Search Results

Search found 24184 results on 968 pages for 'test runner'.

Page 3/968 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Creating a test database with copied data *and* its own data

    - by Jordan Reiter
    I'd like to create a test database that each day is refreshed with data from the production database. BUT, I'd like to be able to create records in the test database and retain them rather than having them be overwritten. I'm wondering if there is a simple straightforward way to do this. Both databases run on the same server, so apparently that rules out replication? For clarification, here is what I would like to happen: Test database is created with production data I create some test records that I want to keep running on the test server (basically so I can have example records that I can play with) Next day, the database is completely refreshed, but the records I created that day are retained. Records that were untouched that day are replaced with records from the production database. The complication is if a record in the production database is deleted, I want it to be deleted on the test database too, so I do want to get rid of records in the test database that no longer exist in the production database, unless those records were created within the test database. Seems like the only way to do this would be to have some sort of table storing metadata about the records being created? So for example, something like this: CREATE TABLE MetaDataRecords ( id integer not null primary key auto_increment, tablename varchar(100), action char(1), pk varchar(100) ); DELETE FROM testdb.users WHERE NOT EXISTS (SELECT * from proddb.users WHERE proddb.users.id=testdb.users.id) AND NOT EXISTS (SELECT * from testdb.MetaDataRecords WHERE testdb.MetaDataRecords.pk=testdb.users.pk AND testdb.MetaDataRecords.action='C' AND testdb.MetaDataRecords.tablename='users' );

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Unit test and Code Coverage of Ant build scripts

    - by pablaasmo
    In our development environment We have more and more build scripts for ant to perform the build tasks for several different build jobs. These build scripts sometimes become large and do a lot of things and basically is source code in and of itself. So in a "TDD-world" we should have unit tests and coverage reports for the source code. I found AntUnit and BuildFileTest.java for doing unit tests. But it would also be interesting to know the code coverage of those unit tests. I have been searching google, but have not found anything. Does anyone know of a code coverage tool for Ant build scripts?

    Read the article

  • Testcase runner for parametrized testcases

    - by Razer
    Let me explain my situation. I'm planning a kind of test case runner for doing testcases on external devices, which are microcontroller based. Lets consider the devices: Device 1 Device 2 There exist a lot of test cases which can be run with one of the devices above. For example: Testcase 1 Testcase 2 The main reason that all the testcases can be run with any device is, that the testcases validates some standard and this software should be extensible for future devices. The testcases itself must be runnable with changing parameters. For example Testcase 1 does some Timing Verification the testcase needs as input parameter the datarate: 4800, 9600, 19200. Now hoping you understand the situation, let me explain my design questions. For implementing the test cases I thought about an Attribute based approach, like nunit does it. The more complicated problem is, how to define the parametrized testcases? Like this: Device 1: Testcase 1: datarate: 4800, 9600, 19200 Testcase 2: supply: 1, 2, 3 Device 2: Testcase 1: datarate: 9600, 19200, 38400 Testcase 2: supply: 3, 4, 5 How would you design such a framework? I've done a similar desin in python where I had for every device a XML containing the testcase definitions like: <Testcase="Testcase 1" datarate=4800/> <Testcase="Testcase 1" datarate=9600/> <Testcase="Testcase 1" datarate=19200/>

    Read the article

  • Writing Acceptance test cases

    - by HH_
    We are integrating a testing process in our SCRUM process. My new role is to write acceptance tests of our web applications in order to automate them later. I have read a lot about how tests cases should be written, but none gave me practical advices to write test cases for complex web applications, and instead they threw conflicting principles that I found hard to apply: Test cases should be short: Take the example of a CMS. Short test cases are easy to maintain and to identify the inputs and outputs. But what if I want to test a long series of operations (eg. adding a document, sending a notification to another user, the other user replies, the document changes state, the user gets a notice). It rather seems to me that test cases should represent complete scenarios. But I can see how this will produce overtly complex test documents. Tests should identify inputs and outputs:: What if I have a long form with many interacting fields, with different behaviors. Do I write one test for everything, or one for each? Test cases should be independent: But how can I apply that if testing the upload operation requires that the connect operation is successful? And how does it apply to writing test cases? Should I write a test for each operation, but each test declares its dependencies, or should I rewrite the whole scenario for each test? Test cases should be lightly-documented: This principles is specific to Agile projects. So do you have any advice on how to implement this principle? Although I thought that writing acceptance test cases was going to be simple, I found myself overwhelmed by every decision I had to make (FYI: I am a developer and not a professional tester). So my main question is: What steps or advices do you have in order to write maintainable acceptance test cases for complex applications. Thank you.

    Read the article

  • Creating ground in a 2D runner game

    - by user739711
    It may be a repetitive uestion but I could not find any specific answer to my query How to create A slanted/curved ground in a 2d runner game. The user will see side view like the old game "Mario" If I use tiled based map I can have only rectangular objects. What is the best way to create tilted ground? Should I use tiled based map, or should I define corner points in the map and create the ground programatically? And what are the difficulties in creating curved ground.

    Read the article

  • XSD: how to use 'unique' & 'key'/'keyref' with element values?

    - by Koohoolinn
    I trying to use and / with element values but I just can't get it to work. If I do it with attrubute values it works like a charm. Test.xml <test:config xmlns:test="http://www.example.org/Test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.example.org/Test Test.xsd "> <test:location id="id1" path="/path2"> <test:roles> <test:role>role1</test:role> <test:role>role2</test:role> <test:role>role2</test:role> <!-- DUPLICATE: FAIL VALIDATION --> </test:roles> <test:action name="action1"> <test:roles> <test:role>role1</test:role> <test:role>role1</test:role> <!-- DUPLICATE: FAIL VALIDATION --> <test:role>role3</test:role> <!-- NOT DEFINED: FAIL VALIDATION --> </test:roles> </test:action> </test:location> </test:config> I want ensure that roles are only defined once and that the roles defined under the action element are only those defined at the upper level. Test.xsd <xs:element name="config"> <xs:complexType> <xs:sequence> <xs:element ref="test:location" maxOccurs="unbounded" /> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="location" type="test:LocationType"> <xs:key name="keyRole"> <xs:selector xpath="test:roles" /> <xs:field xpath="test:role" /> </xs:key> <xs:keyref name="keyrefRole" refer="test:keyRole"> <xs:selector xpath="test:action/test:roles" /> <xs:field xpath="test:role" /> </xs:keyref> </xs:element> <xs:complexType name="LocationType"> <xs:sequence> <xs:element ref="test:roles" minOccurs="0" /> <xs:element name="action" type="test:ActionType" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> <xs:attribute name="id" type="xs:string" use="required"/> <xs:attribute name="path" type="xs:string" use="required"/> </xs:complexType> <xs:element name="roles" type="test:RolesType"> <xs:unique name="uniqueRole"> <xs:selector xpath="." /> <xs:field xpath="test:role" /> </xs:unique> </xs:element> <xs:complexType name="RolesType"> <xs:sequence> <xs:element name="role" type="xs:string" maxOccurs="unbounded"/> </xs:sequence> </xs:complexType> <xs:complexType name="ActionType"> <xs:sequence> <xs:element ref="test:roles" /> </xs:sequence> <xs:attribute name="name" type="xs:string" use="required" /> </xs:complexType> The validation fails with these messages: Description Resource Path Location Type cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyrefRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 15 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyrefRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 16 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 15 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 16 XML Problem cvc-identity-constraint.4.1: Duplicate unique value [role1] declared for identity constraint "uniqueRole" of element "roles". Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.4.1: Duplicate unique value [role1] declared for identity constraint "uniqueRole" of element "roles". Test.xml /filebrowser-ejb/src/test/resources line 15 XML Problem cvc-identity-constraint.4.2.2: Duplicate key value [role1] declared for identity constraint "keyRole" of element "location". Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.4.3: Key 'keyrefRole' with value 'role3' not found for identity constraint of element 'location'. Test.xml /filebrowser-ejb/src/test/resources line 19 XML Problem If I comment out the lines that should fail, validation still fails now with these messages: Description Resource Path Location Type cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem What am I doing wrong?

    Read the article

  • “It’s only test code…”

    - by Chris George
    “Let me hack this in, it’s only test code”, “Don’t worry about getting it reviewed, it’s only test code”, “It doesn’t have to be elegant or efficient, it’s only test code”… do these phrases sound familiar? Chances are if you’ve working with test automation, at one point or other you will have heard these phrases, you have probably even used them yourself! What is certain is that code written under this “it’s only test code” mantra will come back and bite you in the arse! I’ve recently encountered a case where a test was giving a false positive, therefore hiding a real product bug because that test code was very badly written. Firstly it was very difficult to understand what the test was actually trying to achieve let alone how it was doing it, and this complexity masked a simple logic error. These issues are real and they do happen. Let’s take a step back from this and look at what we are trying to do. We are writing test code that tests product code, and we do this to create a suite of tests that will help protect our software against regressions. This test code is making sure that the product behaves as it should by employing some sort of expected result verification. The simple cases of these are generally not a problem. However, automation allows us to explore more complex scenarios in many more permutations. As this complexity increases then so does the complexity of the test code. It is at this point that code which has not been architected properly will cause problems.   Keep your friends close… So, how do we make sure we are doing it right? The development teams I have worked on have always had Test Engineers working very closely with their Software Engineers. This is something that I have always tried to take full advantage of. They are coding experts! So run your ideas past them, ask for advice on how to structure your code, help you design your data structures. This may require a shift in your teams viewpoint, as contrary to this section title and folklore, Software Engineers are not actually the mortal enemy of Test Engineers. As time progresses, and test automation becomes more and more ingrained in what we do, the two roles are converging more than ever. Over the 16 years I have spent as a Test Engineer, I have seen the grey area between the two roles grow significantly larger. This serves to strengthen the relationship and common bond between the two roles which helps to make test code activities so much easier!   Pair for the win Possibly the best thing you could do to write good test code is to pair program on the task. This will serve a few purposes. you will get the benefit of the Software Engineers knowledge and experience the Software Engineer will gain knowledge on the testing process. Sharing the love is a wonderful thing! two pairs of eyes are always better than one… And so are two brains. Between the two of you, I will guarantee you will derive more useful test cases than if it was just one of you.   Code reviews Another policy which certainly pays dividends is the practice of code reviews. By having one of your peers review your code before you commit it serves two purposes. Firstly, it forces you to explain your code. Just the act of doing this will often pick up errors in your code. Secondly, it gets yet another pair of eyes on your code! I cannot stress enough how important code reviews are. The benefits they offer apply as much to product code as test code. In short, Software and Test Engineers should all be doing them! It can be extended even further by getting test code reviewed by a Software Engineer and a Test Engineer, and likewise product code. This serves to keep both functions in the loop with changes going on within your code base.   Learn from your devs I briefly touched on this earlier but I’d like to go into more detail here. Pairing with your Software Engineers when writing your test code is such an amazing opportunity to improve your coding skills. As I sit here writing this article waiting to be called into court for jury service, it reminds me that it takes a lot of patience to be a Test Engineer, almost as much as it takes to be a juror! However tempting it is to go rushing in and start writing your automated tests, resist that urge. Discuss what you want to achieve then talk through the approach you’re going to take. Then code it up together. I find it really enlightening to ask questions like ‘is there a better way to do this?’ Or ‘is this how you would code it?’ The latter question, especially, is where I learn the most. I’ve found that most Software Engineers will be reluctant to show you the ‘right way’ to code something when writing tests because they perceive the ‘right way’ to be too complicated for the Test Engineer (e.g. not mentioning LINQ and instead doing something verbose). So by asking how THEY would code it, it unleashes their true dev-ness and advanced code usually ensues! I would like to point out, however, that you don’t have to accept their method as the final answer. On numerous occasions I have opted for the more simple/verbose solution because I found the code written by the Software Engineer too advanced and therefore I would find it unreadable when I return to the code in a months’ time! Always keep the target audience in mind when writing clever code, and in my case that is mostly Test Engineers.  

    Read the article

  • Testing Workflows &ndash; Test-First

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-first.aspxThis is the second of two posts on some common strategies for approaching the job of writing tests.  The previous post covered test-after workflows where as this will focus on test-first.  Each workflow presented is a method of attack for adding tests to a project.  The more tools in your tool belt the better.  So here is a partial list of some test-first methodologies. Ping Pong Ping Pong is a methodology commonly used in pair programing.  One developer will write a new failing test.  Then they hand the keyboard to their partner.  The partner writes the production code to get the test passing.  The partner then writes the next test before passing the keyboard back to the original developer. The reasoning behind this testing methodology is to facilitate pair programming.  That is to say that this testing methodology shares all the benefits of pair programming, including ensuring multiple team members are familiar with the code base (i.e. low bus number). Test Blazer Test Blazing, in some respects, is also a pairing strategy.  The developers don’t work side by side on the same task at the same time.  Instead one developer is dedicated to writing tests at their own desk.  They write failing test after failing test, never touching the production code.  With these tests they are defining the specification for the system.  The developer most familiar with the specifications would be assigned this task. The next day or later in the same day another developer fetches the latest test suite.  Their job is to write the production code to get those tests passing.  Once all the tests pass they fetch from source control the latest version of the test project to get the newer tests. This methodology has some of the benefits of pair programming, namely lowering the bus number.  This can be good way adding an extra developer to a project without slowing it down too much.  The production coder isn’t slowed down writing tests.  The tests are in another project from the production code, so there shouldn’t be any merge conflicts despite two developers working on the same solution. This methodology is also a good test for the tests.  Can another developer figure out what system should do just by reading the tests?  This question will be answered as the production coder works there way through the test blazer’s tests. Test Driven Development (TDD) TDD is a highly disciplined practice that calls for a new test and an new production code to be written every few minutes.  There are strict rules for when you should be writing test or production code.  You start by writing a failing (red) test, then write the simplest production code possible to get the code working (green), then you clean up the code (refactor).  This is known as the red-green-refactor cycle. The goal of TDD isn’t the creation of a suite of tests, however that is an advantageous side effect.  The real goal of TDD is to follow a practice that yields a better design.  The practice is meant to push the design toward small, decoupled, modularized components.  This is generally considered a better design that large, highly coupled ball of mud. TDD accomplishes this through the refactoring cycle.  Refactoring is only possible to do safely when tests are in place.  In order to use TDD developers must be trained in how to look for and repair code smells in the system.  Through repairing these sections of smelly code (i.e. a refactoring) the design of the system emerges. For further information on TDD, I highly recommend the series “Is TDD Dead?”.  It discusses its pros and cons and when it is best used. Acceptance Test Driven Development (ATDD) Whereas TDD focuses on small unit tests that concentrate on a small piece of the system, Acceptance Tests focuses on the larger integrated environment.  Acceptance Tests usually correspond to user stories, which come directly from the customer. The unit tests focus on the inputs and outputs of smaller parts of the system, which are too low level to be of interest to the customer. ATDD generally uses the same tools as TDD.  However, ATDD uses fewer mocks and test doubles than TDD. ATDD often complements TDD; they aren’t competing methods.  A full test suite will usually consist of a large number of unit (created via TDD) tests and a smaller number of acceptance tests. Behaviour Driven Development (BDD) BDD is more about audience than workflow.  BDD pushes the testing realm out towards the client.  Developers, managers and the client all work together to define the tests. Typically different tooling is used for BDD than acceptance and unit testing.  This is done because the audience is not just developers.  Tools using the Gherkin family of languages allow for test scenarios to be described in an English format.  Other tools such as MSpec or FitNesse also strive for highly readable behaviour driven test suites. Because these tests are public facing (viewable by people outside the development team), the terminology usually changes.  You can’t get away with the same technobabble you can with unit tests written in a programming language that only developers understand.  For starters, they usually aren’t called tests.  Usually they’re called “examples”, “behaviours”, “scenarios”, or “specifications”. This may seem like a very subtle difference, but I’ve seen this small terminology change have a huge impact on the acceptance of the process.  Many people have a bias that testing is something that comes at the end of a project.  When you say we need to define the tests at the start of the project many people will immediately give that a lower priority on the project schedule.  But if you say we need to define the specification or behaviour of the system before we can start, you’ll get more cooperation.   Keep these test-first and test-after workflows in your tool belt.  With them you’ll be able to find new opportunities to apply them.

    Read the article

  • Test Driven Development (TDD) in Visual Studio 2010- Microsoft Mondays

    - by Hosam Kamel
    November 14th , I will be presenting at Microsoft Mondays a session about Test Driven Development (TDD) in Visual Studio 2010 . Microsoft Mondays is program consisting of a series of Webcasts showcasing various Microsoft products and technologies. Each Monday we discuss a particular topic pertaining to development, infrastructure, Office tools, ERP, client/server operating systems etc. The webcast will be broadcast via Lync and can viewed from a web client. The idea behind the “Microsoft Mondays” program is to help you become more proficient in the products and technologies that you use and help you utilize their full potential.   Test Driven Development in Visual Studio 2010 Level – 300 (  Intermediate – Advanced ) Test Driven Development (TDD), also frequently referred to as Test Driven Design, is a development methodology where developers create software by first writing a unit test, then writing the actual system code to make the unit test pass.  The unit test can be viewed as a small specification around how the system should behave; writing it first helps the developer to focus on only writing enough code to make the test pass, thereby helping ensure a tight, lightweight system which is specifically focused meeting on the documented requirements. TDD follows a cadence of “Red, Green, Refactor.” Red refers to the visual display of a failing test – the test you write first will not pass because you have not yet written any code for it. Green refers to the step of writing just enough code in your system to make your unit test pass – your test runner’s UI will now show that test passing with a green icon. Refactor refers to the step of refactoring your code so it is tighter, cleaner, and more flexible. This cycle is repeated constantly throughout a TDD developer’s workday. Date:   November 14, 2011 Time:  10:00 a.m. – 11:00 a.m. (GMT+3)  http://www.eventbrite.com/event/2437620990/efbnen?ebtv=F   See you there! Hosam Kamel Originally posted at

    Read the article

  • Load and Web Performance Testing using Visual Studio Ultimate 2010-Part 2

    - by Tarun Arora
    Welcome back, in part 1 of Load and Web Performance Testing using Visual Studio 2010 I talked about why Performance Testing the application is important, the test tools available in Visual Studio Ultimate 2010 and various test rig topologies. In this blog post I’ll get into the details of web performance & load tests as well as why it’s important to follow a goal based pattern while performance testing your application. Tools => Options => Test Tools Have you visited the treasures of Visual Studio Menu bar tools => Options => Test Tools lately? The options to enable disable prompts on creating, editing, deleting or running manual/automated tests can be controller from here. The default test project language and default test types created on a new test project creation could be selected/unselected from here. Ever wondered how you can change the default limit of 25 test results, this can again be changed from here. If you record a lot of Web Tests and wish for the web test recorder to start with “that” URL populated, well this again can be specified from here. If you haven’t so far, I would urge you to spend 2 minutes in the test tools options.   Test Menu => Ready Steady Test Action! The Test tools are under the Test Menu in Visual Studio, apart from being able to create a new Test and Test List you can also load an existing vsmdi file. You can also manage your test controllers from here. A solution can have one or more test setting files, but there can only be one active test settings file at any time. Again, this selection can be done from here.  You can open the various test windows from under the windows option from the test menu. If you open the Test view window you will see that you have the option to group the tests by work items, project, test type, etc. You can set these properties by right clicking a test in the test list and choosing properties from the context menu.    So, what is a vsmdi file? vsmdi stands for Visual Studio Test Metadata File. Placed under the Solution Items this file keeps track of the list of unit tests in your solution. If you open the vsmdi file as an xml file you will see a series of Test Links nested with in the list Test List tags along with the Run Configuration tag. When in visual studio you run tests, the IDE looks at the vsmdi file to see what tests need to be run. You also have the option of using the vsmdi file in your team builds to specify which tests need to run as part of the build. Refer here for a walkthrough from a fellow blogger on how to use the vsmdi file in the team builds. Web Performance Test – The Truth! In Visual Studio 2010 “Web Tests” have been renamed to “Web Performance Tests”. Apart from renaming this test type there have been several improvements to this test type in visual studio 2010. I am very active on the MSDN Visual Studio And Load Testing forum and a frequent question from many users is “Do Web Tests support Pages that run JavaScript?” I will start with a little bit of background before answering this question. Web Performance Tests operate at the HTTP Layer, but why? To enable you to generate high loads with a relatively low amount of hardware, Web performance tests are driven at the protocol layer rather than instantiating a browser.The most common source of confusion is that users do not realize Web Performance Tests work at the HTTP layer. The tool adds to that misconception. After all, you record in IE, and when running a Web test you can select which browser to use, and then the result viewer shows the results in a browser window. So that means the tests run through the browser, right? NO! The Web test engine works at the HTTP layer, and does not instantiate a browser. What does that mean? In the diagram below, you can see there are no browsers running when the engine is sending and receiving requests. Does that mean I can’t test pages that use Java script? The best example for java script generating HTTP traffic is AJAX calls. The most common example of browser plugins are Silverlight or Flash. The Web test recorder will record HTTP traffic from AJAX calls and from most (but not all) browser plugins. This means you will still be able to web performance test pages that use java script or plugin and play back the results but the playback engine will not show the java script or plug in results in the ‘browser control’. If you want to test the page behaviour as a result of the java script or plug in consider using Coded UI Tests. This page looks like it failed, when in fact it succeeded! Looking closely at the response, and subsequent requests, it is clear the operation succeeded. As stated above, the reason why the browser control is pasting this message is because java script has been disabled in this control. So, to reiterate, the web performance test recorder: - Sends and receives data at the HTTP layer. - Does NOT run a browser. - Does NOT run java script. - Does NOT host ActiveX controls or plugins. There is a great series of blog posts from Ed Glas, i would highly recommend his blog to any one performing Load/Performance testing through Visual Studio. Demo – Web Performance Test [Demo] - Visual Studio Ultimate 2010: Test Settings and Configuration   [Demo]–Visual Studio Ultimate 2010: Web Performance Test   In this short video I try and answer the following questions, Why is performance Testing important? How does Visual Studio Help you performance Test your applications? How do i record a web performance test? How do make a web performance test data driven, transaction driven, loop driven, convert to code, add validations? Best practices for recording Web Performance Tests. I have a web performance test, what next? Creating the Web Performance Test was the first step towards load testing your application. Now that we have the base test we can test the page behaviour when N-users access the page. Have you ever had the head of business call you and mention that the marketing team has done a fantastic job and are expecting increased traffic on the web site, can the website survive the weekend with that additional load? This is the perfect opportunity to capacity test your application to see how your website holds up under various levels of load, you can work the results backwards to see how much hardware you may need to scale up your application to survive the weekend. Apart from that it is always a good idea to have some benchmarks around how the application performs under light loads for short duration, under heavy load for long duration and soak test the application run a constant load for a very week or two to record the effects of constant load for really long durations, this is a great way of identifying how your application handles the default IIS application pool reset which by default is configured to once every 25 hours. These bench marks will act as the perfect yard stick to measure performance gains when you start making improvements. BUT there are some best practices! => Goal Based Load Testing Approach Since the subject is vast and there are a lot of things to measure and analyse, … it is very easy to get distracted from the real goal!  You can optimize your application once you know where the pain points are. There is no point performing a load test of 5000 users if your intranet application will only have a 100 simultaneous users, it is important to keep focussed on the real goals of the project. So the idea is to have a user story around your load testing scenarios and test realistically. So it is recommended that you follow the below outline, It is an Iterative process, refine your objectives, identify the key scenarios, what is the expected workload, key metrics you want to report, record the web performance tests, simulate load and analyse results. Is your application already deployed in Production? This is great! You can analyse the IIS Logs to understand the user behaviour… But what are IIS LOGS? The IIS logs allow you to record events for each application and Web site on the Web server. You can create separate logs for each of your applications and Web sites. Logging information in IIS goes beyond the scope of the event logging or performance monitoring features provided by Windows. The IIS logs can include information, such as who has visited your site, what the visitor viewed, and when the information was last viewed. You can use the IIS logs to identify any attempts to gain unauthorized access to your Web server. How to configure IIS LOGS? For those Ninjas who already have IIS Logs configured (by the way its on by default) and need a way to analyse the IIS Logs, can use the Windows IIS Utility – Log Parser. Log Parser is a very powerful tool that provides a generic SQL-like language on top of many types of data like IIS Logs, Event Viewer entries, XML files, CSV files, File System and others; and it allows you to export the result of the queries to many output formats such as CSV, XML, SQL Server, Charts and others; and it works well with IIS 5, 6, 7 and 7.5. Frequently used Log Parser queries. Demo – Load Test [Demo]–Visual Studio Ultimate 2010: Load Testing   In this short video I try and answer the following questions, - Types of Performance Testing? - Perform Goal driven Load Testing, analyse Test Run Result and Generate a report? Recap A quick recap of what we have covered so far,     Thank you for taking the time out and reading this blog post, in part III of this blog series I’ll be getting into the details of Test Result Analysis, Test Result Drill through, Test Report Generation, Test Run Comparison, and the Asp.net Profiler. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Questions/Feedback/Suggestions, etc please leave a comment. See you on in Part III   Share this post : CodeProject

    Read the article

  • Setting Up IRM Test Content

    - by martin.abrahams
    A feature of the 11g IRM Server that sometimes gets overlooked is the ability to set up some test content that any IRM user can access to verify that their IRM Desktop can reach the server, authenticate successfully, and render protected content successfully. Such test content is useful for new users, and in troubleshooting scenarios. Here's how to set up some test content... In the management console, go to IRM - Administration - Test Content, as shown. The console will display a list of test content - initially an empty list. Use the Add option to specify the URL of a document or image, and define one or more labels for the test content in whichever languages your users favour. Note that you do not need to seal the image or document in order to use it as test content. Nor do you need to set up any rights for the test content. The IRM Server will handle the sealing and rights assignment automatically such that all authenticated users are authorised to view the test content. Repeat this process for as many different types of content as you would like to offer for test purposes - perhaps a Word document, a PDF document, and an image. To keep things simple the first time I did this, I used the URL of one of the images in the IRM Server's UI - so there was no problem with the IRM Server being able to reach that image. Whatever content you want to use, the IRM Server needs to be able to reach it at the URL you specify. Using Test Content Open a browser and browse to the URL that the IRM Desktop normally uses to access the IRM Server, for example: http://irm11g.oracle.com/irm_desktop If you are not sure, you can find this URL in the Servers tab of the IRM Options dialog. Go to the Test tab, and you will see your test content listed. By opening one of the items, you can verify that your IRM Desktop is healthy and that you can authenticate to the IRM Server.

    Read the article

  • Spring Test / JUnit problem - unable to load application context

    - by HDave
    I am using Spring for the first time and must be doing something wrong. I have a project with several Bean implementations and now I am trying to create a test class with Spring Test and JUnit. I am trying to use Spring Test to inject a customized bean into the test class. Here is my test-applicationContext.xml: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="............."> <bean id="MyUuidFactory" class="com.myapp.UuidFactory" scope="singleton" > <property name="typeIdentifier" value="CLS" /> </bean> <bean id="ThingyImplTest" class="com.myapp.ThingyImplTest" scope="singleton"> <property name="uuidFactory"> <idref local="MyUuidFactory" /> </property> </bean> </beans> The injection of MyUuidFactory instance goes along with the following code from within the test class: private UuidFactory uuidFactory; public void setUuidFactory(UuidFactory uuidFactory) { this.uuidFactory = uuidFactory; } However, when I go to run the test (in Eclipse or command line) I get the following error (stack trace omitted for brevity): Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'MyImplTest' defined in class path resource [test-applicationContext.xml]: Initialization of bean failed; nested exception is org.springframework.beans.ConversionNotSupportedException: Failed to convert property value of type 'java.lang.String' to required type 'com.myapp.UuidFactory' for property 'uuidFactory'; nested exception is java.lang.IllegalStateException: Cannot convert value of type [java.lang.String] to required type [com.myapp.UuidFactory] for property 'uuidFactory': no matching editors or conversion strategy found Funny thing is, the Eclipse/Spring XML editor shows errors of I misspell any of the types or idrefs. If I leave the bean in, but comment out the dependency injection, everything work until I get a NullPointerException while running the test...which makes sense.

    Read the article

  • The Agile Engineering Rules of Test Code

    - by Malcolm Anderson
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Lots of test code gets written, a lot of it is waste, some of it is well engineered waste.Companies hire Agile Engineering Coaches because agile engineering is easy to do wrong.Very easy.So here's a quick tool you can use for self coaching.It's what I call, "The Agile Engineering Rules of Test Code" and it's going to act as a sort of table of contents for some future posts.The Agile Engineering Rules of Test Code Malcolm Anderson   Test code is not throw away code Test code is production code   8 questions to determine the quality of your test code Does the test code have appropriate comments?Is the test code executed as part of the build?Every Time?Is the test code getting refactored?Does everyone use the same test code?Can the test code be described as “Well Maintained”?Can a bright six year old tell you why any particular test failed?Are the tests independent and infinitely repeatable?

    Read the article

  • rake test:units fails with status ()

    - by ander163
    New user, haven't been building tests as I go, so I'm an idiot. The application is running, but the tests fail. Here is what appears to be relevant: .... ** Execute test:units /usr/local/bin/ruby -I"lib:test" "/usr/local/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake/rake_test_loader.rb" "test/unit/event_test.rb" "test/unit/helpers/calendar1_helper_test.rb" "test/unit/helpers/events_helper_test.rb" "test/unit/helpers/homepage_helper_test.rb" "test/unit/helpers/main_helper_test.rb" "test/unit/helpers/mobile_helper_test.rb" "test/unit/helpers/notes_helper_test.rb" "test/unit/helpers/password_resets_helper_test.rb" "test/unit/helpers/projects_helper_test.rb" "test/unit/helpers/search_helper_test.rb" "test/unit/helpers/start_helper_test.rb" "test/unit/helpers/superadmin_helper_test.rb" "test/unit/helpers/tasks_helper_test.rb" "test/unit/helpers/user_sessions_helper_test.rb" "test/unit/helpers/users_helper_test.rb" "test/unit/note_test.rb" "test/unit/notifier_test.rb" "test/unit/project_test.rb" "test/unit/task_test.rb" "test/unit/user_session_test.rb" "test/unit/user_test.rb" /usr/lib/ruby/gems/1.8/gems/rails-2.3.5/lib/rails/gem_dependency.rb:119:Warning: Gem::Dependency#version_requirements is deprecated and will be removed on or after August 2010. Use #requirement /usr/lib/ruby/gems/1.8/gems/hpricot-0.6.164/lib/universal-java1.6/fast_xs.bundle: [BUG] Segmentation fault ruby 1.8.7 (2009-06-12 patchlevel 174) [i686-darwin10.2.0] rake aborted! Command failed with status (): [/usr/local/bin/ruby -I"lib:test" "/usr/loc...] /usr/local/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake.rb:995:in sh' /usr/local/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake.rb:1010:incall'

    Read the article

  • Copy-and-Pasted Test Code: How Bad is This?

    - by joshin4colours
    My current job is mostly writing GUI test code for various applications that we work on. However, I find that I tend to copy and paste a lot of code within tests. The reason for this is that the areas I'm testing tend to be similar enough to need repetition but not quite similar enough to encapsulate code into methods or objects. I find that when I try to use classes or methods more extensively, tests become more cumbersome to maintain and sometimes outright difficult to write in the first place. Instead, I usually copy a big chunk of test code from one section and paste it to another, and make any minor changes I need. I don't use more structured ways of coding, such as using more OO-principles or functions. Do other coders feel this way when writing test code? Obviously I want to follow DRY and YAGNI principles, but I find that test code (automated test code for GUI testing anyway) can make these principles tough to follow. Or do I just need more coding practice and a better overall system of doing things? EDIT: The tool I'm using is SilkTest, which is in a proprietary language called 4Test. As well, these tests are mostly for Windows desktop applications, but I also have tested web apps using this setup as well.

    Read the article

  • VS2012 Coded UI Test closes browser by default

    - by Tarun Arora
    *** Thanks to Steve St. Jean for asking this question and Shubhra Maji for answering this question on the ALM champs list *** 01 – Introduction The default behaviour of coded UI tests running in an Internet Explorer browser has changed between MTM 2010 and MTM 2012. When running a Coded UI test recorded in MTM 2012 or VS 2012 at the end of the test execution the instance of the browser is closed by default. 02 – Description Let’s take an example. As you can see the CloseDinnerNowWeb() method is commented out.  In VS 2010, upon running this test the browser would be left open after the test execution completes. In VS 2012 RTM the behaviour has changed. At the end of the test run, the IE window is closed even though there is no command from the test to do so. In the example below when the test runs, it opens 2 IE windows to the website. When the test run completes both the windows are closed, even though there is no command in the test to close the window. 03 – How to change the CUIT behaviour not to close the IE window after test execution? This change to this functionality in VS 2012 is by design. It is however possible to rollback the behaviour to how it originally was in VS 2010 i.e. the IE window will not close after the test execution unless otherwise commanded by the test to do so. To go back to the original functionality, set BrowserWindow.CloseOnPlaybackCleanup = false More details on the CloseOnPlaybackCleanup property can be found here http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.uitesting.applicationundertest.closeonplaybackcleanup.aspx  HTH

    Read the article

  • Homoscedascity test for Two-Way ANOVA

    - by aL3xa
    I've been using var.test and bartlett.test to check basic ANOVA assumptions, among others, homoscedascity (homogeniety, equality of variances). Procedure is quite simple for One-Way ANOVA: bartlett.test(x ~ g) # where x is numeric, and g is a factor var.test(x ~ g) But, for 2x2 tables, i.e. Two-Way ANOVA's, I want to do something like this: bartlett.test(x ~ c(g1, g2)) # or with list; see latter: var.test(x ~ list(g1, g2)) Of course, ANOVA assumptions can be checked with graphical procedures, but what about "an arithmetic option"? Is that manageable? How do you test homoscedascity in Two-Way ANOVA?

    Read the article

  • "Class ref in pre-verified class resolved to unexpected implementation" when running android tests i

    - by Mike
    I have a module that builds an app called MyApp. I have another that builds some testcases for that app, called MyAppTests. They both build their own APKs, and they both work fine from within my IDE. I'd like to build them using ant so that I can take advantage of continuous integration. Building the app module works fine. I'm having difficulty getting the Test module to compile and run. Using Christopher's tip from a previous question, I used android create test-project -p MyAppTests -m ../MyApp -n MyAppTests to create the necessary build files to build and run my test project. This seems to work great (once I remove an unnecessary test case that it constructed for me and revert my AndroidManifest.xml to the one I was using before it got replaced by android create), but I have two problems. The first problem: The project doesn't compile because it's missing libraries. $ ant run-tests Buildfile: build.xml [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -install-tested-project: [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 1 source file to /Users/mike/Projects/myapp/android/MyApp/bin/classes -dex: [echo] Converting compiled files and external libraries into /Users/mike/Projects/myapp/android/MyApp/bin/classes.dex... [echo] -package-resources: [echo] Packaging resources [aaptexec] Creating full resource package... -package-debug-sign: [apkbuilder] Creating MyApp-debug-unaligned.apk and signing it with a debug key... [apkbuilder] Using keystore: /Users/mike/.android/debug.keystore debug: [echo] Running zip align on final apk... [echo] Debug Package: /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk install: [echo] Installing /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk onto default emulator or device... [exec] 1567 KB/s (288354 bytes in 0.179s) [exec] pkg: /data/local/tmp/MyApp-debug.apk [exec] Success -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... [mkdir] Created dir: /Users/mike/Projects/myapp/android/MyAppTests/gen [mkdir] Created dir: /Users/mike/Projects/myapp/android/MyAppTests/bin [mkdir] Created dir: /Users/mike/Projects/myapp/android/MyAppTests/bin/classes -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 5 source files to /Users/mike/Projects/myapp/android/MyAppTests/bin/classes [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:4: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:8: package com.google.gson does not exist [javac] import com.google.gson.JsonElement; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:9: package com.google.gson does not exist [javac] import com.google.gson.JsonParser; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:11: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class GsonTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:6: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:7: package roboguice.util does not exist [javac] import roboguice.util.RoboLooperThread; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:11: package com.google.gson does not exist [javac] import com.google.gson.JsonObject; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:15: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class HttpTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:4: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:12: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class LinksTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:4: package roboguice.test does not exist [javac] import roboguice.test.RoboUnitTestCase; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:5: package roboguice.util does not exist [javac] import roboguice.util.RoboAsyncTask; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:6: package roboguice.util does not exist [javac] import roboguice.util.RoboLooperThread; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:12: cannot find symbol [javac] symbol: class RoboUnitTestCase [javac] public class SafeAsyncTest extends RoboUnitTestCase<MyApplication> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectResource': class file for roboguice.inject.InjectResource not found [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectResource' [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView': class file for roboguice.inject.InjectView not found [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView' [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView' [javac] /Users/mike/Projects/myapp/android/MyApp/bin/classes/com/myapp/activity/Stories.class: warning: Cannot find annotation method 'value()' in type 'roboguice.inject.InjectView' [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:15: cannot find symbol [javac] symbol : class JsonParser [javac] location: class com.myapp.test.GsonTest [javac] final JsonParser parser = new JsonParser(); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:15: cannot find symbol [javac] symbol : class JsonParser [javac] location: class com.myapp.test.GsonTest [javac] final JsonParser parser = new JsonParser(); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:18: cannot find symbol [javac] symbol : class JsonElement [javac] location: class com.myapp.test.GsonTest [javac] final JsonElement e = parser.parse(s); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/GsonTest.java:20: cannot find symbol [javac] symbol : class JsonElement [javac] location: class com.myapp.test.GsonTest [javac] final JsonElement e2 = parser.parse(s2); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:19: cannot find symbol [javac] symbol : method getInstrumentation() [javac] location: class com.myapp.test.HttpTest [javac] assertEquals("MyApp", getInstrumentation().getTargetContext().getResources().getString(com.myapp.R.string.app_name)); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:62: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.HttpTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:82: cannot find symbol [javac] symbol : method assertTrue(java.lang.String,boolean) [javac] location: class com.myapp.test.HttpTest [javac] assertTrue(result[0], result[0].contains("Search")); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:87: cannot find symbol [javac] symbol : class JsonObject [javac] location: class com.myapp.test.HttpTest [javac] final JsonObject[] result = {null}; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:90: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.HttpTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:117: cannot find symbol [javac] symbol : class JsonObject [javac] location: class com.myapp.test.HttpTest [javac] final JsonObject[] result = {null}; [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/HttpTest.java:120: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.HttpTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:27: cannot find symbol [javac] symbol : method assertTrue(boolean) [javac] location: class com.myapp.test.LinksTest [javac] assertTrue(m.matches()); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/LinksTest.java:28: cannot find symbol [javac] symbol : method assertEquals(java.lang.String,java.lang.String) [javac] location: class com.myapp.test.LinksTest [javac] assertEquals( map.get(url), m.group(1) ); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:19: cannot find symbol [javac] symbol : method getInstrumentation() [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals("MyApp", getInstrumentation().getTargetContext().getString(com.myapp.R.string.app_name)); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:27: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:65: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:74: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:105: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:113: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:144: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:154: cannot find symbol [javac] symbol : class RoboLooperThread [javac] location: class com.myapp.test.SafeAsyncTest [javac] new RoboLooperThread() { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java:187: cannot find symbol [javac] symbol : method assertEquals(com.myapp.test.SafeAsyncTest.State,com.myapp.test.SafeAsyncTest.State) [javac] location: class com.myapp.test.SafeAsyncTest [javac] assertEquals(State.TEST_SUCCESS,state[0]); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/StoriesTest.java:11: cannot access roboguice.activity.GuiceListActivity [javac] class file for roboguice.activity.GuiceListActivity not found [javac] public class StoriesTest extends ActivityUnitTestCase<Stories> { [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/StoriesTest.java:21: cannot access roboguice.application.GuiceApplication [javac] class file for roboguice.application.GuiceApplication not found [javac] setApplication( new MyApplication( getInstrumentation().getTargetContext() ) ); [javac] ^ [javac] /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/StoriesTest.java:22: incompatible types [javac] found : com.myapp.activity.Stories [javac] required: android.app.Activity [javac] final Activity activity = startActivity(intent, null, null); [javac] ^ [javac] 39 errors [javac] 6 warnings BUILD FAILED /opt/local/android-sdk-mac/platforms/android-1.6/templates/android_rules.xml:248: Compile failed; see the compiler error output for details. Total time: 24 seconds That's not a hard problem to solve. I'm not sure it's the right thing to do, but I copied the missing libraries (roboguice and gson) from the MyApp/libs directory to the MyAppTests/libs directory and everything seems to compile fine. But that leads to the second problem, which I'm currently stuck on. The tests compile fine but they won't run: $ cp ../MyApp/libs/gson-r538.jar libs/ $ cp ../MyApp/libs/roboguice-1.1-SNAPSHOT.jar libs/ 0 10:23 /Users/mike/Projects/myapp/android/MyAppTests $ ant run-testsBuildfile: build.xml [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -install-tested-project: [setup] Project Target: Google APIs [setup] Vendor: Google Inc. [setup] Platform Version: 1.6 [setup] API level: 4 [setup] WARNING: No minSdkVersion value set. Application will install on all Android versions. -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 1 source file to /Users/mike/Projects/myapp/android/MyApp/bin/classes -dex: [echo] Converting compiled files and external libraries into /Users/mike/Projects/myapp/android/MyApp/bin/classes.dex... [echo] -package-resources: [echo] Packaging resources [aaptexec] Creating full resource package... -package-debug-sign: [apkbuilder] Creating MyApp-debug-unaligned.apk and signing it with a debug key... [apkbuilder] Using keystore: /Users/mike/.android/debug.keystore debug: [echo] Running zip align on final apk... [echo] Debug Package: /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk install: [echo] Installing /Users/mike/Projects/myapp/android/MyApp/bin/MyApp-debug.apk onto default emulator or device... [exec] 1396 KB/s (288354 bytes in 0.201s) [exec] pkg: /data/local/tmp/MyApp-debug.apk [exec] Success -compile-tested-if-test: -dirs: [echo] Creating output directories if needed... -resource-src: [echo] Generating R.java / Manifest.java from the resources... -aidl: [echo] Compiling aidl files into Java classes... compile: [javac] Compiling 5 source files to /Users/mike/Projects/myapp/android/MyAppTests/bin/classes [javac] Note: /Users/mike/Projects/myapp/android/MyAppTests/src/com/myapp/test/SafeAsyncTest.java uses unchecked or unsafe operations. [javac] Note: Recompile with -Xlint:unchecked for details. -dex: [echo] Converting compiled files and external libraries into /Users/mike/Projects/myapp/android/MyAppTests/bin/classes.dex... [echo] -package-resources: [echo] Packaging resources [aaptexec] Creating full resource package... -package-debug-sign: [apkbuilder] Creating MyAppTests-debug-unaligned.apk and signing it with a debug key... [apkbuilder] Using keystore: /Users/mike/.android/debug.keystore debug: [echo] Running zip align on final apk... [echo] Debug Package: /Users/mike/Projects/myapp/android/MyAppTests/bin/MyAppTests-debug.apk install: [echo] Installing /Users/mike/Projects/myapp/android/MyAppTests/bin/MyAppTests-debug.apk onto default emulator or device... [exec] 1227 KB/s (94595 bytes in 0.075s) [exec] pkg: /data/local/tmp/MyAppTests-debug.apk [exec] Success run-tests: [echo] Running tests ... [exec] [exec] android.test.suitebuilder.TestSuiteBuilder$FailedToCreateTests:INSTRUMENTATION_RESULT: shortMsg=Class ref in pre-verified class resolved to unexpected implementation [exec] INSTRUMENTATION_RESULT: longMsg=java.lang.IllegalAccessError: Class ref in pre-verified class resolved to unexpected implementation [exec] INSTRUMENTATION_CODE: 0 BUILD SUCCESSFUL Total time: 38 seconds Any idea what's causing the "Class ref in pre-verified class resolved to unexpected implementation" error?

    Read the article

  • sbt: "test" works "test:run" not

    - by Martin
    I try to establish a build pipeline on Jenkins with a Play(2.0.2) project. As I want to just build the sources once and use the classes for downstream builds, I now have created a "compile"-job, that runs "sbt test:compile". That works so far. The next job should then just run the compiled tests. If I use "sbt test" it works as expected, but compiles the sources again. But if I try to run "sbt test:run" it says: [info] Loading project definition from ~/myproject/project [info] Set current project to myproject (in build file: ~/myproject/) java.lang.RuntimeException: No main class detected. at scala.sys.package$.error(package.scala:27) [error] {file:~/myproject/test:run: No main class detected. The same happens locally. I can run "sbt test" but not "sbt test:run". Same error. Is there someone who can point me to the right direction?

    Read the article

  • Junit 4 test suite and individual test classes

    - by Hypnus
    I have a JUnit 4 test suite with BeforeClass and AfterClass methods that make a setup/teardown for the following test classes. What I need is to run the test classes also by them selves, but for that I need a setup/teardown scenario (BeforeClass and AfterClass or something like that) for each test class. The thing is that when I run the suite I do not want to execute the setup/teardown before and after each test class, I only want to execute the setup/teardown from the test suite (once). Is it possible ? Thanks in advance.

    Read the article

  • test post, not public

    test test test more test more test more test more test This site is a resource for asp.net web programming. It has examples by Peter Kellner of techniques for high performance programming...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Coded UI Test - How to change the exe it runs

    - by Vaccano
    I created a Coded UI Test from a Microsoft Test Manager recording. The exe it runs is the one the tester recorded against. I want this to be a test I run with my build. How do I change the exe that the coded UI test uses to be the output of: The TFS Build when a TFS Build is being run The local build when the test is being run on my machine.

    Read the article

  • How to run test suit with Spring TestContext ?

    - by lisak
    Hey, I can't figure out, how to set up following scenario with Sprint TestContext with either JUnit4 or testNG: @BeforeTestSuit - oneTimeSetUp @BeforeClass @Before - setUp @Test - testEmptyCollection @After - tearDown @Before - setUp @Test - testEmptyCollection @After - tearDown @AfterClass @BeforeClass @Before - setUp @Test - testOneItemCollection @After - tearDown @Before - setUp @Test - testEmptyCollection @After - tearDown @AfterClass @AfterTestSuit - oneTimeTearDown Could please anybody help me out here ? My architecture is a parent class with @RunWith(SpringJUnit4ClassRunner.class) that is extended with particular test classes.

    Read the article

  • Test Environment configuration Management

    - by TechTestDude
    I am after a solution which will enable me to enter all my hardware/software elements (sort of like resource management), create a set of 'test environments' and assign hardware and software to that test environment for a given period. The idea is so that everyone can see and update what they need in any given environment to meet their project needs. Does anyone know of any systems out there which can achieve this? Vendor recommendations are welcome, but please call out your interest in it.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >