Search Results

Search found 28325 results on 1133 pages for 'test cases'.

Page 3/1133 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • A starting point for Use Cases and User Stories

    - by Mike Benkovich
    Originally posted on: http://geekswithblogs.net/benko/archive/2013/07/23/a-starting-point-for-use-cases-and-user-stories.aspxSoftware is a challenging business and is rife with opportunities to go wrong. Over the years a number of methodologies have evolved to help make sure that things go right. In an effort to contribute to this I’ve created a list of user stories that I think should be included and sometimes are just assumed. Note this is a work in progress, so I’m looking for your feedback. I’m curious what you would add or change in my list. · As a DBA I am working with a Normalized data model that reflects an agreed upon logical model for the system · As a DBA I am using consistent names for my fields which match the naming standards of my organization · As a DBA my model supports simple CRUD operations against all the entities · As an Application Architect the UI has been validated against the Business requirements and a complete set of user story’s have been created · As an Application Architect the database model has been validated against the UI · As an Application Architect we have a logical business model that describes all the known and/or expected usage of the system during the software’s expected lifecycle · As an Application Architect we have a Deployment diagram that describes how the application components will be deployed · As an Application Architect we have a navigation diagram that describes the typical application flow · As an Application Architect we have identified points of interaction which describes how the UI interacts with the services and the data storage · As an Application Architect we have identified external systems which may now or in the future use the data of this application and have adapted the logical model to include these interactions · As an Application Architect we have identified existing systems and tools that can be extended and/or reused to help this application achieve it’s business goals · As a Project Manager all team members understand the goals of each release and iteration as they are planned · As a Project Manager all team members understand their role and the roles of others · As a Project Manager we have support of the business to do the right thing even if it is not the expedient thing · As a Test/QA Analyst we have created a simulation environment for testing the system which does not use sensitive data and accurately reflects the scenarios of all the data that will be supported by the system · As a Test/QA Analyst we have identified the matrix of supported clients used to access the system including the likely browsers, mobile devices and other interfaces to work with the application · As a Test/QA Analyst we have created exit criteria for each user story that match the requirements of the business story that was used to create them · As a Test/QA Analyst we have access to a Test environment that is isolated from production and staging environments · As a Test/QA Analyst there we have a way to reset the environment so we can rerun tests when a new version of the software becomes available · As a Test/QA Analyst I am able to automate portions of the test process Thoughts? -mike

    Read the article

  • “It’s only test code…”

    - by Chris George
    “Let me hack this in, it’s only test code”, “Don’t worry about getting it reviewed, it’s only test code”, “It doesn’t have to be elegant or efficient, it’s only test code”… do these phrases sound familiar? Chances are if you’ve working with test automation, at one point or other you will have heard these phrases, you have probably even used them yourself! What is certain is that code written under this “it’s only test code” mantra will come back and bite you in the arse! I’ve recently encountered a case where a test was giving a false positive, therefore hiding a real product bug because that test code was very badly written. Firstly it was very difficult to understand what the test was actually trying to achieve let alone how it was doing it, and this complexity masked a simple logic error. These issues are real and they do happen. Let’s take a step back from this and look at what we are trying to do. We are writing test code that tests product code, and we do this to create a suite of tests that will help protect our software against regressions. This test code is making sure that the product behaves as it should by employing some sort of expected result verification. The simple cases of these are generally not a problem. However, automation allows us to explore more complex scenarios in many more permutations. As this complexity increases then so does the complexity of the test code. It is at this point that code which has not been architected properly will cause problems.   Keep your friends close… So, how do we make sure we are doing it right? The development teams I have worked on have always had Test Engineers working very closely with their Software Engineers. This is something that I have always tried to take full advantage of. They are coding experts! So run your ideas past them, ask for advice on how to structure your code, help you design your data structures. This may require a shift in your teams viewpoint, as contrary to this section title and folklore, Software Engineers are not actually the mortal enemy of Test Engineers. As time progresses, and test automation becomes more and more ingrained in what we do, the two roles are converging more than ever. Over the 16 years I have spent as a Test Engineer, I have seen the grey area between the two roles grow significantly larger. This serves to strengthen the relationship and common bond between the two roles which helps to make test code activities so much easier!   Pair for the win Possibly the best thing you could do to write good test code is to pair program on the task. This will serve a few purposes. you will get the benefit of the Software Engineers knowledge and experience the Software Engineer will gain knowledge on the testing process. Sharing the love is a wonderful thing! two pairs of eyes are always better than one… And so are two brains. Between the two of you, I will guarantee you will derive more useful test cases than if it was just one of you.   Code reviews Another policy which certainly pays dividends is the practice of code reviews. By having one of your peers review your code before you commit it serves two purposes. Firstly, it forces you to explain your code. Just the act of doing this will often pick up errors in your code. Secondly, it gets yet another pair of eyes on your code! I cannot stress enough how important code reviews are. The benefits they offer apply as much to product code as test code. In short, Software and Test Engineers should all be doing them! It can be extended even further by getting test code reviewed by a Software Engineer and a Test Engineer, and likewise product code. This serves to keep both functions in the loop with changes going on within your code base.   Learn from your devs I briefly touched on this earlier but I’d like to go into more detail here. Pairing with your Software Engineers when writing your test code is such an amazing opportunity to improve your coding skills. As I sit here writing this article waiting to be called into court for jury service, it reminds me that it takes a lot of patience to be a Test Engineer, almost as much as it takes to be a juror! However tempting it is to go rushing in and start writing your automated tests, resist that urge. Discuss what you want to achieve then talk through the approach you’re going to take. Then code it up together. I find it really enlightening to ask questions like ‘is there a better way to do this?’ Or ‘is this how you would code it?’ The latter question, especially, is where I learn the most. I’ve found that most Software Engineers will be reluctant to show you the ‘right way’ to code something when writing tests because they perceive the ‘right way’ to be too complicated for the Test Engineer (e.g. not mentioning LINQ and instead doing something verbose). So by asking how THEY would code it, it unleashes their true dev-ness and advanced code usually ensues! I would like to point out, however, that you don’t have to accept their method as the final answer. On numerous occasions I have opted for the more simple/verbose solution because I found the code written by the Software Engineer too advanced and therefore I would find it unreadable when I return to the code in a months’ time! Always keep the target audience in mind when writing clever code, and in my case that is mostly Test Engineers.  

    Read the article

  • Testing Workflows &ndash; Test-First

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-first.aspxThis is the second of two posts on some common strategies for approaching the job of writing tests.  The previous post covered test-after workflows where as this will focus on test-first.  Each workflow presented is a method of attack for adding tests to a project.  The more tools in your tool belt the better.  So here is a partial list of some test-first methodologies. Ping Pong Ping Pong is a methodology commonly used in pair programing.  One developer will write a new failing test.  Then they hand the keyboard to their partner.  The partner writes the production code to get the test passing.  The partner then writes the next test before passing the keyboard back to the original developer. The reasoning behind this testing methodology is to facilitate pair programming.  That is to say that this testing methodology shares all the benefits of pair programming, including ensuring multiple team members are familiar with the code base (i.e. low bus number). Test Blazer Test Blazing, in some respects, is also a pairing strategy.  The developers don’t work side by side on the same task at the same time.  Instead one developer is dedicated to writing tests at their own desk.  They write failing test after failing test, never touching the production code.  With these tests they are defining the specification for the system.  The developer most familiar with the specifications would be assigned this task. The next day or later in the same day another developer fetches the latest test suite.  Their job is to write the production code to get those tests passing.  Once all the tests pass they fetch from source control the latest version of the test project to get the newer tests. This methodology has some of the benefits of pair programming, namely lowering the bus number.  This can be good way adding an extra developer to a project without slowing it down too much.  The production coder isn’t slowed down writing tests.  The tests are in another project from the production code, so there shouldn’t be any merge conflicts despite two developers working on the same solution. This methodology is also a good test for the tests.  Can another developer figure out what system should do just by reading the tests?  This question will be answered as the production coder works there way through the test blazer’s tests. Test Driven Development (TDD) TDD is a highly disciplined practice that calls for a new test and an new production code to be written every few minutes.  There are strict rules for when you should be writing test or production code.  You start by writing a failing (red) test, then write the simplest production code possible to get the code working (green), then you clean up the code (refactor).  This is known as the red-green-refactor cycle. The goal of TDD isn’t the creation of a suite of tests, however that is an advantageous side effect.  The real goal of TDD is to follow a practice that yields a better design.  The practice is meant to push the design toward small, decoupled, modularized components.  This is generally considered a better design that large, highly coupled ball of mud. TDD accomplishes this through the refactoring cycle.  Refactoring is only possible to do safely when tests are in place.  In order to use TDD developers must be trained in how to look for and repair code smells in the system.  Through repairing these sections of smelly code (i.e. a refactoring) the design of the system emerges. For further information on TDD, I highly recommend the series “Is TDD Dead?”.  It discusses its pros and cons and when it is best used. Acceptance Test Driven Development (ATDD) Whereas TDD focuses on small unit tests that concentrate on a small piece of the system, Acceptance Tests focuses on the larger integrated environment.  Acceptance Tests usually correspond to user stories, which come directly from the customer. The unit tests focus on the inputs and outputs of smaller parts of the system, which are too low level to be of interest to the customer. ATDD generally uses the same tools as TDD.  However, ATDD uses fewer mocks and test doubles than TDD. ATDD often complements TDD; they aren’t competing methods.  A full test suite will usually consist of a large number of unit (created via TDD) tests and a smaller number of acceptance tests. Behaviour Driven Development (BDD) BDD is more about audience than workflow.  BDD pushes the testing realm out towards the client.  Developers, managers and the client all work together to define the tests. Typically different tooling is used for BDD than acceptance and unit testing.  This is done because the audience is not just developers.  Tools using the Gherkin family of languages allow for test scenarios to be described in an English format.  Other tools such as MSpec or FitNesse also strive for highly readable behaviour driven test suites. Because these tests are public facing (viewable by people outside the development team), the terminology usually changes.  You can’t get away with the same technobabble you can with unit tests written in a programming language that only developers understand.  For starters, they usually aren’t called tests.  Usually they’re called “examples”, “behaviours”, “scenarios”, or “specifications”. This may seem like a very subtle difference, but I’ve seen this small terminology change have a huge impact on the acceptance of the process.  Many people have a bias that testing is something that comes at the end of a project.  When you say we need to define the tests at the start of the project many people will immediately give that a lower priority on the project schedule.  But if you say we need to define the specification or behaviour of the system before we can start, you’ll get more cooperation.   Keep these test-first and test-after workflows in your tool belt.  With them you’ll be able to find new opportunities to apply them.

    Read the article

  • Writing use cases for XML mapping scenarios between two different systems

    - by deepak_prn
    I am having some trouble writing use cases for XML mapping after a certain trigger invoked by the system. For example, one of the scenarios goes: the store cashier sells an item, the transaction data is sent to Data management system. Now, I am writing a functional design for the scenario which deals with mapping XML fields between our system and the data management system. Question : I was wondering if some one had to deal with writing use cases or extension use cases for mapping XML fields between two systems? (There is no XSLT involved) and if you used a table to represent the fields mapping (example is below) or any other visualization tool which does not break the bank ? I searched many questions on SO and here but nothing came close to my requirement.

    Read the article

  • Test Driven Development (TDD) in Visual Studio 2010- Microsoft Mondays

    - by Hosam Kamel
    November 14th , I will be presenting at Microsoft Mondays a session about Test Driven Development (TDD) in Visual Studio 2010 . Microsoft Mondays is program consisting of a series of Webcasts showcasing various Microsoft products and technologies. Each Monday we discuss a particular topic pertaining to development, infrastructure, Office tools, ERP, client/server operating systems etc. The webcast will be broadcast via Lync and can viewed from a web client. The idea behind the “Microsoft Mondays” program is to help you become more proficient in the products and technologies that you use and help you utilize their full potential.   Test Driven Development in Visual Studio 2010 Level – 300 (  Intermediate – Advanced ) Test Driven Development (TDD), also frequently referred to as Test Driven Design, is a development methodology where developers create software by first writing a unit test, then writing the actual system code to make the unit test pass.  The unit test can be viewed as a small specification around how the system should behave; writing it first helps the developer to focus on only writing enough code to make the test pass, thereby helping ensure a tight, lightweight system which is specifically focused meeting on the documented requirements. TDD follows a cadence of “Red, Green, Refactor.” Red refers to the visual display of a failing test – the test you write first will not pass because you have not yet written any code for it. Green refers to the step of writing just enough code in your system to make your unit test pass – your test runner’s UI will now show that test passing with a green icon. Refactor refers to the step of refactoring your code so it is tighter, cleaner, and more flexible. This cycle is repeated constantly throughout a TDD developer’s workday. Date:   November 14, 2011 Time:  10:00 a.m. – 11:00 a.m. (GMT+3)  http://www.eventbrite.com/event/2437620990/efbnen?ebtv=F   See you there! Hosam Kamel Originally posted at

    Read the article

  • Load and Web Performance Testing using Visual Studio Ultimate 2010-Part 2

    - by Tarun Arora
    Welcome back, in part 1 of Load and Web Performance Testing using Visual Studio 2010 I talked about why Performance Testing the application is important, the test tools available in Visual Studio Ultimate 2010 and various test rig topologies. In this blog post I’ll get into the details of web performance & load tests as well as why it’s important to follow a goal based pattern while performance testing your application. Tools => Options => Test Tools Have you visited the treasures of Visual Studio Menu bar tools => Options => Test Tools lately? The options to enable disable prompts on creating, editing, deleting or running manual/automated tests can be controller from here. The default test project language and default test types created on a new test project creation could be selected/unselected from here. Ever wondered how you can change the default limit of 25 test results, this can again be changed from here. If you record a lot of Web Tests and wish for the web test recorder to start with “that” URL populated, well this again can be specified from here. If you haven’t so far, I would urge you to spend 2 minutes in the test tools options.   Test Menu => Ready Steady Test Action! The Test tools are under the Test Menu in Visual Studio, apart from being able to create a new Test and Test List you can also load an existing vsmdi file. You can also manage your test controllers from here. A solution can have one or more test setting files, but there can only be one active test settings file at any time. Again, this selection can be done from here.  You can open the various test windows from under the windows option from the test menu. If you open the Test view window you will see that you have the option to group the tests by work items, project, test type, etc. You can set these properties by right clicking a test in the test list and choosing properties from the context menu.    So, what is a vsmdi file? vsmdi stands for Visual Studio Test Metadata File. Placed under the Solution Items this file keeps track of the list of unit tests in your solution. If you open the vsmdi file as an xml file you will see a series of Test Links nested with in the list Test List tags along with the Run Configuration tag. When in visual studio you run tests, the IDE looks at the vsmdi file to see what tests need to be run. You also have the option of using the vsmdi file in your team builds to specify which tests need to run as part of the build. Refer here for a walkthrough from a fellow blogger on how to use the vsmdi file in the team builds. Web Performance Test – The Truth! In Visual Studio 2010 “Web Tests” have been renamed to “Web Performance Tests”. Apart from renaming this test type there have been several improvements to this test type in visual studio 2010. I am very active on the MSDN Visual Studio And Load Testing forum and a frequent question from many users is “Do Web Tests support Pages that run JavaScript?” I will start with a little bit of background before answering this question. Web Performance Tests operate at the HTTP Layer, but why? To enable you to generate high loads with a relatively low amount of hardware, Web performance tests are driven at the protocol layer rather than instantiating a browser.The most common source of confusion is that users do not realize Web Performance Tests work at the HTTP layer. The tool adds to that misconception. After all, you record in IE, and when running a Web test you can select which browser to use, and then the result viewer shows the results in a browser window. So that means the tests run through the browser, right? NO! The Web test engine works at the HTTP layer, and does not instantiate a browser. What does that mean? In the diagram below, you can see there are no browsers running when the engine is sending and receiving requests. Does that mean I can’t test pages that use Java script? The best example for java script generating HTTP traffic is AJAX calls. The most common example of browser plugins are Silverlight or Flash. The Web test recorder will record HTTP traffic from AJAX calls and from most (but not all) browser plugins. This means you will still be able to web performance test pages that use java script or plugin and play back the results but the playback engine will not show the java script or plug in results in the ‘browser control’. If you want to test the page behaviour as a result of the java script or plug in consider using Coded UI Tests. This page looks like it failed, when in fact it succeeded! Looking closely at the response, and subsequent requests, it is clear the operation succeeded. As stated above, the reason why the browser control is pasting this message is because java script has been disabled in this control. So, to reiterate, the web performance test recorder: - Sends and receives data at the HTTP layer. - Does NOT run a browser. - Does NOT run java script. - Does NOT host ActiveX controls or plugins. There is a great series of blog posts from Ed Glas, i would highly recommend his blog to any one performing Load/Performance testing through Visual Studio. Demo – Web Performance Test [Demo] - Visual Studio Ultimate 2010: Test Settings and Configuration   [Demo]–Visual Studio Ultimate 2010: Web Performance Test   In this short video I try and answer the following questions, Why is performance Testing important? How does Visual Studio Help you performance Test your applications? How do i record a web performance test? How do make a web performance test data driven, transaction driven, loop driven, convert to code, add validations? Best practices for recording Web Performance Tests. I have a web performance test, what next? Creating the Web Performance Test was the first step towards load testing your application. Now that we have the base test we can test the page behaviour when N-users access the page. Have you ever had the head of business call you and mention that the marketing team has done a fantastic job and are expecting increased traffic on the web site, can the website survive the weekend with that additional load? This is the perfect opportunity to capacity test your application to see how your website holds up under various levels of load, you can work the results backwards to see how much hardware you may need to scale up your application to survive the weekend. Apart from that it is always a good idea to have some benchmarks around how the application performs under light loads for short duration, under heavy load for long duration and soak test the application run a constant load for a very week or two to record the effects of constant load for really long durations, this is a great way of identifying how your application handles the default IIS application pool reset which by default is configured to once every 25 hours. These bench marks will act as the perfect yard stick to measure performance gains when you start making improvements. BUT there are some best practices! => Goal Based Load Testing Approach Since the subject is vast and there are a lot of things to measure and analyse, … it is very easy to get distracted from the real goal!  You can optimize your application once you know where the pain points are. There is no point performing a load test of 5000 users if your intranet application will only have a 100 simultaneous users, it is important to keep focussed on the real goals of the project. So the idea is to have a user story around your load testing scenarios and test realistically. So it is recommended that you follow the below outline, It is an Iterative process, refine your objectives, identify the key scenarios, what is the expected workload, key metrics you want to report, record the web performance tests, simulate load and analyse results. Is your application already deployed in Production? This is great! You can analyse the IIS Logs to understand the user behaviour… But what are IIS LOGS? The IIS logs allow you to record events for each application and Web site on the Web server. You can create separate logs for each of your applications and Web sites. Logging information in IIS goes beyond the scope of the event logging or performance monitoring features provided by Windows. The IIS logs can include information, such as who has visited your site, what the visitor viewed, and when the information was last viewed. You can use the IIS logs to identify any attempts to gain unauthorized access to your Web server. How to configure IIS LOGS? For those Ninjas who already have IIS Logs configured (by the way its on by default) and need a way to analyse the IIS Logs, can use the Windows IIS Utility – Log Parser. Log Parser is a very powerful tool that provides a generic SQL-like language on top of many types of data like IIS Logs, Event Viewer entries, XML files, CSV files, File System and others; and it allows you to export the result of the queries to many output formats such as CSV, XML, SQL Server, Charts and others; and it works well with IIS 5, 6, 7 and 7.5. Frequently used Log Parser queries. Demo – Load Test [Demo]–Visual Studio Ultimate 2010: Load Testing   In this short video I try and answer the following questions, - Types of Performance Testing? - Perform Goal driven Load Testing, analyse Test Run Result and Generate a report? Recap A quick recap of what we have covered so far,     Thank you for taking the time out and reading this blog post, in part III of this blog series I’ll be getting into the details of Test Result Analysis, Test Result Drill through, Test Report Generation, Test Run Comparison, and the Asp.net Profiler. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Questions/Feedback/Suggestions, etc please leave a comment. See you on in Part III   Share this post : CodeProject

    Read the article

  • Setting Up IRM Test Content

    - by martin.abrahams
    A feature of the 11g IRM Server that sometimes gets overlooked is the ability to set up some test content that any IRM user can access to verify that their IRM Desktop can reach the server, authenticate successfully, and render protected content successfully. Such test content is useful for new users, and in troubleshooting scenarios. Here's how to set up some test content... In the management console, go to IRM - Administration - Test Content, as shown. The console will display a list of test content - initially an empty list. Use the Add option to specify the URL of a document or image, and define one or more labels for the test content in whichever languages your users favour. Note that you do not need to seal the image or document in order to use it as test content. Nor do you need to set up any rights for the test content. The IRM Server will handle the sealing and rights assignment automatically such that all authenticated users are authorised to view the test content. Repeat this process for as many different types of content as you would like to offer for test purposes - perhaps a Word document, a PDF document, and an image. To keep things simple the first time I did this, I used the URL of one of the images in the IRM Server's UI - so there was no problem with the IRM Server being able to reach that image. Whatever content you want to use, the IRM Server needs to be able to reach it at the URL you specify. Using Test Content Open a browser and browse to the URL that the IRM Desktop normally uses to access the IRM Server, for example: http://irm11g.oracle.com/irm_desktop If you are not sure, you can find this URL in the Servers tab of the IRM Options dialog. Go to the Test tab, and you will see your test content listed. By opening one of the items, you can verify that your IRM Desktop is healthy and that you can authenticate to the IRM Server.

    Read the article

  • Spring Test / JUnit problem - unable to load application context

    - by HDave
    I am using Spring for the first time and must be doing something wrong. I have a project with several Bean implementations and now I am trying to create a test class with Spring Test and JUnit. I am trying to use Spring Test to inject a customized bean into the test class. Here is my test-applicationContext.xml: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="............."> <bean id="MyUuidFactory" class="com.myapp.UuidFactory" scope="singleton" > <property name="typeIdentifier" value="CLS" /> </bean> <bean id="ThingyImplTest" class="com.myapp.ThingyImplTest" scope="singleton"> <property name="uuidFactory"> <idref local="MyUuidFactory" /> </property> </bean> </beans> The injection of MyUuidFactory instance goes along with the following code from within the test class: private UuidFactory uuidFactory; public void setUuidFactory(UuidFactory uuidFactory) { this.uuidFactory = uuidFactory; } However, when I go to run the test (in Eclipse or command line) I get the following error (stack trace omitted for brevity): Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'MyImplTest' defined in class path resource [test-applicationContext.xml]: Initialization of bean failed; nested exception is org.springframework.beans.ConversionNotSupportedException: Failed to convert property value of type 'java.lang.String' to required type 'com.myapp.UuidFactory' for property 'uuidFactory'; nested exception is java.lang.IllegalStateException: Cannot convert value of type [java.lang.String] to required type [com.myapp.UuidFactory] for property 'uuidFactory': no matching editors or conversion strategy found Funny thing is, the Eclipse/Spring XML editor shows errors of I misspell any of the types or idrefs. If I leave the bean in, but comment out the dependency injection, everything work until I get a NullPointerException while running the test...which makes sense.

    Read the article

  • The Agile Engineering Rules of Test Code

    - by Malcolm Anderson
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Lots of test code gets written, a lot of it is waste, some of it is well engineered waste.Companies hire Agile Engineering Coaches because agile engineering is easy to do wrong.Very easy.So here's a quick tool you can use for self coaching.It's what I call, "The Agile Engineering Rules of Test Code" and it's going to act as a sort of table of contents for some future posts.The Agile Engineering Rules of Test Code Malcolm Anderson   Test code is not throw away code Test code is production code   8 questions to determine the quality of your test code Does the test code have appropriate comments?Is the test code executed as part of the build?Every Time?Is the test code getting refactored?Does everyone use the same test code?Can the test code be described as “Well Maintained”?Can a bright six year old tell you why any particular test failed?Are the tests independent and infinitely repeatable?

    Read the article

  • Defining jUnit Test cases Correctly

    - by Epitaph
    I am new to Unit Testing and therefore wanted to do some practical exercise to get familiar with the jUnit framework. I created a program that implements a String multiplier public String multiply(String number1, String number2) In order to test the multiplier method, I created a test suite consisting of the following test cases (with all the needed integer parsing, etc) @Test public class MultiplierTest { Multiplier multiplier = new Multiplier(); // Test for 2 positive integers assertEquals("Result", 5, multiplier.multiply("5", "1")); // Test for 1 positive integer and 0 assertEquals("Result", 0, multiplier.multiply("5", "0")); // Test for 1 positive and 1 negative integer assertEquals("Result", -1, multiplier.multiply("-1", "1")); // Test for 2 negative integers assertEquals("Result", 10, multiplier.multiply("-5", "-2")); // Test for 1 positive integer and 1 non number assertEquals("Result", , multiplier.multiply("x", "1")); // Test for 1 positive integer and 1 empty field assertEquals("Result", , multiplier.multiply("5", "")); // Test for 2 empty fields assertEquals("Result", , multiplier.multiply("", "")); In a similar fashion, I can create test cases involving boundary cases (considering numbers are int values) or even imaginary values. 1) But, what should be the expected value for the last 3 test cases above? (a special number indicating error?) 2) What additional test cases did I miss? 3) Is assertEquals() method enough for testing the multiplier method or do I need other methods like assertTrue(), assertFalse(), assertSame() etc 4) Is this the RIGHT way to go about developing test cases? How am I "exactly" benefiting from this exercise? 5)What should be the ideal way to test the multiplier method? I am pretty clueless here. If anyone can help answer these queries I'd greatly appreciate it. Thank you.

    Read the article

  • rake test:units fails with status ()

    - by ander163
    New user, haven't been building tests as I go, so I'm an idiot. The application is running, but the tests fail. Here is what appears to be relevant: .... ** Execute test:units /usr/local/bin/ruby -I"lib:test" "/usr/local/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake/rake_test_loader.rb" "test/unit/event_test.rb" "test/unit/helpers/calendar1_helper_test.rb" "test/unit/helpers/events_helper_test.rb" "test/unit/helpers/homepage_helper_test.rb" "test/unit/helpers/main_helper_test.rb" "test/unit/helpers/mobile_helper_test.rb" "test/unit/helpers/notes_helper_test.rb" "test/unit/helpers/password_resets_helper_test.rb" "test/unit/helpers/projects_helper_test.rb" "test/unit/helpers/search_helper_test.rb" "test/unit/helpers/start_helper_test.rb" "test/unit/helpers/superadmin_helper_test.rb" "test/unit/helpers/tasks_helper_test.rb" "test/unit/helpers/user_sessions_helper_test.rb" "test/unit/helpers/users_helper_test.rb" "test/unit/note_test.rb" "test/unit/notifier_test.rb" "test/unit/project_test.rb" "test/unit/task_test.rb" "test/unit/user_session_test.rb" "test/unit/user_test.rb" /usr/lib/ruby/gems/1.8/gems/rails-2.3.5/lib/rails/gem_dependency.rb:119:Warning: Gem::Dependency#version_requirements is deprecated and will be removed on or after August 2010. Use #requirement /usr/lib/ruby/gems/1.8/gems/hpricot-0.6.164/lib/universal-java1.6/fast_xs.bundle: [BUG] Segmentation fault ruby 1.8.7 (2009-06-12 patchlevel 174) [i686-darwin10.2.0] rake aborted! Command failed with status (): [/usr/local/bin/ruby -I"lib:test" "/usr/loc...] /usr/local/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake.rb:995:in sh' /usr/local/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake.rb:1010:incall'

    Read the article

  • Copy-and-Pasted Test Code: How Bad is This?

    - by joshin4colours
    My current job is mostly writing GUI test code for various applications that we work on. However, I find that I tend to copy and paste a lot of code within tests. The reason for this is that the areas I'm testing tend to be similar enough to need repetition but not quite similar enough to encapsulate code into methods or objects. I find that when I try to use classes or methods more extensively, tests become more cumbersome to maintain and sometimes outright difficult to write in the first place. Instead, I usually copy a big chunk of test code from one section and paste it to another, and make any minor changes I need. I don't use more structured ways of coding, such as using more OO-principles or functions. Do other coders feel this way when writing test code? Obviously I want to follow DRY and YAGNI principles, but I find that test code (automated test code for GUI testing anyway) can make these principles tough to follow. Or do I just need more coding practice and a better overall system of doing things? EDIT: The tool I'm using is SilkTest, which is in a proprietary language called 4Test. As well, these tests are mostly for Windows desktop applications, but I also have tested web apps using this setup as well.

    Read the article

  • VS2012 Coded UI Test closes browser by default

    - by Tarun Arora
    *** Thanks to Steve St. Jean for asking this question and Shubhra Maji for answering this question on the ALM champs list *** 01 – Introduction The default behaviour of coded UI tests running in an Internet Explorer browser has changed between MTM 2010 and MTM 2012. When running a Coded UI test recorded in MTM 2012 or VS 2012 at the end of the test execution the instance of the browser is closed by default. 02 – Description Let’s take an example. As you can see the CloseDinnerNowWeb() method is commented out.  In VS 2010, upon running this test the browser would be left open after the test execution completes. In VS 2012 RTM the behaviour has changed. At the end of the test run, the IE window is closed even though there is no command from the test to do so. In the example below when the test runs, it opens 2 IE windows to the website. When the test run completes both the windows are closed, even though there is no command in the test to close the window. 03 – How to change the CUIT behaviour not to close the IE window after test execution? This change to this functionality in VS 2012 is by design. It is however possible to rollback the behaviour to how it originally was in VS 2010 i.e. the IE window will not close after the test execution unless otherwise commanded by the test to do so. To go back to the original functionality, set BrowserWindow.CloseOnPlaybackCleanup = false More details on the CloseOnPlaybackCleanup property can be found here http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.uitesting.applicationundertest.closeonplaybackcleanup.aspx  HTH

    Read the article

  • Homoscedascity test for Two-Way ANOVA

    - by aL3xa
    I've been using var.test and bartlett.test to check basic ANOVA assumptions, among others, homoscedascity (homogeniety, equality of variances). Procedure is quite simple for One-Way ANOVA: bartlett.test(x ~ g) # where x is numeric, and g is a factor var.test(x ~ g) But, for 2x2 tables, i.e. Two-Way ANOVA's, I want to do something like this: bartlett.test(x ~ c(g1, g2)) # or with list; see latter: var.test(x ~ list(g1, g2)) Of course, ANOVA assumptions can be checked with graphical procedures, but what about "an arithmetic option"? Is that manageable? How do you test homoscedascity in Two-Way ANOVA?

    Read the article

  • test cases for common algorithms [on hold]

    - by Alexey
    I need samples of test inputs and correct outputs for common algorithms for sorting, searching, data structures, graphs, etc. to check for mistakes in my future implementations. Can you advice resources with test cases? Or a website with community that implements algorithms and shares with results? Thanks! Edit: to clarify: I am going to implement forementioned algorithms for studying purposes and need inputs including large ones and correct outputs to better find mistakes in my implementations, since test cases that I can come up with on my own with might not be enough to reveal mistakes.

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • "Class ref in pre-verified class resolved to unexpected implementation" when running android tests i

    - by Mike
    I have a module that builds an app called MyApp. I have another that builds some testcases for that app, called MyAppTests. They both build their own APKs, and they both work fine from within my IDE. I'd like to build them using ant so that I can take advantage of continuous integration. Building the app module works fine. I'm having difficulty getting the Test module to compile and run. Using Christopher's tip from a previous question, I used android create test-project -p MyAppTests -m ../MyApp -n MyAppTests to create the necessary build files to build and run my test project. This seems to work great (once I remove an unnecessary test case that it constructed for me and revert my AndroidManifest.xml to the one I was using before it got replaced by android create), but I have two problems. The first problem: The project doesn't compile because it's missing libraries. $ ant run-tests Buildfile: build.xml [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -install-tested-project: [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 1 source file to /Users/mike/Projects/myapp/android/MyApp/bin/classes -dex: [echo] Converting compiled files and external libraries into /Users/mike/Projects/myapp/android/MyApp/bin/classes.dex... [echo] -package-resources: [echo] Packaging resources [aaptexec] Creating full resource package... -package-debug-sign: [apkbuilder] Creating MyApp-debug-unaligned.apk and signing it with a debug key... [apkbuilder] Using keystore: /Users/mike/.android/debug.keystore debug: [echo] Running zip align on final apk... [echo] Debug Package: /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk install: [echo] Installing /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk onto default emulator or device... [exec] 1567 KB/s (288354 bytes in 0.179s) [exec] pkg: /data/local/tmp/MyApp-debug.apk [exec] Success -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... [mkdir] Created dir: /Users/mike/Projects/myapp/android/MyAppTests/gen [mkdir] Created dir: /Users/mike/Projects/myapp/android/MyAppTests/bin [mkdir] Created dir: /Users/mike/Projects/myapp/android/MyAppTests/bin/classes -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 5 source files to /Users/mike/Projects/myapp/android/MyAppTests/bin/classes [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:4: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:8: package com.google.gson does not exist [javac] import com.google.gson.JsonElement; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:9: package com.google.gson does not exist [javac] import com.google.gson.JsonParser; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:11: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class GsonTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:6: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:7: package roboguice.util does not exist [javac] import roboguice.util.RoboLooperThread; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:11: package com.google.gson does not exist [javac] import com.google.gson.JsonObject; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:15: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class HttpTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:4: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:12: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class LinksTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:4: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:5: package roboguice.util does not exist [javac] import roboguice.util.RoboAsyncTask; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:6: package roboguice.util does not exist [javac] import roboguice.util.RoboLooperThread; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:12: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class SafeAsyncTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectResource': class file for roboguice.inject.InjectResource not found [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectResource' [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView': class file for roboguice.inject.InjectView not found [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView' [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView' [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView' [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:15: cannot find symbol [javac] symbol : class JsonParser [javac] location: class com.myapp.test.GsonTest [javac] final JsonParser parser = new JsonParser(); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:15: cannot find symbol [javac] symbol : class JsonParser [javac] location: class com.myapp.test.GsonTest [javac] final JsonParser parser = new JsonParser(); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:18: cannot find symbol [javac] symbol : class JsonElement [javac] location: class com.myapp.test.GsonTest [javac] final JsonElement e = parser.parse(s); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:20: cannot find symbol [javac] symbol : class JsonElement [javac] location: class com.myapp.test.GsonTest [javac] final JsonElement e2 = parser.parse(s2); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:19: cannot find symbol [javac] symbol : method getInstrumentation() [javac] location: class com.myapp.test.HttpTest [javac] assertEquals("MyApp", getInstrumentation().getTargetContext().getResources().getString(com.myapp.R.string.app_name)); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:62: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.HttpTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:82: cannot find symbol [javac] symbol : method assertTrue(java.lang.String,boolean) [javac] location: class com.myapp.test.HttpTest [javac] assertTrue(result[0], result[0].contains("Search")); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:87: cannot find symbol [javac] symbol : class JsonObject [javac] location: class com.myapp.test.HttpTest [javac] final JsonObject[] result = {null}; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:90: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.HttpTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:117: cannot find symbol [javac] symbol : class JsonObject [javac] location: class com.myapp.test.HttpTest [javac] final JsonObject[] result = {null}; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:120: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.HttpTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:27: cannot find symbol [javac] symbol : method assertTrue(boolean) [javac] location: class com.myapp.test.LinksTest [javac] assertTrue(m.matches()); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:28: cannot find symbol [javac] symbol : method assertEquals(java.lang.String,java.lang.String) [javac] location: class com.myapp.test.LinksTest [javac] assertEquals( map.get(url), m.group(1) ); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:19: cannot find symbol [javac] symbol : method getInstrumentation() [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals("MyApp", getInstrumentation().getTargetContext().getString(com.myapp.R.string.app_name)); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:27: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:65: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:74: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:105: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:113: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:144: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:154: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:187: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/StoriesTest.java:11: cannot access roboguice.activity.GuiceListActivity [javac] class file for roboguice.activity.GuiceListActivity not found [javac] public class StoriesTest extends ActivityUnitTestCase<Stories> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/StoriesTest.java:21: cannot access roboguice.application.GuiceApplication [javac] class file for roboguice.application.GuiceApplication not found [javac] setApplication( new MyApplication( getInstrumentation().getTargetContext() ) ); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/StoriesTest.java:22: incompatible types [javac] found : com.myapp.activity.Stories [javac] required: android.app.Activity [javac] final Activity activity = startActivity(intent, null, null); [javac] ^ [javac] 39 errors [javac] 6 warnings BUILD FAILED /opt/local/android-sdk-mac/platforms/android-1.6/templates/android_rules.xml:248: Compile failed; see the compiler error output for details. Total time: 24 seconds That's not a hard problem to solve. I'm not sure it's the right thing to do, but I copied the missing libraries (roboguice and gson) from the MyApp/libs directory to the MyAppTests/libs directory and everything seems to compile fine. But that leads to the second problem, which I'm currently stuck on. The tests compile fine but they won't run: $ cp ../MyApp/libs/gson-r538.jar libs/ $ cp ../MyApp/libs/roboguice-1.1-SNAPSHOT.jar libs/ 0 10:23 /Users/mike/Projects/myapp/android/MyAppTests $ ant run-testsBuildfile: build.xml [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -install-tested-project: [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 1 source file to /Users/mike/Projects/myapp/android/MyApp/bin/classes -dex: [echo] Converting compiled files and external libraries into /Users/mike/Projects/myapp/android/MyApp/bin/classes.dex... [echo] -package-resources: [echo] Packaging resources [aaptexec] Creating full resource package... -package-debug-sign: [apkbuilder] Creating MyApp-debug-unaligned.apk and signing it with a debug key... [apkbuilder] Using keystore: /Users/mike/.android/debug.keystore debug: [echo] Running zip align on final apk... [echo] Debug Package: /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk install: [echo] Installing /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk onto default emulator or device... [exec] 1396 KB/s (288354 bytes in 0.201s) [exec] pkg: /data/local/tmp/MyApp-debug.apk [exec] Success -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 5 source files to /Users/mike/Projects/myapp/android/MyAppTests/bin/classes [javac] Note: /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java uses unchecked or unsafe operations. [javac] Note: Recompile with -Xlint:unchecked for details. -dex: [echo] Converting compiled files and external libraries into /Users/mike/Projects/myapp/android/MyAppTests/bin/classes.dex... [echo] -package-resources: [echo] Packaging resources [aaptexec] Creating full resource package... -package-debug-sign: [apkbuilder] Creating MyAppTests-debug-unaligned.apk and signing it with a debug key... [apkbuilder] Using keystore: /Users/mike/.android/debug.keystore debug: [echo] Running zip align on final apk... [echo] Debug Package: /Users/mike/Projects/myapp/android/MyAppTests/bin/MyAppTests-debug.apk install: [echo] Installing /Users/mike/Projects/myapp/android/MyAppTests/bin/MyAppTests-debug.apk onto default emulator or device... [exec] 1227 KB/s (94595 bytes in 0.075s) [exec] pkg: /data/local/tmp/MyAppTests-debug.apk [exec] Success run-tests: [echo] Running tests ... [exec] [exec] android.test.suitebuilder.TestSuiteBuilder$FailedToCreateTests:INSTRUMENTATION_RESULT: shortMsg=Class ref in pre-verified class resolved to unexpected implementation [exec] INSTRUMENTATION_RESULT: longMsg=java.lang.IllegalAccessError: Class ref in pre-verified class resolved to unexpected implementation [exec] INSTRUMENTATION_CODE: 0 BUILD SUCCESSFUL Total time: 38 seconds Any idea what's causing the "Class ref in pre-verified class resolved to unexpected implementation" error?

    Read the article

  • sbt: "test" works "test:run" not

    - by Martin
    I try to establish a build pipeline on Jenkins with a Play(2.0.2) project. As I want to just build the sources once and use the classes for downstream builds, I now have created a "compile"-job, that runs "sbt test:compile". That works so far. The next job should then just run the compiled tests. If I use "sbt test" it works as expected, but compiles the sources again. But if I try to run "sbt test:run" it says: [info] Loading project definition from ~/myproject/project [info] Set current project to myproject (in build file: ~/myproject/) java.lang.RuntimeException: No main class detected. at scala.sys.package$.error(package.scala:27) [error] {file:~/myproject/test:run: No main class detected. The same happens locally. I can run "sbt test" but not "sbt test:run". Same error. Is there someone who can point me to the right direction?

    Read the article

  • Junit 4 test suite and individual test classes

    - by Hypnus
    I have a JUnit 4 test suite with BeforeClass and AfterClass methods that make a setup/teardown for the following test classes. What I need is to run the test classes also by them selves, but for that I need a setup/teardown scenario (BeforeClass and AfterClass or something like that) for each test class. The thing is that when I run the suite I do not want to execute the setup/teardown before and after each test class, I only want to execute the setup/teardown from the test suite (once). Is it possible ? Thanks in advance.

    Read the article

  • test post, not public

    test test test more test more test more test more test This site is a resource for asp.net web programming. It has examples by Peter Kellner of techniques for high performance programming...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Coded UI Test - How to change the exe it runs

    - by Vaccano
    I created a Coded UI Test from a Microsoft Test Manager recording. The exe it runs is the one the tester recorded against. I want this to be a test I run with my build. How do I change the exe that the coded UI test uses to be the output of: The TFS Build when a TFS Build is being run The local build when the test is being run on my machine.

    Read the article

  • How to run test suit with Spring TestContext ?

    - by lisak
    Hey, I can't figure out, how to set up following scenario with Sprint TestContext with either JUnit4 or testNG: @BeforeTestSuit - oneTimeSetUp @BeforeClass @Before - setUp @Test - testEmptyCollection @After - tearDown @Before - setUp @Test - testEmptyCollection @After - tearDown @AfterClass @BeforeClass @Before - setUp @Test - testOneItemCollection @After - tearDown @Before - setUp @Test - testEmptyCollection @After - tearDown @AfterClass @AfterTestSuit - oneTimeTearDown Could please anybody help me out here ? My architecture is a parent class with @RunWith(SpringJUnit4ClassRunner.class) that is extended with particular test classes.

    Read the article

  • Use-cases for node.js and c#

    - by Chase Florell
    I do quite a bit of ASP.NET work (C#, MVC), but most of it is typical web development. I do Restful architecture using CRUD repositories. Most of my clients don't have a lot of advanced requirements within their applications. I'm now looking at node.js and it's performance implications (I'm addicted to speed), but I haven't delved into it all that much. I'm wondering if node.js can realistically replace my typical web development in C# and ASP.NET MVC (not rewriting existing apps, but when working on new ones) node.js can complement an ASP.NET MVC app by adding some async goodness to the existing architecture. Are there use-cases for/against C# and node.js? Edit I love ASP.NET MVC and am super excited with where it's going. Just trying to see if there are special use cases that would favor node.js

    Read the article

  • Map, Set use cases in a general web app

    - by user2541902
    I am currently working on my own Java web app (to be shown in interview to get a Java job). So I've not worked on Java in professional environment, so no guidance. I have database, entity classes, JPA relationships. Use cases are like, user has albums, album has pics, user has locations, location has co-ordinates etc. I used List (ArrayList) everywhere. I can do anything with List and DB, get some entry, find etc. For example, I will keep the list of users in List, then use queries to get some entry (why would I keep them in Map with id/email as key?). I know very well the working and features, implementing classes of Map, Set. I can use them for solving some algorithm, processing some data etc. In interviews, I get asked have you worked with these, where have you used them etc. So, Please tell me cases where they should be used (DB or any popular real use case).

    Read the article

  • Test Environment configuration Management

    - by TechTestDude
    I am after a solution which will enable me to enter all my hardware/software elements (sort of like resource management), create a set of 'test environments' and assign hardware and software to that test environment for a given period. The idea is so that everyone can see and update what they need in any given environment to meet their project needs. Does anyone know of any systems out there which can achieve this? Vendor recommendations are welcome, but please call out your interest in it.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >