Search Results

Search found 10904 results on 437 pages for 'named entity recognition'.

Page 334/437 | < Previous Page | 330 331 332 333 334 335 336 337 338 339 340 341  | Next Page >

  • How can I do something ~after~ an event has fired in C#?

    - by Siracuse
    I'm using the following project to handle global keyboard and mouse hooking in my C# application. This project is basically a wrapper around the Win API call SetWindowsHookEx using either the WH_MOUSE_LL or WH_KEYBOARD_LL constants. It also manages certain state and generally makes this kind of hooking pretty pain free. I'm using this for a mouse gesture recognition software I'm working on. Basically, I have it setup so it detects when a global hotkey is pressed down (say CTRL), then the user moves the mouse in the shape of a pre-defined gesture and then releases global hotkey. The event for the KeyDown is processed and tells my program to start recording the mouse locations until it receives the KeyUp event. This is working fine and it allows an easy way for users to enter a mouse-gesture mode. Once the KeyUp event fires and it detects the appropriate gesture, it is suppose to send certain keystrokes to the active window that the user has defined for that particular gesture they just drew. I'm using the SendKeys.Send/SendWait methods to send output to the current window. My problem is this: When the user releases their global hotkey (say CTRL), it fires the KeyUp event. My program takes its recorded mouse points and detects the relevant gesture and attempts to send the correct input via SendKeys. However, because all of this is in the KeyUp event, that global hotkey hasn't finished being processed. So, for example if I defined a gesture to send the key "A" when it is detected, and my global hotkey is CTRL, when it is detected SendKeys will send "A" but while CTRL is still "down". So, instead of just sending A, I'm getting CTRL-A. So, in this example, instead of physically sending the single character "A" it is selecting-all via the CTRL-A shortcut. Even though the user has released the CTRL (global hotkey), it is still being considered down by the system. Once my KeyUp event fires, how can I have my program wait some period of time or for some event so I can be sure that the global hotkey is truly no longer being registered by the system, and only then sending the correct input via SendKeys?

    Read the article

  • iPhone: Tracking/Identifying individual touches

    - by FlorianZ
    I have a quick question regarding tracking touches on the iPhone and I seem to not be able to come to a conclusion on this, so any suggestions / ideas are greatly appreciated: I want to be able to track and identify touches on the iphone, ie. basically every touch has a starting position and a current/moved position. Touches are stored in a std::vector and they shall be removed from the container, once they ended. Their position shall be updated once they move, but I still want to keep track of where they initially started (gesture recognition). I am getting the touches from [event allTouches], thing is, the NSSet is unsorted and I seem not to be able to identify the touches that are already stored in the std::vector and refer to the touches in the NSSet (so I know which ones ended and shall be removed, or have been moved, etc.) Here is my code, which works perfectly with only one finger on the touch screen, of course, but with more than one, I do get unpredictable results... - (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event { [self handleTouches:[event allTouches]]; } - (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event { [self handleTouches:[event allTouches]]; } - (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event { [self handleTouches:[event allTouches]]; } - (void) touchesCancelled:(NSSet*)touches withEvent:(UIEvent*)event { [self handleTouches:[event allTouches]]; } - (void) handleTouches:(NSSet*)allTouches { for(int i = 0; i < (int)[allTouches count]; ++i) { UITouch* touch = [[allTouches allObjects] objectAtIndex:i]; NSTimeInterval timestamp = [touch timestamp]; CGPoint currentLocation = [touch locationInView:self]; CGPoint previousLocation = [touch previousLocationInView:self]; if([touch phase] == UITouchPhaseBegan) { Finger finger; finger.start.x = currentLocation.x; finger.start.y = currentLocation.y; finger.end = finger.start; finger.hasMoved = false; finger.hasEnded = false; touchScreen->AddFinger(finger); } else if([touch phase] == UITouchPhaseEnded || [touch phase] == UITouchPhaseCancelled) { Finger& finger = touchScreen->GetFingerHandle(i); finger.hasEnded = true; } else if([touch phase] == UITouchPhaseMoved) { Finger& finger = touchScreen->GetFingerHandle(i); finger.end.x = currentLocation.x; finger.end.y = currentLocation.y; finger.hasMoved = true; } } touchScreen->RemoveEnded(); } Thanks!

    Read the article

  • Draw rectangle-like objects on a bitmap

    - by _simon_
    I am performing OCR (optical character recognition) on a bunch of images. Images are grouped into different projects (tickets, credit cards, insurance cards etc). Each image represents an actual product (for instance, if we have images of credit cards, picture1.jpg is image of my credit card, picture2.jpg is image of your credit card,... you get it). I have a settings.xml file, which contains regions of the image, where OCR should be performed. Example: <Project Name="Ticket1" TemplateImage="...somePath/templateTicket1.jpg"> <Region Name="Prefix" NumericOnly="false" Rotate="0"> <x>470</x> <y>395</y> <width>31</width> <height>36</height> </Region> <Region Name="Num1" NumericOnly="true" Rotate="0"> <x>555</x> <y>402</y> <width>123</width> <height>35</height> </Region> </Project> </Project Name="CreditCard" TemplateImage="...somePath/templateCreditCard1.jpg"> <Region Name="SerialNumber" NumericOnly="false" Rotate="90"> <x>332</x> <y>12</y> <width>20</width> <height>98</height> </Project> I would like to set these parameters through GUI (now I just write them into xml file). So, first I load a template image for a project (an empty credit card). Then I would like to draw a rectangle around a text, where OCR should be performed. I guess this isn't hard, but it would be great if I could also move and resize this rectangle object in the picture. I have to display all regions (rectangles) on the picture also. Also - there will probably be a list of regions in a listview, so when you click a region in this listview, it should mark it on the picture in a green color for example. Do you know for a library, which I could use? Or a link with some tips how to create such objects?

    Read the article

  • Flex, continuous scanning stream (from socket). Did I miss something using yywrap()?

    - by Diederich Kroeske
    Working on a socketbased scanner (continuous stream) using Flex for pattern recognition. Flex doesn't find a match that overlaps 'array bounderies'. So I implemented yywrap() to setup new array content as soon yylex() detects < (it will call yywrap). No success so far. Basically (for pin-pointing my problem) this is my code: %{ #include <stdio.h> #include <string.h> #include <stdlib.h> #define BUFFERSIZE 26 /* 0123456789012345678901234 */ char cbuf1[BUFFERSIZE] = "Hello everybody, lex is su"; // Warning, no '\0' char cbuf2[BUFFERSIZE] = "per cool. Thanks! "; char recvBuffer[BUFFERSIZE]; int packetCnt = 0; YY_BUFFER_STATE bufferState1, bufferState2; %} %option nounput %option noinput %% "super" { ECHO; } . { printf( "%c", yytext[0] );} %% int yywrap() { int retval = 1; printf(">> yywrap()\n"); if( packetCnt <= 0 ) // Stop after 2 { // Copy cbuf2 into recvBuffer memcpy(recvBuffer, cbuf2, BUFFERSIZE); // yyrestart(NULL); // ?? has no effect // Feed new data to flex bufferState2 = yy_scan_bytes(recvBuffer, BUFFERSIZE); // packetCnt++; // Tell flex to resume scanning retval = 0; } return(retval); } int main(void) { printf("Lenght: %d\n", (int)sizeof(recvBuffer)) ; // Copy cbuf1 into recvBuffer memcpy(recvBuffer, cbuf1, BUFFERSIZE); // packetCnt = 0; // bufferState1 = yy_scan_bytes(recvBuffer, BUFFERSIZE); // yylex(); yy_delete_buffer(bufferState1); yy_delete_buffer(bufferState2); return 0; } This is my output: dkmbpro:test dkroeske$ ./text Lenght: 26 Hello everybody, lex is su>> yywrap() per cool. Thanks! >> yywrap() So no match on 'super'. According to the doc the lexxer is not 'reset' between yywrap's. What do I miss? Thanks.

    Read the article

  • Writing OpenGL enabled GUI

    - by Jaen
    I am exploring a possibility to write a kind of a notebook analogue that would reproduce the look and feel of using a traditional notebook, but with the added benefit of customizing the page in ways you can't do on paper - ask the program to lay ruled paper here, grid paper there, paste an image, insert a recording from the built-in camera, try to do handwriting recognition on the tablet input, insert some latex for neat formulas and so on. I'm pretty interested in developing it just to see if writing notes on computer can come anywhere close to the comfort plain paper + pencil offer (hard to do IMO) and can always turn it in as a university C++ project, so double gain there. Coming from the type of project there are certain requirements for the user interface: the user will be able to zoom, move and rotate the notebook as he wishes and I think it's pretty sensible delegate it to OpenGL, so the prospective GUI needs to work well with OGL (preferably being rendered in it) the interface should be navigable with as little of keyboard input as user wishes (incorporating some sort of gestures maybe) up to limiting the keyboard keys as modifiers to the pen movements and taps; this includes tablet and possible multitouch support the interface should keep out of the way where not needed and come up where needed and be easily layerable the notebook sheet itself will be a container for objects representing the notebook blurbs, so it would be nice if the GUI would be able to overlay some frames over the exact parts of the OpenGL-drawn sheet to signify what can be done with given part (like moving, rotating, deleting, copying, editing etc.) and it's extents In terms of interface it's probably going to end up similar to Alias' Sketch Book Pro: [picture][http://1.bp.blogspot.com/_GGxlzvZW-CY/SeKYA_oBdSI/AAAAAAAAErE/J6A0kyXiuqA/s400/Autodesk_Alias_SketchBook_Pro_2.jpg] As far as toolkits go I'm considering Qt and nui, but I'm not really aware how well would they match up the requirements and how well would they handle such an application. As far as I know you can somehow coerce Qt into doing widget drawing with OpenGL, but on the other hand I heard voices it's slot-signal framework isn't exactly optimal and requires it's own preprocessor and I don't know how hard would be to do all the custom widgets I would need (say color-wheel, ruler, blurb frames, blurb selection, tablet-targeted pop-up menu etc.) in the constraints of Qt. Also quite a few Qt programs I've had on my machine seemed really sluggish, but it may be attributed to me having old PC or programmers using Qt suboptimally rather to the framework itself. As for [nui][http://www.libnui.net/] I know it's also cross-platform and all of the basic things you would require of a GUI toolkit and what is the biggest plus it is OpenGL-enabled from the start, but I don't know how it is with custom widgets and other facets and it certainly has smaller userbase and less elaborate documentation than Qt. The question goes as this: Does any of these toolkits fulfill (preferably all of) the requirements or there is a well fitting toolkit I haven't come across or maybe I should just roll up my sleeves, get SFML (or maybe Clutter would be more suited to this?) and something like FastDelegates or libsigc++ and program the GUI framework from the ground up myself? I would be very glad if anyone had experience with a similar GUI project and can offer some comments on how well these toolkits hold up or is it worthwhile to pursue own GUI toolkit in this case. Sorry for longwindedness, duh.

    Read the article

  • Uninstalling Reporting Server 2008 on Windows Server 2008

    - by Piotr Rodak
    Ha. I had quite disputable pleasure of installing and reinstalling and reinstalling and reinstalling – I think about 5 times before it worked – Reporting Server 2008 on Windows Server with the same year number in name. During my struggle I came across an error which seems to be not quite unfamiliar to some more unfortunate developers and admins who happen to uninstall SSRS 2008 from the server. I had the SSRS 2008 installed as named instance, SQL2008. I wanted to uninstall the server and install it to default instance. And this is when it bit me – not the first time and not the last that day . The setup complained that it couldn’t access a DLL: Error message: TITLE: Microsoft SQL Server 2008 Setup ------------------------------ The following error has occurred: Access to the path 'C:\Windows\SysWOW64\perf-ReportServer$SQL2008-rsctr.dll' is denied. For help, click: http://go.microsoft.com/fwlink?LinkID=20476&ProdName=Microsoft+SQL+Server&EvtSrc=setup.rll&EvtID=50000&ProdVer=10.0.1600.22&EvtType=0x60797DC7%25400x84E8D3C0 ------------------------------ BUTTONS: OK This is a screenshot that shows the above error: This issue seems to have a bit of literature dedicated to it and even seemingly a KB article http://support.microsoft.com/kb/956173 and a similar Connect item: http://connect.microsoft.com/SQLServer/feedback/details/363653/error-messages-when-upgrading-from-sql-2008-rc0-to-rtm The article describes issue as following: When you try to uninstall Microsoft SQL Server 2008 Reporting Services from the server, you may receive the following error message: An error has occurred: Access to the path 'Drive_Letter:\WINDOWS\system32\perf-ReportServer-rsctr.dll' is denied. Note Drive_Letter refers to the disc drive into which the SQL Server installation media is inserted. In my case, the Note was not true; the error pointed to a dll that was located in Windows folder on C:\, not where the installation media were. Despite this difference I tried to identify any processes that might be keeping lock on the dll. I downloaded Sysinternals process explorer and ran it to find any processes I could stop. Unfortunately, there was no such process. I tried to rerun the installation, but it failed at the same step. Eventually I decided to remove the dll before the setup was executed. I changed name of the dll to be able to restore it in case of some issues. Interestingly, Windows let me do it, which means that indeed, it was not locked by any process. I ran the setup and this time it uninstalled the instance without any problems:   To summarize my experience I should say – be very careful, don’t leave any leftovers after uninstallation – remove/rename any folders that are left after setup has finished. For some reason, setup doesn’t remove folders and certain files. Installation on Windows Server 2008 requires more attention than on Windows 2003 because of the changed security model, some actions can be executed only by administrator in elevated execution mode. In general, you have to get used to UAC and a bit different experience than with Windows Server 2003. Technorati Tags: SQL Server 2008,Windows Server 2008,SRS,Reporting Services

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • SQL SERVER – What is MDS? – Master Data Services in Microsoft SQL Server 2008 R2

    - by pinaldave
    What is MDS? Master Data Services helps enterprises standardize the data people rely on to make critical business decisions. With Master Data Services, IT organizations can centrally manage critical data assets company wide and across diverse systems, enable more people to securely manage master data directly, and ensure the integrity of information over time. (Source: Microsoft) Today I will be talking about the same subject at Microsoft TechEd India. If you want to learn about how to standardize your data and apply the business rules to validate data you must attend my session. MDS is very interesting concept, I will cover super short but very interesting 10 quick slides about this subject. I will make sure in very first 20 mins, you will understand following topics Introduction to Master Data Management What is Master Data and Challenges MDM Challenges and Advantage Microsoft Master Data Services Benefits and Key Features Uses of MDS Capabilities Key Features of MDS This slides decks will be followed by around 30 mins demo which will have story of entity, hierarchies, versions, security, consolidation and collection. I will be tell this story keeping business rules in center. We take one business rule which will be simple validation rule and will make it much more complex and yet very useful to product. I will also demonstrate few real life scenario where I will be talking about MDS and its usage. Do not miss this session. At the end of session there will be book awarded to best participant. My session details: Session: Master Data Services in Microsoft SQL Server 2008 R2 Date: April 12, 2010  Time: 2:30pm-3:30pm SQL Server Master Data Services will ship with SQL Server 2008 R2 and will improve Microsoft’s platform appeal. This session provides an in depth demonstration of MDS features and highlights important usage scenarios. Master Data Services enables consistent decision making by allowing you to create, manage and propagate changes from single master view of your business entities. Also with MDS – Master Data-hub which is the vital component helps ensure reporting consistency across systems and deliver faster more accurate results across the enterprise. We will talk about establishing the basis for a centralized approach to defining, deploying, and managing master data in the enterprise. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Business Intelligence, Data Warehousing, MVP, Pinal Dave, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, T SQL, Technology Tagged: TechEd, TechEdIn

    Read the article

  • Node.js Adventure - Host Node.js on Windows Azure Worker Role

    - by Shaun
    In my previous post I demonstrated about how to develop and deploy a Node.js application on Windows Azure Web Site (a.k.a. WAWS). WAWS is a new feature in Windows Azure platform. Since it’s low-cost, and it provides IIS and IISNode components so that we can host our Node.js application though Git, FTP and WebMatrix without any configuration and component installation. But sometimes we need to use the Windows Azure Cloud Service (a.k.a. WACS) and host our Node.js on worker role. Below are some benefits of using worker role. - WAWS leverages IIS and IISNode to host Node.js application, which runs in x86 WOW mode. It reduces the performance comparing with x64 in some cases. - WACS worker role does not need IIS, hence there’s no restriction of IIS, such as 8000 concurrent requests limitation. - WACS provides more flexibility and controls to the developers. For example, we can RDP to the virtual machines of our worker role instances. - WACS provides the service configuration features which can be changed when the role is running. - WACS provides more scaling capability than WAWS. In WAWS we can have at most 3 reserved instances per web site while in WACS we can have up to 20 instances in a subscription. - Since when using WACS worker role we starts the node by ourselves in a process, we can control the input, output and error stream. We can also control the version of Node.js.   Run Node.js in Worker Role Node.js can be started by just having its execution file. This means in Windows Azure, we can have a worker role with the “node.exe” and the Node.js source files, then start it in Run method of the worker role entry class. Let’s create a new windows azure project in Visual Studio and add a new worker role. Since we need our worker role execute the “node.exe” with our application code we need to add the “node.exe” into our project. Right click on the worker role project and add an existing item. By default the Node.js will be installed in the “Program Files\nodejs” folder so we can navigate there and add the “node.exe”. Then we need to create the entry code of Node.js. In WAWS the entry file must be named “server.js”, which is because it’s hosted by IIS and IISNode and IISNode only accept “server.js”. But here as we control everything we can choose any files as the entry code. For example, I created a new JavaScript file named “index.js” in project root. Since we created a C# Windows Azure project we cannot create a JavaScript file from the context menu “Add new item”. We have to create a text file, and then rename it to JavaScript extension. After we added these two files we should set their “Copy to Output Directory” property to “Copy Always”, or “Copy if Newer”. Otherwise they will not be involved in the package when deployed. Let’s paste a very simple Node.js code in the “index.js” as below. As you can see I created a web server listening at port 12345. 1: var http = require("http"); 2: var port = 12345; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then we need to start “node.exe” with this file when our worker role was started. This can be done in its Run method. I found the Node.js and entry JavaScript file name, and then create a new process to run it. Our worker role will wait for the process to be exited. If everything is OK once our web server was opened the process will be there listening for incoming requests, and should not be terminated. The code in worker role would be like this. 1: public override void Run() 2: { 3: // This is a sample worker implementation. Replace with your logic. 4: Trace.WriteLine("NodejsHost entry point called", "Information"); 5:  6: // retrieve the node.exe and entry node.js source code file name. 7: var node = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot\node.exe"); 8: var js = "index.js"; 9:  10: // prepare the process starting of node.exe 11: var info = new ProcessStartInfo(node, js) 12: { 13: CreateNoWindow = false, 14: ErrorDialog = true, 15: WindowStyle = ProcessWindowStyle.Normal, 16: UseShellExecute = false, 17: WorkingDirectory = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot") 18: }; 19: Trace.WriteLine(string.Format("{0} {1}", node, js), "Information"); 20:  21: // start the node.exe with entry code and wait for exit 22: var process = Process.Start(info); 23: process.WaitForExit(); 24: } Then we can run it locally. In the computer emulator UI the worker role started and it executed the Node.js, then Node.js windows appeared. Open the browser to verify the website hosted by our worker role. Next let’s deploy it to azure. But we need some additional steps. First, we need to create an input endpoint. By default there’s no endpoint defined in a worker role. So we will open the role property window in Visual Studio, create a new input TCP endpoint to the port we want our website to use. In this case I will use 80. Even though we created a web server we should add a TCP endpoint of the worker role, since Node.js always listen on TCP instead of HTTP. And then changed the “index.js”, let our web server listen on 80. 1: var http = require("http"); 2: var port = 80; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then publish it to Windows Azure. And then in browser we can see our Node.js website was running on WACS worker role. We may encounter an error if we tried to run our Node.js website on 80 port at local emulator. This is because the compute emulator registered 80 and map the 80 endpoint to 81. But our Node.js cannot detect this operation. So when it tried to listen on 80 it will failed since 80 have been used.   Use NPM Modules When we are using WAWS to host Node.js, we can simply install modules we need, and then just publish or upload all files to WAWS. But if we are using WACS worker role, we have to do some extra steps to make the modules work. Assuming that we plan to use “express” in our application. Firstly of all we should download and install this module through NPM command. But after the install finished, they are just in the disk but not included in the worker role project. If we deploy the worker role right now the module will not be packaged and uploaded to azure. Hence we need to add them to the project. On solution explorer window click the “Show all files” button, select the “node_modules” folder and in the context menu select “Include In Project”. But that not enough. We also need to make all files in this module to “Copy always” or “Copy if newer”, so that they can be uploaded to azure with the “node.exe” and “index.js”. This is painful step since there might be many files in a module. So I created a small tool which can update a C# project file, make its all items as “Copy always”. The code is very simple. 1: static void Main(string[] args) 2: { 3: if (args.Length < 1) 4: { 5: Console.WriteLine("Usage: copyallalways [project file]"); 6: return; 7: } 8:  9: var proj = args[0]; 10: File.Copy(proj, string.Format("{0}.bak", proj)); 11:  12: var xml = new XmlDocument(); 13: xml.Load(proj); 14: var nsManager = new XmlNamespaceManager(xml.NameTable); 15: nsManager.AddNamespace("pf", "http://schemas.microsoft.com/developer/msbuild/2003"); 16:  17: // add the output setting to copy always 18: var contentNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:Content", nsManager); 19: UpdateNodes(contentNodes, xml, nsManager); 20: var noneNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:None", nsManager); 21: UpdateNodes(noneNodes, xml, nsManager); 22: xml.Save(proj); 23:  24: // remove the namespace attributes 25: var content = xml.InnerXml.Replace("<CopyToOutputDirectory xmlns=\"\">", "<CopyToOutputDirectory>"); 26: xml.LoadXml(content); 27: xml.Save(proj); 28: } 29:  30: static void UpdateNodes(XmlNodeList nodes, XmlDocument xml, XmlNamespaceManager nsManager) 31: { 32: foreach (XmlNode node in nodes) 33: { 34: var copyToOutputDirectoryNode = node.SelectSingleNode("pf:CopyToOutputDirectory", nsManager); 35: if (copyToOutputDirectoryNode == null) 36: { 37: var n = xml.CreateNode(XmlNodeType.Element, "CopyToOutputDirectory", null); 38: n.InnerText = "Always"; 39: node.AppendChild(n); 40: } 41: else 42: { 43: if (string.Compare(copyToOutputDirectoryNode.InnerText, "Always", true) != 0) 44: { 45: copyToOutputDirectoryNode.InnerText = "Always"; 46: } 47: } 48: } 49: } Please be careful when use this tool. I created only for demo so do not use it directly in a production environment. Unload the worker role project, execute this tool with the worker role project file name as the command line argument, it will set all items as “Copy always”. Then reload this worker role project. Now let’s change the “index.js” to use express. 1: var express = require("express"); 2: var app = express(); 3:  4: var port = 80; 5:  6: app.configure(function () { 7: }); 8:  9: app.get("/", function (req, res) { 10: res.send("Hello Node.js!"); 11: }); 12:  13: app.get("/User/:id", function (req, res) { 14: var id = req.params.id; 15: res.json({ 16: "id": id, 17: "name": "user " + id, 18: "company": "IGT" 19: }); 20: }); 21:  22: app.listen(port); Finally let’s publish it and have a look in browser.   Use Windows Azure SQL Database We can use Windows Azure SQL Database (a.k.a. WACD) from Node.js as well on worker role hosting. Since we can control the version of Node.js, here we can use x64 version of “node-sqlserver” now. This is better than if we host Node.js on WAWS since it only support x86. Just install the “node-sqlserver” module from NPM, copy the “sqlserver.node” from “Build\Release” folder to “Lib” folder. Include them in worker role project and run my tool to make them to “Copy always”. Finally update the “index.js” to use WASD. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:{SERVER NAME}.database.windows.net,1433;Database={DATABASE NAME};Uid={LOGIN}@{SERVER NAME};Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Publish to azure and now we can see our Node.js is working with WASD through x64 version “node-sqlserver”.   Summary In this post I demonstrated how to host our Node.js in Windows Azure Cloud Service worker role. By using worker role we can control the version of Node.js, as well as the entry code. And it’s possible to do some pre jobs before the Node.js application started. It also removed the IIS and IISNode limitation. I personally recommended to use worker role as our Node.js hosting. But there are some problem if you use the approach I mentioned here. The first one is, we need to set all JavaScript files and module files as “Copy always” or “Copy if newer” manually. The second one is, in this way we cannot retrieve the cloud service configuration information. For example, we defined the endpoint in worker role property but we also specified the listening port in Node.js hardcoded. It should be changed that our Node.js can retrieve the endpoint. But I can tell you it won’t be working here. In the next post I will describe another way to execute the “node.exe” and Node.js application, so that we can get the cloud service configuration in Node.js. I will also demonstrate how to use Windows Azure Storage from Node.js by using the Windows Azure Node.js SDK.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • WebLogic Scripting Tool Tip &ndash; relax the syntax with the easy button

    - by james.bayer
    I stumbled on to this feature in WLST tonight called easeSyntax.  Apparently it’s a hidden feature that one of the WebLogic support engineers blogged about that allows you to simplify the commands in the interactive mode to have fewer parentheses and quotes.  For example, see how some of the commands instead of typing “ls()” I can type '”ls” or “cd(“/somepath”)” can become “cd /somepath”.  It’s not going to save the world, but it will help cut down on some extra typing. The example I was researching when stumbling into this was for how to print the runtime status of deployed application named “hello” on the “AdminServer”.  See the below output. wls:/base_domain/domainConfig> easeSyntax()   You have chosen to ease syntax for some WLST commands. However, the easy syntax should be strictly used in interactive mode. Easy syntax will not function properly in script mode and when used in loops. You can still use the regular jython syntax although you have opted for easy syntax. Use easeSyntax to turn this off. Use help(easeSyntax) for commands that support easy syntax wls:/base_domain/domainConfig> domainRuntime   wls:/base_domain/domainRuntime> ls dr-- AppRuntimeStateRuntime dr-- CoherenceServerLifeCycleRuntimes dr-- ConsoleRuntime dr-- DeployerRuntime dr-- DeploymentManager dr-- DomainServices dr-- LogRuntime dr-- MessageDrivenControlEJBRuntime dr-- MigratableServiceCoordinatorRuntime dr-- MigrationDataRuntimes dr-- PolicySubjectManagerRuntime dr-- SNMPAgentRuntime dr-- ServerLifeCycleRuntimes dr-- ServerRuntimes dr-- ServerServices dr-- ServiceMigrationDataRuntimes   -r-- ActivationTime Wed Dec 15 22:37:02 PST 2010 -r-- MessageDrivenControlEJBRuntime null -r-- MigrationDataRuntimes null -r-- Name base_domain -rw- Parent null -r-- ServiceMigrationDataRuntimes null -r-- Type DomainRuntime   -r-x preDeregister Void : -r-x restartSystemResource Void : WebLogicMBean(weblogic.management.configuration.SystemResourceMBean)   wls:/base_domain/domainRuntime> cd AppRuntimeStateRuntime/AppRuntimeStateRuntime wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime> ls   -r-- ApplicationIds java.lang.String[active-cache#[email protected], coherence-web-spi#[email protected], coherence#3. -r-- Name AppRuntimeStateRuntime -r-- Type AppRuntimeStateRuntime   -r-x getCurrentState String : String(appid),String(moduleid),String(subModuleId),String(target) -r-x getCurrentState String : String(appid),String(moduleid),String(target) -r-x getCurrentState String : String(appid),String(target) -r-x getIntendedState String : String(appid) -r-x getIntendedState String : String(appid),String(target) -r-x getModuleIds String[] : String(appid) -r-x getModuleTargets String[] : String(appid),String(moduleid) -r-x getModuleTargets String[] : String(appid),String(moduleid),String(subModuleId) -r-x getModuleType String : String(appid),String(moduleid) -r-x getRetireTimeMillis Long : String(appid) -r-x getRetireTimeoutSeconds Integer : String(appid) -r-x getSubmoduleIds String[] : String(appid),String(moduleid) -r-x isActiveVersion Boolean : String(appid) -r-x isAdminMode Boolean : String(appid),String(java.lang.String) -r-x preDeregister Void :   wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime> cmo.getCurrentState('hello','AdminServer') 'STATE_ACTIVE' wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime> cd / wls:/base_domain/domainRuntime>

    Read the article

  • NHibernate 2 Beginner's Guide Review

    - by Ricardo Peres
    OK, here's the review I promised a while ago. This is a beginner's introduction to NHibernate, so if you have already some experience with NHibernate, you will notice it lacks a lot of concepts and information. It starts with a good description of NHibernate and why would we use it. It goes on describing basic mapping scenarios having primary keys generated with the HiLo or Identity algorithms, without actually explaining why would we choose one over the other. As for mapping, the book talks about XML mappings and provides a simple example of Fluent NHibernate, comparing it to its XML counterpart. When it comes to relations, it covers one-to-many/many-to-one and many-to-many, not one-to-one relations, but only talks briefly about lazy loading, which is, IMO, an important concept. Only Bags are described, not any of the other collection types. The log4net configuration description gets it's own chapter, which I find excessive. The chapter on configuration merely lists the most common properties for configuring NHibernate, both in XML and in code. Querying only talks about loading by ID (using Get, not Load) and using Criteria API, on which a paging example is presented as well as some common filtering options (property equals/like/between to, no examples on conjunction/disjunction, however). There's a chapter fully dedicated to ASP.NET, which explains how we can use NHibernate in web applications. It basically talks about ASP.NET concepts, though. Following it, another chapter explains how we can build our own ASP.NET providers using NHibernate (Membership, Role). The available entity generators for NHibernate are referred and evaluated on a chapter of their own, the list is fine (CodeSmith, nhib-gen, AjGenesis, Visual NHibernate, MyGeneration, NGen, NHModeler, Microsoft T4 (?) and hbm2net), examples are provided whenever possible, however, I have some problems with some of the evaluations: for example, Visual NHibernate scores 5 out of 5 on Visual Studio integration, which simply does not exist! I suspect the author means to say that it can be launched from inside Visual Studio, but then, what can't? Finally, there's a chapter I really don't understand. It seems like a bag where a lot of things are thrown in, like NHibernate Burrow (which actually isn't explained at all), Blog.Net components, CSS template conversion and web.config settings related to the maximum request length for file uploads and ending with XML configuration, with the help of GhostDoc. Like I said, the book is only good for absolute beginners, it does a fair job in explaining the very basics, but lack a lot of not-so-basic concepts. Among other things, it lacks: Inheritance mapping strategies (table per class hierarchy, table per class, table per concrete class) Load versus Get usage Other usefull ISession methods First level cache (Identity Map pattern) Other collection types other that Bag (Set, List, Map, IdBag, etc Fetch options User Types Filters Named queries LINQ examples HQL examples And that's it! I hope you find this review useful. The link to the book site is https://www.packtpub.com/nhibernate-2-x-beginners-guide/book

    Read the article

  • New HTML 5 input types in ASP.Net 4.5 Developer Preview

    - by sreejukg
    Microsoft has released developer previews for Visual Studio 2011 and .Net framework 4.5. There are lots of new features available in the developer preview. One of the most interested things for web developers is the support introduced for new HTML 5 form controls. The following are the list of new controls available in HTML 5 email url number range Date pickers (date, month, week, time, datetime, datetime-local) search color Describing the functionality for these controls is not in the scope of this article. If you want to know about these controls, refer the below URLs http://msdn.microsoft.com/en-us/magazine/hh547102.aspx http://www.w3schools.com/html5/html5_form_input_types.asp ASP.Net 4.5 introduced more possible values to the Text Mode attribute to cater the above requirements. Let us evaluate these. I have created a project in Visual Studio 2011 developer preview, and created a page named “controls.aspx”. In the page I placed on Text box control from the toolbox Now select the control and go to the properties pane, look at the TextMode attribute. Now you can see more options are added here than prior versions of ASP.Net. I just selected Email as TextMode. I added one button to submit my page. The screen shot of the page in Visual Studio 2011 designer is as follows See the corresponding markup <form id="form1" runat="server">     <div>         Enter your email:         <asp:TextBox ID="TextBox1" runat="server" TextMode="Email"></asp:TextBox     </div>     <asp:Button ID="Button1" runat="server" Text="Submit" /> </form> Now let me run this page, IE 9 do not have the support for new form fields. I browsed the page using Firefox and the page appears as below. From the source of the rendered page, I saw the below markup for my email textbox <input name="TextBox1" type="email" id="TextBox1" /> Try to enter an invalid email and you will see the browser will ask you to enter a valid one by default. When rendered in non-supported browsers, these fields are behaving just as normal text boxes. So make sure you are using validation controls with these fields. See the browser support compatability matrix with these controls with various browser vendors. ASP.Net 4.5 introduced the support for these new form controls. You can build interactive forms using the newly added controls, keeping in mind that you need to validate the data for non-supported browsers.

    Read the article

  • ESB Toolkit 2.0 EndPointConfig (HTTPS with WCF-BasicHttp and the ESB Toolkit 2.0)

    - by Andy Morrison
    Earlier this week I had an ESB endpoint (Off-Ramp in ESB parlance) that I was sending to over http using WCF-BasicHttp.  I needed to switch the protocol to https: which I did by changing my UDDI Binding over to https:  No problem from a management perspective; however, when I tried to run the process I saw this exception: Event Type:                     Error Event Source:                BizTalk Server 2009 Event Category:            BizTalk Server 2009 Event ID:   5754 Date:                                    3/10/2010 Time:                                   2:58:23 PM User:                                    N/A Computer:                       XXXXXXXXX Description: A message sent to adapter "WCF-BasicHttp" on send port "SPDynamic.XXX.SR" with URI "https://XXXXXXXXX.com/XXXXXXX/whatever.asmx" is suspended.  Error details: System.ArgumentException: The provided URI scheme 'https' is invalid; expected 'http'. Parameter name: via    at System.ServiceModel.Channels.TransportChannelFactory`1.ValidateScheme(Uri via)    at System.ServiceModel.Channels.HttpChannelFactory.ValidateCreateChannelParameters(EndpointAddress remoteAddress, Uri via)    at System.ServiceModel.Channels.HttpChannelFactory.OnCreateChannel(EndpointAddress remoteAddress, Uri via)    at System.ServiceModel.Channels.ChannelFactoryBase`1.InternalCreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ChannelFactoryBase`1.CreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.ServiceChannelFactoryOverRequest.CreateInnerChannelBinder(EndpointAddress to, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.CreateServiceChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.CreateChannel(Type channelType, EndpointAddress address, Uri via)    at System.ServiceModel.ChannelFactory`1.CreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.ChannelFactory`1.CreateChannel()    at Microsoft.BizTalk.Adapter.Wcf.Runtime.WcfClient`2.GetChannel[TChannel](IBaseMessage bizTalkMessage, ChannelFactory`1& cachedFactory)    at Microsoft.BizTalk.Adapter.Wcf.Runtime.WcfClient`2.SendMessage(IBaseMessage bizTalkMessage)  MessageId:  {1170F4ED-550F-4F7E-B0E0-1EE92A25AB10}  InstanceID: {1640C6C6-CA9C-4746-AEB0-584FDF7BB61E} I knew from a previous experience that I likely needed to set the SecurityMode setting for my Send Port.  But how do you do this for a Dynamic port (which I was using since this is an ESB solution)? Within the UDDI portal you have to add an additional Instance Info to your Binding named: EndPointConfig  Then you have to set its value to:  SecurityMode=Transport Like this:    The EndPointConfig is how the ESB Toolkit 2.0 provides extensibility for the various transports.  To see what the key-value pair options are for a given transport, open up an itinerary and change one of your resolvers to a “static” resolver by setting the “Resolver Implementation” to Static.  Then select a “Transport Name” ”, for instance to WCF-BasicHttp.  At this point you can then click on the “EndPoint Configuration” property for to see an adapter/ramp specific properties dialog (key-value pairs.)    Here’s the dialog that popped up for WCF-BasicHttp:   I simply set the SecurityMode to Transport.  Please note that you will get different properties within the window depending on the Transport Name you select for the resolver. When you are done with your settings, export the itinerary to disk and find that xml; then find that resolver’s xml within that file.  It will look like endpointConfig=SecurityMode=Transport in this case.  Note that if you set additional properties you will have additional key-value pairs after endpointConfig= Copy that string and paste it into the UDDI portal for you Binding’s EndPointConfig Instance Info value.

    Read the article

  • SQL SERVER – Introduction to Adaptive ETL Tool – How adaptive is your ETL?

    - by pinaldave
    I am often reminded by the fact that BI/data warehousing infrastructure is very brittle and not very adaptive to change. There are lots of basic use cases where data needs to be frequently loaded into SQL Server or another database. What I have found is that as long as the sources and targets stay the same, SSIS or any other ETL tool for that matter does a pretty good job handling these types of scenarios. But what happens when you are faced with more challenging scenarios, where the data formats and possibly the data types of the source data are changing from customer to customer?  Let’s examine a real life situation where a health management company receives claims data from their customers in various source formats. Even though this company supplied all their customers with the same claims forms, they ended up building one-off ETL applications to process the claims for each customer. Why, you ask? Well, it turned out that the claims data from various regional hospitals they needed to process had slightly different data formats, e.g. “integer” versus “string” data field definitions.  Moreover the data itself was represented with slight nuances, e.g. “0001124” or “1124” or “0000001124” to represent a particular account number, which forced them, as I eluded above, to build new ETL processes for each customer in order to overcome the inconsistencies in the various claims forms.  As a result, they experienced a lot of redundancy in these ETL processes and recognized quickly that their system would become more difficult to maintain over time. So imagine for a moment that you could use an ETL tool that helps you abstract the data formats so that your ETL transformation process becomes more reusable. Imagine that one claims form represents a data item as a string – acc_no(varchar) – while a second claims form represents the same data item as an integer – account_no(integer). This would break your traditional ETL process as the data mappings are hard-wired.  But in a world of abstracted definitions, all you need to do is create parallel data mappings to a common data representation used within your ETL application; that is, map both external data fields to a common attribute whose name and type remain unchanged within the application. acc_no(varchar) is mapped to account_number(integer) expressor Studio first claim form schema mapping account_no(integer) is also mapped to account_number(integer) expressor Studio second claim form schema mapping All the data processing logic that follows manipulates the data as an integer value named account_number. Well, these are the kind of problems that that the expressor data integration solution automates for you.  I’ve been following them since last year and encourage you to check them out by downloading their free expressor Studio ETL software. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Business Intelligence, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: ETL, SSIS

    Read the article

  • TFS Auto Shelve - New Visual Studio 2010 / TFS 2010 Extension

    - by MikeParks
    We've been working with the Visual Studio 2010 SDK and the TFS 2010 SDK a lot recently to create new Visual Studio Extensions. You can find these extensions in the Visual Studio Gallery. If you're a developer/programmer, you should check it out, they have some pretty cool tools out there. I'd be surprised if you told me you went there and couldn't find any tools that could help you. One of the new extensions Cory and I made is called TFS Auto Shelve. Check out the description and read about it below. If you're interested and you have VS 2010 w/TFS 2010, feel free to try it out and let us know what you think. You can download it here: http://visualstudiogallery.msdn.microsoft.com/en-us/080540cb-e35f-4651-b71c-86c73e4a633d   Here's a description and screenshots of what it does: Automatically shelves the latest version of all pending changes from local TFS workspaces to the TFS Server every "x" number of minutes when solutions are opened.   ·         Purpose o    Created for Team Foundation Server 2010 and Visual Studio 2010 o    This tool is mainly aimed at the Programmer/Developer audience so they can always have the latest copy of their pending changes backed up to the TFS Server while coding ·         Functionality o    Menu options become active and automatic shelving begins when a solution that mapped to a TFS Workspace is opened in Visual Studio o    In Tools > TFS Auto Shelve (Running/NotRunning):  Automatic shelving can be turned on/off o    In Tools > TFS Auto Shelve Now : Shelve all code can be manually triggered o    Each TFS workspace has its own shelveset which is re-used to save the latest version of pending changes o    Shelvesets are named as Base Name + Workspace Name o    Shelveset comment contains item count o    If there are no pending changes, no shelvesets will be created/updated o    If a solution is opened that is not mapped to a TFS Workspace, menu options are disabled since shelving only works for mapped workspaces. ·         Configuration o    In Tools > Options > TFS Auto Shelve Options: Base Name is configurable o    In Tools > Options > TFS Auto Shelve Options: "x" number of minutes is configurable in options ·         Logging o    Custom Visual Studio Activity Logging is implemented. If you run into any errors, please startup Visual Studio with the /log switch, re-create the error, then close Visual Studio. You can browse to “%AppData%\Microsoft\VisualStudio\10.0\ActivityLog.XML” to view the log. Please feel free to inform us of any errors you see and we can work it out via email. ·         Other Helpful Information o    To view shelvesets, open Source Control Explorer, click on File > Source Control > Unshelve Pending Changes o    Workspaces can be modified by opening the Source Control Explorer > Clicking on Workspaces drop down > Click Workspaces… > Click Add / Edit / Removed   Thanks! - Mike

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 2

    - by shiju
    In my previous post, we have discussed on how to work with RavenDB document database in an ASP.NET MVC application. We have setup RavenDB for our ASP.NET MVC application and did basic CRUD operations against a simple domain entity. In this post, let’s discuss on domain entity with deep object graph and how to query against RavenDB documents using Indexes.Let's create two domain entities for our demo ASP.NET MVC appplication  public class Category {       public string Id { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public List<Expense> Expenses { get; set; }       public Category()     {         Expenses = new List<Expense>();     } }    public class Expense {       public string Id { get; set; }     public Category Category { get; set; }     public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }   }  We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category.Let's create  ASP.NET MVC view model  for Expense transaction public class ExpenseViewModel {     public string Id { get; set; }       public string CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]            public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]            public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } Let's create a contract type for Expense Repository  public interface IExpenseRepository {     Expense Load(string id);     IEnumerable<Expense> GetExpenseTransactions(DateTime startDate,DateTime endDate);     void Save(Expense expense,string categoryId);     void Delete(string id);  } Let's create a concrete type for Expense Repository for handling CRUD operations. public class ExpenseRepository : IExpenseRepository {   private IDocumentSession session; public ExpenseRepository() {         session = MvcApplication.CurrentSession; } public Expense Load(string id) {     return session.Load<Expense>(id); } public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; } public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } public void Delete(string id) {     var expense = Load(id);     session.Delete<Expense>(expense);     session.SaveChanges(); }   }  Insert/Update Expense Transaction The Save method is used for both insert a new expense record and modifying an existing expense transaction. For a new expense transaction, we store the expense object with associated category into document session object and load the existing expense object and assign values to it for editing a existing record.  public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } Querying Expense transactions   public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; }  The GetExpenseTransactions method returns expense transactions using a LINQ query expression with a Date comparison filter. The Lucene Query is using a index named "ExpenseTransactions" for getting the result set. In RavenDB, Indexes are LINQ queries stored in the RavenDB server and would be  executed on the background and will perform query against the JSON documents. Indexes will be working with a lucene query expression or a set operation. Indexes are composed using a Map and Reduce function. Check out Ayende's blog post on Map/Reduce We can create index using RavenDB web admin tool as well as programmitically using its Client API. The below shows the screen shot of creating index using web admin tool. We can also create Indexes using Raven Cleint API as shown in the following code documentStore.DatabaseCommands.PutIndex("ExpenseTransactions",     new IndexDefinition<Expense,Expense>() {     Map = Expenses => from exp in Expenses                     select new { exp.Date } });  In the Map function, we used a Linq expression as shown in the following from exp in docs.Expensesselect new { exp.Date };We have not used a Reduce function for the above index. A Reduce function is useful while performing aggregate functions based on the results from the Map function. Indexes can be use with set operations of RavenDB.SET OperationsUnlike other document databases, RavenDB supports set based operations that lets you to perform updates, deletes and inserts to the bulk_docs endpoint of RavenDB. For doing this, you just pass a query to a Index as shown in the following commandDELETE http://localhost:8080/bulk_docs/ExpenseTransactions?query=Date:20100531The above command using the Index named "ExpenseTransactions" for querying the documents with Date filter and  will delete all the documents that match the query criteria. The above command is equivalent of the following queryDELETE FROM ExpensesWHERE Date='2010-05-31' Controller & ActionsWe have created Expense Repository class for performing CRUD operations for the Expense transactions. Let's create a controller class for handling expense transactions.   public class ExpenseController : Controller { private ICategoryRepository categoyRepository; private IExpenseRepository expenseRepository; public ExpenseController(ICategoryRepository categoyRepository, IExpenseRepository expenseRepository) {     this.categoyRepository = categoyRepository;     this.expenseRepository = expenseRepository; } //Get Expense transactions based on dates public ActionResult Index(DateTime? StartDate, DateTime? EndDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!StartDate.HasValue)     {         StartDate = new DateTime(dtNow.Year, dtNow.Month, 1);         EndDate = StartDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of startdate's month, if endate is not passed     if (StartDate.HasValue && !EndDate.HasValue)     {         EndDate = (new DateTime(StartDate.Value.Year, StartDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }       var expenses = expenseRepository.GetExpenseTransactions(StartDate.Value, EndDate.Value);     if (Request.IsAjaxRequest())     {           return PartialView("ExpenseList", expenses);     }     ViewData.Add("StartDate", StartDate.Value.ToShortDateString());     ViewData.Add("EndDate", EndDate.Value.ToShortDateString());             return View(expenses);            }   // GET: /Expense/Edit public ActionResult Edit(string id) {       var expenseModel = new ExpenseViewModel();     var expense = expenseRepository.Load(id);     ModelCopier.CopyModel(expense, expenseModel);     var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems(expense.Category.Id.ToString());                    return View("Save", expenseModel);          }   // // GET: /Expense/Create   public ActionResult Create() {     var expenseModel = new ExpenseViewModel();               var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems("-1");     expenseModel.Date = DateTime.Today;     return View("Save", expenseModel); }   // // POST: /Expense/Save // Insert/Update Expense Tansaction [HttpPost] public ActionResult Save(ExpenseViewModel expenseViewModel) {     try     {         if (!ModelState.IsValid)         {               var categories = categoyRepository.GetCategories();                 expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);                               return View("Save", expenseViewModel);         }           var expense=new Expense();         ModelCopier.CopyModel(expenseViewModel, expense);          expenseRepository.Save(expense, expenseViewModel.CategoryId);                       return RedirectToAction("Index");     }     catch     {         return View();     } } //Delete a Expense Transaction public ActionResult Delete(string id) {     expenseRepository.Delete(id);     return RedirectToAction("Index");     }     }     Download the Source - You can download the source code from http://ravenmvc.codeplex.com

    Read the article

  • CDN CNAMEs not resolving to customer origin

    - by Donald Jenkins
    I have set up an Edgecast CDN to mirror all my static content. Because I use the root of my domain (donaldjenkins.com) to host my main site—using Google Analytics which sets cookies—I've stored the corresponding static files in a separate cookieless domain (donaldjenkins.info) which is used only for this purpose. I've set it up (using this guide for general guidance), with the following structure, based on a combination of customer origin and CDN origin to make the most of the chosen short domain name and provide meaningful URLs: http://donaldjenkins.info:80 is set as the customer origin for the content stored in the CDN at directory http://wac.62E0.edgecastcdn.net/8062E0/donaldjenkins.info; I've then set up various subdomains of a separate domain, the conveniently-named cdn.dj, as CDN-origin Edge CNAMEs for each of the corresponding static content types: js.cdn.dj points to the origin directory http://wac.62E0.edgecastcdn.net/0062E0/donaldjenkins.info/js; css.cdn.dj points to the origin directory http://wac.62E0.edgecastcdn.net/0062E0/donaldjenkins.info/css; images.cdn.dj points to the origin directory http://wac.62E0.edgecastcdn.net/0062E0/donaldjenkins.info/images and so on. This results in some pretty nice, short, clear URLs. The DNS zone file for cdn.dj (yes, it's a real domain name registered in Djibouti) is set properly: cdn.dj 43200 IN A 205.186.157.162 css.cdn.dj 43200 IN CNAME wac.62E0.edgecastcdn.net. images.cdn.dj 43200 IN CNAME wac.62E0.edgecastcdn.net. js.cdn.dj 43200 IN CNAME wac.62E0.edgecastcdn.net. The DNS resolves to the Edgecast URL: $ host js.cdn.dj js.cdn.dj is an alias for wac.62E0.edgecastcdn.net. wac.62E0.edgecastcdn.net is an alias for gs1.wac.edgecastcdn.net. gs1.wac.edgecastcdn.net has address 93.184.220.20 But whenever I try to fetch a file in any of the directories to which the CNAME assets map, I get a 404: $ curl http://js.cdn.dj/combined.js <?xml version="1.0" encoding="iso-8859-1"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <title>404 - Not Found</title> </head> <body> <h1>404 - Not Found</h1> </body> </html> despite the fact that the corresponding customer origin file exists: $ curl http://donaldjenkins.info/js/combined.js fetches the content of the combined.js file. Yet it's been more than enough time for the DNS to propagate since I set up the CDN. There's obviously some glaring mistake in the above-described setup, and I'm a bit of a novice with CDNs—but any suggestions would be gratefully received.

    Read the article

  • cocos2dx - Custom Fragment Shader and CCRenderTexture

    - by saiy2k
    I have a CCRenderTexture that is filled with a sprite when the scene is loaded, as follows, canvas = CCRenderTexture::create(this->getContentSize().width, this->getContentSize().height); canvas->setPosition(data->position); canvas->beginWithClear(0.0, 0.0, 0.0, 0); this->visit(); canvas->end(); The above code is written within a class, which derives from CCSprite (Hence this). Then, in another function applyShader(), I create a sprite named splat, from the texture of CCRenderTexture *canvas. Thus splat will contain the whole texture of canvas. Now I apply a custom fragment shader to the splat by calling the function splat->renderShader(), which will modify some small portion of the whole texture. Then I draw the modified texture back to the CCRenderTexture *canvas. Hence, applyShader() will * take a texture from CCRenderTexture, * create a sprite based on it, * apply a fragment shader to it * and draw the modified texture back to CCRenderTexture. This applyShader() will be called repetitively and its code is as follows: splat = Splat::createWithTexture(art->canvas->getSprite()->getTexture()); splat->renderShader(); art->canvas->begin(); splat->visit(); art->canvas->end(); My shader code is (nothing fancy) precision mediump float; varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_colorRampTexture; uniform float params[5]; void main() { gl_FragColor = texture2D(u_texture, v_texCoord); return; } So, with the above code I expect the original sprite this to get rendered over and over again without any visual changes. But on each call to applyShader(), the texture is getting stretched a little and the stretched image is getting rendered. After some 10 calls, the image gets so distorted. Can someone please tell me where I am going wrong? Thanks :-) PS: All code shown here is partial, not complete code. Edit: Adding Screens Update: The problem has nothing to do with shaders it seems. It happens even when I dont call renderShader(). The actual lines of code is: splat = Splat::createWithTexture(art->canvas->getSprite()->getTexture()); splat->setPosition( ccp( art->getContentSize().width * 0.5, art->getContentSize().height * 0.5 ) ); splat->setFlipY(true); art->canvas->begin(); splat->visit(); art->canvas->end();

    Read the article

  • Welcome to my geeks blog

    - by bconlon
    Hi and welcome! I'm Bazza and this is my geeks blog. I have 20 years Visual Studio mainly C++, MFC,  ATL and now, thankfully, C# and I am embarking on the new world (well new to me) of WPF, so I thought I would try and capture my successful...and not so successful...WPF experiences with the geek world. So where to start? WPF? What I know so far... From wiki..."Windows Presentation Foundation (or WPF) is a graphical subsystem for rendering user interfaces in Windows-based applications." Hmm, great but didn't MFC, ATL (my head hurt with that one), and .Net all have APIs to allow me to code against the Windows Graphical Device Interface (GDI)? "Rather than relying on the older GDI subsystem, WPF utilizes DirectX. WPF attempts to provide a consistent programming model for building applications and provides a separation between the user interface and the business logic." OK, different drawing code, same Windows and weren't we always taught to separate our UI, Business Layer and Data Access Layer? "WPF employs XAML, a derivative of XML, to define and link various UI elements. WPF applications can be deployed as standalone desktop programs, or hosted as an embedded object in a website." Cool, now we're getting somewhere. So when they say separation they really mean separation. The crux of this appears to be that you can have creative people writing the UI and making it attractive and intuitive to use, whist the geeks concentrate on writing the Business and Data Access stuff. XAML (eXtensible Application Markup Language) maps XML elements and attributes directly to Common Language Runtime (CLR) object instances, properties and events. True separation of the View and Model. WPF also provides logical separation of a control from its appearance. In a traditional Windows system, all Controls have a base class containing a Windows handle and each Control knows how to render itself. In WPF, the controls are more like those in a Web Browser using Cascading Style Sheet, they are not wrappers for standard Windows Controls. Instead, they have a default 'template' that defines a visual theme which can easily be replaced by a custom template. But it gets better. WPF concentrates heavily on Data Binding where the client can bind directly to data on the server. I think this concept was first introduced in 'Classic' Visual Basic, where you could bind a list directly to a data from an Access database, and you could do similar in ASP .Net. However, the WPF implementation is far superior than it's predecessors. There are also other technologies that I want to look at like LINQ and the Entity Framework, but that's all for now. #

    Read the article

  • What’s new in Silverlight 4 RC?

    - by pluginbaby
    I am here in Las Vegas for MIX10 where Scott Guthrie announced today the release of Silverlight 4 RC and the Visual Studio 2010 tools. You can now install VS2010 RC!!! As always, downloads links are here: www.silverlight.net He also said that the final version of Silverlight 4 will come next month (so april)! 4 months ago, I wrote a blog post on the new features of Silverlight 4 beta, so… what’s new in the RC ?   Rich Text · RichTextArea renamed to RichTextBox · Text position and selection APIs · “Xaml” property for serializing text content · XAML clipboard format · FlowDirection support on Runs tag · “Format then type” support when dragging controls to the designer · Thai/Vietnamese/Indic support · UI Automation Text pattern   Networking · UploadProgress support (Client stack) · Caching support (Client stack) · Sockets security restrictions removal (Elevated Trust) · Sockets policy file retrieval via HTTP · Accept-Language header   Out of Browser (Elevated Trust) · XAP signing · Silent install and emulation mode · Custom window chrome · Better support for COM Automation · Cancellable shutdown event · Updated security dialogs   Media · Pinned full-screen mode on secondary display · Webcam/Mic configuration preview · More descriptive MediaSourceStream errors · Content & Output protection updates · Updates to H.264 content protection (ClearNAL) · Digital Constraint Token · CGMS-A · Multicast · Graphics card driver validation & revocation   Graphics and Printing · HW accelerated Perspective Transforms · Ability to query page size and printable area · Memory usage and perf improvements   Data · Entity-level validation support of INotifyDataErrorInfo for DataGrid · XPath support for XML   Parser · New architecture enables future innovation · Performance and stability improvements · XmlnsPrefix & XmlnsDefinition attributes · Support setting order-dependent properties   Globalization & Localization · Support for 31 new languages · Arabic, Hebrew and Thai input on Mac · Indic support   More … · Update to DeepZoom code base with HW acceleration · Support for Private mode browsing · Google Chrome support (Windows) · FrameworkElement.Unloaded event · HTML Hosting accessibility · IsoStore perf improvements · Native hosting perf improvements (e.g., Bing Toolbar) · Consistency with Silverlight for Mobile APIs and Tooling · SDK   - System.Numerics.dll   - Dynamic XAP support (MEF)   - Frame/Navigation refresh support   That’s a lot!   You will find more details on the following links: http://timheuer.com/blog/archive/2010/03/15/whats-new-in-silverlight-4-rc-mix10.aspx http://www.davidpoll.com/2010/03/15/new-in-the-silverlight-4-rc-xaml-features/   Technorati Tags: Silverlight

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Passthrough Objects – Duck Typing++

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Can't see a genuine use for this, but I got the idea in my head and wanted to work it through. It's an extension to the idea of duck typing, for scenarios where types have similar behaviour, but implemented in differently-named members. So you may have a set of objects you want to treat as an interface, which don't implement the interface explicitly, and don't have the same member names so they can't be duck-typed into implicitly implementing the interface. In a fictitious example, I want to call Get on whichever ICache implementation is current, and have the call passed through to the relevant method – whether it's called Read, Retrieve or whatever: A sample implementation is up on github here: PassthroughSample. This uses Castle's DynamicProxy behind the scenes in the same way as my duck typing sample, but allows you to configure the passthrough to specify how the inner (implementation) and outer (interface) members are mapped:       var setup = new Passthrough();     var cache = setup.Create("PassthroughSample.Tests.Stubs.AspNetCache, PassthroughSample.Tests")                             .WithPassthrough("Name", "CacheName")                             .WithPassthrough("Get", "Retrieve")                             .WithPassthrough("Set", "Insert")                             .As<ICache>(); - or using some ugly Lambdas to avoid the strings :     Expression<Func<ICache, string, object>> get = (o, s) => o.Get(s);     Expression<Func<Memcached, string, object>> read = (i, s) => i.Read(s);     Expression<Action<ICache, string, object>> set = (o, s, obj) => o.Set(s, obj);     Expression<Action<Memcached, string, object>> insert = (i, s, obj) => i.Put(s, obj);       ICache cache = new Passthrough<ICache, Memcached>()                     .Create()                     .WithPassthrough(o => o.Name, i => i.InstanceName)                     .WithPassthrough(get, read)                     .WithPassthrough(set, insert)                     .As();   - or even in config:   ICache cache = Passthrough.GetConfigured<ICache>(); ...  <passthrough>     <types>       <typename="PassthroughSample.Tests.Stubs.ICache, PassthroughSample.Tests"             passesThroughTo="PassthroughSample.Tests.Stubs.AppFabricCache, PassthroughSample.Tests">         <members>           <membername="Name"passesThroughTo="RegionName"/>           <membername="Get"passesThroughTo="Out"/>           <membername="Set"passesThroughTo="In"/>         </members>       </type>   Possibly useful for injecting stubs for dependencies in tests, when your application code isn't using an IoC container. Possibly it also has an alternative implementation using .NET 4.0 dynamic objects, rather than the dynamic proxy.

    Read the article

  • Built-in card-reader doesn't work. HP Compaq nx6325 notebook

    - by user10940
    I have a HP-Compaq nx6325 notebook with an built-in card-reader (SD, MS/Pro, MMC, SM, XD) and the ubuntu (10.10.) don't see it. I've tried to install it manually, with this steps (and with this tifmxx driver), but doesn't work. The compile log: $ echo /home/tvera/downloads/cr_install /home/tvera/downloads/cr_install $ make -C /lib/modules/2.6.35-25-generic/build M=/home/tvera/downloads/cr_install make[1]: Entering directory `/usr/src/linux-headers-2.6.35-25-generic' CC [M] /home/tvera/downloads/cr_install/tifm_core.o In file included from /home/tvera/downloads/cr_install/tifm_core.c:12: /home/tvera/downloads/cr_install/linux/tifm.h:128: error: field ‘cdev’ has incomplete type /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_uevent’: /home/tvera/downloads/cr_install/tifm_core.c:69: warning: passing argument 1 of ‘add_uevent_var’ from incompatible pointer type include/linux/kobject.h:244: note: expected ‘struct kobj_uevent_env *’ but argument is of type ‘char **’ /home/tvera/downloads/cr_install/tifm_core.c:69: warning: passing argument 2 of ‘add_uevent_var’ makes pointer from integer without a cast include/linux/kobject.h:244: note: expected ‘const char *’ but argument is of type ‘int’ /home/tvera/downloads/cr_install/tifm_core.c: At top level: /home/tvera/downloads/cr_install/tifm_core.c:161: warning: initialization from incompatible pointer type /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_free’: /home/tvera/downloads/cr_install/tifm_core.c:170: warning: type defaults to ‘int’ in declaration of ‘__mptr’ /home/tvera/downloads/cr_install/tifm_core.c:170: warning: initialization from incompatible pointer type /home/tvera/downloads/cr_install/tifm_core.c: At top level: /home/tvera/downloads/cr_install/tifm_core.c:177: error: unknown field ‘release’ specified in initializer /home/tvera/downloads/cr_install/tifm_core.c:178: warning: initialization from incompatible pointer type /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_alloc_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:190: error: implicit declaration of function ‘class_device_initialize’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_add_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:211: error: ‘BUS_ID_SIZE’ undeclared (first use in this function) /home/tvera/downloads/cr_install/tifm_core.c:211: error: (Each undeclared identifier is reported only once /home/tvera/downloads/cr_install/tifm_core.c:211: error: for each function it appears in.) /home/tvera/downloads/cr_install/tifm_core.c:212: error: implicit declaration of function ‘class_device_add’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_remove_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:237: error: implicit declaration of function ‘class_device_del’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_free_adapter’: /home/tvera/downloads/cr_install/tifm_core.c:243: error: implicit declaration of function ‘class_device_put’ /home/tvera/downloads/cr_install/tifm_core.c: In function ‘tifm_alloc_device’: /home/tvera/downloads/cr_install/tifm_core.c:275: error: ‘struct device’ has no member named ‘bus_id’ /home/tvera/downloads/cr_install/tifm_core.c:275: error: ‘BUS_ID_SIZE’ undeclared (first use in this function) make[2]: *** [/home/tvera/downloads/cr_install/tifm_core.o] Error 1 make[1]: *** [_module_/home/tvera/downloads/cr_install] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-2.6.35-25-generic' make: *** [all] Error 2 The output of lsusb: Bus 001 Device 005: ID 05e3:0702 Genesys Logic, Inc. USB 2.0 IDE Adapter Bus 003 Device 003: ID 0458:003a KYE Systems Corp. (Mouse Systems) NetScroll+ Mini Traveler Bus 003 Device 002: ID 08ff:2580 AuthenTec, Inc. AES2501 Fingerprint Sensor Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

    Read the article

  • Adding an expression based image in a client report definition file (RDLC)

    - by rajbk
    In previous posts, I showed you how to create a report using Visual Studio 2010 and how to add a hyperlink to the report.  In this post, I show you how to add an expression based image to each row of the report. This similar to displaying a checkbox column for Boolean values.  A sample project is attached to the bottom of this post. To start off, download the project we created earlier from here.  The report we created had a “Discontinued” column of type Boolean. We are going to change it to display an “available” icon or “unavailable” icon based on the “Discontinued” row value.    Load the project and double click on Products.rdlc. With the report design surface active, you will see the “Report Data” tool window. Right click on the Images folder and select “Add Image..”   Add the available_icon.png and discontinued_icon.png images (the sample project at the end of this post has the icon png files)    You can see the images we added in the “Report Data” tool window.   Drag and drop the available_icon into the “Discontinued” column row (not the header) We get a dialog box which allows us to set the image properties. We will add an expression that specifies the image to display based the “Discontinued” value from the Product table. Click on the expression (fx) button.   Add the following expression : = IIf(Fields!Discontinued.Value = True, “discontinued_icon”, “available_icon”)   Save and exit all dialog boxes. In the report design surface, resize the column header and change the text from “Discontinued” to “In Production”.   (Optional) Right click on the image cell (not header) , go to “Image Properties..” and offset it by 5pt from the left. (Optional) Change the border color since it is not set by default for image columns. We are done adding our image column! Compile the application and run it. You will see that the “In Production” column has red ‘x’ icons for discontinued products. Download the VS 2010 sample project NorthwindReportsImage.zip Other Posts Adding a hyperlink in a client report definition file (RDLC) Rendering an RDLC directly to the Response stream in ASP.NET MVC ASP.NET MVC Paging/Sorting/Filtering using the MVCContrib Grid and Pager Localization in ASP.NET MVC 2 using ModelMetadata Setting up Visual Studio 2010 to step into Microsoft .NET Source Code Running ASP.NET Webforms and ASP.NET MVC side by side Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework

    Read the article

  • Vodacom Call Center Management on the NetBeans Platform

    - by Geertjan
    If you live in South Africa, you know about Vodacom. Vodacom is one of the dominant mobile communication companies in South Africa, and beyond, providing voice, messaging, data, and similar mobile services. Inside Vodacom there's an application named Helios, which is a call centre application that had its inception in 2009 and consists of two parts. Firstly, a web-based front-end that allows a call centre agent to service subscribers using a Google-like search on a knowledge base structured as a collection of FAQs. The web-based front-end uses plain-old HTML + CSS + a good helping of JQuery and JQueryUI. This is delivered via JSR-168 portlets running on a cluster of IBM Portal 6 servers. In turn, the portlets communicate via RMI with several back-end EJB's containing the business logic. These EJB's are deployed on a cluster of Weblogic Application Servers, version 10.3.6. The second part is a NetBeans Platform application used for maintaining and constructing the knowledge base, i.e., the back-end of the web-based front-end. Helios is also used for a number of other maintenance functions, such as access permissions, user maintenance, and news bulletins. Below, in the web-based front-end, call centre agents can enter search terms and are presented with a number of FAQs from the knowledge base. Upon selecting a FAQ article, the agent is presented with the article text, the process to guide the subscriber, system checks that display information specific to the subscriber, and links to related applications and articles: Below, you can see that applications are searchable and can be accessed using the same web-based front-end as shown above. And, as can be seen below, knowledge base FAQs are maintained using the Helios Maintenance Application, which is the Vodacom application built on the NetBeans Platform: Several thousand call centre agent user accounts are administered using the Helios Maintenance Application. Below the main FAQ page is shown, together with the About dialog: Vodacom is happy with the back-end NetBeans Platform application. However, the front-end stack runs on quite old technology. Ideally Vodacom would like to migrate the portlets to Oracle Weblogic Portal or Oracle WebCenter, but this hasn't been accomplished yet. Migrating makes sense as the rest of the application server environment consists entirely of Oracle products.

    Read the article

< Previous Page | 330 331 332 333 334 335 336 337 338 339 340 341  | Next Page >