Search Results

Search found 5578 results on 224 pages for 'transport rules'.

Page 3/224 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Export firewall rules on Juniper SSG-550

    - by Gumble
    I'd like to export all the policies set up in my Juniper SSG-550 running JunOS 5.1 but i can't find any way to do so. Preferably in an easy to parse format (csv would be great). Problem is the firmware is awfully outdated and I only have access to the webGUI, maybe there's a way to do that through the serial port but I just can't have acces to it. Thanks in advance !

    Read the article

  • Outlook 2010 Rules on an IMAP Account

    - by Sonny
    I have an IMAP account set up in Outlook 2010. This account receives notices from scheduled tasks. It receives a LOT of messages. I want to filter the messages that contain error reports into a new folder. I created a rule in Outlook that looks for specific text in the message. The problem is that the filter doesn't seem to see the text unless I have already viewed the message. How can I work around this limitation? EDIT This post was originally for Outlook 2003. I am now using Outlook 2010.

    Read the article

  • Is it possible to set up rule in Outlook 2010 based on message class?

    - by BFDatabaseAdmin
    I recieve all the undeliverable reports for mailings sent from my company. Moving and cataloguing them can take a while, and it would be handy if I could create a rule that did that for me. The most robust way of doing this would seem to be to run a rule based on the Undeliverable message class. However, I can't see message class as an option anywhere in the advanced rules wizard, and Googling it is no help. EDIT: I already have a rule that searches for "Undeliverable" in the subject header of emails received and moves them, but this only affects traditional emails (i.e. those with a message class of "Message") and ignores actual undeliverable reports. Am I missing something obvious, or can this not be done?

    Read the article

  • BRE (Business Rules Engine) Data Services is out...!!!

    - by Vishal
    A few months ago we at Tellago had open sourced the BizTalk Data Services. We were meanwhile working on other artifacts which comes along with BizTalk Server like the “Business Rules Engine”.  We are happy to announce the first version of BRE Data Services. BRE Data Services is a same concept which we covered through BTS Data Services, providing a RESTFul OData – based API to interact with the Business Rules Engine via HTTP using ATOM Publishing Protocol or JSON as the encoding mechanism.   In the first version release, we mainly focused on the browsing, querying and searching BRE artifacts via a RESTFul interface. Also along with that we provide the functionality to execute Business Rules by inserting the Facts for policies via the IUpdatable implementation of WCF Data Services.   The BRE Data Services API provides a lightweight interface for managing Business Rules Engine artifacts such as Policies, Rules, Vocabularies, Conditions, Actions, Facts etc. The following are some examples which details some of the available features in the current version of the API.   Basic Querying: Querying BRE Policies http://localhost/BREDataServices/BREMananagementService.svc/Policies Querying BRE Rules http://localhost/BREDataServices/BREMananagementService.svc/Rules Querying BRE Vocabularies http://localhost/BREDataServices/BREMananagementService.svc/Vocabularies   Navigation: The BRE Data Services API also leverages WCF Data Services to enable navigation across related different BRE objects. Querying a specific Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies(‘PolicyName’) Querying a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules(‘RuleName’) Querying all Rules under a Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies('PolicyName')/Rules Querying all Facts under a Policy http://localhost/BREDataServices/BREMananagementService.svc/Policies('PolicyName')/Facts Querying all Actions for a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules('RuleName')/Actions Querying all Conditions for a specific Rule http://localhost/BREDataServices/BREMananagementService.svc/Rules('RuleName')/Actions Querying a specific Vocabulary: http://localhost/BREDataServices/BREMananagementService.svc/Vocabularies('VocabName')   Implementation: With the BRE Data Services, we also provide the functionality of executing a particular policy via HTTP. There are couple of ways you can do that though the API.   Ø First is though Service Operations feature of WCF Data Services in which you can execute the Facts by passing them in the URL itself. This is a very simple implementations of the executing the policies due to the limitations & restrictions (only primitive types of input parameters which can be passed) currently of the Service Operations of the WCF Data Services. Below is a code sample.                Below is a traced Request/Response message.                                 Ø Second is through the IUpdatable Interface of WCF Data Services. In this method, you can first query the rule which you want to execute and then inserts Facts for that particular Rules and finally when you perform the SaveChanges() call for the IUpdatable Interface API, it executes the policy with the facts which you inserted at runtime. Below is a sample of client side code. Due to the limitations of current version of WCF Data Services where there is no way you can return back the updates happening on the service side back to the client via the SaveChanges() method. Here we are executing the rule passing a serialized XML as Facts and there is no changes made to any data where we can query back to fetch the changes. This is overcome though the first way to executing the policies which is by executing it as a Service Operation call.     This actually generates a AtomPub message shown as below:   POST /Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/$batch HTTP/1.1 User-Agent: Microsoft ADO.NET Data Services DataServiceVersion: 1.0;NetFx MaxDataServiceVersion: 2.0;NetFx Accept: application/atom+xml,application/xml Accept-Charset: UTF-8 Content-Type: multipart/mixed; boundary=batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7 Host: localhost:8080 Content-Length: 1481 Expect: 100-continue   --batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7 Content-Type: multipart/mixed; boundary=changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf   --changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf Content-Type: application/http Content-Transfer-Encoding: binary   MERGE http://localhost:8080/Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/Facts('TestPolicy') HTTP/1.1 Content-ID: 4 Content-Type: application/atom+xml;type=entry Content-Length: 927   <?xml version="1.0" encoding="utf-8" standalone="yes"?> <entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" font-size: x-small"http://www.w3.org/2005/Atom">   <category scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" term="Tellago.BRE.REST.Resources.Fact" />   <title />   <author>     <name />   </author>   <updated>2011-01-31T20:09:15.0023982Z</updated>   <id>http://localhost:8080/Tellago.BRE.REST.ServiceHost/BREMananagementService.svc/Facts('TestPolicy')</id>   <content type="application/xml">     <m:properties>       <d:FactInstance>&lt;ns0:LoanStatus xmlns:ns0="http://tellago.com"&gt;&lt;Age&gt;10&lt;/Age&gt;&lt;Status&gt;true&lt;/Status&gt;&lt;/ns0:LoanStatus&gt;</d:FactInstance>       <d:FactType>TestSchema</d:FactType>       <d:ID>TestPolicy</d:ID>     </m:properties>   </content> </entry> --changeset_184a8c59-a714-4ba9-bb3d-889a88fe24bf-- --batch_6b9a5ced-5ecb-4585-940a-9d5e704c28c7—     Installation: The installation of the BRE Data Services is pretty straight forward. ·         Create a new IIS website say BREDataServices. ·         Download the SourceCode from TellagoCodeplex and copy the content from Tellago.BRE.REST.ServiceHost to the physical location of the above created website.     ·         The appPool account running the website should have admin access to the BizTalkRuleEngineDb database. ·         TheRight click the BREManagementService.svc in the IIS ContentView for the website and wala..     Conclusion: The BRE Data Services API is an experiment intended to bring the capabilities of RESTful/OData based services to the Traditional BTS/BRE Solutions. The future releases will target on technologies like BAM, ESB Toolkit. This version has been tested with various version of BizTalk Server and we have uploaded the source code to our Tellago's DevLabs workspace at Codeplex. I hope you guys enjoy this release. Keep an eye on our new releases @ Tellago Codeplex. We are working on various other Biztalk Artifacts like BAM, ESB Toolkit.     Till than happy BizzRuling…!!!     Thanks,   Vishal Mody

    Read the article

  • Why does my exchange message filtering rule not work?

    - by Jon Cage
    I have two rules set up to sort incoming bug reports. The first is specific to a single device: Apply this rule after the message arrives sent to SMS Distribution and with <source_device_number>: in the body move it to the BugReports\<source_device_number> folder ..and the second is a catch-all for everything else: Apply this rule after the message arrives sent to SMS Distribution move it to the BugReports folder For some reason though, the first rule never seems to act even though it's higher in the list. So for some reason an email like the following doesn't seem to get caught by the first rule: From: <SourceDeviceUID> To: SMS Distributor Subject: Message from <SourceDeviceUID> Message: <source_device_number>: Device encountered a problem. Details below... ...where <source_device_number> is an integer. The second rule works fine. But for some high-priority devices, I want them automatically sorted. Why might that first rule fail?

    Read the article

  • How can one manage thousands of IF...THEN...ELSE rules?

    - by David
    I am considering building an application, which, at its core, would consist of thousands of if...then...else statements. The purpose of the application is to be able to predict how cows move around in any landscape. They are affected by things like the sun, wind, food source, sudden events etc. How can such an application be managed? I imagine that after a few hundred IF-statements, it would be as good as unpredictable how the program would react and debugging what lead to a certain reaction would mean that one would have to traverse the whole IF-statement tree every time. I have read a bit about rules engines, but I do not see how they would get around this complexity.

    Read the article

  • Oracle B2B 11g - Transport Layer Acknowledgement

    - by Nitesh Jain Oracle
    In Health Care Industry,Acknowledgement or Response should be sent back very fast. Once any message received, Acknowledgement should be sent back to TP. Oracle B2B provides a solution to send acknowledgement or Response from transport layer of mllp that is called as immediate acknowledgment. Immediate acknowledgment is generated and transmitted in the transport layer. It is an alternative to the functional acknowledgment, which generates after processing/validating the data in document layer. Oracle B2B provides four types of immediate acknowledgment: Default: Oracle B2B parses the incoming HL7 message and generates an acknowledgment from it. This mode uses the details from incoming payload and generate the acknowledgement based on incoming HL7 message control number, sender and application identification. By default, an Immediate ACK is a generic ACK. Trigger event can also sent back by using Map Trigger Event property. If mapping the MSH.10 of the ACK with the MSH.10 of the incoming business message is required, then enable the Map ACK Control ID property. Simple: B2B sends the predefined acknowledgment message to the sender without parsing the incoming message. Custom: Custom immediate Ack/Response mode gives a user to define their own response/acknowledgement. This is configurable using file in the Custom Immediate ACK File property. Negative: In this case, immediate ACK will be returned only in the case of exceptions.

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Criteria to Evaluate Business Rules Engines

    - by flybywire
    We are shopping for Business Rules Engines. We want to make our core application customizable to different customers with slightly different requirements. The people who would actually do the customizations are analysts. I.e. non-programmers who are technically skilled (usually have a degree in sciences). What are the criteria to evaluate business rules engines? Are there open source and comercial ones? What are your experiences in ease of use, documentation, support, price, etc. Our app is in Java.

    Read the article

  • How are vector patterns used in syntax-rules?

    - by Jay
    Hi, I have been writing Common Lisp macros, so Scheme's R5Rs macros are a bit unnatural to me. I think I got the idea, except that I don't understand how one would use vector patterns in syntax-rules: (define-syntax mac (syntax-rules () ((mac #(a b c d)) (let () (display a) (newline) (display d) (newline))))) (expand '(mac #(1 2 3 4))) ;; Chicken's expand-full extension shows macroexpansion => (let746 () (display747 1) (newline748) (display747 4) (newline748)) I don't see how I'd use a macro that requires its arguments to be written as a vector: (mac #(1 2 3 4)) => 1 4 Is there some kind of technique that uses those patterns? Thank you!

    Read the article

  • A Deep Dive into Transport Queues (Part 2)

    Johan Veldhuis completes his 'Deep Dive' by plunging even deeper into the mysteries of MS Exchange's Transport queues that are used to temporarily store messages which are waiting until they are passed through to the next stage, and explains how to change the way they work via configuration settings.

    Read the article

  • A Deep Dive into Transport Queues - Part 1

    Submission queues? Poison message queues? Johan Veldhuis unlocks the mysteries of MS Exchange's Transport queues that used to temporarily store messages waiting until they are passed through to the next stage, and explains how to manage these queues.

    Read the article

  • Snort's problems in generating alert from Darpa 1998 intrusion detection dataset.

    - by manofseven2
    Hi. I’m working on DARPA 1998 intrusion detection dataset. When I run snort on this dataset (outside.tcpdump file), snort don’t generate complete list of alerts. It means snort start from last few hours of tcpdump file and generate alerts about this section of file and all of packets in first hours are ignored. Another problem in generatin alert is in time stamp of generated alerts. This means when I run snort on a specific day of dataset, snort insert incorrect time stamp for that alert. The configuration and command line statement and other information about my research are: Snort version: 2.8.6 Operating system: windows XP Rule version: snortrules-snapshot-2860_s.tar.gz -———————————————————————— Command line: snort_2.8.6 c D:\programs\Snort_2.8.6\snort\etc\snort.conf -r d:\users\amir\docs\darpa\training_data\week_3\monday\outside.tcpdump -l D:\users\amir\current-task\research\thesis\snort\890230 -————————————————————————— Snort.config Hi. I'm working on DARPA 1998 intrusion detection dataset. When I run snort on this dataset (outside.tcpdump file), snort don't generate complete list of alerts. It means snort start from last few hours of tcpdump file and generate alerts about this section of file and all of packets in first hours are ignored. Another problem in generatin alert is in time stamp of generated alerts. This means when I run snort on a specific day of dataset, snort insert incorrect time stamp for that alert. The configuration and command line statement and other information about my research are: Snort version: 2.8.6 Operating system: windows XP Rule version: snortrules-snapshot-2860_s.tar.gz Command line: snort_2.8.6 -c D:\programs\Snort_2.8.6\snort\etc\snort.conf -r d:\users\amir\docs\darpa\training_data\week_3\monday\outside.tcpdump -l D:\users\amir\current-task\research\thesis\snort\890230 Snort.config # Setup the network addresses you are protecting var HOME_NET any # Set up the external network addresses. Leave as "any" in most situations var EXTERNAL_NET any # List of DNS servers on your network var DNS_SERVERS $HOME_NET # List of SMTP servers on your network var SMTP_SERVERS $HOME_NET # List of web servers on your network var HTTP_SERVERS $HOME_NET # List of sql servers on your network var SQL_SERVERS $HOME_NET # List of telnet servers on your network var TELNET_SERVERS $HOME_NET # List of ssh servers on your network var SSH_SERVERS $HOME_NET # List of ports you run web servers on portvar HTTP_PORTS [80,1220,2301,3128,7777,7779,8000,8008,8028,8080,8180,8888,9999] # List of ports you want to look for SHELLCODE on. portvar SHELLCODE_PORTS !80 # List of ports you might see oracle attacks on portvar ORACLE_PORTS 1024: # List of ports you want to look for SSH connections on: portvar SSH_PORTS 22 # other variables, these should not be modified var AIM_SERVERS [64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,205.188.248.0/24] var RULE_PATH ../rules var SO_RULE_PATH ../so_rules var PREPROC_RULE_PATH ../preproc_rules # Stop generic decode events: config disable_decode_alerts # Stop Alerts on experimental TCP options config disable_tcpopt_experimental_alerts # Stop Alerts on obsolete TCP options config disable_tcpopt_obsolete_alerts # Stop Alerts on T/TCP alerts config disable_tcpopt_ttcp_alerts # Stop Alerts on all other TCPOption type events: config disable_tcpopt_alerts # Stop Alerts on invalid ip options config disable_ipopt_alerts # Alert if value in length field (IP, TCP, UDP) is greater th elength of the packet # config enable_decode_oversized_alerts # Same as above, but drop packet if in Inline mode (requires enable_decode_oversized_alerts) # config enable_decode_oversized_drops # Configure IP / TCP checksum mode config checksum_mode: all config pcre_match_limit: 1500 config pcre_match_limit_recursion: 1500 # Configure the detection engine See the Snort Manual, Configuring Snort - Includes - Config config detection: search-method ac-split search-optimize max-pattern-len 20 # Configure the event queue. For more information, see README.event_queue config event_queue: max_queue 8 log 3 order_events content_length dynamicpreprocessor directory D:\programs\Snort_2.8.6\snort\lib\snort_dynamicpreprocessor dynamicengine D:\programs\Snort_2.8.6\snort\lib\snort_dynamicengine\sf_engine.dll # path to dynamic rules libraries #dynamicdetection directory /usr/local/lib/snort_dynamicrules preprocessor frag3_global: max_frags 65536 preprocessor frag3_engine: policy windows detect_anomalies overlap_limit 10 min_fragment_length 100 timeout 180 preprocessor stream5_global: max_tcp 8192, track_tcp yes, track_udp yes, track_icmp no preprocessor stream5_tcp: policy windows, detect_anomalies, require_3whs 180, \ overlap_limit 10, small_segments 3 bytes 150, timeout 180, \ ports client 21 22 23 25 42 53 79 109 110 111 113 119 135 136 137 139 143 \ 161 445 513 514 587 593 691 1433 1521 2100 3306 6665 6666 6667 6668 6669 \ 7000 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779, \ ports both 80 443 465 563 636 989 992 993 994 995 1220 2301 3128 6907 7702 7777 7779 7801 7900 7901 7902 7903 7904 7905 \ 7906 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 8000 8008 8028 8080 8180 8888 9999 preprocessor stream5_udp: timeout 180 preprocessor http_inspect: global iis_unicode_map unicode.map 1252 compress_depth 20480 decompress_depth 20480 preprocessor http_inspect_server: server default \ chunk_length 500000 \ server_flow_depth 0 \ client_flow_depth 0 \ post_depth 65495 \ oversize_dir_length 500 \ max_header_length 750 \ max_headers 100 \ ports { 80 1220 2301 3128 7777 7779 8000 8008 8028 8080 8180 8888 9999 } \ non_rfc_char { 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \ enable_cookie \ extended_response_inspection \ inspect_gzip \ apache_whitespace no \ ascii no \ bare_byte no \ directory no \ double_decode no \ iis_backslash no \ iis_delimiter no \ iis_unicode no \ multi_slash no \ non_strict \ u_encode yes \ webroot no preprocessor rpc_decode: 111 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 no_alert_multiple_requests no_alert_large_fragments no_alert_incomplete preprocessor bo preprocessor ftp_telnet: global inspection_type stateful encrypted_traffic no preprocessor ftp_telnet_protocol: telnet \ ayt_attack_thresh 20 \ normalize ports { 23 } \ detect_anomalies preprocessor ftp_telnet_protocol: ftp server default \ def_max_param_len 100 \ ports { 21 2100 3535 } \ telnet_cmds yes \ ignore_telnet_erase_cmds yes \ ftp_cmds { ABOR ACCT ADAT ALLO APPE AUTH CCC CDUP } \ ftp_cmds { CEL CLNT CMD CONF CWD DELE ENC EPRT } \ ftp_cmds { EPSV ESTA ESTP FEAT HELP LANG LIST LPRT } \ ftp_cmds { LPSV MACB MAIL MDTM MIC MKD MLSD MLST } \ ftp_cmds { MODE NLST NOOP OPTS PASS PASV PBSZ PORT } \ ftp_cmds { PROT PWD QUIT REIN REST RETR RMD RNFR } \ ftp_cmds { RNTO SDUP SITE SIZE SMNT STAT STOR STOU } \ ftp_cmds { STRU SYST TEST TYPE USER XCUP XCRC XCWD } \ ftp_cmds { XMAS XMD5 XMKD XPWD XRCP XRMD XRSQ XSEM } \ ftp_cmds { XSEN XSHA1 XSHA256 } \ alt_max_param_len 0 { ABOR CCC CDUP ESTA FEAT LPSV NOOP PASV PWD QUIT REIN STOU SYST XCUP XPWD } \ alt_max_param_len 200 { ALLO APPE CMD HELP NLST RETR RNFR STOR STOU XMKD } \ alt_max_param_len 256 { CWD RNTO } \ alt_max_param_len 400 { PORT } \ alt_max_param_len 512 { SIZE } \ chk_str_fmt { ACCT ADAT ALLO APPE AUTH CEL CLNT CMD } \ chk_str_fmt { CONF CWD DELE ENC EPRT EPSV ESTP HELP } \ chk_str_fmt { LANG LIST LPRT MACB MAIL MDTM MIC MKD } \ chk_str_fmt { MLSD MLST MODE NLST OPTS PASS PBSZ PORT } \ chk_str_fmt { PROT REST RETR RMD RNFR RNTO SDUP SITE } \ chk_str_fmt { SIZE SMNT STAT STOR STRU TEST TYPE USER } \ chk_str_fmt { XCRC XCWD XMAS XMD5 XMKD XRCP XRMD XRSQ } \ chk_str_fmt { XSEM XSEN XSHA1 XSHA256 } \ cmd_validity ALLO \ cmd_validity EPSV \ cmd_validity MACB \ cmd_validity MDTM \ cmd_validity MODE \ cmd_validity PORT \ cmd_validity PROT \ cmd_validity STRU \ cmd_validity TYPE preprocessor ftp_telnet_protocol: ftp client default \ max_resp_len 256 \ bounce yes \ ignore_telnet_erase_cmds yes \ telnet_cmds yes preprocessor smtp: ports { 25 465 587 691 } \ inspection_type stateful \ normalize cmds \ normalize_cmds { MAIL RCPT HELP HELO ETRN EHLO EXPN VRFY ATRN SIZE BDAT DEBUG EMAL ESAM ESND ESOM EVFY IDENT NOOP RSET SEND SAML SOML AUTH TURN DATA QUIT ONEX QUEU STARTTLS TICK TIME TURNME VERB X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR } \ max_command_line_len 512 \ max_header_line_len 1000 \ max_response_line_len 512 \ alt_max_command_line_len 260 { MAIL } \ alt_max_command_line_len 300 { RCPT } \ alt_max_command_line_len 500 { HELP HELO ETRN EHLO } \ alt_max_command_line_len 255 { EXPN VRFY ATRN SIZE BDAT DEBUG EMAL ESAM ESND ESOM EVFY IDENT NOOP RSET } \ alt_max_command_line_len 246 { SEND SAML SOML AUTH TURN ETRN DATA RSET QUIT ONEX QUEU STARTTLS TICK TIME TURNME VERB X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR } \ valid_cmds { MAIL RCPT HELP HELO ETRN EHLO EXPN VRFY ATRN SIZE BDAT DEBUG EMAL ESAM ESND ESOM EVFY IDENT NOOP RSET SEND SAML SOML AUTH TURN DATA QUIT ONEX QUEU STARTTLS TICK TIME TURNME VERB X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR } \ xlink2state { enabled } preprocessor ssh: server_ports { 22 } \ autodetect \ max_client_bytes 19600 \ max_encrypted_packets 20 \ max_server_version_len 100 \ enable_respoverflow enable_ssh1crc32 \ enable_srvoverflow enable_protomismatch preprocessor dcerpc2: memcap 102400, events [co ] preprocessor dcerpc2_server: default, policy WinXP, \ detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \ autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \ smb_max_chain 3 preprocessor dns: ports { 53 } enable_rdata_overflow preprocessor ssl: ports { 443 465 563 636 989 992 993 994 995 7801 7702 7900 7901 7902 7903 7904 7905 7906 6907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 }, trustservers, noinspect_encrypted # SDF sensitive data preprocessor. For more information see README.sensitive_data preprocessor sensitive_data: alert_threshold 25 output alert_full: alert.log output database: log, mysql, user=root password=123456 dbname=snort host=localhost include classification.config include reference.config include $RULE_PATH/local.rules include $RULE_PATH/attack-responses.rules include $RULE_PATH/backdoor.rules include $RULE_PATH/bad-traffic.rules include $RULE_PATH/chat.rules include $RULE_PATH/content-replace.rules include $RULE_PATH/ddos.rules include $RULE_PATH/dns.rules include $RULE_PATH/dos.rules include $RULE_PATH/exploit.rules include $RULE_PATH/finger.rules include $RULE_PATH/ftp.rules include $RULE_PATH/icmp.rules include $RULE_PATH/icmp-info.rules include $RULE_PATH/imap.rules include $RULE_PATH/info.rules include $RULE_PATH/misc.rules include $RULE_PATH/multimedia.rules include $RULE_PATH/mysql.rules include $RULE_PATH/netbios.rules include $RULE_PATH/nntp.rules include $RULE_PATH/oracle.rules include $RULE_PATH/other-ids.rules include $RULE_PATH/p2p.rules include $RULE_PATH/policy.rules include $RULE_PATH/pop2.rules include $RULE_PATH/pop3.rules include $RULE_PATH/rpc.rules include $RULE_PATH/rservices.rules include $RULE_PATH/scada.rules include $RULE_PATH/scan.rules include $RULE_PATH/shellcode.rules include $RULE_PATH/smtp.rules include $RULE_PATH/snmp.rules include $RULE_PATH/specific-threats.rules include $RULE_PATH/spyware-put.rules include $RULE_PATH/sql.rules include $RULE_PATH/telnet.rules include $RULE_PATH/tftp.rules include $RULE_PATH/virus.rules include $RULE_PATH/voip.rules include $RULE_PATH/web-activex.rules include $RULE_PATH/web-attacks.rules include $RULE_PATH/web-cgi.rules include $RULE_PATH/web-client.rules include $RULE_PATH/web-coldfusion.rules include $RULE_PATH/web-frontpage.rules include $RULE_PATH/web-iis.rules include $RULE_PATH/web-misc.rules include $RULE_PATH/web-php.rules include $RULE_PATH/x11.rules include threshold.conf -————————————————————————————- Can anyone help me to solve this problem? Thanks.

    Read the article

  • How do I create a rule in Outlook 2010 that moves emails without special headers to a folder?

    - by burnersk
    I like to create a rule in Outlook 2010 that moves emails not containing a special string within the email header field message-id to a folder. How to do that? Pattern: not contains "SPECIAL-STRING". Example E-Mail: ... Date: Fri, 1 Sep 2012 11:16:32 +0100 Message-ID: <bla.bla.bla@SPECIAL-NOT-STRING> MIME-Version: 1.0 ... Hi there :) Pattern matches because "SPECIAL-STRING" is not present (note there is a "NOT" between the words). Automatically moves those emails to folder INBOX/other-mails.

    Read the article

  • New Self-Studies on Oracle Rules

    - by JuergenKress
    We now have 2 self-study courses on Oracle Rules: Introduction to Oracle Business Rules Using Oracle Business Rules in BPEL & BPMN (NEW) They are both available to everyone, Oracle Partners and Oracle Customers, in the Oracle Learning Library. No charge. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: Oracle rules,business rules,education,training,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Gendarme Rules Customisation

    - by Apogee
    Does anyone know the correct way to explicitly specify which rules Gendarme will use? Or which rules to exclude? I'm not having a lot of joy searching the Mono documentation for the answer. What I'm trying to do is to specify the rules one by one in the Gendarme rules.xml file like this: <rules include="AvoidAssemblyVersionMismatchRule" from="Gendarme.Rules.BadPractice.dll"/> Doing this, I'm hoping we can then switch off the rules we don't care about. The problem is, after specifying all the rules in this way, I'm getting a different number of defects detected compared with when I use the default method Gendarme provides, which is of the form: <rules include="*" from="Gendarme.Rules.BadPractice.dll"/> <rules include="*" from="OTHER DLL NAMES"/> Has anyone done this before? Or can anyone point me in the direction of some Gendarme rules usage documentation?

    Read the article

  • BizTalk Business Rules Engine - Repeating Elements Question

    - by Andrew Cripps
    Hello I'm trying to create what I think should be a relatively simple business rule to operate over repeating elements in an XML schema. Consider the following XML snippet (this is simplified with namespaces removed, for readability): <Root> <AllAccounts> <Account id="1" currentPayment="10.00" arrearsAmount="25.00"> <AllCustomers> <Customer id="20" primary="true" canSelfServe="false" /> <Customer id="21" primary="false" canSelfServe="false" /> </AllCustomers> </Account> <Account id="2" currentPayment="10.00" arrearsAmount="15.00"> <AllCustomers> <Customer id="30" primary="true" canSelfServe="false" /> <Customer id="31" primary="false" canSelfServe="false" /> </AllCustomers> </AllAccounts> </Root> What I want to do is to have two rules: Set /Root/AllAccounts/Account[x]/AllCustomers/Customer[primary='true']/canSelfServe = true IF arrearsAmount < currentPayment Set /Root/AllAccounts/Account[x]/AllCustoemrs/Customer[primary='true']/canSelfServer = false IF arrearsAmount = currentPayment Where [x] is 0...number of /Root/AllAccounts/Account records present in the XML. I've tried two simple rules for this, and each rule seems to fire x * x times, where x is the number of Account records in the XML. I only want each rule to fire once for each Account record. Any help greatly appreciated! Thanks Andrew

    Read the article

  • StyleCop Custom Rules

    - by Aligned
    There are several blogs on how to do this (http://scottwhite.blogspot.com/2008/11/creating-custom-stylecop-rules-in-c.html, etc). I’ve found a few useful things to point out: Debugging is difficult, but here are the steps (thanks to Tintin’s answer). “One way: 1) Delete your custom rules 2) Open Visual Studio (for dev), open your custom rule solution 3) Build & Deploy custom rules (a PostBuild action to copy the rules into the StyleCop folder is handy) 4) Open Visual Studio (for test) 5) Use VS (dev) and Attach to process devenv.exe (the test VS instance), set breakpoints in the rules you want to debug 6) Use VS’ (test) and right-click on project, Run StyleCop 7) Debug” ~ it worked once, now I’m having problems getting it to work again ~ I also get the message “Cannot evaluate expression because the code of the current method is optimized.” when I try to look at properties. Looking at the source code of the StyleCop.CSharp.Rules.dll that comes with the install. I used JustDecompile from Telerik. Create one xml file and name it the same as the one cs file (CodingGuildelineRules.cs and CodingGuidelinRules.xml) Deploy: 1. Build in Visual Studio 2. Close Visual Studio (Style cop is running so you can’t override your dll without closing) 3. Copy the dll from the bin to the C: \Program Files (x86)\StyleCop 4.7\ 4. Open the settings file or re-open Visual Studio

    Read the article

  • fwbuilder/iptables manually scripted + autogenerated rules at startup?

    - by Jakobud
    Fedora 11 Our previous IT-guy setup iptable rules on our firewall in a way that is confusing me and he didn't document any of it. I was hoping someone could help me make some sense of it. The iptables service is obviously starting at startup, but the /etc/sysconfig/iptables file was untouched (default values). I found in /etc/rc.local he was doing this: # We have multiple ISP connections on our network. # The following is about 50+ rules to route incoming and outgoing # information. For example, certain internal hosts are specified here # to use ISP A connection while everyone else on the network uses # ISP B connection when access the internet. ip rule add from 99.99.99.99 table Whatever_0 ip rule add from 99.99.99.98 table Whatever_0 ip rule add from 99.99.99.97 table Whatever_0 ip rule add from 99.99.99.96 table Whatever_0 ip rule add from 99.99.99.95 table Whatever_0 ip rule add from 192.168.1.103 table ISB_A ip rule add from 192.168.1.105 table ISB_A ip route add 192.168.0.0/24 dev eth0 table ISB_B # etc... and then near the end of the file, AFTER all the ip rules he just declared, he has this: /root/fw/firewall-rules.fw He's executing the firewall rules file that was auto-generated by fwbuilder. Some questions Why is he declaring all these ip rules in rc.local instead of declaring them in fwbuilder like all the other rules? Any advantage or necessity to this? Or is this just a poorly organized way to implement firewall rules? Why is he declaring ip rules BEFORE executing the fwbuilder script? I would assume that one of the first things the fwbuilder script does it get rid of any existing rules before declaring all the new ones. Am I wrong about this? If that was the case, the fwbuilder script would basically just delete all the ip rules that were defined in rc.local. Does this make any sense? Why is he executing all this stuff at startup in rc.local instead of just using iptables-save to keep the firewall settings at /etc/sysconfig/iptables that will get implemented at runtime?

    Read the article

  • Why is JavaMail Transport.send() a static method?

    - by skiphoppy
    I'm revising code I did not write that uses JavaMail, and having a little trouble understanding why the JavaMail API is designed the way it is. I have the feeling that if I understood, I could be doing a better job. We call: transport = session.getTransport("smtp"); transport.connect(hostName, port, user, password); So why is Eclipse warning me that this: transport.send(message, message.getAllRecipients()); is a call to a static method? Why am I getting a Transport object and providing settings that are specific to it if I can't use that object to send the message? How does the Transport class even know what server and other settings to use to send the message? It's working fine, which is hard to believe. What if I had instantiated Transport objects for two different servers; how would it know which one to use? In the course of writing this question, I've discovered that I should really be calling: transport.sendMessage(message, message.getAllRecipients()); So what is the purpose of the static Transport.send() method? Is this just poor design, or is there a reason it is this way?

    Read the article

  • Can&rsquo;t install Transport HUB in Exchange 2010

    - by Kelly Jones
    When building my latest SharePoint 2010 demo virtual machines, I decided to try installing Exchange 2010 as well.  Now, I’m not an Exchange admin, but I thought “how hard can this be?”  Well, a little more than I thought. Pretty early during the install, I got an error saying that it couldn’t “install Transport HUB”.  I double checked that my VM was meeting all of the requirements, both hardware and software, and everything looked fine. After much researching, it turns out that the error was caused by not having IPv6 enabled on the network adapter inside the virtual machine.  I had turned it off because I thought I wouldn’t need it.  I guess Exchange 2010 does.

    Read the article

  • Upcoming Customer WebCast: Adapters and JCA Transport in Oracle Service Bus 11g

    - by MariaSalzberger
    There is an upcoming webcast planned for September 19th that will show how to implement services using a JCA adapter in Oracle Service Bus 11g. The session will help to utilize existing resources like samples and information centers for adapters in the context of Oracle Service Bus. Topics covered in the webcast are: JCA Transport Overview / Inbound and Outbound scenarios using JCA adapters Implementation of an end-to-end use case using an inbound file adapter and and an outbound database adapter in Oracle Service Bus It will show how to find information on supported adapters in a certain version of OSB 11g Available adapter samples for OSB and SOA How to use SOA adapter samples for Oracle Service Bus A live demo of an adapter sample implementation in Oracle Service Bus Information Centers for adapters and Oracle Service Bus information The presentation recording can by found here after the webcast. Select "Oracle Fusion Middleware" as product. (https://support.oracle.com/rs?type=doc&id=740966.1) The schedule for future webcasts can be found in the above mentioned document as well.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >