Lua, I'm trying to dynamicly call a function with parameters. What I want to have it done is I send a string to be parsed in a way that : 1st argument is a class instance "Handle" 2nd is the function to be called All that is left are arguments "modules" is a a table like { string= } split() is a simple parser that returns a table with indexed strings function Dynamic(msg) local args = split(msg, " ") module = args[1] table.remove(args, 1) if module then module = modules[module] command = args[1] table.remove(args, 1) if command then if not args then module[command]() else module[command](unpack(args)) -- Reference 1 end else -- Function doesnt exist end else -- Module doesnt exist end end When I try this with "ignore remove bob", by "Reference 1", it tries to call "remove" on the instance associated with "ignore" in modules, and gives the argument "bob", contained in a table (with a single value). However, on the other side of the call, the remove function does not receive the argument. I even tried to replace the "Reference 1" line with module[command]("bob") but I get the same result.

    Read the article

  • JS function returning another function

    - by Michael
    I want to understand about variables, that has been used in returning function. This is example code Prototype = {} Prototype.F = { bind: function() { var args = arguments, __method = args.shift(), object = args.shift(); return function() { return __method.apply(object, args.concat(arguments)); } } } function ObjectA() { ... this.addListener = Prototype.F.bind(this.eventSource.addListener, this.eventSource); ... } var a = ObjectA(); a.addListener(this); // assuming 'this' here will point to some window object As I understand the returning function in F() is not evaluated until it's called in the last line. It's ok to accept. So addListener will hold a function body containing 'apply'. But what I don't understand, when addListener is called, what kind of parameters it is going to have? particularly _method and args will always be uninitialized?

    Read the article

  • how to pass arguments into function within a function in r

    - by jon
    I am writing function that involve other function from base R with alot of arguments. For example (real function is much longer): myfunction <- function (dataframe, Colv = NA) { matrix <- as.matrix (dataframe) out <- heatmap(matrix, Colv = Colv) return(out) } data(mtcars) myfunction (mtcars, Colv = NA) The heatmap has many arguments that can be passed to: heatmap(x, Rowv=NULL, Colv=if(symm)"Rowv" else NULL, distfun = dist, hclustfun = hclust, reorderfun = function(d,w) reorder(d,w), add.expr, symm = FALSE, revC = identical(Colv, "Rowv"), scale=c("row", "column", "none"), na.rm = TRUE, margins = c(5, 5), ColSideColors, RowSideColors, cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc), labRow = NULL, labCol = NULL, main = NULL, xlab = NULL, ylab = NULL, keep.dendro = FALSE, verbose = getOption("verbose"), ...) I want to use these arguments without listing them inside myfun. myfunction (mtcars, Colv = NA, col = topo.colors(16)) Error in myfunction(mtcars, Colv = NA, col = topo.colors(16)) : unused argument(s) (col = topo.colors(16)) I tried the following but do not work: myfunction <- function (dataframe, Colv = NA) { matrix <- as.matrix (dataframe) out <- heatmap(matrix, Colv = Colv, ....) return(out) } data(mtcars) myfunction (mtcars, Colv = NA, col = topo.colors(16))

    Read the article

  • Creating a Dynamic DataRow for easier DataRow Syntax

    - by Rick Strahl
    I've been thrown back into an older project that uses DataSets and DataRows as their entity storage model. I have several applications internally that I still maintain that run just fine (and I sometimes wonder if this wasn't easier than all this ORM crap we deal with with 'newer' improved technology today - but I disgress) but use this older code. For the most part DataSets/DataTables/DataRows are abstracted away in a pseudo entity model, but in some situations like queries DataTables and DataRows are still surfaced to the business layer. Here's an example. Here's a business object method that runs dynamic query and the code ends up looping over the result set using the ugly DataRow Array syntax:public int UpdateAllSafeTitles() { int result = this.Execute("select pk, title, safetitle from " + Tablename + " where EntryType=1", "TPks"); if (result < 0) return result; result = 0; foreach (DataRow row in this.DataSet.Tables["TPks"].Rows) { string title = row["title"] as string; string safeTitle = row["safeTitle"] as string; int pk = (int)row["pk"]; string newSafeTitle = this.GetSafeTitle(title); if (newSafeTitle != safeTitle) { this.ExecuteNonQuery("update " + this.Tablename + " set safeTitle=@safeTitle where pk=@pk", this.CreateParameter("@safeTitle",newSafeTitle), this.CreateParameter("@pk",pk) ); result++; } } return result; } The problem with looping over DataRow objecs is two fold: The array syntax is tedious to type and not real clear to look at, and explicit casting is required in order to do anything useful with the values. I've highlighted the place where this matters. Using the DynamicDataRow class I'll show in a minute this code can be changed to look like this:public int UpdateAllSafeTitles() { int result = this.Execute("select pk, title, safetitle from " + Tablename + " where EntryType=1", "TPks"); if (result < 0) return result; result = 0; foreach (DataRow row in this.DataSet.Tables["TPks"].Rows) { dynamic entry = new DynamicDataRow(row); string newSafeTitle = this.GetSafeTitle(entry.title); if (newSafeTitle != entry.safeTitle) { this.ExecuteNonQuery("update " + this.Tablename + " set safeTitle=@safeTitle where pk=@pk", this.CreateParameter("@safeTitle",newSafeTitle), this.CreateParameter("@pk",entry.pk) ); result++; } } return result; } The code looks much a bit more natural and describes what's happening a little nicer as well. Well, using the new dynamic features in .NET it's actually quite easy to implement the DynamicDataRow class. Creating your own custom Dynamic Objects .NET 4.0 introduced the Dynamic Language Runtime (DLR) and opened up a whole bunch of new capabilities for .NET applications. The dynamic type is an easy way to avoid Reflection and directly access members of 'dynamic' or 'late bound' objects at runtime. There's a lot of very subtle but extremely useful stuff that dynamic does (especially for COM Interop scenearios) but in its simplest form it often allows you to do away with manual Reflection at runtime. In addition you can create DynamicObject implementations that can perform  custom interception of member accesses and so allow you to provide more natural access to more complex or awkward data structures like the DataRow that I use as an example here. Bascially you can subclass DynamicObject and then implement a few methods (TryGetMember, TrySetMember, TryInvokeMember) to provide the ability to return dynamic results from just about any data structure using simple property/method access. In the code above, I created a custom DynamicDataRow class which inherits from DynamicObject and implements only TryGetMember and TrySetMember. Here's what simple class looks like:/// <summary> /// This class provides an easy way to turn a DataRow /// into a Dynamic object that supports direct property /// access to the DataRow fields. /// /// The class also automatically fixes up DbNull values /// (null into .NET and DbNUll to DataRow) /// </summary> public class DynamicDataRow : DynamicObject { /// <summary> /// Instance of object passed in /// </summary> DataRow DataRow; /// <summary> /// Pass in a DataRow to work off /// </summary> /// <param name="instance"></param> public DynamicDataRow(DataRow dataRow) { DataRow = dataRow; } /// <summary> /// Returns a value from a DataRow items array. /// If the field doesn't exist null is returned. /// DbNull values are turned into .NET nulls. /// /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; try { result = DataRow[binder.Name]; if (result == DBNull.Value) result = null; return true; } catch { } result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { try { if (value == null) value = DBNull.Value; DataRow[binder.Name] = value; return true; } catch {} return false; } } To demonstrate the basic features here's a short test: [TestMethod] [ExpectedException(typeof(RuntimeBinderException))] public void BasicDataRowTests() { DataTable table = new DataTable("table"); table.Columns.Add( new DataColumn() { ColumnName = "Name", DataType=typeof(string) }); table.Columns.Add( new DataColumn() { ColumnName = "Entered", DataType=typeof(DateTime) }); table.Columns.Add(new DataColumn() { ColumnName = "NullValue", DataType = typeof(string) }); DataRow row = table.NewRow(); DateTime now = DateTime.Now; row["Name"] = "Rick"; row["Entered"] = now; row["NullValue"] = null; // converted in DbNull dynamic drow = new DynamicDataRow(row); string name = drow.Name; DateTime entered = drow.Entered; string nulled = drow.NullValue; Assert.AreEqual(name, "Rick"); Assert.AreEqual(entered,now); Assert.IsNull(nulled); // this should throw a RuntimeBinderException Assert.AreEqual(entered,drow.enteredd); } The DynamicDataRow requires a custom constructor that accepts a single parameter that sets the DataRow. Once that's done you can access property values that match the field names. Note that types are automatically converted - no type casting is needed in the code you write. The class also automatically converts DbNulls to regular nulls and vice versa which is something that makes it much easier to deal with data returned from a database. What's cool here isn't so much the functionality - even if I'd prefer to leave DataRow behind ASAP -  but the fact that we can create a dynamic type that uses a DataRow as it's 'DataSource' to serve member values. It's pretty useful feature if you think about it, especially given how little code it takes to implement. By implementing these two simple methods we get to provide two features I was complaining about at the beginning that are missing from the DataRow: Direct Property Syntax Automatic Type Casting so no explicit casts are required Caveats As cool and easy as this functionality is, it's important to understand that it doesn't come for free. The dynamic features in .NET are - well - dynamic. Which means they are essentially evaluated at runtime (late bound). Rather than static typing where everything is compiled and linked by the compiler/linker, member invokations are looked up at runtime and essentially call into your custom code. There's some overhead in this. Direct invocations - the original code I showed - is going to be faster than the equivalent dynamic code. However, in the above code the difference of running the dynamic code and the original data access code was very minor. The loop running over 1500 result records took on average 13ms with the original code and 14ms with the dynamic code. Not exactly a serious performance bottleneck. One thing to remember is that Microsoft optimized the DLR code significantly so that repeated calls to the same operations are routed very efficiently which actually makes for very fast evaluation. The bottom line for performance with dynamic code is: Make sure you test and profile your code if you think that there might be a performance issue. However, in my experience with dynamic types so far performance is pretty good for repeated operations (ie. in loops). While usually a little slower the perf hit is a lot less typically than equivalent Reflection work. Although the code in the second example looks like standard object syntax, dynamic is not static code. It's evaluated at runtime and so there's no type recognition until runtime. This means no Intellisense at development time, and any invalid references that call into 'properties' (ie. fields in the DataRow) that don't exist still cause runtime errors. So in the case of the data row you still get a runtime error if you mistype a column name:// this should throw a RuntimeBinderException Assert.AreEqual(entered,drow.enteredd); Dynamic - Lots of uses The arrival of Dynamic types in .NET has been met with mixed emotions. Die hard .NET developers decry dynamic types as an abomination to the language. After all what dynamic accomplishes goes against all that a static language is supposed to provide. On the other hand there are clearly scenarios when dynamic can make life much easier (COM Interop being one place). Think of the possibilities. What other data structures would you like to expose to a simple property interface rather than some sort of collection or dictionary? And beyond what I showed here you can also implement 'Method missing' behavior on objects with InvokeMember which essentially allows you to create dynamic methods. It's all very flexible and maybe just as important: It's easy to do. There's a lot of power hidden in this seemingly simple interface. Your move…© Rick Strahl, West Wind Technologies, 2005-2011Posted in CSharp  .NET   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamic mod_rewrite or how to plan a dynamic website

    - by Sophia Gavish
    Hi, I'm trying to make a clean url for a blog on a dynamic website, but I think that the problem is that I don't know how to plan the website schema. I read about how to use mod_rewrite and all I found is how to make "http://www.website.com/?category&date&post-title" to "http://www.website.com/category/date/post-title". that's works o.k for me. The problem is that If my url looks like "http://www.website.com/blog/?id=34" this method won't work as far as I got it. So, I have two questions: 1. Is there a way to use mod_rewrite (maybe read from a txt file) to read the post title of my blog and rewrite my url by date and post-title? 2. Should I rewrite my website to query the data from one index file in the homepage and use mod_rewrite to write the nice url? should I query also the date and the title of the post instead just the post ID?

    Read the article

  • Flash Builder 4: Call main function from a component function

    - by hyper
    i try to make a login sistem in flex, and my app looks like this: i have a main.mxml. when the app loads, a function named "start" is called. it verifies if the user is logged in or not. if "true" the user is redirected to a dashboard, if "false", a component named login is loaded. my login.mxml component has 2 input boxes (user & pass) and a "Submit" button. when the button is pressed a function named "send_login" sends the user and the pass values to the server. My problem sounds like this: when i press the Submit button in my login component, after user and pass are sended... i want to call again the "start" function from my main.mxml to check again if the user is logged in or not... i need some kind of as2 "_root" this is how my code looks: main.mxml public function start():void { currentState="Start"; loginstatus(); } login.mxml private function send_login(event:Event):void { ... bla bla send user and pass.... scriptLoader.addEventListener(Event.COMPLETE, handleLoadSuccessful); } private function handleLoadSuccessful(evt:Event):void { trace("Data sent."); start(); <-- HERE i want to call the function from main.mxml } any help is welcomed!

    Read the article

  • What is the merit of the "function" type (not "pointer to function")

    - by anatolyg
    Reading the C++ Standard, i see that there are "function" types and "pointer to function" types: typedef int func(int); // function typedef int (*pfunc)(int); // pointer to function typedef func* pfunc; // same as above I have never seen the function types used outside of examples (or maybe i didn't recognize their usage?). Some examples: func increase, decrease; // declares two functions int increase(int), decrease(int); // same as above int increase(int x) {return x + 1;} // cannot use the typedef when defining functions int decrease(int x) {return x - 1;} // cannot use the typedef when defining functions struct mystruct { func add, subtract, multiply; // declares three member functions int member; }; int mystruct::add(int x) {return x + member;} // cannot use the typedef int mystruct::subtract(int x) {return x - member;} int main() { func k; // the syntax is correct but the variable k is useless! mystruct myobject; myobject.member = 4; cout << increase(5) << ' ' << decrease(5) << '\n'; // outputs 6 and 4 cout << myobject.add(5) << ' ' << myobject.subtract(5) << '\n'; // 9 and 1 } Seeing that the function types support syntax that doesn't appear in C (declaring member functions), i guess they are not just a part of C baggage that C++ has to support for backward compatibility. So is there any use for function types, other than demonstrating some funky syntax?

    Read the article

  • Dynamic Code for type casting Generic Types 'generically' in C#

    - by Rick Strahl
    C# is a strongly typed language and while that's a fundamental feature of the language there are more and more situations where dynamic types make a lot of sense. I've written quite a bit about how I use dynamic for creating new type extensions: Dynamic Types and DynamicObject References in C# Creating a dynamic, extensible C# Expando Object Creating a dynamic DataReader for dynamic Property Access Today I want to point out an example of a much simpler usage for dynamic that I use occasionally to get around potential static typing issues in C# code especially those concerning generic types. TypeCasting Generics Generic types have been around since .NET 2.0 I've run into a number of situations in the past - especially with generic types that don't implement specific interfaces that can be cast to - where I've been unable to properly cast an object when it's passed to a method or assigned to a property. Granted often this can be a sign of bad design, but in at least some situations the code that needs to be integrated is not under my control so I have to make due with what's available or the parent object is too complex or intermingled to be easily refactored to a new usage scenario. Here's an example that I ran into in my own RazorHosting library - so I have really no excuse, but I also don't see another clean way around it in this case. A Generic Example Imagine I've implemented a generic type like this: public class RazorEngine<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase, new() You can now happily instantiate new generic versions of this type with custom template bases or even a non-generic version which is implemented like this: public class RazorEngine : RazorEngine<RazorTemplateBase> { public RazorEngine() : base() { } } To instantiate one: var engine = new RazorEngine<MyCustomRazorTemplate>(); Now imagine that the template class receives a reference to the engine when it's instantiated. This code is fired as part of the Engine pipeline when it gets ready to execute the template. It instantiates the template and assigns itself to the template: var template = new TBaseTemplateType() { Engine = this } The problem here is that possibly many variations of RazorEngine<T> can be passed. I can have RazorTemplateBase, RazorFolderHostTemplateBase, CustomRazorTemplateBase etc. as generic parameters and the Engine property has to reflect that somehow. So, how would I cast that? My first inclination was to use an interface on the engine class and then cast to the interface.  Generally that works, but unfortunately here the engine class is generic and has a few members that require the template type in the member signatures. So while I certainly can implement an interface: public interface IRazorEngine<TBaseTemplateType> it doesn't really help for passing this generically templated object to the template class - I still can't cast it if multiple differently typed versions of the generic type could be passed. I have the exact same issue in that I can't specify a 'generic' generic parameter, since there's no underlying base type that's common. In light of this I decided on using object and the following syntax for the property (and the same would be true for a method parameter): public class RazorTemplateBase :MarshalByRefObject,IDisposable { public object Engine {get;set; } } Now because the Engine property is a non-typed object, when I need to do something with this value, I still have no way to cast it explicitly. What I really would need is: public RazorEngine<> Engine { get; set; } but that's not possible. Dynamic to the Rescue Luckily with the dynamic type this sort of thing can be mitigated fairly easily. For example here's a method that uses the Engine property and uses the well known class interface by simply casting the plain object reference to dynamic and then firing away on the properties and methods of the base template class that are common to all templates:/// <summary> /// Allows rendering a dynamic template from a string template /// passing in a model. This is like rendering a partial /// but providing the input as a /// </summary> public virtual string RenderTemplate(string template,object model) { if (template == null) return string.Empty; // if there's no template markup if(!template.Contains("@")) return template; // use dynamic to get around generic type casting dynamic engine = Engine; string result = engine.RenderTemplate(template, model); if (result == null) throw new ApplicationException("RenderTemplate failed: " + engine.ErrorMessage); return result; } Prior to .NET 4.0  I would have had to use Reflection for this sort of thing which would have a been a heck of a lot more verbose, but dynamic makes this so much easier and cleaner and in this case at least the overhead is negliable since it's a single dynamic operation on an otherwise very complex operation call. Dynamic as  a Bailout Sometimes this sort of thing often reeks of a design flaw, and I agree that in hindsight this could have been designed differently. But as is often the case this particular scenario wasn't planned for originally and removing the generic signatures from the base type would break a ton of other code in the framework. Given the existing fairly complex engine design, refactoring an interface to remove generic types just to make this particular code work would have been overkill. Instead dynamic provides a nice and simple and relatively clean solution. Now if there were many other places where this occurs I would probably consider reworking the code to make this cleaner but given this isolated instance and relatively low profile operation use of dynamic seems a valid choice for me. This solution really works anywhere where you might end up with an inheritance structure that doesn't have a common base or interface that is sufficient. In the example above I know what I'm getting but there's no common base type that I can cast to. All that said, it's a good idea to think about use of dynamic before you rush in. In many situations there are alternatives that can still work with static typing. Dynamic definitely has some overhead compared to direct static access of objects, so if possible we should definitely stick to static typing. In the example above the application already uses dynamics extensively for dynamic page page templating and passing models around so introducing dynamics here has very little additional overhead. The operation itself also fires of a fairly resource heavy operation where the overhead of a couple of dynamic member accesses are not a performance issue. So, what's your experience with dynamic as a bailout mechanism? © Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Function lfit in numerical recipes, providing a test function

    - by Simon Walker
    Hi I am trying to fit collected data to a polynomial equation and I found the lfit function from Numerical Recipes. I only have access to the second edition, so am using that. I have read about the lfit function and its parameters, one of which is a function pointer, given in the documentation as void (*funcs)(float, float [], int)) with the help The user supplies a routine funcs(x,afunc,ma) that returns the ma basis functions evaluated at x = x in the array afunc[1..ma]. I am struggling to understand how this lfit function works. An example function I found is given below: void fpoly(float x, float p[], int np) /*Fitting routine for a polynomial of degree np-1, with coe?cients in the array p[1..np].*/ { int j; p[1]=1.0; for (j=2;j<=np;j++) p[j]=p[j-1]*x; } When I run through the source code for the lfit function in gdb I can see no reference to the funcs pointer. When I try and fit a simple data set with the function, I get the following error message. Numerical Recipes run-time error... gaussj: Singular Matrix ...now exiting to system... Clearly somehow a matrix is getting defined with all zeroes. I am going to involve this function fitting in a large loop so using another language is not really an option. Hence why I am planning on using C/C++. For reference, the test program is given here: int main() { float x[5] = {0., 0., 1., 2., 3.}; float y[5] = {0., 0., 1.2, 3.9, 7.5}; float sig[5] = {1., 1., 1., 1., 1.}; int ndat = 4; int ma = 4; /* parameters in equation */ float a[5] = {1, 1, 1, 0.1, 1.5}; int ia[5] = {1, 1, 1, 1, 1}; float **covar = matrix(1, ma, 1, ma); float chisq = 0; lfit(x,y,sig,ndat,a,ia,ma,covar,&chisq,fpoly); printf("%f\n", chisq); free_matrix(covar, 1, ma, 1, ma); return 0; } Also confusing the issue, all the Numerical Recipes functions are 1 array-indexed so if anyone has corrections to my array declarations let me know also! Cheers

    Read the article

  • SQL SERVER – Question to You – When to use Function and When to use Stored Procedure

    - by pinaldave
    This week has been very interesting week. I have asked few questions to users and have received remarkable participation on the subject. Q1) SQL SERVER – Puzzle – SELECT * vs SELECT COUNT(*) Q2) SQL SERVER – Puzzle – Statistics are not Updated but are Created Once Keeping the same spirit up, I am asking the third question over here. Q3) When to use User Defined Function and when to use Stored Procedure in your development? Personally, I believe that they are both different things - they cannot be compared. I can say, it will be like comparing apples and oranges. Each has its own unique use. However, they can be used interchangeably at many times and in real life (i.e., production environment). I have personally seen both of these being used interchangeably many times. This is the precise reason for asking this question. When do you use Function and when do you use Stored Procedure? What are Pros and Cons of each of them when used instead of each other? If you are going to answer that ‘To avoid repeating code, you use Function’ - please think harder! Stored procedure can do the same. In SQL Server Denali, even the stored procedure can return the result just like Function in SELECT statement; so if you are going to answer with ‘Function can be used in SELECT, whereas Stored Procedure cannot be used’ - again think harder! (link). Now, what do you say? I will post the answers of all the three questions with due credit next week. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Question, SQL, SQL Authority, SQL Function, SQL Puzzle, SQL Query, SQL Server, SQL Stored Procedure, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Convert Dynamic to Type and convert Type to Dynamic

    - by Jon Canning
    public static class DynamicExtensions     {         public static T FromDynamic<T>(this IDictionary<string, object> dictionary)         {             var bindings = new List<MemberBinding>();             foreach (var sourceProperty in typeof(T).GetProperties().Where(x => x.CanWrite))             {                 var key = dictionary.Keys.SingleOrDefault(x => x.Equals(sourceProperty.Name, StringComparison.OrdinalIgnoreCase));                 if (string.IsNullOrEmpty(key)) continue;                 var propertyValue = dictionary[key];                 bindings.Add(Expression.Bind(sourceProperty, Expression.Constant(propertyValue)));             }             Expression memberInit = Expression.MemberInit(Expression.New(typeof(T)), bindings);             return Expression.Lambda<Func<T>>(memberInit).Compile().Invoke();         }         public static dynamic ToDynamic<T>(this T obj)         {             IDictionary<string, object> expando = new ExpandoObject();             foreach (var propertyInfo in typeof(T).GetProperties())             {                 var propertyExpression = Expression.Property(Expression.Constant(obj), propertyInfo);                 var currentValue = Expression.Lambda<Func<string>>(propertyExpression).Compile().Invoke();                 expando.Add(propertyInfo.Name.ToLower(), currentValue);             }             return expando as ExpandoObject;         }     }

    Read the article

  • ORACLE RIGHTNOW DYNAMIC AGENT DESKTOP CLOUD SERVICE - Putting the Dynamite into Dynamic Agent Desktop

    - by Andreea Vaduva
    Untitled Document There’s a mountain of evidence to prove that a great contact centre experience results in happy, profitable and loyal customers. The very best Contact Centres are those with high first contact resolution, customer satisfaction and agent productivity. But how many companies really believe they are the best? And how many believe that they can be? We know that with the right tools, companies can aspire to greatness – and achieve it. Core to this is ensuring their agents have the best tools that give them the right information at the right time, so they can focus on the customer and provide a personalised, professional and efficient service. Today there are multiple channels through which customers can communicate with you; phone, web, chat, social to name a few but regardless of how they communicate, customers expect a seamless, quality experience. Most contact centre agents need to switch between lots of different systems to locate the right information. This hampers their productivity, frustrates both the agent and the customer and increases call handling times. With this in mind, Oracle RightNow has designed and refined a suite of add-ins to optimize the Agent Desktop. Each is designed to simplify and adapt the agent experience for any given situation and unify the customer experience across your media channels. Let’s take a brief look at some of the most useful tools available and see how they make a difference. Contextual Workspaces: The screen where agents do their job. Agents don’t want to be slowed down by busy screens, scrolling through endless tabs or links to find what they’re looking for. They want quick, accurate and easy. Contextual Workspaces are fully configurable and through workspace rules apply if, then, else logic to display only the information the agent needs for the issue at hand . Assigned at the Profile level, different levels of agent, from a novice to the most experienced, get a screen that is relevant to their role and responsibilities and ensures their job is done quickly and efficiently the first time round. Agent Scripting: Sometimes, agents need to deliver difficult or sensitive messages while maximising the opportunity to cross-sell and up-sell. After all, contact centres are now increasingly viewed as revenue generators. Containing sophisticated branching logic, scripting helps agents to capture the right level of information and guides the agent step by step, ensuring no mistakes, inconsistencies or missed opportunities. Guided Assistance: This is typically used to solve common troubleshooting issues, displaying a series of question and answer sets in a decision-tree structure. This means agents avoid having to bookmark favourites or rely on written notes. Agents find particular value in these guides - to quickly craft chat and email responses. What’s more, by publishing guides in answers on support pages customers, can resolve issues themselves, without needing to contact your agents. And b ecause it can also accelerate agent ramp-up time, it ensures that even novice agents can solve customer problems like an expert. Desktop Workflow: Take a step back and look at the full customer interaction of your agents. It probably spans multiple systems and multiple tasks. With Desktop Workflows you control the design workflows that span the full customer interaction from start to finish. As sequences of decisions and actions, workflows are unique in that they can create or modify different records and provide automation behind the scenes. This means your agents can save time and provide better quality of service by having the tools they need and the relevant information as required. And doing this boosts satisfaction among your customers, your agents and you – so win, win, win! I have highlighted above some of the tools which can be used to optimise the desktop; however, this is by no means an exhaustive list. In approaching your design, it’s important to understand why and how your customers contact you in the first place. Once you have this list of “whys” and “hows”, you can design effective policies and procedures to handle each category of problem, and then implement the right agent desktop user interface to support them. This will avoid duplication and wasted effort. Five Top Tips to take away: Start by working out “why” and “how” customers are contacting you. Implement a clean and relevant agent desktop to support your agents. If your workspaces are getting complicated consider using Desktop Workflow to streamline the interaction. Enhance your Knowledgebase with Guides. Agents can access them proactively and can be published on your web pages for customers to help themselves. Script any complex, critical or sensitive interactions to ensure consistency and accuracy. Desktop optimization is an ongoing process so continue to monitor and incorporate feedback from your agents and your customers to keep your Contact Centre successful.   Want to learn more? Having attending the 3-day Oracle RightNow Customer Service Administration class your next step is to attend the Oracle RightNow Customer Portal Design and 2-day Dynamic Agent Desktop Administration class. Here you’ll learn not only how to leverage the Agent Desktop tools but also how to optimise your self-service pages to enhance your customers’ web experience.   Useful resources: Review the Best Practice Guide Review the tune-up guide   About the Author: Angela Chandler joined Oracle University as a Senior Instructor through the RightNow Customer Experience Acquisition. Her other areas of expertise include Business Intelligence and Knowledge Management.  She currently delivers the following Oracle RightNow courses in the classroom and as a Live Virtual Class: RightNow Customer Service Administration (3 days) RightNow Customer Portal Design and Dynamic Agent Desktop Administration (2 days) RightNow Analytics (2 days) Rightnow Chat Cloud Service Administration (2 days)

    Read the article

  • Is this how dynamic language copes with dynamic requirement?

    - by Amumu
    The question is in the title. I want to have my thinking verified by experienced people. You can add more or disregard my opinion, but give me a reason. Here is an example requirement: Suppose you are required to implement a fighting game. Initially, the game only includes fighters, who can attack each other. Each fighter can punch, kick or block incoming attacks. Fighters can have various fighting styles: Karate, Judo, Kung Fu... That's it for the simple universe of the game. In an OO like Java, it can be implemented similar to this way: abstract class Fighter { int hp, attack; void punch(Fighter otherFighter); void kick(Fighter otherFighter); void block(Figther otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; This is fine if the game stays like this forever. But, somehow the game designers decide to change the theme of the game: instead of a simple fighting game, the game evolves to become a RPG, in which characters can not only fight but perform other activities, i.e. the character can be a priest, an accountant, a scientist etc... At this point, to make it more generic, we have to change the structure of our original design: Fighter is not used to refer to a person anymore; it refers to a profession. The specialized classes of Fighter (KaraterFighter, JudoFighter, KungFuFighter) . Now we have to create a generic class named Person. However, to adapt this change, I have to change the method signatures of the original operations: class Person { int hp, attack; List<Profession> skillSet; }; abstract class Profession {}; class Fighter extends Profession { void punch(Person otherFighter); void kick(Person otherFighter); void block(Person otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; class Accountant extends Profession { void calculateTax(Person p) { //...implementation...}; void calculateTax(Company c) { //...implementation...}; }; //... more professions... Here are the problems: To adapt to the method changes, I have to fix the places where the changed methods are called (refactoring). Every time a new requirement is introduced, the current structural design has to be broken to adapt the changes. This leads to the first problem. Rigid structure makes it hard for code reuse. A function can only accept the predefined types, but it cannot accept future unknown types. A written function is bound to its current universe and has no way to accommodate to the new types, without modifications or rewrite from scratch. I see Java has a lot of deprecated methods. OO is an extreme case because it has inheritance to add up the complexity, but in general for statically typed language, types are very strict. In contrast, a dynamic language can handle the above case as follow: ;;fighter1 punch fighter2 (defun perform-punch (fighter1 fighter2) ...implementation... ) ;;fighter1 kick fighter2 (defun perform-kick (fighter1 fighter2) ...implementation... ) ;;fighter1 blocks attacks from fighter2 (defun perform-block (fighter1 fighter2) ...implementation... ) fighter1 and fighter2 can be anything as long as it has the required data for calculation; or methods (duck typing). You don't have to change from the type Fighter to Person. In the case of Lisp, because Lisp only has a single data structure: list, it's even easier to adapt to changes. However, other dynamic languages can have similar behaviors as well. I work primarily with static languages (mainly C and Java, but working with Java was a long time ago). I started learning Lisp and some other dynamic languages this year. I can see how it helps improving my productivity.

    Read the article

  • Dynamic table design (common lookup table), need a nice query to get the values

    - by Swoosh
    sql2005 This is my simplified example: (in reality there are 40+ tables in here, I only showed 2) I got a table called tb_modules, with 3 columns (id, description, tablename as varchar): 1, UserType, tb_usertype 2, Religion, tb_religion (Last column is actually the name of a different table) I got an other table that looks like this: tb_value (columns:id, tb_modules_ID, usertype_OR_religion_ID) values: 1111, 1, 45 1112, 1, 55 1113, 2, 123 1114, 2, 234 so, I mean 45, 55, 123, 234 are usertype OR religion ID's (45, 55 usertype, 123, 234 religion ID`s) Don't judge, I didn't design the database Question How can I make a select, showing * from tb_value, plus one column That one column would be TITLE from the tb_usertype or RELIGIONNAME from the tb_religion table I would like to make a general thing. Was thinking initially about maybe a SQL function that returns a string, but I think I would need dynamic SQL, which is not ok in a function. Anyone a better idea ?

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • SQL SERVER – Solution to Puzzle – Simulate LEAD() and LAG() without Using SQL Server 2012 Analytic Function

    - by pinaldave
    Earlier I wrote a series on SQL Server Analytic Functions of SQL Server 2012. During the series to keep the learning maximum and having fun, we had few puzzles. One of the puzzle was simulating LEAD() and LAG() without using SQL Server 2012 Analytic Function. Please read the puzzle here first before reading the solution : Write T-SQL Self Join Without Using LEAD and LAG. When I was originally wrote the puzzle I had done small blunder and the question was a bit confusing which I corrected later on but wrote a follow up blog post on over here where I describe the give-away. Quick Recap: Generate following results without using SQL Server 2012 analytic functions. I had received so many valid answers. Some answers were similar to other and some were very innovative. Some answers were very adaptive and some did not work when I changed where condition. After selecting all the valid answer, I put them in table and ran RANDOM function on the same and selected winners. Here are the valid answers. No Joins and No Analytic Functions Excellent Solution by Geri Reshef – Winner of SQL Server Interview Questions and Answers (India | USA) WITH T1 AS (SELECT Row_Number() OVER(ORDER BY SalesOrderDetailID) N, s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663)) SELECT SalesOrderID,SalesOrderDetailID,OrderQty, CASE WHEN N%2=1 THEN MAX(CASE WHEN N%2=0 THEN SalesOrderDetailID END) OVER (Partition BY (N+1)/2) ELSE MAX(CASE WHEN N%2=1 THEN SalesOrderDetailID END) OVER (Partition BY N/2) END LeadVal, CASE WHEN N%2=1 THEN MAX(CASE WHEN N%2=0 THEN SalesOrderDetailID END) OVER (Partition BY N/2) ELSE MAX(CASE WHEN N%2=1 THEN SalesOrderDetailID END) OVER (Partition BY (N+1)/2) END LagVal FROM T1 ORDER BY SalesOrderID, SalesOrderDetailID, OrderQty; GO No Analytic Function and Early Bird Excellent Solution by DHall – Winner of Pluralsight 30 days Subscription -- a query to emulate LEAD() and LAG() ;WITH s AS ( SELECT 1 AS ldOffset, -- equiv to 2nd param of LEAD 1 AS lgOffset, -- equiv to 2nd param of LAG NULL AS ldDefVal, -- equiv to 3rd param of LEAD NULL AS lgDefVal, -- equiv to 3rd param of LAG ROW_NUMBER() OVER (ORDER BY SalesOrderDetailID) AS row, SalesOrderID, SalesOrderDetailID, OrderQty FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ) SELECT s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty, ISNULL( sLd.SalesOrderDetailID, s.ldDefVal) AS LeadValue, ISNULL( sLg.SalesOrderDetailID, s.lgDefVal) AS LagValue FROM s LEFT OUTER JOIN s AS sLd ON s.row = sLd.row - s.ldOffset LEFT OUTER JOIN s AS sLg ON s.row = sLg.row + s.lgOffset ORDER BY s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty No Analytic Function and Partition By Excellent Solution by DHall – Winner of Pluralsight 30 days Subscription /* a query to emulate LEAD() and LAG() */ ;WITH s AS ( SELECT 1 AS LeadOffset, /* equiv to 2nd param of LEAD */ 1 AS LagOffset, /* equiv to 2nd param of LAG */ NULL AS LeadDefVal, /* equiv to 3rd param of LEAD */ NULL AS LagDefVal, /* equiv to 3rd param of LAG */ /* Try changing the values of the 4 integer values above to see their effect on the results */ /* The values given above of 0, 0, null and null behave the same as the default 2nd and 3rd parameters to LEAD() and LAG() */ ROW_NUMBER() OVER (ORDER BY SalesOrderDetailID) AS row, SalesOrderID, SalesOrderDetailID, OrderQty FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ) SELECT s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty, ISNULL( sLead.SalesOrderDetailID, s.LeadDefVal) AS LeadValue, ISNULL( sLag.SalesOrderDetailID, s.LagDefVal) AS LagValue FROM s LEFT OUTER JOIN s AS sLead ON s.row = sLead.row - s.LeadOffset /* Try commenting out this next line when LeadOffset != 0 */ AND s.SalesOrderID = sLead.SalesOrderID /* The additional join criteria on SalesOrderID above is equivalent to PARTITION BY SalesOrderID in the OVER clause of the LEAD() function */ LEFT OUTER JOIN s AS sLag ON s.row = sLag.row + s.LagOffset /* Try commenting out this next line when LagOffset != 0 */ AND s.SalesOrderID = sLag.SalesOrderID /* The additional join criteria on SalesOrderID above is equivalent to PARTITION BY SalesOrderID in the OVER clause of the LAG() function */ ORDER BY s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty No Analytic Function and CTE Usage Excellent Solution by Pravin Patel - Winner of SQL Server Interview Questions and Answers (India | USA) --CTE based solution ; WITH cteMain AS ( SELECT SalesOrderID, SalesOrderDetailID, OrderQty, ROW_NUMBER() OVER (ORDER BY SalesOrderDetailID) AS sn FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ) SELECT m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty, sLead.SalesOrderDetailID AS leadvalue, sLeg.SalesOrderDetailID AS leagvalue FROM cteMain AS m LEFT OUTER JOIN cteMain AS sLead ON sLead.sn = m.sn+1 LEFT OUTER JOIN cteMain AS sLeg ON sLeg.sn = m.sn-1 ORDER BY m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty No Analytic Function and Co-Related Subquery Usage Excellent Solution by Pravin Patel – Winner of SQL Server Interview Questions and Answers (India | USA) -- Co-Related subquery SELECT m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty, ( SELECT MIN(SalesOrderDetailID) FROM Sales.SalesOrderDetail AS l WHERE l.SalesOrderID IN (43670, 43669, 43667, 43663) AND l.SalesOrderID >= m.SalesOrderID AND l.SalesOrderDetailID > m.SalesOrderDetailID ) AS lead, ( SELECT MAX(SalesOrderDetailID) FROM Sales.SalesOrderDetail AS l WHERE l.SalesOrderID IN (43670, 43669, 43667, 43663) AND l.SalesOrderID <= m.SalesOrderID AND l.SalesOrderDetailID < m.SalesOrderDetailID ) AS leag FROM Sales.SalesOrderDetail AS m WHERE m.SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty This was one of the most interesting Puzzle on this blog. Giveaway Winners will get following giveaways. Geri Reshef and Pravin Patel SQL Server Interview Questions and Answers (India | USA) DHall Pluralsight 30 days Subscription Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Function, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Dynamic Data Associate Related Table Value?

    - by davemackey
    I have create a LINQ-to-SQL project in Visual Studio 2010 using Dynamic Data. In this project I have two tables. One is called phones_extension and the other phones_ten. The list of columns in phones_extension looks like this: id, extension, prefix, did_flag, len, ten_id, restriction_class_id, sfc_id, name_display, building_id, floor, room, phone_id, department_id In phones_ten it looks like this: id, name, pbxid Now, I'd like to be able to somehow make it so that there is an association (or inheritance?) that essentially results in me being able to make a query like phones_extension.ten and it gives me the result of phones_ten.name. Right now I have to get phones_extension.ten_id and then match that against phones_ten.id - I'm trying to get the DBML to handle this translation automatically. Is this possible?

    Read the article

  • Get Function Pointer to function in a shared library I didn't directly load

    - by bdk
    My Linux application (A) links against a Third Party shared Library (B) which I don't have source code to. This library makes use of another third party shared library that I don't have source code to (C). I believe that (B) uses dlopen to access (C) instead of directly linking. My reasoning for this is that 'ldd' on (B) does not show (C) and objdump -X (B) shows references to dlopen/dlclose/dlsym. My requirement is that I need to in my code for (A) get a function pointer to a function foo() located in (C). Normally I'd use dlsym for this, but I need to pass it the handle returned from dlopen which I don't have since (B) does not expose this. - For the larger context: I need to modify the function in (C) such that everytime it calls its helper function bar() (also located in (C)), it also calls a function with the same signature located in (A) with the same parameters (Basically inject my code into the codepath of (C) foo()-bar(). I believe I've found a way to accomplish this using gdb, but in order to port my gdb command list, but I'm stuck on the step of getting the function pointer. I'm also open to alternatives to accomplish the same task rather than the exact problem as stated above Edit: After writing this I realized I can probably just do another dlopen on the file in my code and the symbols returned via dlsym on that handle should be the same as received via the original dlopen, If I'm reading the dlopen man page correctly. However I'm still interested in advice or assistance with the my larger context, If theres a better way to go about this

    Read the article

  • ASP.NET Dynamic Data Deployment Error

    - by rajbk
    You have an ASP.NET 3.5 dynamic data website that works great on your local box. When you deploy it to your production machine and turn on debug, you get the YSD Server Error in '/MyPath/MyApp' Application. Parser Error Description: An error occurred during the parsing of a resource required to service this request. Please review the following specific parse error details and modify your source file appropriately. Parser Error Message: Unknown server tag 'asp:DynamicDataManager'. Source Error: Line 5:  Line 6:  <asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server"> Line 7:      <asp:DynamicDataManager ID="DynamicDataManager1" runat="server" AutoLoadForeignKeys="true" /> Line 8:  Line 9:      <h2><%= table.DisplayName%></h2> Probable Causes The server does not have .NET 3.5 SP1, which includes ASP.NET Dynamic Data, installed. Download it here. The third tagPrefix shown below is missing from web.config <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.DynamicData" assembly="System.Web.DynamicData, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls></pages>     Hope that helps!

    Read the article

  • Learning to implement dynamic language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamic language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >