Search Results

Search found 861 results on 35 pages for 'argc'.

Page 34/35 | < Previous Page | 30 31 32 33 34 35  | Next Page >

  • iPhone: Crash in Custom Autorelease Pool

    - by user338322
    My app is crashing when I try to post images in an HTTP request. I am trying to upload images to a server. The crash appears related to my autorelease pool because the crash is trapped at the [pool release] message. Here is the crash report: #0 0x326712f8 in prepareForMethodLookup () #1 0x3266cf5c in lookUpMethod () #2 0x32668f28 in objc_msgSend_uncached () #3 0x33f70996 in NSPopAutoreleasePool () #4 0x33f82a6c in -[NSAutoreleasePool drain] () #5 0x00003d3e in -[CameraViewcontroller save:] (self=0x811400, _cmd=0x319c00d4, number=0x11e210) at /Users/hardikrathore/Desktop/LiveVideoRecording/Classes/CameraViewcontroller.m:266 #6 0x33f36f8a in __NSFireDelayedPerform () #7 0x32da44c2 in CFRunLoopRunSpecific () #8 0x32da3c1e in CFRunLoopRunInMode () #9 0x31bb9374 in GSEventRunModal () #10 0x30bf3c30 in -[UIApplication _run] () #11 0x30bf2230 in UIApplicationMain () #12 0x00002650 in main (argc=1, argv=0x2ffff474) at /Users/hardikrathore/Desktop/LiveVideoRecording/main.m:14 The crash report says that final line of the following code is the point of the crash. (Line No. 266) -(void)save:(id)number { NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; j =[number intValue]; while(screens[j] != NULL){ NSLog(@" image made : %d",j); UIImage * image = [UIImage imageWithCGImage:screens[j]]; image=[self imageByCropping:image toRect:CGRectMake(0, 0, 320, 240)]; NSData *imgdata = UIImageJPEGRepresentation(image,0.3); [image release]; CGImageRelease(screens[j]); screens[j] = NULL; UIImage * image1 = [UIImage imageWithCGImage:screens[j+1]]; image1=[self imageByCropping:image1 toRect:CGRectMake(0, 0, 320, 240)]; NSData *imgdata1 = UIImageJPEGRepresentation(image1,0.3); [image1 release]; CGImageRelease(screens[j+1]); screens[j+1] = NULL; NSString *urlString=@"http://www.test.itmate4.com/iPhoneToServerTwice.php"; // setting up the request object now NSMutableURLRequest *request = [[NSMutableURLRequest alloc]init]; [request setURL:[NSURL URLWithString:urlString]]; [request setHTTPMethod:@"POST"]; NSString *fileName=[VideoID stringByAppendingString:@"_"]; fileName=[fileName stringByAppendingString:[NSString stringWithFormat:@"%d",k]]; NSString *fileName2=[VideoID stringByAppendingString:@"_"]; fileName2=[fileName2 stringByAppendingString:[NSString stringWithFormat:@"%d",k+1]]; /* add some header info now we always need a boundary when we post a file also we need to set the content type You might want to generate a random boundary.. this is just the same as my output from wireshark on a valid html post */ NSString *boundary = [NSString stringWithString:@"---------------------------14737809831466499882746641449"]; NSString *contentType = [NSString stringWithFormat:@"multipart/form-data; boundary=%@",boundary]; [request addValue:contentType forHTTPHeaderField: @"Content-Type"]; /* now lets create the body of the post */ //NSString *count=[NSString stringWithFormat:@"%d",front];; NSMutableData *body = [NSMutableData data]; [body appendData:[[NSString stringWithFormat:@"\r\n--%@\r\n",boundary] dataUsingEncoding:NSUTF8StringEncoding]]; //[body appendData:[[NSString stringWithFormat:@"Content-Disposition: form-data; name=\"userfile\"; count=\"@\"";filename=\"%@.jpg\"\r\n",count,fileName] dataUsingEncoding:NSUTF8StringEncoding]]; [body appendData:[[NSString stringWithFormat:@"Content-Disposition: form-data; name=\"userfile\"; filename=\"%@.jpg\"\r\n",fileName] dataUsingEncoding:NSUTF8StringEncoding]]; [body appendData:[[NSString stringWithString:@"Content-Type: application/octet-stream\r\n\r\n"] dataUsingEncoding:NSUTF8StringEncoding]]; [body appendData:[NSData dataWithData:imgdata]]; [body appendData:[[NSString stringWithFormat:@"\r\n--%@--\r\n",boundary] dataUsingEncoding:NSUTF8StringEncoding]]; //second boundary NSString *string1 = [[NSString alloc] initWithFormat:@"\r\n--%@\r\n",boundary]; NSString *string2 =[[NSString alloc] initWithFormat:@"Content-Disposition: form-data; name=\"userfile2\"; filename=\"%@.jpg\"\r\n",fileName2]; NSString *string3 =[[NSString alloc] initWithFormat:@"\r\n--%@--\r\n",boundary]; [body appendData:[string1 dataUsingEncoding:NSUTF8StringEncoding]]; [body appendData:[string2 dataUsingEncoding:NSUTF8StringEncoding]]; //experiment //[body appendData:[[NSString stringWithFormat:@"Content-Disposition: form-data; name=\"userfile2\"; filename=\"%@.jpg\"\r\n",fileName2] dataUsingEncoding:NSUTF8StringEncoding]]; [body appendData:[[NSString stringWithString:@"Content-Type: application/octet-stream\r\n\r\n"] dataUsingEncoding:NSUTF8StringEncoding]]; [body appendData:[NSData dataWithData:imgdata1]]; //[body appendData:[[NSString stringWithFormat:@"\r\n--%@--\r\n",boundary] dataUsingEncoding:NSUTF8StringEncoding]]; [body appendData:[string3 dataUsingEncoding:NSUTF8StringEncoding]]; // setting the body of the post to the reqeust [request setHTTPBody:body]; // now lets make the connection to the web NSData *returnData = [NSURLConnection sendSynchronousRequest:request returningResponse:nil error:nil]; NSString *returnString = [[NSString alloc] initWithData:returnData encoding:NSUTF8StringEncoding]; if([returnString isEqualToString:@"SUCCESS"]) { NSLog(returnString); k=k+2; j=j+2; [self performSelectorInBackground:@selector(save:) withObject:(id)[NSNumber numberWithInt:j]]; } [imgdata release]; [imgdata1 release]; [NSThread sleepForTimeInterval:.01]; } [pool drain]; //<-------------Line 266 } I don't understand what is causing the crash.

    Read the article

  • SWIG & C/C++ Python API connected - SEGFAULT

    - by user289637
    Hello, my task is to create dual program. At the beginning I start C program that calls throught C/C++ API of Python some Python method. The called method after that call a function that is created with SWIG. I show you my sample also with backtrace from gdb after I am given Segmentation fault. main.c: #include <Python.h> #include <stdio.h> #include "utils.h" int main(int argc, char** argv) { printf("Calling from C !\n"); increment(); int i; for(i = 0; i < 11; ++i) { Py_Initialize(); PyObject *pname = PyString_FromString("py_function"); PyObject *module = PyImport_Import(pname); PyObject *dict = PyModule_GetDict(module); PyObject *func = PyDict_GetItemString(dict, "ink"); PyObject_CallObject(func, NULL); Py_DECREF(module); Py_DECREF(pname); printf("\tbefore finalize\n"); Py_Finalize(); printf("\tafter finalize\n"); } return 0; } utils.c #include <stdio.h> #include "utils.h" void increment(void) { printf("Incremention counter to: %u\n", ++counter); } py_function.py #!/usr/bin/python2.6 '''py_function.py - Python source designed to demonstrate the use of python embedding''' import utils def ink(): print 'I am gonna increment !' utils.increment() and last think is my Makefile & SWIG configure file Makefile: CC=gcc CFLAGS=-c -g -Wall -std=c99 all: main main: main.o utils.o utils_wrap.o $(CC) main.o utils.o -lpython2.6 -o sample swig -Wall -python -o utils_wrap.c utils.i $(CC) utils.o utils_wrap.o -shared -o _utils.so main.o: main.c $(CC) $(CFLAGS) main.c -I/usr/include/python2.6 -o main.o utils.o: utils.c utils.h $(CC) $(CFLAGS) -fPIC utils.c -o $@ utils_wrap.o: utils_wrap.c $(CC) -c -fPIC utils_wrap.c -I/usr/include/python2.6 -o $@ clean: rm -rf *.o The program is called by ./main and there is output: (gdb) run Starting program: /home/marxin/Programming/python2/sample [Thread debugging using libthread_db enabled] Calling from C ! Incremention counter to: 1 I am gonna increment ! Incremention counter to: 2 before finalize after finalize I am gonna increment ! Incremention counter to: 3 before finalize after finalize I am gonna increment ! Incremention counter to: 4 before finalize after finalize Program received signal SIGSEGV, Segmentation fault. 0xb7ed3e4e in PyObject_Malloc () from /usr/lib/libpython2.6.so.1.0 Backtrace: (gdb) backtrace #0 0xb7ed3e4e in PyObject_Malloc () from /usr/lib/libpython2.6.so.1.0 #1 0xb7ca2b2c in ?? () #2 0xb7f8dd40 in ?? () from /usr/lib/libpython2.6.so.1.0 #3 0xb7eb014c in ?? () from /usr/lib/libpython2.6.so.1.0 #4 0xb7f86ff4 in ?? () from /usr/lib/libpython2.6.so.1.0 #5 0xb7f99820 in ?? () from /usr/lib/libpython2.6.so.1.0 #6 0x00000001 in ?? () #7 0xb7f8dd40 in ?? () from /usr/lib/libpython2.6.so.1.0 #8 0xb7f4f014 in _PyObject_GC_Malloc () from /usr/lib/libpython2.6.so.1.0 #9 0xb7f99820 in ?? () from /usr/lib/libpython2.6.so.1.0 #10 0xb7f4f104 in _PyObject_GC_NewVar () from /usr/lib/libpython2.6.so.1.0 #11 0xb7ee8760 in _PyType_Lookup () from /usr/lib/libpython2.6.so.1.0 #12 0xb7f99820 in ?? () from /usr/lib/libpython2.6.so.1.0 #13 0x00000001 in ?? () #14 0xb7f8dd40 in ?? () from /usr/lib/libpython2.6.so.1.0 #15 0xb7ef13ed in ?? () from /usr/lib/libpython2.6.so.1.0 #16 0xb7f86ff4 in ?? () from /usr/lib/libpython2.6.so.1.0 #17 0x00000001 in ?? () #18 0xbfff0c34 in ?? () #19 0xb7e993c3 in ?? () from /usr/lib/libpython2.6.so.1.0 #20 0x00000001 in ?? () #21 0xbfff0c70 in ?? () #22 0xb7f99da0 in ?? () from /usr/lib/libpython2.6.so.1.0 #23 0xb7f86ff4 in ?? () from /usr/lib/libpython2.6.so.1.0 #24 0xb7f86ff4 in ?? () from /usr/lib/libpython2.6.so.1.0 #25 0x080a6b0c in ?? () #26 0x080a6b0c in ?? () #27 0xb7e99420 in PyObject_CallFunctionObjArgs () from /usr/lib/libpython2.6.so.1.0 #28 0xb7f86ff4 in ?? () from /usr/lib/libpython2.6.so.1.0 #29 0xb7f86ff4 in ?? () from /usr/lib/libpython2.6.so.1.0 #30 0x800e55eb in ?? () #31 0x080a6b0c in ?? () #32 0xb7e9958c in PyObject_IsSubclass () from /usr/lib/libpython2.6.so.1.0 #33 0xb7f8dd40 in ?? () from /usr/lib/libpython2.6.so.1.0 #34 0x080a9020 in ?? () #35 0xb7fb78f0 in PyFPE_counter () from /usr/lib/libpython2.6.so.1.0 #36 0xb7f86ff4 in ?? () from /usr/lib/libpython2.6.so.1.0 #37 0x00000000 in ?? () Thanks for your help and advices, marxin

    Read the article

  • what is the wrong in this code(openAl in vc++)

    - by maiajam
    hi how are you all? i need your help i have this code #include <conio.h> #include <stdlib.h> #include <stdio.h> #include <al.h> #include <alc.h> #include <alut.h> #pragma comment(lib, "openal32.lib") #pragma comment(lib, "alut.lib") /* * These are OpenAL "names" (or "objects"). They store and id of a buffer * or a source object. Generally you would expect to see the implementation * use values that scale up from '1', but don't count on it. The spec does * not make this mandatory (as it is OpenGL). The id's can easily be memory * pointers as well. It will depend on the implementation. */ // Buffers to hold sound data. ALuint Buffer; // Sources are points of emitting sound. ALuint Source; /* * These are 3D cartesian vector coordinates. A structure or class would be * a more flexible of handling these, but for the sake of simplicity we will * just leave it as is. */ // Position of the source sound. ALfloat SourcePos[] = { 0.0, 0.0, 0.0 }; // Velocity of the source sound. ALfloat SourceVel[] = { 0.0, 0.0, 0.0 }; // Position of the Listener. ALfloat ListenerPos[] = { 0.0, 0.0, 0.0 }; // Velocity of the Listener. ALfloat ListenerVel[] = { 0.0, 0.0, 0.0 }; // Orientation of the Listener. (first 3 elements are "at", second 3 are "up") // Also note that these should be units of '1'. ALfloat ListenerOri[] = { 0.0, 0.0, -1.0, 0.0, 1.0, 0.0 }; /* * ALboolean LoadALData() * * This function will load our sample data from the disk using the Alut * utility and send the data into OpenAL as a buffer. A source is then * also created to play that buffer. */ ALboolean LoadALData() { // Variables to load into. ALenum format; ALsizei size; ALvoid* data; ALsizei freq; ALboolean loop; // Load wav data into a buffer. alGenBuffers(1, &Buffer); if(alGetError() != AL_NO_ERROR) return AL_FALSE; alutLoadWAVFile((ALbyte *)"C:\Users\Toshiba\Desktop\Graduation Project\OpenAL\open AL test\wavdata\FancyPants.wav", &format, &data, &size, &freq, &loop); alBufferData(Buffer, format, data, size, freq); alutUnloadWAV(format, data, size, freq); // Bind the buffer with the source. alGenSources(1, &Source); if(alGetError() != AL_NO_ERROR) return AL_FALSE; alSourcei (Source, AL_BUFFER, Buffer ); alSourcef (Source, AL_PITCH, 1.0 ); alSourcef (Source, AL_GAIN, 1.0 ); alSourcefv(Source, AL_POSITION, SourcePos); alSourcefv(Source, AL_VELOCITY, SourceVel); alSourcei (Source, AL_LOOPING, loop ); // Do another error check and return. if(alGetError() == AL_NO_ERROR) return AL_TRUE; return AL_FALSE; } /* * void SetListenerValues() * * We already defined certain values for the Listener, but we need * to tell OpenAL to use that data. This function does just that. */ void SetListenerValues() { alListenerfv(AL_POSITION, ListenerPos); alListenerfv(AL_VELOCITY, ListenerVel); alListenerfv(AL_ORIENTATION, ListenerOri); } /* * void KillALData() * * We have allocated memory for our buffers and sources which needs * to be returned to the system. This function frees that memory. */ void KillALData() { alDeleteBuffers(1, &Buffer); alDeleteSources(1, &Source); alutExit(); } int main(int argc, char *argv[]) { printf("MindCode's OpenAL Lesson 1: Single Static Source\n\n"); printf("Controls:\n"); printf("p) Play\n"); printf("s) Stop\n"); printf("h) Hold (pause)\n"); printf("q) Quit\n\n"); // Initialize OpenAL and clear the error bit. alutInit(NULL, 0); alGetError(); // Load the wav data. if(LoadALData() == AL_FALSE) { printf("Error loading data."); return 0; } SetListenerValues(); // Setup an exit procedure. atexit(KillALData); // Loop. ALubyte c = ' '; while(c != 'q') { c = getche(); switch(c) { // Pressing 'p' will begin playing the sample. case 'p': alSourcePlay(Source); break; // Pressing 's' will stop the sample from playing. case 's': alSourceStop(Source); break; // Pressing 'h' will pause the sample. case 'h': alSourcePause(Source); break; }; } return 0; } and it is run willbut i cant here any thing also i am new in programong and wont to program a virtual reality sound in my graduation project and start to learn opeal and vc++ but i dont how to start and from where i must begin and i want to ask if i need to learn about API win ?? and if i need how i can learn that thank you alote and i am sorry coz of my english

    Read the article

  • Linux C: "Interactive session" with separate read and write named pipes?

    - by ~sd-imi
    Hi all, I am trying to work with "Introduction to Interprocess Communication Using Named Pipes - Full-Duplex Communication Using Named Pipes", http://developers.sun.com/solaris/articles/named_pipes.html#5 ; in particular fd_server.c (included below for reference) Here is my info and compile line: :~$ cat /etc/issue Ubuntu 10.04 LTS \n \l :~$ gcc --version gcc (Ubuntu 4.4.3-4ubuntu5) 4.4.3 :~$ gcc fd_server.c -o fd_server fd_server.c creates two named pipes, one for reading and one for writing. What one can do, is: in one terminal, run the server and read (through cat) its write pipe: :~$ ./fd_server & 2/dev/null [1] 11354 :~$ cat /tmp/np2 and in another, write (using echo) to server's read pipe: :~$ echo "heeellloooo" /tmp/np1 going back to first terminal, one can see: :~$ cat /tmp/np2 HEEELLLOOOO 0[1]+ Exit 13 ./fd_server 2 /dev/null What I would like to do, is make sort of a "interactive" (or "shell"-like) session; that is, the server is run as usual, but instead of running "cat" and "echo", I'd like to use something akin to screen. What I mean by that, is that screen can be called like screen /dev/ttyS0 38400, and then it makes a sort of a interactive session, where what is typed in terminal is passed to /dev/ttyS0, and its response is written to terminal. Now, of course, I cannot use screen, because in my case the program has two separate nodes, and as far as I can tell, screen can refer to only one. How would one go about to achieve this sort of "interactive" session in this context (with two separate read/write pipes)? Thanks, Cheers! Code below: #include <stdio.h> #include <errno.h> #include <ctype.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> //#include <fullduplex.h> /* For name of the named-pipe */ #define NP1 "/tmp/np1" #define NP2 "/tmp/np2" #define MAX_BUF_SIZE 255 #include <stdlib.h> //exit #include <string.h> //strlen int main(int argc, char *argv[]) { int rdfd, wrfd, ret_val, count, numread; char buf[MAX_BUF_SIZE]; /* Create the first named - pipe */ ret_val = mkfifo(NP1, 0666); if ((ret_val == -1) && (errno != EEXIST)) { perror("Error creating the named pipe"); exit (1); } ret_val = mkfifo(NP2, 0666); if ((ret_val == -1) && (errno != EEXIST)) { perror("Error creating the named pipe"); exit (1); } /* Open the first named pipe for reading */ rdfd = open(NP1, O_RDONLY); /* Open the second named pipe for writing */ wrfd = open(NP2, O_WRONLY); /* Read from the first pipe */ numread = read(rdfd, buf, MAX_BUF_SIZE); buf[numread] = '0'; fprintf(stderr, "Full Duplex Server : Read From the pipe : %sn", buf); /* Convert to the string to upper case */ count = 0; while (count < numread) { buf[count] = toupper(buf[count]); count++; } /* * Write the converted string back to the second * pipe */ write(wrfd, buf, strlen(buf)); } Edit: Right, just to clarify - it seems I found a document discussing something very similar, it is http://en.wikibooks.org/wiki/Serial_Programming/Serial_Linux#Configuration_with_stty - a modification of the script there ("For example, the following script configures the device and starts a background process for copying all received data from the serial device to standard output...") for the above program is below: # stty raw # ( ./fd_server 2>/dev/null; )& bgPidS=$! ( cat < /tmp/np2 ; )& bgPid=$! # Read commands from user, send them to device echo $(kill -0 $bgPidS 2>/dev/null ; echo $?) while [ "$(kill -0 $bgPidS 2>/dev/null ; echo $?)" -eq "0" ] && read cmd; do # redirect debug msgs to stderr, as here we're redirected to /tmp/np1 echo "$? - $bgPidS - $bgPid" >&2 echo "$cmd" echo -e "\nproc: $(kill -0 $bgPidS 2>/dev/null ; echo $?)" >&2 done >/tmp/np1 echo OUT # Terminate background read process - if they still exist if [ "$(kill -0 $bgPid 2>/dev/null ; echo $?)" -eq "0" ] ; then kill $bgPid fi if [ "$(kill -0 $bgPidS 2>/dev/null ; echo $?)" -eq "0" ] ; then kill $bgPidS fi # stty cooked So, saving the script as say starter.sh and calling it, results with the following session: $ ./starter.sh 0 i'm typing here and pressing [enter] at end 0 - 13496 - 13497 I'M TYPING HERE AND PRESSING [ENTER] AT END 0~?.N=?(?~? ?????}????@??????~? [garble] proc: 0 OUT which is what I'd call for "interactive session" (ignoring the debug statements) - server waits for me to enter a command; it gives its output after it receives a command (and as in this case it exits after first command, so does the starter script as well). Except that, I'd like to not have buffered input, but sent character by character (meaning the above session should exit after first key press, and print out a single letter only - which is what I expected stty raw would help with, but it doesn't: it just kills reaction to both Enter and Ctrl-C :) ) I was just wandering if there already is an existing command (akin to screen in respect to serial devices, I guess) that would accept two such named pipes as arguments, and establish a "terminal" or "shell" like session through them; or would I have to use scripts as above and/or program own 'client' that will behave as a terminal..

    Read the article

  • How can I use curl to login multiple users from one php script

    - by kamal
    Here is the scenario: I have configured multiple users with login names aa1, aa2 .. zz99 , all with the same password, now i want to login to a php based server with these login ID's. I have a working script that logs in one user with a username and password, and using curl, browses to a target page: // Assume php , since somehow the php encapsulation quotes were giving me trouble $sHost = $argv[2]; $sStart = $argv[3]; $sReqId = $argv[4]; $sPage = $argv[5]; $sReqLogFile = $argv[6]; $sRespLogFile = $argv[7]; $sUserName = $argv[8]; $sPassword = $argv[9]; $sExecDelay = $argv[10]; //optional args: if($argc 11) { $sCommonSID = $argv[11]; } //$sXhprofLogFile = ""; $sSysStatsLogFile= ""; $sBaseUrl = 'https://'.$sHost.'/'; $nExecTime = 0; $sCookieFileName = 'cookiejar/'.genRandomString().'.txt'; touch($sCookieFileName); // Set the execution delay: $sStart += $sExecDelay; // Get the PHP Session Id: if(isset($sCommonSID)) { $sSID = $sCommonSID; }else{ $sSID = getSID($sHost,$sBaseUrl, $sUserName, $sPassword); } // Sleep for 100us intervals until we reach the stated execution time: do { usleep(100); }while(getFullMicrotime()$sPage, "pageUrl"=$sBaseUrl, "execStart" =$nExecStart, "execEnd"=$nExecEnd, "respTime"=$nExecTime, "xhprofToken"=$sXhpToken, "xhprofLink"=$sXhpLink, "fiveMinLoad"=$nFiveMinLoad); }else{ $nExecStart = 0; $sUrl = "***ERROR***"; $aReturn = null; } writeReqLog($sReqId, $nExecStart, $sSID, $sUrl, $sReqLogFile); return $aReturn; } function getFullMicrotime() { $fMtime = microtime(true); if(strpos($fMtime, ' ') !== false) { list($nUsec, $nSec) = explode(' ', $fMtime); return $nSec + $nUsec; } return $fMtime; } function writeRespLog($nReqId, $sHost, $sPage, $sSID = "***ERROR***", $nExecStart = 0, $nExecEnd = 0, $nRespTime = 0, $sXhpToken = "", $sXhpLink = "", $nFiveMinLoad = 0, $sRespLogFile) { $sMsg = $nReqId; $sMsg .= "\t".$sHost; $sMsg .= "/".$sPage; $sMsg .= "\t".$sSID; $sMsg .= "\t".$nExecStart; $sMsg .= "\t".$nExecEnd; $sMsg .= "\t".$nRespTime; $sMsg .= "\t".$sXhpToken; $sMsg .= "\t".$nFiveMinLoad; error_log($sMsg."\n",3,$sRespLogFile); } function writeReqLog($nReqId, $nExecStart, $sSID, $sUrl, $sReqLogFile) { $sMsg = $nReqId; $sMsg .= "\t".$sUrl; $sMsg .= "\t".$sSID; $sMsg .= "\t".$nExecStart; error_log($sMsg."\n",3,$sReqLogFile); } function parseSIDValue($sText) { $sSID = ""; preg_match('/SID:(.*)/',$sText, $aSID); if (count($aSID)) { $sSID = $aSID[1]; } return $sSID; } function parseFiveMinLoad($sText) { $nLoad = 0; $aMatch = array(); preg_match('/--5-MIN-LOAD:(.*)--/',$sText, $aMatch); if (count($aMatch)) { $nLoad = $aMatch[1]; } return $nLoad; } function curlRequest($sUrl, $sSID="") { global $sCookieFileName; $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $sUrl); curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 2); curl_setopt($ch, CURLOPT_HEADER, 1); curl_setopt($ch, CURLOPT_USERAGENT, "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"); curl_setopt($ch, CURLOPT_RETURNTRANSFER,1); if($sSID == "") { curl_setopt($ch, CURLOPT_COOKIEJAR, $sCookieFileName); } else { curl_setopt($ch, CURLOPT_COOKIEFILE, $sCookieFileName); } $result =curl_exec ($ch); curl_close ($ch); return $result; } function parseXHProfToken($sPageContent) { //https://ktest.server.net/xhprof/xhprof_html/index.php?run=4d004b280a990&source=mybox $sToken = ""; $sRelLink = ""; $aMatch = array(); $aResp = array(); preg_match('/$sToken, "relLink"=$sRelLink); return $aResp; } function genRandomString() { $length = 10; $characters = '0123456789abcdefghijklmnopqrstuvwxyz'; $string = ''; for ($p = 0; $p

    Read the article

  • spoof mac address

    - by Cold-Blooded
    // macaddress.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include <windows.h> #include <iostream> using namespace std; void readregistry(); void spoofmac(); void main(int argc, char* argv[]) { readregistry(); spoofmac(); } void spoofmac() { ////////////////////// ////////Write to Registry char buffer[60]; unsigned long size = sizeof(buffer); HKEY software; LPCTSTR location; char adapternum[10]=""; char numbers[11]="0123456789"; char editlocation[]="System\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002bE10318}\\0000"; char macaddress[60]; cout << "\n//////////////////////////////////////////////////////////////////\nPlease Enter Number of Network Adapter to Spoof or type 'E' to Exit.\nE.g. 18\n\nNumber: "; cin >> adapternum; if (adapternum[0]=='E') { exit(0); } if (strlen(adapternum)==2) { editlocation[strlen(editlocation)-2]=adapternum[0]; editlocation[strlen(editlocation)-1]=adapternum[1]; } if (strlen(adapternum)==1) { editlocation[strlen(editlocation)-1]=adapternum[0]; } if (strlen(adapternum)!=1 && strlen(adapternum)!=2) { cout << "Invaild Network Adapter Chosen\n\n"; exit(0); } cout << "Please Enter the Desired Spoofed Mac Address Without Dashes\nE.g. 00123F0F6D7F\n\nNew Mac: "; cin >> macaddress; location = editlocation; //error line strcpy(buffer,macaddress); size=sizeof(buffer); RegCreateKey(HKEY_LOCAL_MACHINE,location,&software); //RegSetValueEx(software,"NetworkAddress",NULL,REG_SZ,(LPBYTE)buffer,size); RegCloseKey(software); cout << "\nMac Address Successfully Spoofed.\n\nWritten by Lyth0s\n\n"; } void readregistry () { //////////////////////////////////// // Read From Registry char driver[60]=""; char mac[60]=""; char numbers[11]="0123456789"; char editlocation[]="System\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002bE10318}\\0000"; unsigned long driversize = sizeof(driver); unsigned long macsize = sizeof(mac); DWORD type; HKEY software; LPCTSTR location; int tenscount=0; int onescount=0; for (int x =0;x<=19; x+=1) { strcpy(driver,""); driversize=sizeof(driver); strcpy(mac,""); macsize=sizeof(mac); if (editlocation[strlen(editlocation)-1]=='9') { tenscount+=1; onescount=0; editlocation[strlen(editlocation)-2]=numbers[tenscount]; } editlocation[strlen(editlocation)-1]=numbers[onescount]; location=editlocation; //error line // cout << location << "\n"; // cout << "Checking 00" << location[strlen(location)-2] << location[strlen(location)-1] << "\n\n"; RegCreateKey(HKEY_LOCAL_MACHINE,location,&software); RegQueryValueEx(software,"DriverDesc",NULL,&type,(LPBYTE)driver,&driversize); //RegCloseKey(software); //RegCreateKey(HKEY_LOCAL_MACHINE,location,&software); RegQueryValueEx(software,"NetworkAddress",NULL,&type,(LPBYTE)mac,&macsize); RegCloseKey(software); cout << x << ": " << driver << "| Mac: " << mac << "\n"; onescount+=1; } } this program gives error as follows error C2440: '=' : cannot convert from 'char [83]' to 'LPCTSTR' why this error coming please explain

    Read the article

  • C programing some errors :(

    - by Pedro
    Hi...this is a little code that i'm doing, but i have some errors...:S Hi have a txt file and i want to "convert to xml", but the program must know what is comments, and must organize... txt file: /* Licenciaturas na ESTG-IPVC 2009 – v1.1*/ - Info, <N Alunos> <hr>--------------------------------------------------- 3 <hr>--------------------------------------------------- - data, <course><Number>;<name>;<email> - disciplinas, <n disciplines>;<note>;[<note>;] </hr>--------------------------------------------------- LEI;7671;Name name name;[email protected]; 9;8;12;9;12;11;6;15;7;11; LTCGM;6567;nam1 nam2 nam3;[email protected]; 6;13;14;12;11;16;14; LEI;7701;xxxxx xxxx xxxx;[email protected]; 8;13;11;7;14;12;11;16;14; My code: int main(int argc, char *argv[]) { char first[60];//array char comment[60];//array char nome_int[60];//array char total[60];//array char course[60];//array int i; char notas[60]; char *number, *name, *mail, *total_disci; int total_cad; char disciplines[60]; printf("Int. the name of the file to convert\n"); scanf("%s",&nome_int); FILE *fp = fopen(nome_int, "r"); //open file FILE *conver = fopen("conver.xml","w");// opne output FILE *coment = fopen("coment.txt","w"); if (fp == NULL) { printf("File not found\n"); exit(1); } else { fgets(first, 60,fp); fputs(first,coment); while (!(feof(fp))){ fgets(first, 60, fp); if (first[0] == '-'){ fputs(first,coment); } for(i=1;fscanf(fp,"%s",total)!=-5;i++){ if(i==2){ printf("Total %s",total);//here the program stops } } fgets(course,60,fp); if(course[0]=='L'){ number = strchr(course, ';');//here course is an array but must be an appointer, what can i do? *number = '\0'; number++; name = strchr(number, ';'); *name = '\0'; name++; mail= strchr(name, ';'); *mail = '\0'; mail++; char *curso1; total_cad=atoi(total_disci); printf("Course: %s\n",course); printf("Number: %s\n",number); printf("Name: %s\n",name); printf("e-mail: %s\n",mail); } fgets(disciplines,60,fp);//here crash total_disci= strchr(mail, ';'); *total_disci = '\n'; total_disci++; printf("Total disciplines: %d\n",total_cad); } } fclose(fp); fclose(coment); fclose(conver); system("PAUSE"); return 0; } the convert file must be like this: <xml> <list_courses> <course> <sigla>LEI</sigla> <NAlunos>2</NAlunos> <list_students> <students> <number>7671</number> <name>name name name</name> <email>[email protected]</email> <stat>disaproved</stat> <media_notes>10</media_notes> <biggest_note>15</biggest_note> <small_nota>6</small_nota> </students> </list_students> </course> </list_courses> </xml> _______________________________________- now separated by only comment on what is what and converted to xml. also had to do was impressed that the program could name, email address, number, etc. .. here the main errors do not want to do for me, just want to see the errors, I spent the whole day right back from them and nothing ... someone who can help, please do it :)

    Read the article

  • C++ SDL State Machine Segfault

    - by user1602079
    The code compiles and builds fine, but it immediately segfaults. I've looked at this for a while and have no idea why. Any help is appreciated. Thank you! Here's the code: main.cpp #include "SDL/SDL.h" #include "Globals.h" #include "Core.h" #include "GameStates.h" #include "Introduction.h" int main(int argc, char** args) { if(core.Initilize() == false) { SDL_Quit(); } while(core.desiredstate != core.Quit) { currentstate->EventHandling(); currentstate->Logic(); core.ChangeState(); currentstate->Render(); currentstate->Update(); } SDL_Quit(); } Core.h #ifndef CORE_H #define CORE_H #include "SDL/SDL.h" #include <string> class Core { public: SDL_Surface* Load(std::string filename); void ApplySurface(int X, int Y, SDL_Surface* source, SDL_Surface* destination); void SetState(int newstate); void ChangeState(); enum state { Intro, STATES_NULL, Quit }; int desiredstate, stateID; bool Initilize(); }; #endif Core.cpp #include "Core.h" #include "SDL/SDL.h" #include "Globals.h" #include "Introduction.h" #include <string> /* Initilizes SDL subsystems */ bool Core::Initilize() { //Inits subsystems, reutrns false upon error if(SDL_Init(SDL_INIT_EVERYTHING) == -1) { return false; } SDL_WM_SetCaption("Game", NULL); return true; } /* Loads surfaces and optimizes them */ SDL_Surface* Core::Load(std::string filename) { //The surface to be optimized SDL_Surface* original = SDL_LoadBMP(filename.c_str()); //The optimized surface SDL_Surface* optimized = NULL; //Optimizes the image if it loaded properly if(original != NULL) { optimized = SDL_DisplayFormat(original); SDL_FreeSurface(original); } else { //returns NULL upon error return NULL; } return optimized; } /* Blits surfaces */ void Core::ApplySurface(int X, int Y, SDL_Surface* source, SDL_Surface* destination) { //Stores the coordinates of the surface SDL_Rect offsets; offsets.x = X; offsets.y = Y; //Bits the surface if both surfaces are present if(source != NULL && destination != NULL) { SDL_BlitSurface(source, NULL, destination, &offsets); } } /* Sets desiredstate to newstate */ void Core::SetState(int newstate) { if(desiredstate != Quit) { desiredstate = newstate; } } /* Changes the game state */ void Core::ChangeState() { if(desiredstate != STATES_NULL && desiredstate != Quit) { delete currentstate; switch(desiredstate) { case Intro: currentstate = new Introduction(); break; } stateID = desiredstate; desiredstate = core.STATES_NULL; } } Globals.h #ifndef GLOBALS_H #define GLOBALS_H #include "SDL/SDL.h" #include "Core.h" #include "GameStates.h" extern SDL_Surface* screen; extern Core core; extern GameStates* currentstate; #endif Globals.cpp #include "Globals.h" #include "SDL/SDL.h" #include "GameStates.h" SDL_Surface* screen = SDL_SetVideoMode(640, 480, 32, SDL_SWSURFACE); Core core; GameStates* currentstate = NULL; GameStates.h #ifndef GAMESTATES_H #define GAMESTATES_H class GameStates { public: virtual void EventHandling() = 0; virtual void Logic() = 0; virtual void Render() = 0; virtual void Update() = 0; }; #endif Introduction.h #ifndef INTRODUCTION_H #define INTRODUCTION_H #include "GameStates.h" #include "Globals.h" class Introduction : public GameStates { public: Introduction(); private: void EventHandling(); void Logic(); void Render(); void Update(); ~Introduction(); SDL_Surface* test; }; #endif Introduction.cpp #include "SDL/SDL.h" #include "Core.h" #include "Globals.h" #include "Introduction.h" /* Loads all the assets */ Introduction::Introduction() { test = core.Load("test.bmp"); } void Introduction::EventHandling() { SDL_Event event; while(SDL_PollEvent(&event)) { switch(event.type) { case SDL_QUIT: core.SetState(core.Quit); break; } } } void Introduction::Logic() { //to be coded } void Introduction::Render() { core.ApplySurface(30, 30, test, screen); } void Introduction::Update() { SDL_Flip(screen); } Introduction::~Introduction() { SDL_FreeSurface(test); } Sorry if the formatting is a bit off... Having to put four spaces for it to be put into a code block offset it a bit. I ran it through gdb and this is what I got: Program received signal SIGSEGV, Segmentation fault. 0x0000000000400e46 in main () Which isn't incredibly useful... Any help is appreciated. Thank you!

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Generating moderately interesting images

    - by Williham Totland
    Abstract: Can you propose a mathematical-ish algorithm over a plane of pixels that will generate a moderately interesting image, preferably one that on the whole resembles something? The story thus far: Once upon a time I decided in an effort to reduce cycle waste on my (admittedly too) numerous computers, and set out to generate images in a moderately interesting fashion; using a PRNG and some clever math to create images that would, on the whole, resemble something. Or at least, that was the plan. As it turns out, clever math requires being a clever mathematician; this I am not. At some length I arrived at a method that preferred straight lines (as these are generally the components of which our world is made), perhaps too strongly. The result is mildly interesting; resembling, perhaps, city grids as such: Now for the question proper: Given the source code of this little program; can you improve upon it and propose a method that gives somewhat more interesting results? (e.g. not city grids, but perhaps faces, animals, geography, what have you) This is also meant as a sort of challenge; I suppose and as such I've set down some completely arbitrary and equally optional rules: The comments in the code says it all really. Suggestions and "solutions" should edit the algorithm itself, not the surrounding framework, except as for to fix errors that prevents the sample from compiling. The code should compile cleanly with a standard issue C compiler. (If the example provided doesn't, oops! Tell me, and I'll fix. :) The method should, though again, this is optional, not need to elicit help from your friendly neighborhood math library. Solutions should probably be deliverable by simply yanking out whatever is between the snip lines (the ones that say you should not edit above and below, respectively), with a statement to the effect of what you need to add to the preamble in particular. The code requires a C compiler and libpng to build; I'm not entirely confident that the MinGW compiler provides the necessities, but I would be surprised if it didn't. For Debian you'll want the libpng-dev package, and for Mac OS X you'll want the XCode tools.. The source code can be downloaded here. Warning: Massive code splurge incoming! // compile with gcc -o imggen -lpng imggen.c // optionally with -DITERATIONS=x, where x is an appropriate integer // If you're on a Mac or using MinGW, you may have to fiddle with the linker flags to find the library and includes. #include <stdio.h> #include <stdlib.h> #include <png.h> #ifdef ITERATIONS #define REPEAT #endif // ITERATIONS // YOU MAY CHANGE THE FOLLOWING DEFINES #define WIDTH 320 #define HEIGHT 240 // YOU MAY REPLACE THE FOLLOWING DEFINES AS APPROPRIATE #define INK 16384 void writePNG (png_bytepp imageBuffer, png_uint_32 width, png_uint_32 height, int iteration) { char *fname; asprintf(&fname, "out.%d.png", iteration); FILE *fp = fopen(fname, "wb"); if (!fp) return; png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); png_infop info_ptr = png_create_info_struct(png_ptr); png_init_io(png_ptr, fp); png_set_filter(png_ptr, PNG_FILTER_TYPE_DEFAULT, PNG_FILTER_NONE); png_set_compression_level(png_ptr, Z_BEST_COMPRESSION); png_set_IHDR(png_ptr, info_ptr, width, height, 8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); png_set_rows(png_ptr, info_ptr, imageBuffer); png_set_invert_mono(png_ptr); /// YOU MAY COMMENT OUT THIS LINE png_write_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL); png_destroy_write_struct(&png_ptr, &info_ptr); fclose(fp); free(fname); } int main (int argc, const char * argv[]) { png_uint_32 height = HEIGHT, width = WIDTH; int iteration = 1; #ifdef REPEAT for (iteration = 1; iteration <= ITERATIONS; iteration++) { #endif // REPEAT png_bytepp imageBuffer = malloc(sizeof(png_bytep) * height); for (png_uint_32 i = 0; i < height; i++) { imageBuffer[i] = malloc(sizeof(png_byte) * width); for (png_uint_32 j = 0; j < width; j++) { imageBuffer[i][j] = 0; } } /// CUT ACROSS THE DASHED LINES /// ------------------------------------------- /// NO EDITING ABOVE THIS LINE; EXCEPT AS NOTED int ink = INK; int x = rand() % width, y = rand() % height; int xdir = (rand() % 2)?1:-1; int ydir = (rand() % 2)?1:-1; while (ink) { imageBuffer[y][x] = 255; --ink; xdir += (rand() % 2)?(1):(-1); ydir += (rand() % 2)?(1):(-1); if (ydir > 0) { ++y; } else if (ydir < 0) { --y; } if (xdir > 0) { ++x; } else if (xdir < 0) { --x; } if (x == -1 || y == -1 || x == width || y == height || x == y && x == 0) { x = rand() % width; y = rand() % height; xdir = (rand() % 2)?1:-1; ydir = (rand() % 2)?1:-1; } } /// NO EDITING BELOW THIS LINE /// ------------------------------------------- writePNG(imageBuffer, width, height, iteration); for (png_uint_32 i = 0; i < height; i++) { free(imageBuffer[i]); } free(imageBuffer); #ifdef REPEAT } #endif // REPEAT return 0; } Note: While this question doesn't strictly speaking seem "answerable" as such; I still believe that it can give rise to some manner of "right" answer. Maybe. Happy hunting.

    Read the article

  • Why does fprintf start printing out of order or not at all?

    - by Steve Melvin
    This code should take an integer, create pipes, spawn two children, wait until they are dead, and start all over again. However, around the third time around the loop I lose my prompt to enter a number and it no longer prints the number I've entered. Any ideas? #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #define WRITE 1 #define READ 0 int main (int argc, const char * argv[]) { //Pipe file-descriptor array unsigned int isChildA = 0; int pipeA[2]; int pipeB[2]; int num = 0; while(1){ fprintf(stderr,"Enter an integer: "); scanf("%i", &num); if(num == 0){ fprintf(stderr,"You entered zero, exiting...\n"); exit(0); } //Open Pipes if(pipe(pipeA) < 0){ fprintf(stderr,"Could not create pipe A.\n"); exit(1); } if(pipe(pipeB) < 0){ fprintf(stderr,"Could not create pipe B.\n"); exit(1); } fprintf(stderr,"Value read: %i \n", num); fprintf(stderr,"Parent PID: %i\n", getpid()); pid_t procID = fork(); switch (procID) { case -1: fprintf(stderr,"Fork error, quitting...\n"); exit(1); break; case 0: isChildA = 1; break; default: procID = fork(); if (procID<0) { fprintf(stderr,"Fork error, quitting...\n"); exit(1); } else if(procID == 0){ isChildA = 0; } else { write(pipeA[WRITE], &num, sizeof(int)); close(pipeA[WRITE]); close(pipeA[READ]); close(pipeB[WRITE]); close(pipeB[READ]); pid_t pid; while (pid = waitpid(-1, NULL, 0)) { if (errno == ECHILD) { break; } } } break; } if (procID == 0) { //We're a child, do kid-stuff. ssize_t bytesRead = 0; int response; while (1) { while (bytesRead == 0) { bytesRead = read((isChildA?pipeA[READ]:pipeB[READ]), &response, sizeof(int)); } if (response < 2) { //Kill other child and self fprintf(stderr, "Terminating PROCID: %i\n", getpid()); write((isChildA?pipeB[WRITE]:pipeA[WRITE]), &response, sizeof(int)); close(pipeA[WRITE]); close(pipeA[READ]); close(pipeB[WRITE]); close(pipeB[READ]); return 0; } else if(!(response%2)){ //Even response/=2; fprintf(stderr,"PROCID: %i, VALUE: %i\n", getpid(), response); write((isChildA?pipeB[WRITE]:pipeA[WRITE]), &response, sizeof(int)); bytesRead = 0; } else { //Odd response*=3; response++; fprintf(stderr,"PROCID: %i, VALUE: %i\n", getpid(), response); write((isChildA?pipeB[WRITE]:pipeA[WRITE]), &response, sizeof(int)); bytesRead = 0; } } } } return 0; } This is the output I am getting... bash-3.00$ ./proj2 Enter an integer: 101 Value read: 101 Parent PID: 9379 PROCID: 9380, VALUE: 304 PROCID: 9381, VALUE: 152 PROCID: 9380, VALUE: 76 PROCID: 9381, VALUE: 38 PROCID: 9380, VALUE: 19 PROCID: 9381, VALUE: 58 PROCID: 9380, VALUE: 29 PROCID: 9381, VALUE: 88 PROCID: 9380, VALUE: 44 PROCID: 9381, VALUE: 22 PROCID: 9380, VALUE: 11 PROCID: 9381, VALUE: 34 PROCID: 9380, VALUE: 17 PROCID: 9381, VALUE: 52 PROCID: 9380, VALUE: 26 PROCID: 9381, VALUE: 13 PROCID: 9380, VALUE: 40 PROCID: 9381, VALUE: 20 PROCID: 9380, VALUE: 10 PROCID: 9381, VALUE: 5 PROCID: 9380, VALUE: 16 PROCID: 9381, VALUE: 8 PROCID: 9380, VALUE: 4 PROCID: 9381, VALUE: 2 PROCID: 9380, VALUE: 1 Terminating PROCID: 9381 Terminating PROCID: 9380 Enter an integer: 102 Value read: 102 Parent PID: 9379 PROCID: 9386, VALUE: 51 PROCID: 9387, VALUE: 154 PROCID: 9386, VALUE: 77 PROCID: 9387, VALUE: 232 PROCID: 9386, VALUE: 116 PROCID: 9387, VALUE: 58 PROCID: 9386, VALUE: 29 PROCID: 9387, VALUE: 88 PROCID: 9386, VALUE: 44 PROCID: 9387, VALUE: 22 PROCID: 9386, VALUE: 11 PROCID: 9387, VALUE: 34 PROCID: 9386, VALUE: 17 PROCID: 9387, VALUE: 52 PROCID: 9386, VALUE: 26 PROCID: 9387, VALUE: 13 PROCID: 9386, VALUE: 40 PROCID: 9387, VALUE: 20 PROCID: 9386, VALUE: 10 PROCID: 9387, VALUE: 5 PROCID: 9386, VALUE: 16 PROCID: 9387, VALUE: 8 PROCID: 9386, VALUE: 4 PROCID: 9387, VALUE: 2 PROCID: 9386, VALUE: 1 Terminating PROCID: 9387 Terminating PROCID: 9386 Enter an integer: 104 Value read: 104 Parent PID: 9379 Enter an integer: PROCID: 9388, VALUE: 52 PROCID: 9389, VALUE: 26 PROCID: 9388, VALUE: 13 PROCID: 9389, VALUE: 40 PROCID: 9388, VALUE: 20 PROCID: 9389, VALUE: 10 PROCID: 9388, VALUE: 5 PROCID: 9389, VALUE: 16 PROCID: 9388, VALUE: 8 PROCID: 9389, VALUE: 4 PROCID: 9388, VALUE: 2 PROCID: 9389, VALUE: 1 Terminating PROCID: 9388 Terminating PROCID: 9389 105 Value read: 105 Parent PID: 9379 Enter an integer: PROCID: 9395, VALUE: 316 PROCID: 9396, VALUE: 158 PROCID: 9395, VALUE: 79 PROCID: 9396, VALUE: 238 PROCID: 9395, VALUE: 119 PROCID: 9396, VALUE: 358 PROCID: 9395, VALUE: 179 PROCID: 9396, VALUE: 538 PROCID: 9395, VALUE: 269 PROCID: 9396, VALUE: 808 PROCID: 9395, VALUE: 404 PROCID: 9396, VALUE: 202 PROCID: 9395, VALUE: 101 PROCID: 9396, VALUE: 304 PROCID: 9395, VALUE: 152 PROCID: 9396, VALUE: 76 PROCID: 9395, VALUE: 38 PROCID: 9396, VALUE: 19 PROCID: 9395, VALUE: 58 PROCID: 9396, VALUE: 29 PROCID: 9395, VALUE: 88 PROCID: 9396, VALUE: 44 PROCID: 9395, VALUE: 22 PROCID: 9396, VALUE: 11 PROCID: 9395, VALUE: 34 PROCID: 9396, VALUE: 17 PROCID: 9395, VALUE: 52 PROCID: 9396, VALUE: 26 PROCID: 9395, VALUE: 13 PROCID: 9396, VALUE: 40 PROCID: 9395, VALUE: 20 PROCID: 9396, VALUE: 10 PROCID: 9395, VALUE: 5 PROCID: 9396, VALUE: 16 PROCID: 9395, VALUE: 8 PROCID: 9396, VALUE: 4 PROCID: 9395, VALUE: 2 PROCID: 9396, VALUE: 1 Terminating PROCID: 9395 Terminating PROCID: 9396 105 Value read: 105 Parent PID: 9379 Enter an integer: PROCID: 9397, VALUE: 316 PROCID: 9398, VALUE: 158 PROCID: 9397, VALUE: 79 PROCID: 9398, VALUE: 238 PROCID: 9397, VALUE: 119 PROCID: 9398, VALUE: 358 PROCID: 9397, VALUE: 179 PROCID: 9398, VALUE: 538 PROCID: 9397, VALUE: 269 PROCID: 9398, VALUE: 808 PROCID: 9397, VALUE: 404 PROCID: 9398, VALUE: 202 PROCID: 9397, VALUE: 101 PROCID: 9398, VALUE: 304 PROCID: 9397, VALUE: 152 PROCID: 9398, VALUE: 76 PROCID: 9397, VALUE: 38 PROCID: 9398, VALUE: 19 PROCID: 9397, VALUE: 58 PROCID: 9398, VALUE: 29 PROCID: 9397, VALUE: 88 PROCID: 9398, VALUE: 44 PROCID: 9397, VALUE: 22 PROCID: 9398, VALUE: 11 PROCID: 9397, VALUE: 34 PROCID: 9398, VALUE: 17 PROCID: 9397, VALUE: 52 PROCID: 9398, VALUE: 26 PROCID: 9397, VALUE: 13 PROCID: 9398, VALUE: 40 PROCID: 9397, VALUE: 20 PROCID: 9398, VALUE: 10 PROCID: 9397, VALUE: 5 PROCID: 9398, VALUE: 16 PROCID: 9397, VALUE: 8 PROCID: 9398, VALUE: 4 PROCID: 9397, VALUE: 2 PROCID: 9398, VALUE: 1 Terminating PROCID: 9397 Terminating PROCID: 9398 106 Value read: 106 Parent PID: 9379 Enter an integer: PROCID: 9399, VALUE: 53 PROCID: 9400, VALUE: 160 PROCID: 9399, VALUE: 80 PROCID: 9400, VALUE: 40 PROCID: 9399, VALUE: 20 PROCID: 9400, VALUE: 10 PROCID: 9399, VALUE: 5 PROCID: 9400, VALUE: 16 PROCID: 9399, VALUE: 8 PROCID: 9400, VALUE: 4 PROCID: 9399, VALUE: 2 PROCID: 9400, VALUE: 1 Terminating PROCID: 9399 Terminating PROCID: 9400 ^C Another thing that's strange, when ran from within XCode it behaves normally. However, when ran from bash on Solaris or OSX it acts up.

    Read the article

  • program not working as expected!

    - by wilson88
    Can anyone just help spot why my program is not returning the expected output.related to my previous question.Am passing a vector by refrence, I want to see whats in the container before I copy them to another loaction.if u remove comments on loadRage, u will see bids are generated by the trader. #include <iostream> #include <vector> #include <string> #include <algorithm> #include <cstdlib> #include <iomanip> using namespace std; const int NUMSELLER = 1; const int NUMBUYER = 1; const int NUMBIDS = 20; const int MINQUANTITY = 1; const int MAXQUANTITY = 30; const int MINPRICE =100; const int MAXPRICE = 150; int s=0; int trdId; // Bid, simple container for values struct Bid { int bidId, trdId, qty, price; char type; // for sort and find. bool operator<(const Bid &other) const { return price < other.price; } bool operator==(int bidId) const { return this->bidId == bidId; } }; // alias to the list, make type consistent typedef vector<Bid> BidList; // this class generates bids! class Trader { private: int nextBidId; public: Trader(); Bid getNextBid(); Bid getNextBid(char type); // generate a number of bids void loadRange(BidList &, int size); void loadRange(BidList &, char type, int size); void setVector(); }; Trader::Trader() : nextBidId(1) {} #define RAND_RANGE(min, max) ((rand() % (max-min+1)) + min) Bid Trader::getNextBid() { char type = RAND_RANGE('A','B'); return getNextBid(type); } Bid Trader::getNextBid(char type) { for(int i = 0; i < NUMSELLER+NUMBUYER; i++) { // int trdId = RAND_RANGE(1,9); if (s<10){trdId=0;type='A';} else {trdId=1;type='B';} s++; int qty = RAND_RANGE(MINQUANTITY, MAXQUANTITY); int price = RAND_RANGE(MINPRICE, MAXPRICE); Bid bid = {nextBidId++, trdId, qty, price, type}; return bid; } } //void Trader::loadRange(BidList &list, int size) { // for (int i=0; i<size; i++) { list.push_back(getNextBid()); } //} // //void Trader::loadRange(BidList &list, char type, int size) { // for (int i=0; i<size; i++) { list.push_back(getNextBid(type)); } //} //---------------------------AUCTIONEER------------------------------------------- class Auctioneer { vector<Auctioneer> List; Trader trader; vector<Bid> list; public: Auctioneer(){}; void accept_bids(const BidList& bid); }; typedef vector<Auctioneer*> bidlist; void Auctioneer::accept_bids(const BidList& bid){ BidList list; //copy (BidList.begin(),BidList.end(),list); } //all the happy display commands void show(const Bid &bid) { cout << "\tBid\t(" << setw(3) << bid.bidId << "\t " << setw(3) << bid.trdId << "\t " << setw(3) << bid.type <<"\t " << setw(3) << bid.qty <<"\t " << setw(3) << bid.price <<")\t\n " ; } void show(const BidList &list) { cout << "\t\tBidID | TradID | Type | Qty | Price \n\n"; for(BidList::const_iterator itr=list.begin(); itr != list.end(); ++itr) { //cout <<"\t\t"; show(*itr); cout << endl; } cout << endl; } //search now checks for failure void show(const char *msg, const BidList &list) { cout << msg << endl; show(list); } void searchTest(BidList &list, int bidId) { cout << "Searching for Bid " << bidId << endl; BidList::const_iterator itr = find(list.begin(), list.end(), bidId); if (itr==list.end()) { cout << "Bid not found."; } else { cout << "Bid has been found. Its : "; show(*itr); } cout << endl; } //comparator function for price: returns true when x belongs before y bool compareBidList(Bid one, Bid two) { if (one.type == 'A' && two.type == 'B') return (one.price < two.price); return false; } void sort(BidList &bidlist) { sort(bidlist.begin(), bidlist.end(), compareBidList); } int main(int argc, char **argv) { Trader trader; BidList bidlist; Auctioneer auctioneer; //bidlist list; auctioneer.accept_bids(bidlist); //trader.loadRange(bidlist, NUMBIDS); show("Bids before sort:", bidlist); sort(bidlist); show("Bids after sort:", bidlist); system("pause"); return 0; }

    Read the article

  • Why is my Pre to Postfix code not working?

    - by Anthony Glyadchenko
    For a class assignment, I have to use two stacks in C++ to make an equation to be converted to its left to right equivalent: 2+4*(3+4*8) -- 35*4+2 -- 142 Here is the main code: #include <iostream> #include <cstring> #include "ctStack.h" using namespace std; int main (int argc, char * const argv[]) { string expression = "2+4*2"; ctstack *output = new ctstack(expression.length()); ctstack *stack = new ctstack(expression.length()); bool previousIsANum = false; for(int i = 0; i < expression.length(); i++){ switch (expression[i]){ case '(': previousIsANum = false; stack->cmstackPush(expression[i]); break; case ')': previousIsANum = false; char x; while (x != '('){ stack->cmstackPop(x); output->cmstackPush(x); } break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': cout << "A number" << endl; previousIsANum = true; output->cmstackPush(expression[i]); break; case '+': previousIsANum = false; cout << "+" << endl; break; case '-': previousIsANum = false; cout << "-" << endl; break; case '*': previousIsANum = false; cout << "*" << endl; break; case '/': previousIsANum = false; cout << "/" << endl; break; default: break; } } char i = ' '; while (stack->ltopOfStack > 0){ stack->cmstackPop(i); output->cmstackPush(i); cout << i << endl; } return 0; } Here is the stack code (watch out!): #include <cstdio> #include <assert.h> #include <new.h> #include <stdlib.h> #include <iostream> class ctstack { private: long* lpstack ; // the stack itself long ltrue ; // constructor sets to 1 long lfalse ; // constructor sets to 0 // offset to top of the stack long lmaxEleInStack ; // maximum possible elements of stack public: long ltopOfStack ; ctstack ( long lnbrOfEleToAllocInStack ) { // Constructor lfalse = 0 ; // set to zero ltrue = 1 ; // set to one assert ( lnbrOfEleToAllocInStack > 0 ) ; // assure positive argument ltopOfStack = -1 ; // ltopOfStack is really an index lmaxEleInStack = lnbrOfEleToAllocInStack ; // set lmaxEleInStack to max ele lpstack = new long [ lmaxEleInStack ] ; // allocate stack assert ( lpstack ) ; // assure new succeeded } ~ctstack ( ) { // Destructor delete [ ] lpstack ; // Delete the stack itself } ctstack& operator= ( const ctstack& ctoriginStack) { // Assignment if ( this == &ctoriginStack ) // verify x not assigned to x return *this ; if ( this -> lmaxEleInStack < ctoriginStack . lmaxEleInStack ) { // if destination stack is smaller than delete [ ] this -> lpstack ; // original stack, delete dest and alloc this -> lpstack = // sufficient memory new long [ ctoriginStack . lmaxEleInStack ] ; assert ( this -> lpstack ) ; // assure new succeeded // reset stack size attribute this -> lmaxEleInStack = ctoriginStack . lmaxEleInStack ; } // copy original to destination stack for ( long i = 0 ; i < ctoriginStack . lmaxEleInStack ; i ++ ) *( this -> lpstack + i ) = *( ctoriginStack . lpstack + i ) ; this -> ltopOfStack = ctoriginStack . ltopOfStack ; // reset stack position attribute return *this ; } long cmstackPush (char lplaceInStack ) { // Push Method if ( ltopOfStack == lmaxEleInStack - 1 ) // stack is full can't add element return lfalse ; ltopOfStack ++ ; // acquire free slot *(lpstack + ltopOfStack ) = lplaceInStack ; // add element return ltrue ; // any number other than zero is true } long cmstackPop (char& lretrievedStackEle ) { // Pop Method if ( ltopOfStack < 0 ) { // stack has no elements lretrievedStackEle = -1 ; // dummy element return lfalse ; } lretrievedStackEle = *( lpstack + ltopOfStack ) ; // stack has element -- return it ltopOfStack -- ; // stack is pop'd return ltrue ; // any number other than zero is true } long cmstackLookAtTop (char& lretrievedStackEle ) { // Pop Method if ( ltopOfStack < 0 ) { // stack has no elements lretrievedStackEle = -1 ; // dummy element return lfalse ; } lretrievedStackEle = *( lpstack + ltopOfStack ) ; // stack has element -- return it return ltrue ; // any number other than zero is true } long cmstackHasAnEle (char& lretrievedTopOfStack ) { // Has element method lretrievedTopOfStack = ltopOfStack ; return ltopOfStack < 0 ? lfalse : ltrue ; // 0 - false stack does not have any ele } // 1 - true stack has at least one element long cmstackMaxNbrOfEle (char& lretrievedMaxStackEle ) { // Maximum element method lretrievedMaxStackEle = lmaxEleInStack ; // return stack size in reference var return ltrue ; // Return Maximum Size of Stack } } ; Thanks, Anthony.

    Read the article

  • Generic Aggregation of C++ Objects by Attribute When Attribute Name is Unknown at Runtime

    - by stretch
    I'm currently implementing a system with a number of class's representing objects such as client, business, product etc. Standard business logic. As one might expect each class has a number of standard attributes. I have a long list of essentially identical requirements such as: the ability to retrieve all business' whose industry is manufacturing. the ability to retrieve all clients based in London Class business has attribute sector and client has attribute location. Clearly this a relational problem and in pseudo SQL would look something like: SELECT ALL business in business' WHERE sector == manufacturing Unfortunately plugging into a DB is not an option. What I want to do is have a single generic aggregation function whose signature would take the form: vector<generic> genericAggregation(class, attribute, value); Where class is the class of object I want to aggregate, attribute and value being the class attribute and value of interest. In my example I've put vector as return type, but this wouldn't work. Probably better to declare a vector of relevant class type and pass it as an argument. But this isn't the main problem. How can I accept arguments in string form for class, attribute and value and then map these in a generic object aggregation function? Since it's rude not to post code, below is a dummy program which creates a bunch of objects of imaginatively named classes. Included is a specific aggregation function which returns a vector of B objects whose A object is equal to an id specified at the command line e.g. .. $ ./aggregations 5 which returns all B's whose A objects 'i' attribute is equal to 5. See below: #include <iostream> #include <cstring> #include <sstream> #include <vector> using namespace std; //First imaginativly names dummy class class A { private: int i; double d; string s; public: A(){} A(int i, double d, string s) { this->i = i; this->d = d; this->s = s; } ~A(){} int getInt() {return i;} double getDouble() {return d;} string getString() {return s;} }; //second imaginativly named dummy class class B { private: int i; double d; string s; A *a; public: B(int i, double d, string s, A *a) { this->i = i; this->d = d; this->s = s; this->a = a; } ~B(){} int getInt() {return i;} double getDouble() {return d;} string getString() {return s;} A* getA() {return a;} }; //Containers for dummy class objects vector<A> a_vec (10); vector<B> b_vec;//100 //Util function, not important.. string int2string(int number) { stringstream ss; ss << number; return ss.str(); } //Example function that returns a new vector containing on B objects //whose A object i attribute is equal to 'id' vector<B> getBbyA(int id) { vector<B> result; for(int i = 0; i < b_vec.size(); i++) { if(b_vec.at(i).getA()->getInt() == id) { result.push_back(b_vec.at(i)); } } return result; } int main(int argc, char** argv) { //Create some A's and B's, each B has an A... //Each of the 10 A's are associated with 10 B's. for(int i = 0; i < 10; ++i) { A a(i, (double)i, int2string(i)); a_vec.at(i) = a; for(int j = 0; j < 10; j++) { B b((i * 10) + j, (double)j, int2string(i), &a_vec.at(i)); b_vec.push_back(b); } } //Got some objects so lets do some aggregation //Call example aggregation function to return all B objects //whose A object has i attribute equal to argv[1] vector<B> result = getBbyA(atoi(argv[1])); //If some B's were found print them, else don't... if(result.size() != 0) { for(int i = 0; i < result.size(); i++) { cout << result.at(i).getInt() << " " << result.at(i).getA()->getInt() << endl; } } else { cout << "No B's had A's with attribute i equal to " << argv[1] << endl; } return 0; } Compile with: g++ -o aggregations aggregations.cpp If you wish :) Instead of implementing a separate aggregation function (i.e. getBbyA() in the example) I'd like to have a single generic aggregation function which accounts for all possible class attribute pairs such that all aggregation requirements are met.. and in the event additional attributes are added later, or additional aggregation requirements, these will automatically be accounted for. So there's a few issues here but the main one I'm seeking insight into is how to map a runtime argument to a class attribute. I hope I've provided enough detail to adequately describe what I'm trying to do...

    Read the article

  • Solving the EXC_BAD_ACCESS in WhatATool Part 2

    - by Allen
    #import <Cocoa/Cocoa.h> @interface PolygonShape : NSObject { int numberOfSides, maximumNumberOfSides, minimumNumberOfSides; } @property (readwrite) int numberOfSides, maximumNumberOfSides, minimumNumberOfSides; @property (readonly) float angleInDegrees, angleInRadians; @property (readonly) NSString * name; @property (readonly) NSString * description; -(id) init; -(void) setNumberOfSides:(int)sides; -(void) setMinimumNumberOfSides:(int)min; -(void) setMaximumNumberOfSides:(int)max; -(float) angleInDegrees; -(float) angleInRadians; -(NSString *) name; -(id) initWithNumberOfSides:(int) sides minimumNumberOfSides:(int) min maximumNumberOfSides:(int) max; -(NSString *) description; -(void) dealloc; @end #import "PolygonShape.h" @implementation PolygonShape -(id) init { return [self initWithNumberOfSides:4 minimumNumberOfSides:3 maximumNumberOfSides:5]; } @synthesize numberOfSides, minimumNumberOfSides, maximumNumberOfSides, angleInRadians; -(void) setNumberOfSides:(int)sides { numberOfSides = sides; NSLog(@"The number of sides is off limit so the number of sides is %@.",sides); } -(void)setMaximumNumberOfSides:(int)max { if (maximumNumberOfSides <= 12) { maximumNumberOfSides = max; } } -(void)setMinimumNumberOfSides: (int)min { if (minimumNumberOfSides > 2) { minimumNumberOfSides = min; } } - (id)initWithNumberOfSides:(int)sides minimumNumberOfSides:(int)min maximumNumberOfSides:(int)max { if(self=[super init]) { [self setNumberOfSides:(int)sides]; [self setMaximumNumberOfSides:(int)max]; [self setMinimumNumberOfSides: (int)min]; } return self; } -(float) angleInDegrees { float anglesInDegrees = (180 * (numberOfSides - 2) / numberOfSides); return anglesInDegrees; } -(float)angleInRadiants { float anglesInRadiants = ((180 * (numberOfSides - 2) / numberOfSides) * (180 / M_PI)); return anglesInRadiants; } -(NSString *)name { NSString * output; switch (numberOfSides) { case 3: output = @"Triangle"; break; case 4: output = @"Square"; break; case 5: output = @"Pentagon"; break; case 6: output = @"Hexagon"; break; case 7: output = @"Heptagon"; break; case 8: output = @"Octagon"; break; case 9: output = @"Nonagon"; break; case 10: output = @"Decagon"; break; case 11: output = @"Hendecagon"; break; case 12: output = @"Dodecabgon"; break; default: output = @"Invalid number of sides: %i is greater than maximum of five allowed."; } return output; } -(NSString *)description { NSString * output; NSLog(@"Hello I am a %i-sided polygon (aka a %@) with angles of %f degrees (%f radians).", numberOfSides, output, [self angleInDegrees], [self angleInRadiants]); return [self description]; } -(void)dealloc { [super dealloc]; } @end #import <Foundation/Foundation.h> #import "PolygonShape.h" void PrintPathInfo() { NSLog(@"Section 1"); NSLog(@"--------------------"); NSString *path = [@"~" stringByExpandingTildeInPath]; NSLog(@"My home folder is at '%@'.", path); NSArray *pathComponent = [path pathComponents]; for (path in pathComponent) { NSLog(@"%@",path); } NSLog(@"--------------------"); NSLog(@"\n"); } void PrintProcessInfo() { NSLog(@"Section 2"); NSLog(@"--------------------"); NSString * processName = [[NSProcessInfo processInfo] processName]; int processIdentifier = [[NSProcessInfo processInfo] processIdentifier]; NSLog(@"Process Name: '%@', Process ID: '%i'", processName, processIdentifier); NSLog(@"--------------------"); NSLog(@"\n"); } void PrintBookmarkInfo() { NSLog(@"Section 3"); NSLog(@"--------------------"); NSArray * keys = [NSArray arrayWithObjects: @"Stanford University", @"Apple", @"CS193P", @"Stanford on iTunes U", @"Stanford Mall", nil]; NSArray * objects = [NSArray arrayWithObjects: [NSURL URLWithString: @"http://www.stanford.edu"], @"http://www.apple.com", @"http://cs193p.stanford.edu", @"http://itunes.stanford.edu", @"http://stanfordshop.com",nil]; NSMutableDictionary * dictionary = [NSMutableDictionary dictionaryWithObjects:objects forKeys:keys]; NSEnumerator * enumerator = [keys objectEnumerator]; for (id keys in dictionary) { NSLog(@"key: '%@', value: '%@'", keys, [dictionary objectForKey:keys]); } NSLog(@" "); NSLog(@"These are the ones that has the prefix 'Stanford'."); NSLog(@" "); id object; while (object = [enumerator nextObject]) { if ([object hasPrefix: @"Stanford"]) { NSLog(@"key: '%@', value: '%@'", object, [dictionary objectForKey:object]); } } NSLog(@"--------------------"); NSLog(@"\n"); } void PrintIntrospectionInfo() { NSLog(@"Section 4"); NSLog(@"--------------------"); SEL lowercase = @selector (lowercaseString); NSMutableArray * array = [NSMutableArray array]; [array addObject: [NSString stringWithString: @"Here is a string"]]; [array addObject: [NSDictionary dictionary]]; [array addObject: [NSURL URLWithString: @"http://www.stanford.edu"]]; [array addObject: [[NSProcessInfo processInfo]processName]]; for (id keys in array) { NSLog(@"\n"); NSLog(@"Class Name: %@", [keys className]); NSLog(@"Is Member of NSString: %@", [keys isMemberOfClass:[NSString class]]?@"Yes":@"No"); NSLog(@"Is Kind of NSString: %@", [keys isKindOfClass:[NSString class]]?@"Yes":@"No"); if ([keys respondsToSelector: lowercase]==YES) { NSLog(@"Responds to lowercaseString: %@",[keys respondsToSelector: lowercase]?@"Yes":@"No"); NSLog(@"lowercaseString is: %@", [keys performSelector: lowercase]); } else { NSLog(@"Responds to lowercaseString: %@",[keys respondsToSelector: lowercase]?@"Yes":@"No" ); } } NSLog(@"--------------------"); } void PrintPolygonInfo() { NSMutableArray * array = [NSMutableArray array]; PolygonShape * polygon1 = [[PolygonShape alloc]initWithNumberOfSides:4 minimumNumberOfSides:3 maximumNumberOfSides:7]; [array addObject:polygon1]; [array description]; PolygonShape * polygon2 = [[PolygonShape alloc]initWithNumberOfSides:6 minimumNumberOfSides:5 maximumNumberOfSides:9]; [array addObject:polygon2]; [array description]; PolygonShape * polygon3 = [[PolygonShape alloc]initWithNumberOfSides:12 minimumNumberOfSides:9 maximumNumberOfSides:12]; [array addObject:polygon3]; [array description]; [array release]; [polygon1 release]; [polygon2 release]; [polygon3 release]; } int main (int argc, const char * argv[]) { NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; PrintPathInfo(); PrintProcessInfo(); PrintBookmarkInfo(); PrintIntrospectionInfo(); PrintPolygonInfo(); [pool release]; return 0; } //The result was "EXC_BAD_ACCESS", but I couldn't figure out how to resolve this problem.

    Read the article

  • Processing incorrect mac addresses from 802.11 frames with pcap

    - by Quentin Swain
    I'm working throurgh a project with pcap and wireless. Following an example posted in response to oe of my earlier questions I am trying to extract the mac addresses from wireless frames. I have created structures for the radiotap header and a basic management frame. For some reason when it comes to trying to output the mac addresses I am printing out the wrong data. When I compare to wireshark I don't see why the radio tap data is printing out correctly but the mac addresses are not. I don't see any additional padding in the hex dump that wireshark displays when i look at the packets and compare the packets that I have captured. I am somewhat famialar with c but not an expert so maybe I am not using the pointers and structures properly could someone help show me what I am doing wrong? Thanks, Quentin // main.c // MacSniffer // #include <pcap.h> #include <string.h> #include <stdlib.h> #define MAXBYTES2CAPTURE 65535 #ifdef WORDS_BIGENDIAN typedef struct frame_control { unsigned int subtype:4; /*frame subtype field*/ unsigned int protoVer:2; /*frame type field*/ unsigned int version:2; /*protocol version*/ unsigned int order:1; unsigned int protected:1; unsigned int moreDate:1; unsigned int power_management:1; unsigned int retry:1; unsigned int moreFrag:1; unsigned int fromDS:1; unsigned int toDS:1; }frame_control; struct ieee80211_radiotap_header{ u_int8_t it_version; u_int8_t it_pad; u_int16_t it_len; u_int32_t it_present; u_int64_t MAC_timestamp; u_int8_t flags; u_int8_t dataRate; u_int16_t channelfrequency; u_int16_t channFreq_pad; u_int16_t channelType; u_int16_t channType_pad; u_int8_t ssiSignal; u_int8_t ssiNoise; u_int8_t antenna; }; #else typedef struct frame_control { unsigned int protoVer:2; /* protocol version*/ unsigned int type:2; /*frame type field (Management,Control,Data)*/ unsigned int subtype:4; /* frame subtype*/ unsigned int toDS:1; /* frame coming from Distribution system */ unsigned int fromDS:1; /*frame coming from Distribution system */ unsigned int moreFrag:1; /* More fragments?*/ unsigned int retry:1; /*was this frame retransmitted*/ unsigned int powMgt:1; /*Power Management*/ unsigned int moreDate:1; /*More Date*/ unsigned int protectedData:1; /*Protected Data*/ unsigned int order:1; /*Order*/ }frame_control; struct ieee80211_radiotap_header{ u_int8_t it_version; u_int8_t it_pad; u_int16_t it_len; u_int32_t it_present; u_int64_t MAC_timestamp; u_int8_t flags; u_int8_t dataRate; u_int16_t channelfrequency; u_int16_t channelType; int ssiSignal:8; int ssiNoise:8; }; #endif struct wi_frame { u_int16_t fc; u_int16_t wi_duration; u_int8_t wi_add1[6]; u_int8_t wi_add2[6]; u_int8_t wi_add3[6]; u_int16_t wi_sequenceControl; // u_int8_t wi_add4[6]; //unsigned int qosControl:2; //unsigned int frameBody[23124]; }; void processPacket(u_char *arg, const struct pcap_pkthdr* pkthdr, const u_char* packet) { int i= 0, *counter = (int *) arg; struct ieee80211_radiotap_header *rh =(struct ieee80211_radiotap_header *)packet; struct wi_frame *fr= (struct wi_frame *)(packet + rh->it_len); u_char *ptr; //printf("Frame Type: %d",fr->wi_fC->type); printf("Packet count: %d\n", ++(*counter)); printf("Received Packet Size: %d\n", pkthdr->len); if(rh->it_version != NULL) { printf("Radiotap Version: %d\n",rh->it_version); } if(rh->it_pad!=NULL) { printf("Radiotap Pad: %d\n",rh->it_pad); } if(rh->it_len != NULL) { printf("Radiotap Length: %d\n",rh->it_len); } if(rh->it_present != NULL) { printf("Radiotap Present: %c\n",rh->it_present); } if(rh->MAC_timestamp != NULL) { printf("Radiotap Timestamp: %u\n",rh->MAC_timestamp); } if(rh->dataRate != NULL) { printf("Radiotap Data Rate: %u\n",rh->dataRate); } if(rh->channelfrequency != NULL) { printf("Radiotap Channel Freq: %u\n",rh->channelfrequency); } if(rh->channelType != NULL) { printf("Radiotap Channel Type: %06x\n",rh->channelType); } if(rh->ssiSignal != NULL) { printf("Radiotap SSI signal: %d\n",rh->ssiSignal); } if(rh->ssiNoise != NULL) { printf("Radiotap SSI Noise: %d\n",rh->ssiNoise); } ptr = fr->wi_add1; int k= 6; printf("Destination Address:"); do{ printf("%s%X",(k==6)?" ":":",*ptr++); } while(--k>0); printf("\n"); ptr = fr->wi_add2; k=0; printf("Source Address:"); do{ printf("%s%X",(k==6)?" ":":",*ptr++); }while(--k>0); printf("\n"); ptr = fr->wi_add3; k=0; do{ printf("%s%X",(k==6)?" ":":",*ptr++); } while(--k>0); printf("\n"); /* for(int j = 0; j < 23124;j++) { if(fr->frameBody[j]!= NULL) { printf("%x",fr->frameBody[j]); } } */ for (i = 0;i<pkthdr->len;i++) { if(isprint(packet[i +rh->it_len])) { printf("%c",packet[i + rh->it_len]); } else{printf(".");} //print newline after each section of the packet if((i%16 ==0 && i!=0) ||(i==pkthdr->len-1)) { printf("\n"); } } return; } int main(int argc, char** argv) { int count = 0; pcap_t* descr = NULL; char errbuf[PCAP_ERRBUF_SIZE], *device = NULL; struct bpf_program fp; char filter[]="wlan broadcast"; const u_char* packet; memset(errbuf,0,PCAP_ERRBUF_SIZE); device = argv[1]; if(device == NULL) { fprintf(stdout,"Supply a device name "); } descr = pcap_create(device,errbuf); pcap_set_rfmon(descr,1); pcap_set_promisc(descr,1); pcap_set_snaplen(descr,30); pcap_set_timeout(descr,10000); pcap_activate(descr); int dl =pcap_datalink(descr); printf("The Data Link type is %s",pcap_datalink_val_to_name(dl)); //pcap_dispatch(descr,MAXBYTES2CAPTURE,1,512,errbuf); //Open device in promiscuous mode //descr = pcap_open_live(device,MAXBYTES2CAPTURE,1,512,errbuf); /* if(pcap_compile(descr,&fp,filter,0,PCAP_NETMASK_UNKNOWN)==-1) { fprintf(stderr,"Error compiling filter\n"); exit(1); } if(pcap_setfilter(descr,&fp)==-1) { fprintf(stderr,"Error setting filter\n"); exit(1); } */ pcap_loop(descr,0, processPacket, (u_char *) &count); return 0; }

    Read the article

  • Can anyone explain why my crypto++ decrypted file 16 bytes short?

    - by Tom Williams
    I suspect it might be too much to hope for, but can anyone with experience with crypto++ explain why the "decrypted.out" file created by main() is 16 characters short (which probably not coincidentally is the block size)? I think the issue must be in CryptStreamBuffer::GetNextChar(), but I've been staring at it and the crypto++ documentation for hours. Any other comments about how crummy or naive my std::streambuf implementation are also welcome ;-) And I've just noticed I'm missing some calls to delete so you don't have to tell me about those. Thanks, Tom // Runtime Includes #include <iostream> // Crypto++ Includes #include "aes.h" #include "modes.h" // xxx_Mode< > #include "filters.h" // StringSource and // StreamTransformation #include "files.h" using namespace std; class CryptStreamBuffer: public std::streambuf { public: CryptStreamBuffer(istream& encryptedInput, CryptoPP::StreamTransformation& c); CryptStreamBuffer(ostream& encryptedOutput, CryptoPP::StreamTransformation& c); protected: virtual int_type overflow(int_type ch = traits_type::eof()); virtual int_type uflow(); virtual int_type underflow(); virtual int_type pbackfail(int_type ch); virtual int sync(); private: int GetNextChar(); int m_NextChar; // Buffered character CryptoPP::StreamTransformationFilter* m_StreamTransformationFilter; CryptoPP::FileSource* m_Source; CryptoPP::FileSink* m_Sink; }; // class CryptStreamBuffer CryptStreamBuffer::CryptStreamBuffer(istream& encryptedInput, CryptoPP::StreamTransformation& c) : m_NextChar(traits_type::eof()), m_StreamTransformationFilter(0), m_Source(0), m_Sink(0) { m_StreamTransformationFilter = new CryptoPP::StreamTransformationFilter(c); m_Source = new CryptoPP::FileSource(encryptedInput, false, m_StreamTransformationFilter); } CryptStreamBuffer::CryptStreamBuffer(ostream& encryptedOutput, CryptoPP::StreamTransformation& c) : m_NextChar(traits_type::eof()), m_StreamTransformationFilter(0), m_Source(0), m_Sink(0) { m_Sink = new CryptoPP::FileSink(encryptedOutput); m_StreamTransformationFilter = new CryptoPP::StreamTransformationFilter(c, m_Sink); } CryptStreamBuffer::int_type CryptStreamBuffer::overflow(int_type ch) { return m_StreamTransformationFilter->Put((byte)ch); } CryptStreamBuffer::int_type CryptStreamBuffer::uflow() { int_type result = GetNextChar(); // Reset the buffered character m_NextChar = traits_type::eof(); return result; } CryptStreamBuffer::int_type CryptStreamBuffer::underflow() { return GetNextChar(); } CryptStreamBuffer::int_type CryptStreamBuffer::pbackfail(int_type ch) { return traits_type::eof(); } int CryptStreamBuffer::sync() { if (m_Sink) { m_StreamTransformationFilter->MessageEnd(); } } int CryptStreamBuffer::GetNextChar() { // If we have a buffered character do nothing if (m_NextChar != traits_type::eof()) { return m_NextChar; } // If there are no more bytes currently available then pump the source // *** I SUSPECT THE PROBLEM IS HERE *** if (m_StreamTransformationFilter->MaxRetrievable() == 0) { m_Source->Pump(1024); } // Retrieve the next byte byte nextByte; size_t noBytes = m_StreamTransformationFilter->Get(nextByte); if (0 == noBytes) { return traits_type::eof(); } // Buffer up the next character m_NextChar = nextByte; return m_NextChar; } void InitKey(byte key[]) { key[0] = -62; key[1] = 102; key[2] = 78; key[3] = 75; key[4] = -96; key[5] = 125; key[6] = 66; key[7] = 125; key[8] = -95; key[9] = -66; key[10] = 114; key[11] = 22; key[12] = 48; key[13] = 111; key[14] = -51; key[15] = 112; } void DecryptFile(const char* sourceFileName, const char* destFileName) { ifstream ifs(sourceFileName, ios::in | ios::binary); ofstream ofs(destFileName, ios::out | ios::binary); byte key[CryptoPP::AES::DEFAULT_KEYLENGTH]; InitKey(key); CryptoPP::ECB_Mode<CryptoPP::AES>::Decryption decryptor(key, sizeof(key)); if (ifs) { if (ofs) { CryptStreamBuffer cryptBuf(ifs, decryptor); std::istream decrypt(&cryptBuf); int c; while (EOF != (c = decrypt.get())) { ofs << (char)c; } ofs.flush(); } else { std::cerr << "Failed to open file '" << destFileName << "'." << endl; } } else { std::cerr << "Failed to open file '" << sourceFileName << "'." << endl; } } void EncryptFile(const char* sourceFileName, const char* destFileName) { ifstream ifs(sourceFileName, ios::in | ios::binary); ofstream ofs(destFileName, ios::out | ios::binary); byte key[CryptoPP::AES::DEFAULT_KEYLENGTH]; InitKey(key); CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption encryptor(key, sizeof(key)); if (ifs) { if (ofs) { CryptStreamBuffer cryptBuf(ofs, encryptor); std::ostream encrypt(&cryptBuf); int c; while (EOF != (c = ifs.get())) { encrypt << (char)c; } encrypt.flush(); } else { std::cerr << "Failed to open file '" << destFileName << "'." << endl; } } else { std::cerr << "Failed to open file '" << sourceFileName << "'." << endl; } } int main(int argc, char* argv[]) { EncryptFile(argv[1], "encrypted.out"); DecryptFile("encrypted.out", "decrypted.out"); return 0; }

    Read the article

  • Segmentation fault in my C program

    - by user233542
    I don't understand why this would give me a seg fault. Any ideas? This is the function that returns the signal to stop the program (plus the other function that is called within this): double bisect(double A0,double A1,double Sol[N],double tol,double c) { double Amid,shot; while (A1-A0 > tol) { Amid = 0.5*(A0+A1); shot = shoot(Sol, Amid, c); if (shot==2.*Pi) { return Amid; } if (shot > 2.*Pi){ A1 = Amid; } else if (shot < 2.*Pi){ A0 = Amid; } } return 0.5*(A1+A0); } double shoot(double Sol[N],double A,double c) { int i,j; /*Initial Conditions*/ for (i=0;i<buff;i++) { Sol[i] = 0.; } for (i=buff+l;i<N;i++) { Sol[i] = 2.*Pi; } Sol[buff]= 0; Sol[buff+1]= A*exp(sqrt(1+3*c)*dx); for (i=buff+2;i<buff+l;i++) { Sol[i] = (dx*dx)*( sin(Sol[i-1]) + c*sin(3.*(Sol[i-1])) ) - Sol[i-2] + 2.*Sol[i-1]; } return Sol[i-1]; } The values buff, l, N are defined using a #define statement. l = 401, buff = 50, N = 2000 Here is the full code: #include <stdio.h> #include <stdlib.h> #include <math.h> #define w 10 /*characteristic width of a soliton*/ #define dx 0.05 /*distance between lattice sites*/ #define s (2*w)/dx /*size of soliton shape*/ #define l (int)(s+1) /*array length for soliton*/ #define N (int)2000 /*length of field array--lattice sites*/ #define Pi (double)4*atan(1) #define buff (int)50 double shoot(double Sol[N],double A,double c); double bisect(double A0,double A1,double Sol[N],double tol,double c); void super_pos(double antiSol[N],double Sol[N],double phi[][N]); void vel_ver(double phi[][N],double v,double c,int tsteps,double dt); int main(int argc, char **argv) { double c,Sol[N],antiSol[N],A,A0,A1,tol,v,dt; int tsteps,i; FILE *fp1,*fp2,*fp3; fp1 = fopen("soliton.dat","w"); fp2 = fopen("final-phi.dat","w"); fp3 = fopen("energy.dat","w"); printf("Please input the number of time steps:"); scanf("%d",&tsteps); printf("Also, enter the time step size:"); scanf("%lf",&dt); do{ printf("Please input the parameter c in the interval [-1/3,1]:"); scanf("%lf",&c);} while(c < (-1./3.) || c > 1.); printf("Please input the inital speed of eiter soliton:"); scanf("%lf",&v); double phi[tsteps+1][N]; tol = 0.0000001; A0 = 0.; A1 = 2.*Pi; A = bisect(A0,A1,Sol,tol,c); shoot(Sol,A,c); for (i=0;i<N;i++) { fprintf(fp1,"%d\t",i); fprintf(fp1,"%lf\n",Sol[i]); } fclose(fp1); super_pos(antiSol,Sol,phi); /*vel_ver(phi,v,c,tsteps,dt); for (i=0;i<N;i++){ fprintf(fp2,"%d\t",i); fprintf(fp2,"%lf\n",phi[tsteps][i]); }*/ } double shoot(double Sol[N],double A,double c) { int i,j; /*Initial Conditions*/ for (i=0;i<buff;i++) { Sol[i] = 0.; } for (i=buff+l;i<N;i++) { Sol[i] = 2.*Pi; } Sol[buff]= 0; Sol[buff+1]= A*exp(sqrt(1+3*c)*dx); for (i=buff+2;i<buff+l;i++) { Sol[i] = (dx*dx)*( sin(Sol[i-1]) + c*sin(3.*(Sol[i-1])) ) - Sol[i-2] + 2.*Sol[i-1]; } return Sol[i-1]; } double bisect(double A0,double A1,double Sol[N],double tol,double c) { double Amid,shot; while (A1-A0 > tol) { Amid = 0.5*(A0+A1); shot = shoot(Sol, Amid, c); if (shot==2.*Pi) { return Amid; } if (shot > 2.*Pi){ A1 = Amid; } else if (shot < 2.*Pi){ A0 = Amid; } } return 0.5*(A1+A0); } void super_pos(double antiSol[N],double Sol[N],double phi[][N]) { int i; /*for (i=0;i<N;i++) { phi[i]=0; } for (i=buffer+s;i<1950-s;i++) { phi[i]=2*Pi; }*/ for (i=0;i<N;i++) { antiSol[i] = Sol[N-i]; } /*for (i=0;i<s+1;i++) { phi[buffer+j] = Sol[j]; phi[1549+j] = antiSol[j]; }*/ for (i=0;i<N;i++) { phi[0][i] = antiSol[i] + Sol[i] - 2.*Pi; } } /* This funciton will set the 2nd input array to the derivative at the time t, for all points x in the lattice */ void deriv2(double phi[][N],double DphiDx2[][N],int t) { //double SolDer2[s+1]; int x; for (x=0;x<N;x++) { DphiDx2[t][x] = (phi[buff+x+1][t] + phi[buff+x-1][t] - 2.*phi[x][t])/(dx*dx); } /*for (i=0;i<N;i++) { ptr[i] = &SolDer2[i]; }*/ //return DphiDx2[x]; } void vel_ver(double phi[][N],double v,double c,int tsteps,double dt) { int t,x; double d1,d2,dp,DphiDx1[tsteps+1][N],DphiDx2[tsteps+1][N],dpdt[tsteps+1][N],p[tsteps+1][N]; for (t=0;t<tsteps;t++){ if (t==0){ for (x=0;x<N;x++){//inital conditions deriv2(phi,DphiDx2,t); dpdt[t][x] = DphiDx2[t][x] - sin(phi[t][x]) - sin(3.*phi[t][x]); DphiDx1[t][x] = (phi[t][x+1] - phi[t][x])/dx; p[t][x] = -v*DphiDx1[t][x]; } } for (x=0;x<N;x++){//velocity-verlet phi[t+1][x] = phi[t][x] + dt*p[t][x] + (dt*dt/2)*dpdt[t][x]; p[t+1][x] = p[t][x] + (dt/2)*dpdt[t][x]; deriv2(phi,DphiDx2,t+1); dpdt[t][x] = DphiDx2[t][x] - sin(phi[t+1][x]) - sin(3.*phi[t+1][x]); p[t+1][x] += (dt/2)*dpdt[t+1][x]; } } } So, this really isn't due to my overwriting the end of the Sol array. I've commented out both functions that I suspected of causing the problem (bisect or shoot) and inserted a print function. Two things happen. When I have code like below: double A,Pi,B,c; c=0; Pi = 4.*atan(1.); A = Pi; B = 1./4.; printf("%lf",B); B = shoot(Sol,A,c); printf("%lf",B); I get a segfault from the function, shoot. However, if I take away the shoot function so that I have: double A,Pi,B,c; c=0; Pi = 4.*atan(1.); A = Pi; B = 1./4.; printf("%lf",B); it gives me a segfault at the printf... Why!?

    Read the article

  • Can't seem to get C TCP Server-Client Communications Right

    - by Zeesponge
    Ok i need some serious help here. I have to make a TCP Server Client. When the Client connects to server using a three stage handshake. AFterwards... while the Client is running in the terminal, the user enters linux shell commands like xinput list, ls -1, ect... something that uses standard output. The server accepts the commands and uses system() (in a fork() in an infinite loop) to run the commands and the standard output is redirected to the client, where the client prints out each line. Afterward the server sends a completion signal of "\377\n". In which the client goes back to the command prompt asking for a new command and closes its connection and exit()'s when inputting "quit". I know that you have to dup2() both the STDOUT_FILENO and STDERR_FILENO to the clients file descriptor {dup2(client_FD, STDOUT_FILENO). Everything works accept when it comes for the client to retrieve system()'s stdout and printing it out... all i get is a blank line with a blinking cursor (client waiting on stdin). I tried all kinds of different routes with no avail... If anyone can help out i would greatly appreciate it TCP SERVER CODE include #include <sys/socket.h> #include <stdio.h> #include <string.h> #include <netinet/in.h> #include <signal.h> #include <unistd.h> #include <stdlib.h> #include <errno.h> //Prototype void handle_client(int connect_fd); int main() { int server_sockfd, client_sockfd; socklen_t server_len, client_len; struct sockaddr_in server_address; struct sockaddr_in client_address; server_sockfd = socket(AF_INET, SOCK_STREAM, 0); server_address.sin_family = AF_INET; server_address.sin_addr.s_addr = htonl(INADDR_ANY); server_address.sin_port = htons(9734); server_len = sizeof(server_address); bind(server_sockfd, (struct sockaddr *)&server_address, server_len); /* Create a connection queue, ignore child exit details and wait for clients. */ listen(server_sockfd, 10); signal(SIGCHLD, SIG_IGN); while(1) { printf("server waiting\n"); client_len = sizeof(client_address); client_sockfd = accept(server_sockfd, (struct sockaddr *)&client_address, &client_len); if(fork() == 0) handle_client(client_sockfd); else close(client_sockfd); } } void handle_client(int connect_fd) { const char* remsh = "<remsh>\n"; const char* ready = "<ready>\n"; const char* ok = "<ok>\n"; const char* command = "<command>\n"; const char* complete = "<\377\n"; const char* shared_secret = "<shapoopi>\n"; static char server_msg[201]; static char client_msg[201]; static char commands[201]; int sys_return; //memset client_msg, server_msg, commands memset(&client_msg, 0, sizeof(client_msg)); memset(&server_msg, 0, sizeof(client_msg)); memset(&commands, 0, sizeof(commands)); //read remsh from client read(connect_fd, &client_msg, 200); //check remsh validity from client if(strcmp(client_msg, remsh) != 0) { errno++; perror("Error Establishing Handshake"); close(connect_fd); exit(1); } //memset client_msg memset(&client_msg, 0, sizeof(client_msg)); //write remsh to client write(connect_fd, remsh, strlen(remsh)); //read shared_secret from client read(connect_fd, &client_msg, 200); //check shared_secret validity from client if(strcmp(client_msg, shared_secret) != 0) { errno++; perror("Invalid Security Passphrase"); write(connect_fd, "no", 2); close(connect_fd); exit(1); } //memset client_msg memset(&client_msg, 0, sizeof(client_msg)); //write ok to client write(connect_fd, ok, strlen(ok)); // dup2 STDOUT_FILENO <= client fd, STDERR_FILENO <= client fd dup2(connect_fd, STDOUT_FILENO); dup2(connect_fd, STDERR_FILENO); //begin while... while read (client_msg) from server and >0 while(read(connect_fd, &client_msg, 200) > 0) { //check command validity from client if(strcmp(client_msg, command) != 0) { errno++; perror("Error, unable to retrieve data"); close(connect_fd); exit(1); } //memset client_msg memset(&client_msg, 0, sizeof(client_msg)); //write ready to client write(connect_fd, ready, strlen(ready)); //read commands from client read(connect_fd, &commands, 200); //run commands using system( ) sys_return = system(commands); //check success of system( ) if(sys_return < 0) { perror("Invalid Commands"); errno++; } //memset commands memset(commands, 0, sizeof(commands)); //write complete to client write(connect_fd, complete, sizeof(complete)); } } TCP CLIENT CODE #include <sys/types.h> #include <sys/socket.h> #include <stdio.h> #include <string.h> #include <netinet/in.h> #include <arpa/inet.h> #include <unistd.h> #include <stdlib.h> #include <errno.h> #include "readline.c" int main(int argc, char *argv[]) { int sockfd; int len; struct sockaddr_in address; int result; const char* remsh = "<remsh>\n"; const char* ready = "<ready>\n"; const char* ok = "<ok>\n"; const char* command = "<command>\n"; const char* complete = "<\377\n"; const char* shared_secret = "<shapoopi>\n"; static char server_msg[201]; static char client_msg[201]; memset(&client_msg, 0, sizeof(client_msg)); memset(&server_msg, 0, sizeof(server_msg)); /* Create a socket for the client. */ sockfd = socket(AF_INET, SOCK_STREAM, 0); /* Name the socket, as agreed with the server. */ memset(&address, 0, sizeof(address)); address.sin_family = AF_INET; address.sin_addr.s_addr = inet_addr(argv[1]); address.sin_port = htons(9734); len = sizeof(address); /* Now connect our socket to the server's socket. */ result = connect(sockfd, (struct sockaddr *)&address, len); if(result == -1) { perror("ACCESS DENIED"); exit(1); } //write remsh to server write(sockfd, remsh, strlen(remsh)); //read remsh from server read(sockfd, &server_msg, 200); //check remsh validity from server if(strcmp(server_msg, remsh) != 0) { errno++; perror("Error Establishing Initial Handshake"); close(sockfd); exit(1); } //memset server_msg memset(&server_msg, 0, sizeof(server_msg)); //write shared secret text to server write(sockfd, shared_secret, strlen(shared_secret)); //read ok from server read(sockfd, &server_msg, 200); //check ok velidity from server if(strcmp(server_msg, ok) != 0 ) { errno++; perror("Incorrect security phrase"); close(sockfd); exit(1); } //? dup2 STDIN_FILENO = server socket fd? //dup2(sockfd, STDIN_FILENO); //begin while(1)/////////////////////////////////////// while(1){ //memset both msg arrays memset(&client_msg, 0, sizeof(client_msg)); memset(&server_msg, 0, sizeof(server_msg)); //print Enter Command, scan input, fflush to stdout printf("<<Enter Command>> "); scanf("%s", client_msg); fflush(stdout); //check quit input, if true close and exit successfully if(strcmp(client_msg, "quit") == 0) { printf("Exiting\n"); close(sockfd); exit(EXIT_SUCCESS); } //write command to server write(sockfd, command, strlen(command)); //read ready from server read(sockfd, &server_msg, 200); //check ready validity from server if(strcmp(server_msg, ready) != 0) { errno++; perror("Failed Server Communications"); close(sockfd); exit(1); } //memset server_msg memset(&server_msg, 0, sizeof(server_msg)); //begin looping and retrieving from stdin, //break loop at EOF or complete while((read(sockfd, server_msg, 200) != 0) && (strcmp(server_msg, complete) != 0)) { //while((fgets(server_msg, 4096, stdin) != EOF) || (strcmp(server_msg, complete) == 0)) { printf("%s", server_msg); memset(&server_msg, 0, sizeof(server_msg)); } } }

    Read the article

  • Why is phpseclib producing incompatible certs?

    - by chacham15
    Why is it that when I try to use a certificate/key pair generated from phpseclib, the OpenSSL server code errors out? Certs/Keys generated from OpenSSL work fine. How do I fix this? Certificate/Key Generation taken straight from phpseclib documentation: <?php include('File/X509.php'); include('Crypt/RSA.php'); // create private key / x.509 cert for stunnel / website $privKey = new Crypt_RSA(); extract($privKey-createKey()); $privKey-loadKey($privatekey); $pubKey = new Crypt_RSA(); $pubKey-loadKey($publickey); $pubKey-setPublicKey(); $subject = new File_X509(); $subject-setDNProp('id-at-organizationName', 'phpseclib demo cert'); //$subject-removeDNProp('id-at-organizationName'); $subject-setPublicKey($pubKey); $issuer = new File_X509(); $issuer-setPrivateKey($privKey); $issuer-setDN($subject-getDN()); $x509 = new File_X509(); //$x509-setStartDate('-1 month'); // default: now //$x509-setEndDate('+1 year'); // default: +1 year $result = $x509-sign($issuer, $subject); echo "the stunnel.pem contents are as follows:\r\n\r\n"; echo $privKey-getPrivateKey(); echo "\r\n"; echo $x509-saveX509($result); echo "\r\n"; ? OpenSSL sample SSL server taken straight from OpenSSL example code: #include <stdio.h #include <unistd.h #include <stdlib.h #include <memory.h #include <errno.h #include <sys/types.h #include <sys/socket.h #include <netinet/in.h #include <arpa/inet.h #include <netdb.h #include <openssl/rsa.h /* SSLeay stuff */ #include <openssl/crypto.h #include <openssl/x509.h #include <openssl/pem.h #include <openssl/ssl.h #include <openssl/err.h #define CHK_NULL(x) if ((x)==NULL) exit (1) #define CHK_ERR(err,s) if ((err)==-1) { perror(s); exit(1); } #define CHK_SSL(err) if ((err)==-1) { ERR_print_errors_fp(stderr); exit(2); } int main (int argc, char *argv[]) { int err; int listen_sd; int sd; struct sockaddr_in sa_serv; struct sockaddr_in sa_cli; size_t client_len; SSL_CTX* ctx; SSL* ssl; X509* client_cert; char* str; char buf [4096]; SSL_METHOD *meth; /* SSL preliminaries. We keep the certificate and key with the context. */ SSL_load_error_strings(); SSLeay_add_ssl_algorithms(); meth = SSLv23_server_method(); ctx = SSL_CTX_new (meth); if (!ctx) { ERR_print_errors_fp(stderr); exit(2); } if (SSL_CTX_use_certificate_file(ctx, argv[1], SSL_FILETYPE_PEM) <= 0) { ERR_print_errors_fp(stderr); exit(3); } if (SSL_CTX_use_PrivateKey_file(ctx, argv[2], SSL_FILETYPE_PEM) <= 0) { ERR_print_errors_fp(stderr); exit(4); } if (!SSL_CTX_check_private_key(ctx)) { fprintf(stderr,"Private key does not match the certificate public key\n"); exit(5); } /* ----------------------------------------------- */ /* Prepare TCP socket for receiving connections */ listen_sd = socket (AF_INET, SOCK_STREAM, 0); CHK_ERR(listen_sd, "socket"); memset (&sa_serv, '\0', sizeof(sa_serv)); sa_serv.sin_family = AF_INET; sa_serv.sin_addr.s_addr = INADDR_ANY; sa_serv.sin_port = htons (1111); /* Server Port number */ err = bind(listen_sd, (struct sockaddr*) &sa_serv, sizeof (sa_serv)); CHK_ERR(err, "bind"); /* Receive a TCP connection. */ err = listen (listen_sd, 5); CHK_ERR(err, "listen"); client_len = sizeof(sa_cli); sd = accept (listen_sd, (struct sockaddr*) &sa_cli, (unsigned int*)&client_len); CHK_ERR(sd, "accept"); close (listen_sd); printf ("Connection from %lx, port %x\n", sa_cli.sin_addr.s_addr, sa_cli.sin_port); /* ----------------------------------------------- */ /* TCP connection is ready. Do server side SSL. */ ssl = SSL_new (ctx); CHK_NULL(ssl); SSL_set_fd (ssl, sd); err = SSL_accept (ssl); CHK_SSL(err); /* Get the cipher - opt */ printf ("SSL connection using %s\n", SSL_get_cipher (ssl)); /* Get client's certificate (note: beware of dynamic allocation) - opt */ client_cert = SSL_get_peer_certificate (ssl); if (client_cert != NULL) { printf ("Client certificate:\n"); str = X509_NAME_oneline (X509_get_subject_name (client_cert), 0, 0); CHK_NULL(str); printf ("\t subject: %s\n", str); OPENSSL_free (str); str = X509_NAME_oneline (X509_get_issuer_name (client_cert), 0, 0); CHK_NULL(str); printf ("\t issuer: %s\n", str); OPENSSL_free (str); /* We could do all sorts of certificate verification stuff here before deallocating the certificate. */ X509_free (client_cert); } else printf ("Client does not have certificate.\n"); /* DATA EXCHANGE - Receive message and send reply. */ err = SSL_read (ssl, buf, sizeof(buf) - 1); CHK_SSL(err); buf[err] = '\0'; printf ("Got %d chars:'%s'\n", err, buf); err = SSL_write (ssl, "I hear you.", strlen("I hear you.")); CHK_SSL(err); /* Clean up. */ close (sd); SSL_free (ssl); SSL_CTX_free (ctx); return 1; } /* EOF - serv.cpp */ This program errors with: (the error is printed out on the call to SSL_write) Connection from 100007f, port a7ff SSL connection using (NONE) Client does not have certificate. Got 0 chars:'' 82673:error:1409E0E5:SSL routines:SSL3_WRITE_BYTES:ssl handshake failure:/SourceCache/OpenSSL098/OpenSSL098-44/src/ssl/s3_pkt.c:539: Here is the relevant code referenced by the error: int ssl3_write_bytes(SSL *s, int type, const void *buf_, int len) { const unsigned char *buf=buf_; unsigned int tot,n,nw; int i; s-rwstate=SSL_NOTHING; tot=s-s3-wnum; s-s3-wnum=0; if (SSL_in_init(s) && !s-in_handshake) { i=s-handshake_func(s); if (i < 0) return(i); if (i == 0) { SSLerr(SSL_F_SSL3_WRITE_BYTES,SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } ...etc

    Read the article

  • Can anyone explain why my crypto++ decrypted file is 16 bytes short?

    - by Tom Williams
    I suspect it might be too much to hope for, but can anyone with experience with crypto++ explain why the "decrypted.out" file created by main() is 16 characters short (which probably not coincidentally is the block size)? I think the issue must be in CryptStreamBuffer::GetNextChar(), but I've been staring at it and the crypto++ documentation for hours. Any other comments about how crummy or naive my std::streambuf implementation are also welcome ;-) And I've just noticed I'm missing some calls to delete so you don't have to tell me about those. Thanks, Tom // Runtime Includes #include <iostream> // Crypto++ Includes #include "aes.h" #include "modes.h" // xxx_Mode< > #include "filters.h" // StringSource and // StreamTransformation #include "files.h" using namespace std; class CryptStreamBuffer: public std::streambuf { public: CryptStreamBuffer(istream& encryptedInput, CryptoPP::StreamTransformation& c); CryptStreamBuffer(ostream& encryptedOutput, CryptoPP::StreamTransformation& c); protected: virtual int_type overflow(int_type ch = traits_type::eof()); virtual int_type uflow(); virtual int_type underflow(); virtual int_type pbackfail(int_type ch); virtual int sync(); private: int GetNextChar(); int m_NextChar; // Buffered character CryptoPP::StreamTransformationFilter* m_StreamTransformationFilter; CryptoPP::FileSource* m_Source; CryptoPP::FileSink* m_Sink; }; // class CryptStreamBuffer CryptStreamBuffer::CryptStreamBuffer(istream& encryptedInput, CryptoPP::StreamTransformation& c) : m_NextChar(traits_type::eof()), m_StreamTransformationFilter(0), m_Source(0), m_Sink(0) { m_StreamTransformationFilter = new CryptoPP::StreamTransformationFilter(c); m_Source = new CryptoPP::FileSource(encryptedInput, false, m_StreamTransformationFilter); } CryptStreamBuffer::CryptStreamBuffer(ostream& encryptedOutput, CryptoPP::StreamTransformation& c) : m_NextChar(traits_type::eof()), m_StreamTransformationFilter(0), m_Source(0), m_Sink(0) { m_Sink = new CryptoPP::FileSink(encryptedOutput); m_StreamTransformationFilter = new CryptoPP::StreamTransformationFilter(c, m_Sink); } CryptStreamBuffer::int_type CryptStreamBuffer::overflow(int_type ch) { return m_StreamTransformationFilter->Put((byte)ch); } CryptStreamBuffer::int_type CryptStreamBuffer::uflow() { int_type result = GetNextChar(); // Reset the buffered character m_NextChar = traits_type::eof(); return result; } CryptStreamBuffer::int_type CryptStreamBuffer::underflow() { return GetNextChar(); } CryptStreamBuffer::int_type CryptStreamBuffer::pbackfail(int_type ch) { return traits_type::eof(); } int CryptStreamBuffer::sync() { if (m_Sink) { m_StreamTransformationFilter->MessageEnd(); } } int CryptStreamBuffer::GetNextChar() { // If we have a buffered character do nothing if (m_NextChar != traits_type::eof()) { return m_NextChar; } // If there are no more bytes currently available then pump the source // *** I SUSPECT THE PROBLEM IS HERE *** if (m_StreamTransformationFilter->MaxRetrievable() == 0) { m_Source->Pump(1024); } // Retrieve the next byte byte nextByte; size_t noBytes = m_StreamTransformationFilter->Get(nextByte); if (0 == noBytes) { return traits_type::eof(); } // Buffer up the next character m_NextChar = nextByte; return m_NextChar; } void InitKey(byte key[]) { key[0] = -62; key[1] = 102; key[2] = 78; key[3] = 75; key[4] = -96; key[5] = 125; key[6] = 66; key[7] = 125; key[8] = -95; key[9] = -66; key[10] = 114; key[11] = 22; key[12] = 48; key[13] = 111; key[14] = -51; key[15] = 112; } void DecryptFile(const char* sourceFileName, const char* destFileName) { ifstream ifs(sourceFileName, ios::in | ios::binary); ofstream ofs(destFileName, ios::out | ios::binary); byte key[CryptoPP::AES::DEFAULT_KEYLENGTH]; InitKey(key); CryptoPP::ECB_Mode<CryptoPP::AES>::Decryption decryptor(key, sizeof(key)); if (ifs) { if (ofs) { CryptStreamBuffer cryptBuf(ifs, decryptor); std::istream decrypt(&cryptBuf); int c; while (EOF != (c = decrypt.get())) { ofs << (char)c; } ofs.flush(); } else { std::cerr << "Failed to open file '" << destFileName << "'." << endl; } } else { std::cerr << "Failed to open file '" << sourceFileName << "'." << endl; } } void EncryptFile(const char* sourceFileName, const char* destFileName) { ifstream ifs(sourceFileName, ios::in | ios::binary); ofstream ofs(destFileName, ios::out | ios::binary); byte key[CryptoPP::AES::DEFAULT_KEYLENGTH]; InitKey(key); CryptoPP::ECB_Mode<CryptoPP::AES>::Encryption encryptor(key, sizeof(key)); if (ifs) { if (ofs) { CryptStreamBuffer cryptBuf(ofs, encryptor); std::ostream encrypt(&cryptBuf); int c; while (EOF != (c = ifs.get())) { encrypt << (char)c; } encrypt.flush(); } else { std::cerr << "Failed to open file '" << destFileName << "'." << endl; } } else { std::cerr << "Failed to open file '" << sourceFileName << "'." << endl; } } int main(int argc, char* argv[]) { EncryptFile(argv[1], "encrypted.out"); DecryptFile("encrypted.out", "decrypted.out"); return 0; }

    Read the article

  • Need help with copy constructor for very basic implementation of singly linked lists

    - by Jesus
    Last week, we created a program that manages sets of strings, using classes and vectors. I was able to complete this 100%. This week, we have to replace the vector we used to store strings in our class with simple singly linked lists. The function basically allows users to declare sets of strings that are empty, and sets with only one element. In the main file, there is a vector whose elements are a struct that contain setName and strSet (class). HERE IS MY PROBLEM: It deals with the copy constructor of the class. When I remove/comment out the copy constructor, I can declare as many empty or single sets as I want, and output their values without a problem. But I know I will obviously need the copy constructor for when I implement the rest of the program. When I leave the copy constructor in, I can declare one set, either single or empty, and output its value. But if I declare a 2nd set, and i try to output either of the first two sets, i get a Segmentation Fault. Moreover, if i try to declare more then 2 sets, I get a Segmentation Fault. Any help would be appreciated!! Here is my code for a very basic implementation of everything: Here is the setcalc.cpp: (main file) #include <iostream> #include <cctype> #include <cstring> #include <string> #include "help.h" #include "strset2.h" using namespace std; // Declares of structure to hold all the sets defined struct setsOfStr { string nameOfSet; strSet stringSet; }; // Checks if the set name inputted is unique bool isSetNameUnique( vector<setsOfStr> strSetArr, string setName) { for(unsigned int i = 0; i < strSetArr.size(); i++) { if( strSetArr[i].nameOfSet == setName ) { return false; } } return true; } int main(int argc, char *argv[]) { char commandChoice; // Declares a vector with our declared structure as the type vector<setsOfStr> strSetVec; string setName; string singleEle; // Sets a loop that will constantly ask for a command until 'q' is typed while (1) { // declaring a set to be empty if(commandChoice == 'd') { cin >> setName; // Check that the set name inputted is unique if (isSetNameUnique(strSetVec, setName) == true) { strSet emptyStrSet; setsOfStr set1; set1.nameOfSet = setName; set1.stringSet = emptyStrSet; strSetVec.push_back(set1); } else { cerr << "ERROR: Re-declaration of set '" << setName << "'\n"; } } // declaring a set to be a singleton else if(commandChoice == 's') { cin >> setName; cin >> singleEle; // Check that the set name inputted is unique if (isSetNameUnique(strSetVec, setName) == true) { strSet singleStrSet(singleEle); setsOfStr set2; set2.nameOfSet = setName; set2.stringSet = singleStrSet; strSetVec.push_back(set2); } else { cerr << "ERROR: Re-declaration of set '" << setName << "'\n"; } } // using the output function else if(commandChoice == 'o') { cin >> setName; if(isSetNameUnique(strSetVec, setName) == false) { // loop through until the set name is matched and call output on its strSet for(unsigned int k = 0; k < strSetVec.size(); k++) { if( strSetVec[k].nameOfSet == setName ) { (strSetVec[k].stringSet).output(); } } } else { cerr << "ERROR: No such set '" << setName << "'\n"; } } // quitting else if(commandChoice == 'q') { break; } else { cerr << "ERROR: Ignoring bad command: '" << commandChoice << "'\n"; } } return 0; } Here is the strSet2.h: #ifndef _STRSET_ #define _STRSET_ #include <iostream> #include <vector> #include <string> struct node { std::string s1; node * next; }; class strSet { private: node * first; public: strSet (); // Create empty set strSet (std::string s); // Create singleton set strSet (const strSet &copy); // Copy constructor // will implement destructor later void output() const; strSet& operator = (const strSet& rtSide); // Assignment }; // End of strSet class #endif // _STRSET_ And here is the strSet2.cpp (implementation of class) #include <iostream> #include <vector> #include <string> #include "strset2.h" using namespace std; strSet::strSet() { first = NULL; } strSet::strSet(string s) { node *temp; temp = new node; temp->s1 = s; temp->next = NULL; first = temp; } strSet::strSet(const strSet& copy) { cout << "copy-cst\n"; node *n = copy.first; node *prev = NULL; while (n) { node *newNode = new node; newNode->s1 = n->s1; newNode->next = NULL; if (prev) { prev->next = newNode; } else { first = newNode; } prev = newNode; n = n->next; } } void strSet::output() const { if(first == NULL) { cout << "Empty set\n"; } else { node *temp; temp = first; while(1) { cout << temp->s1 << endl; if(temp->next == NULL) break; temp = temp->next; } } } strSet& strSet::operator = (const strSet& rtSide) { first = rtSide.first; return *this; }

    Read the article

  • Erroneous/Incorrect C2248 error using Visual Studio 2010

    - by Dylan Bourque
    I'm seeing what I believe to be an erroneous/incorrect compiler error using the Visual Studio 2010 compiler. I'm in the process of up-porting our codebase from Visual Studio 2005 and I ran across a construct that was building correctly before but now generates a C2248 compiler error. Obviously, the code snippet below has been generic-ized, but it is a compilable example of the scenario. The ObjectPtr<T> C++ template comes from our codebase and is the source of the error in question. What appears to be happening is that the compiler is generating a call to the copy constructor for ObjectPtr<T> when it shouldn't (see my comment block in the SomeContainer::Foo() method below). For this code construct, there is a public cast operator for SomeUsefulData * on ObjectPtr<SomeUsefulData> but it is not being chosen inside the true expression if the ?: operator. Instead, I get the two errors in the block quote below. Based on my knowledge of C++, this code should compile. Has anyone else seen this behavior? If not, can someone point me to a clarification of the compiler resolution rules that would explain why it's attempting to generate a copy of the object in this case? Thanks in advance, Dylan Bourque Visual Studio build output: c:\projects\objectptrtest\objectptrtest.cpp(177): error C2248: 'ObjectPtr::ObjectPtr' : cannot access private member declared in class 'ObjectPtr' with [ T=SomeUsefulData ] c:\projects\objectptrtest\objectptrtest.cpp(25) : see declaration of 'ObjectPtr::ObjectPtr' with [ T=SomeUsefulData ] c:\projects\objectptrtest\objectptrtest.cpp(177): error C2248: 'ObjectPtr::ObjectPtr' : cannot access private member declared in class 'ObjectPtr' with [ T=SomeUsefulData ] c:\projects\objectptrtest\objectptrtest.cpp(25) : see declaration of 'ObjectPtr::ObjectPtr' with [ T=SomeUsefulData ] Below is a minimal, compilable example of the scenario: #include <stdio.h> #include <tchar.h> template<class T> class ObjectPtr { public: ObjectPtr<T> (T* pObj = NULL, bool bShared = false) : m_pObject(pObj), m_bObjectShared(bShared) {} ~ObjectPtr<T> () { Detach(); } private: // private, unimplemented copy constructor and assignment operator // to guarantee that ObjectPtr<T> objects are not copied ObjectPtr<T> (const ObjectPtr<T>&); ObjectPtr<T>& operator = (const ObjectPtr<T>&); public: T * GetObject () { return m_pObject; } const T * GetObject () const { return m_pObject; } bool HasObject () const { return (GetObject()!=NULL); } bool IsObjectShared () const { return m_bObjectShared; } void ObjectShared (bool bShared) { m_bObjectShared = bShared; } bool IsNull () const { return !HasObject(); } void Attach (T* pObj, bool bShared = false) { Detach(); if (pObj != NULL) { m_pObject = pObj; m_bObjectShared = bShared; } } void Detach (T** ppObject = NULL) { if (ppObject != NULL) { *ppObject = m_pObject; m_pObject = NULL; m_bObjectShared = false; } else { if (HasObject()) { if (!IsObjectShared()) delete m_pObject; m_pObject = NULL; m_bObjectShared = false; } } } void Detach (bool bDeleteIfNotShared) { if (HasObject()) { if (bDeleteIfNotShared && !IsObjectShared()) delete m_pObject; m_pObject = NULL; m_bObjectShared = false; } } bool IsEqualTo (const T * pOther) const { return (GetObject() == pOther); } public: T * operator -> () { ASSERT(HasObject()); return m_pObject; } const T * operator -> () const { ASSERT(HasObject()); return m_pObject; } T & operator * () { ASSERT(HasObject()); return *m_pObject; } const T & operator * () const { ASSERT(HasObject()); return (const C &)(*m_pObject); } operator T * () { return m_pObject; } operator const T * () const { return m_pObject; } operator bool() const { return (m_pObject!=NULL); } ObjectPtr<T>& operator = (T * pObj) { Attach(pObj, false); return *this; } bool operator == (const T * pOther) const { return IsEqualTo(pOther); } bool operator == (T * pOther) const { return IsEqualTo(pOther); } bool operator != (const T * pOther) const { return !IsEqualTo(pOther); } bool operator != (T * pOther) const { return !IsEqualTo(pOther); } bool operator == (const ObjectPtr<T>& other) const { return IsEqualTo(other.GetObject()); } bool operator != (const ObjectPtr<T>& other) const { return !IsEqualTo(other.GetObject()); } bool operator == (int pv) const { return (pv==NULL)? IsNull() : (LPVOID(m_pObject)==LPVOID(pv)); } bool operator != (int pv) const { return !(*this == pv); } private: T * m_pObject; bool m_bObjectShared; }; // Some concrete type that holds useful data class SomeUsefulData { public: SomeUsefulData () {} ~SomeUsefulData () {} }; // Some concrete type that holds a heap-allocated instance of // SomeUsefulData class SomeContainer { public: SomeContainer (SomeUsefulData* pUsefulData) { m_pData = pUsefulData; } ~SomeContainer () { // nothing to do here } public: bool EvaluateSomeCondition () { // fake condition check to give us an expression // to use in ?: operator below return true; } SomeUsefulData* Foo () { // this usage of the ?: operator generates a C2248 // error b/c it's attempting to call the copy // constructor on ObjectPtr<T> return EvaluateSomeCondition() ? m_pData : NULL; /**********[ DISCUSSION ]********** The following equivalent constructs compile w/out error and behave correctly: (1) explicit cast to SomeUsefulData* as a comiler hint return EvaluateSomeCondition() ? (SomeUsefulData *)m_pData : NULL; (2) if/else instead of ?: if (EvaluateSomeCondition()) return m_pData; else return NULL; (3) skip the condition check and return m_pData as a SomeUsefulData* directly return m_pData; **********[ END DISCUSSION ]**********/ } private: ObjectPtr<SomeUsefulData> m_pData; }; int _tmain(int argc, _TCHAR* argv[]) { return 0; }

    Read the article

  • Strange (Undefined?) Behavior of Free in C

    - by Chris Cirefice
    This is really strange... and I can't debug it (tried for about two hours, debugger starts going haywire after a while...). Anyway, I'm trying to do something really simple: Free an array of strings. The array is in the form: char **myStrings. The array elements are initialized as: myString[index] = malloc(strlen(word)); myString[index] = word; and I'm calling a function like this: free_memory(myStrings, size); where size is the length of the array (I know this is not the problem, I tested it extensively and everything except this function is working). free_memory looks like this: void free_memory(char **list, int size) { for (int i = 0; i < size; i ++) { free(list[i]); } free(list); } Now here comes the weird part. if (size> strlen(list[i])) then the program crashes. For example, imagine that I have a list of strings that looks something like this: myStrings[0] = "Some"; myStrings[1] = "random"; myStrings[2] = "strings"; And thus the length of this array is 3. If I pass this to my free_memory function, strlen(myStrings[0]) > 3 (4 3), and the program crashes. However, if I change myStrings[0] to be "So" instead, then strlen(myStrings[0]) < 3 (2 < 3) and the program does not crash. So it seems to me that free(list[i]) is actually going through the char[] that is at that location and trying to free each character, which I imagine is undefined behavior. The only reason I say this is because I can play around with the size of the first element of myStrings and make the program crash whenever I feel like it, so I'm assuming that this is the problem area. Note: I did try to debug this by stepping through the function that calls free_memory, noting any weird values and such, but the moment I step into the free_memory function, the debugger crashes, so I'm not really sure what is going on. Nothing is out of the ordinary until I enter the function, then the world explodes. Another note: I also posted the shortened version of the source for this program (not too long; Pastebin) here. I am compiling on MinGW with the c99 flag on. PS - I just thought of this. I am indeed passing numUniqueWords to the free function, and I know that this does not actually free the entire piece of memory that I allocated. I've called it both ways, that's not the issue. And I left it how I did because that is the way that I will be calling it after I get it to work in the first place, I need to revise some of my logic in that function. Source, as per request (on-site): #include <stdio.h> #include <string.h> #include <ctype.h> #include <stdlib.h> #include "words.h" int getNumUniqueWords(char text[], int size); int main(int argc, char* argv[]) { setvbuf(stdout, NULL, 4, _IONBF); // For Eclipse... stupid bug. --> does NOT affect the program, just the output to console! int nbr_words; char text[] = "Some - \"text, a stdin\". We'll have! also repeat? We'll also have a repeat!"; int length = sizeof(text); nbr_words = getNumUniqueWords(text, length); return 0; } void free_memory(char **list, int size) { for (int i = 0; i < size; i ++) { // You can see that printing the values is fine, as long as free is not called. // When free is called, the program will crash if (size > strlen(list[i])) //printf("Wanna free value %d w/len of %d: %s\n", i, strlen(list[i]), list[i]); free(list[i]); } free(list); } int getNumUniqueWords(char text[], int length) { int numTotalWords = 0; char *word; printf("Length: %d characters\n", length); char totalWords[length]; strcpy(totalWords, text); word = strtok(totalWords, " ,.-!?()\"0123456789"); while (word != NULL) { numTotalWords ++; printf("%s\n", word); word = strtok(NULL, " ,.-!?()\"0123456789"); } printf("Looks like we counted %d total words\n\n", numTotalWords); char *uniqueWords[numTotalWords]; char *tempWord; int wordAlreadyExists = 0; int numUniqueWords = 0; char totalWordsCopy[length]; strcpy(totalWordsCopy, text); for (int i = 0; i < numTotalWords; i++) { uniqueWords[i] = NULL; } // Tokenize until all the text is consumed. word = strtok(totalWordsCopy, " ,.-!?()\"0123456789"); while (word != NULL) { // Look through the word list for the current token. for (int j = 0; j < numTotalWords; j ++) { // Just for clarity, no real meaning. tempWord = uniqueWords[j]; // The word list is either empty or the current token is not in the list. if (tempWord == NULL) { break; } //printf("Comparing (%s) with (%s)\n", tempWord, word); // If the current token is the same as the current element in the word list, mark and break if (strcmp(tempWord, word) == 0) { printf("\nDuplicate: (%s)\n\n", word); wordAlreadyExists = 1; break; } } // Word does not exist, add it to the array. if (!wordAlreadyExists) { uniqueWords[numUniqueWords] = malloc(strlen(word)); uniqueWords[numUniqueWords] = word; numUniqueWords ++; printf("Unique: %s\n", word); } // Reset flags and continue. wordAlreadyExists = 0; word = strtok(NULL, " ,.-!?()\"0123456789"); } // Print out the array just for funsies - make sure it's working properly. for (int x = 0; x <numUniqueWords; x++) { printf("Unique list %d: %s\n", x, uniqueWords[x]); } printf("\nNumber of unique words: %d\n\n", numUniqueWords); // Right below is where things start to suck. free_memory(uniqueWords, numUniqueWords); return numUniqueWords; }

    Read the article

< Previous Page | 30 31 32 33 34 35  | Next Page >